
UNIVERSITY OF CALIFORNIA

Los Angeles

Learning-enabled Cyber-Physical Systems: Challenges and Strategies

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Sandeep Singh Sandha

2022

© Copyright by

Sandeep Singh Sandha

2022

ABSTRACT OF THE DISSERTATION

Learning-enabled Cyber-Physical Systems: Challenges and Strategies

by

Sandeep Singh Sandha

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2022

Professor Mani B. Srivastava, Chair

Cyber-physical systems (CPS) are increasingly adopting learning-enabled components having deep

neural networks in their decision-making pipelines. Deep neural networks show the promise to

simplify the CPS pipelines for high-dimensional sensors as they require little pre-processing of

data and are shown to be more accurate than their traditional counterparts. However, integrating

neural networks into the sense-infer-actuate pipeline of CPS faces several challenges. In this dis-

sertation, we study the following challenges in the context of learning-enabled CPS and propose

new algorithms and system design strategies to address them.

First, we study the challenge of characterizing uncertainty in sensor data timestamps and its

impact on multimodal fusion applications. Motivated by smartphones’ integration in several CPS

applications, we quantify the data timestamp uncertainty across modern smartphone devices. To

our surprise, we find drastic timestamping errors ranging up to multiple seconds in Android de-

vices. Then, we explore if these timing errors are significant enough to impact the neural network’s

performance. Our evaluation shows that the observed timing errors can cripple the deep neural net-

works doing multimodal fusion due to data misalignments. Our finding signifies the need to rethink

the shared notion of time on smartphones. To mitigate timestamp errors, we introduce approaches

ii

to improve time across smartphones having up to 200 microseconds of timing accuracy. We also

propose a novel time-shift data augmentation technique to train time-resilient neural networks ro-

bust to the inevitability of timing errors and, as such, degrade gracefully in the face of timing

errors.

As a second challenge, we explore the impact of variable delays on the emerging deep rein-

forcement learning (RL) controllers, which are preferred due to their capability to handle high-

dimensional data. Conventional controllers can model and account for delay variations in their de-

sign. However, handling variable delays in deep-RL is challenging as a black-box neural network

represents the controller policy. Researchers currently use domain randomization and worst-case

delay modeling to train deep-RL policies on a spread of expected delay variations. We demonstrate

a significant performance degradation in applications even when using the state-of-the-art domain

randomization approach. To address this, we propose Time-in-State RL, a delay-aware deep RL

approach that augments the agent’s state with temporal properties (sampling interval and execution

latency). Time-in-State RL trains policies that show superior performance by adapting to the vari-

able timing characteristics at runtime. We further show the superior performance of Time-in-State

to the worst-case delay controllers when worst-case delays are significant. We demonstrate the

efficacy of Time-in-State RL on HalfCheetah, Ant, and car in simulation and on a real scaled car

robot.

Thirdly, we study the challenge of modeling the CPS environment to train end-to-end con-

trollers using deep-RL for closed-loop systems. We specifically consider the example of au-

tonomous pan-tilt-zoom (PTZ) controllers. Existing autonomous PTZ controllers have multiple

stages: detecting objects of interest, short-term tracking, and control of pan, tilt and zoom param-

eters to keep objects in the field of view. The multiple stages suffer from performance bottlenecks

as it is difficult to optimize each step. Further, these multiple stages are computationally intensive

to be realized in real-time on embedded camera platforms. Despite these shortcomings, developers

adopt existing multi-stage solutions due to the lack of simulators needed to develop end-to-end con-

troller policies. We propose Eagle, an end-to-end deep-RL approach using raw images to control

iii

a PTZ camera. To enable successful training of Eagle, we also introduce EagleSim, a simulation

framework to study PTZ cameras in photo-realistic virtual worlds. Our evaluation across a suite of

PTZ tracking scenarios shows that Eagle outperforms current multi-stage approaches by providing

superior tracking performance. Further, we also show that Eagle policies are transferable to real-

scene videos and are lightweight to enable real-time deployment on Raspberry PI and Jetson Nano

class devices.

Finally, we study the challenge of developing machine learning classifiers having optimal ac-

curacy within the desired resource budget of CPS applications. Selecting an optimal classifier is

becoming increasingly complex, with many choices for classifiers and their rich hyperparameter

parameter spaces. Although several hyperparameter tuning frameworks exist, their practical adop-

tion is hindered due to inferior search algorithms, inflexible architecture, software dependencies,

or closed source nature. As a solution, we propose designing a lightweight library with a flexible

architecture and state-of-the-art parallel optimization algorithms. We present Mango, a parallel

hyperparameter tuning library, to realize the proposed design. Mango is currently used in produc-

tion at Arm for more than 30 months and is available open-source. We evaluate Mango on several

benchmarks to highlight its superior performance. We discuss production use cases of Mango in an

AutoML framework and commercial CPU design pipeline. We also showcase another advantage

of Mango in enabling hardware-aware neural architecture search to transfer deep neural networks

to TinyML platforms (microcontroller class devices) used by CPS/IoT applications.

iv

The dissertation of Sandeep Singh Sandha is approved.

Anthony John Nowatzki

Omid Abari

Puneet Gupta

Mani B. Srivastava, Committee Chair

University of California, Los Angeles

2022

v

To my parents, Ramandeep Kaur and Sulakhan Singh, who were with me all the way,

and

my brother, Jashan Meet, who supported me on this journey.

vi

TABLE OF CONTENTS

1 Introduction . 1

1.1 Challenge 1: Data Misalignment due to Timestamp Uncertainty 2

1.1.1 Improving Time and Training Resilient Classifiers 3

1.2 Challenge 2: Delay Awareness in Deep Reinforcement Learning 3

1.2.1 Handling Variable Delays . 4

1.3 Challenge 3: Realizing Training Environments to enable End-to-end Control 5

1.3.1 Deep Reinforcement Learning-based Controllers for PTZ Cameras 6

1.4 Challenge 4: Training Machine Learning Models with Optimal Hyperparameters

in Production . 6

1.4.1 Enabling Hyperparameter Tuning in Production 7

1.5 Dissertation outline . 7

2 Data Timestamp Uncertainty and its Impact on Multimodal Fusion 9

2.1 Distributed Sensing using Smartphones . 9

2.1.1 Data Timestamping in Smartphones . 9

2.1.2 Deep Learning-Based Multimodal Fusion 10

2.2 Background and Related Work . 11

2.3 Smartphone System Clock Study . 13

2.3.1 Understanding Android System Time . 17

2.3.2 Forcing a Sync Event . 17

2.3.3 NITZ vs NTP . 18

2.4 Impact of Timing Errors on Deep Learning-Based Multimodal Fusion 19

vii

2.4.1 Multimodal Deep Learning for Human Activity Recognition 19

2.5 Strategies to Mitigate Timing Errors . 24

2.5.1 System Clock Replacement . 24

2.5.2 Time-Shift Data Augmentation . 25

2.6 Discussion . 27

3 Synchronizing Time across Smartphones . 28

3.1 Shared Notion of Time across Smartphones . 28

3.1.1 Challenges and Tradeoffs . 28

3.2 Background and Related Work . 30

3.3 Smartphone Time Synchronization . 31

3.3.1 Time Synchronization Approaches . 31

3.3.2 Time Synchronization Comparison . 33

3.4 Evaluation . 35

3.4.1 Experimental Setup . 36

3.4.2 Variability Evaluation . 37

3.4.3 Cross-Peripheral Evaluation . 40

3.5 Discussion . 41

3.5.1 Tradeoffs . 41

3.5.2 Recommended Sync Solution . 42

4 Variable End-to-end Delays in Deep Reinforcement Learning 43

4.1 State Transition Delay in Deep-RL . 43

4.1.1 Time-in-State RL . 44

viii

4.2 Background . 45

4.2.1 Temporal Variability in Deep-RL . 45

4.2.2 Variability in Execution Latency and Sampling Interval 47

4.2.3 Impact of Temporal Variability on Deep-RL Policy 48

4.3 Related Work . 49

4.3.1 Control System Approaches . 49

4.3.2 Handling Delays in Reinforcement Learning 51

4.3.3 Accuracy of Delay Measurements at Runtime 53

4.4 Training Deep-RL Policies with Temporal Variations 55

4.4.1 Low Dimensional Use Cases: HalfCheetah and Ant 56

4.4.2 High-Dimensional Use Case: Autonomous Vehicle 59

4.5 Evaluation of Time-in-State RL . 60

4.5.1 HalfCheetah and Ant Tasks . 60

4.5.2 Experiments with Variable Delays within an Episode and Timing Noises . . 61

4.5.3 DeepRacer Robotic Car . 62

4.6 Experiments with Recurrent Policies . 68

4.7 Vanilla Deep Reinforcement Learning Policy without Varying Timing Characteristics 69

4.8 Comparison of Time-in-state with Worst Case Delay Controller 70

4.9 Conclusion . 72

5 End-to-end Deep Reinforcement Learning for Autonomous Control of PTZ Cameras 73

5.1 Introduction . 74

5.2 Background and Related Works . 79

5.2.1 Autonomous Control of PTZ Cameras . 79

ix

5.2.2 Frameworks for Pan-Tilt-Zoom Cameras 81

5.3 Eagle: End-to-end Deep-RL for PTZ . 82

5.3.1 State Space, Policy Network and Actions 82

5.3.2 Reward Function: Single Object . 83

5.3.3 Generalizable PTZ Tracking . 84

5.3.4 Dynamic Tasking of Eagle Policies . 86

5.4 Design of EagleSim . 88

5.4.1 Photo-Realistic Virtual Worlds . 88

5.4.2 PTZ Abstractions . 89

5.5 Evaluation . 90

5.5.1 Performance Metrics for PTZ Tracking 91

5.5.2 Implementation of Eagle . 94

5.5.3 Tracking Scenarios . 95

5.5.4 Eagle vs Other Approaches . 104

5.5.5 PTZ Tracking using Lightweight Object Detectors 107

5.5.6 Transfer of Eagle to the Real Scene Videos 110

5.5.7 Runtime of Eagle on Embedded Cameras 111

5.6 Discussion . 114

5.7 Conclusion . 115

6 Enabling Hyperparameter Tuning of Machine Learning Classifiers in Production . 116

6.1 Introduction . 117

6.2 Background and Related Work . 120

6.2.1 Hyperparameter Tuning Frameworks . 120

x

6.2.2 Hyperparameter Tuning Algorithms . 121

6.2.3 Algorithms Implemented in Mango . 122

6.3 Mango . 123

6.3.1 Mango Abstractions . 123

6.3.2 Optimization Algorithms in Mango . 127

6.4 Evaluation and Case Studies . 131

6.4.1 Optimization Performance Evaluation . 131

6.4.2 Case Study: Bug Hunting in Design Verification of Integrated Circuits . . . 138

6.4.3 Case Study: AutoML Framework . 140

6.4.4 Case Study: Network Architecture Search for TinyML Platforms 141

6.5 Discussion . 144

7 Discussion and Future Work . 145

7.1 Extending Timing Analysis . 145

7.2 A Vision of Timing Stack for Deep Reinforcement Learning 146

7.3 Future Training Environments for CPS Applications 146

7.4 Limitations of End-to-end Control . 147

7.5 Possible Extension in Mango . 147

8 Conclusion . 149

9 Appendix . 151

9.1 Delay Measurements on Different Hardware Platforms 151

9.2 Additional Details on HalfCheetah and Ant Tasks 154

9.3 Additional Details on Autonomous Vehicle Task 154

xi

9.4 Learning Curves of Worst-Case Delay Policy . 156

References . 157

xii

LIST OF FIGURES

1.1 Different components in a typical Cyber-physical systems application. 2

2.1 Observed system clock errors across all devices when compared to an NTP baseline

during the undisturbed 5-day study. Three significant time adjustments (>100ms)

occur: A6 at minute 1396, A8 at minute 6166, and A2 at minute 6457. 13

2.2 Observed iOS system clock errors during a 6-hour snapshot of the 5-day study. iOS

errors are an order-of-magnitude less compared to Android due to the aggressive clock

correction that occurs at semi-periodic intervals. 15

2.3 System clock error of an Android Nexus 5X device after triggering 100 independent

NITZ timing updates. 18

2.4 System clock error of an Android Nexus 5X device after triggering 100 independent

NTP timing updates. 19

2.5 The architecture of Multimodal Audio-IMU Network with separate branches fused in

cross sensing layers. Conv and fc refer to convolutional modules and fully connected

layers, respectively. 20

2.6 Variation in the accuracy of the Multimodal Audio-IMU network with increased timing

errors between smartphones collecting audio and IMU data. 10-Sec, 20-Sec, and 60-

Sec periods represent varying duration between activity changes. 1000ms of timing

error results in an accuracy drop of 6% for 10-Sec Period. 23

2.7 Comparison of Multimodal Audio-IMU Network test accuracy with different aug-

mented training datasets. The augmented models can preserve classifier accuracy de-

spite 250ms and 600ms of timing error. Without augmentation, 600ms of error results

in model accuracy drop by 3%, from 96.5% to 93.5%. 26

xiii

3.1 Timestamping events for audio, Wi-Fi and BLE peripherals in Android. Timestamp

delays are not drawn to scale. 34

3.2 Relative clock offset for audio-based sync over time, with respect to a fourth phone

(Pixel) serving as a reference clock. Results are normalized to the initial computed

offset for each device. Due to clock drift, offsets change as a function of the relative

drift between the synchronizing device and the reference device. A regression line for

each device indicates the overall relative drift trend. 38

3.3 Sync offset variability with respect to the fourth (Pixel) reference device for (a) au-

dio, (b) BLE, and (c) Wi-Fi implementations. 86% of audio sync attempts fall within

±200µs. 85% of BLE sync attempts fall within ±3000µs. 95% of Wi-Fi sync at-

tempts fall within ±1000µs. 39

4.1 Delays for a typical sensing to actuation pipeline. TSRL augments the observed state

with sampling interval and inferencing latency. 47

4.2 The DeepRacer car on a real track and the simulated car in the Gazebo environment.

The OptiTrack motion capture system is used to quantify the performance of policies

on the real track. 56

4.3 The learning curves for HalfCheetah, Ant and DeepRacer car for TS and DR policies. . 57

4.4 Comparison of time-in-state (TS) and domain randomization (DR) policies for HalfChee-

tah and Ant tasks across different execution latencies (∆τη). The sampling intervals

(∆τσ) is selected to be maximum of (4.12 ms , ∆τη), so that agent can act for each

sensed state. The mean is shown in green, the black ’x’ marker shows the median of

IQR. For both tasks, TS policies achieve higher mean reward than DR policies. 58

4.5 Comparison of time-in-state (TS) and domain randomization (DR) policies for HalfChee-

tah and Ant tasks across different multitenancy settings. The mean is shown in green.

The back ’x’ marker shows the median of IQR. 62

xiv

4.6 A comparison of a single instance of two deep reinforcement learning-based con-

trollers on a 1/18th scale real autonomous car in the presence of 60 ms execution time.

The proposed Time-in-State (TS) based controller performs better than the domain

randomization (DR) based controller. 63

4.7 Evaluation of time-in-state (TS) and domain randomization (DR) policies using Deep-

Racer car. (a) The distance of the real car from the centerline captured using OptiTrack

cameras. The number of points plotted is 2400, except the DR (∆τη=60ms), which has

1657 points. The onboard camera of car was running at 30Hz. (b) Analysis of TS and

DR policies across different execution latencies (∆τη) in DeepRacer simulator. The

sampling intervals (∆τσ) is selected to be maximum of (33 ms , ∆τη). The green color

shows mean, the black ’x’ marker shows the median of IQR. 64

4.8 Learning curves of time-in-state recurrent (TS-Recurrent), time-in-state fully con-

nected (TS-FF), domain randomization recurrent (DR-Recurrent), and domain ran-

domization fully connected (DR-FF) policies for HalfCheetah task. The fully con-

nected policies are trained for ∼ 2400 iterations whereas the recurrent policies are

trained for∼ 10000 iterations. TS policies achieve higher training reward than the DR

policies. 66

4.9 Sim2sim comparison of time-in-state recurrent (TS-Recurrent), time-in-state fully con-

nected (TS-FF), domain randomization recurrent (DR-Recurrent), and domain ran-

domization fully connected (DR-FF) policies for HalfCheetah task. The comparison

is done across different execution latencies (∆τη). The sampling intervals (∆τσ) is

selected to be maximum of (4.12 ms , ∆τη), so that agent can act for each sensed

state. The mean is shown in green, the black ’x’ marker shows the median of IQR. TS

policies achieve higher mean reward than DR policies. 67

xv

4.10 (a) The learning curves for vanilla policy training for the HalfCheetah task. (b) The

evaluation of vanilla policy across different execution latencies (∆τη). The sampling

intervals (∆τσ) is selected to be maximum of (4.12ms , ∆τη). The mean is shown in

green. The back ’x’ marker shows the median of IQR. 69

4.11 The performance comparison of Time-in-state (TS), Time-in-state with noisy measure-

ments (TS-Noise), Domain Randomization, Worst-case delay of 3X (Worst-Case3x),

and Worst-case delay of 5X (Worst-Case5x) for HalfCheetah task. The Worst-Case3x

(3x4.12 ms) and Worst-Case5x (5x4.12 ms) have stable performance up to 3X (12.3

ms) and 5X (20.6 ms) latencies. However, worst-case policies show immediate per-

formance loss beyond their worst-case limits. When the delay variations are large or

worst-case delays are significant; TS policies are a clear winner. 71

5.1 Eagle trains end-to-end deep-RL controllers for PTZ cameras. Sample scenes for ve-

hicle and human tracking from the EagleSim simulator are shown. The direct transfer

of Eagle policies to real scene videos is also demonstrated. 76

5.2 Different approaches for autonomous control of PTZ cameras illustrated using a vehi-

cle tracking scenario. A PTZ camera is controlled to keep a car in the field-of-view

(FoV). The horizontal FoV (FoVh) and vertical FoV (FoVv) control zoom parame-

ter. Approach-1 (Object-detection+tracking+control): Represented by 1,2,3,4,9 is the

widely used multi-stage technique of identifying objects (using object detectors), fol-

lowed by a short term tracker and a controller. Approach-2 Object-detection+RL:

Given by 1,2,5,9 shows a setting where the bounding boxes are used to train a RL

policy. Approach-3 Relative-location+control: Steps 1,6,7,9 shows an alternative to

bounding boxes where a neural network predicts the relative location of objects that

the controller uses. Approach-4 Eagle: End-to-end deep-RL: Steps 1,8,9 show the

proposed Eagle approach to directly control the pan, tilt, and zoom parameters using

the raw input images. 78

xvi

5.3 A sample bounding box for the object of interest (car). The center of the image is the

origin (0,0). (x,y) is the center of the bounding box (Xmin,Y min,Xmax,Y max). 85

5.4 The architecture of EagleSim and its integration with Eagle. Step-1 shows placement

of a PTZ camera for vehicle tracking. Step-2 shows an image captured by camera.

Step-3 shows a bounding box for the object of interest (car). 87

5.5 Visualization of scenarios shown in Table 5.2. Sc-1 has a fixed background. In Sc-2,

fixed background is extended with random tree placements and image augmentations.

Sc-3 shows background variations with image augmentations and trees. Sc-4 extends

the Sc-3 scenes with humans and same vehicle with different colors. In, Sc-5, we add

vehicles of different types as well. DT shows the scenes for dynamic tasking of policy

to track human characters. 93

5.6 Average training reward of Eagle policies for scenarios shown in Table 5.2. We calcu-

late average reward by training three policies for each scenario and show its min-max

spread. Each policy is trained for 69 hours (2000 iterations). 97

5.7 Learning curves of 6 different networks trained to predict bounding boxes of a car from

images. The validation loss is shown for 1000 epochs. 240 150k refers to the model

trained using 240×240 image input on 150k image dataset. The mean and min-max

spread of checkpoints for each network are shown. 108

5.8 Eagle policies on real videos. The arrows show the vehicle to track in the video scene.

The PTZ view is maintained by Eagle while tracking the vehicle. The top images show

the starting point where the PTZ view is not focused. 112

5.9 A sample scene with multiple objects of interest. 114

xvii

6.1 A Bug Hunting Workflow is illustrated which is part of the design verification of in-

tegrated circuits at Arm. A machine learning pipeline replaced the default pipeline to

predict the preferred input candidates. Mango is deployed on the Dask distributed clus-

ter to automate the hyperparameter tuning of ML models used for design verification.

. 119

6.2 An example of Mango to tune the hyperparameters of XGBClassifier from the Xgboost

library using a parallel scheduler on the local machine. Parameter space consists of

distribution, range, and categorical variables. 124

6.3 Skeleton code of Mango on Kubernetes cluster that is deployed as part of the AutoML

framework at Arm. Partial results are returned by the objective function based on

timeout. The conf data structure modifies the default behavior of Tuner. 126

6.4 Skeleton code deploying MetaTuner algorithm on the Dask cluster, which is part of the

bug hunting application used for design verification of Arm integrated circuits designs. 128

6.5 Comparison of Mango to optimize functions. 134

6.6 Comparison of Mango to tune hyperparameters. 135

6.7 The comparison of Mango’s MetaTuner for combined classifier selection and hyper-

parameter optimization problem with other libraries. The evaluation uses five different

classifiers (Xgboost, k-nearest neighbor, Support Vector Machines, decision tree, and

neural network). Sub-figure (a) is for the Breast cancer dataset, sub-figure (b) the Iris

plants dataset, and sub-figure (c) the Wine recognition dataset. Mango performs better

than Hyperopt and SMAC and is competitive with Optuna. 137

6.8 Workflow of the AutoML framework using Mango for hyperparameter tuning on the

Kubernetes (K8s) cluster. 140

xviii

6.9 Performance of Mango for hardware-aware NAS for OxIOD and RoNIN datasets.

Subgraphs (a) and (b) illustrate how Mango maximizes resource usage with looser

compute and memory constraints to improve error metrics for three different hardware

models. Subgraph (c) shows the difference in model size and error metric with and

without hardware-in-the-loop (HIL) for the RoNIN dataset on three different hard-

ware models. Subgraph (d) shows the relation between FLOPS and latency for the

RoNIN dataset and the difference in error metric with and without HIL. 142

9.1 Delay measurements on deepracer and Intel neural compute stick. The mean is shown

in green. The back ’x’ marker shows the median of IQR. 152

9.2 Image augmentations applied to enable successful Sim2Real transfer. (a) Original

Image, (b) Random Shadows, (c) Random Shadow + Sharpen, (d) Random Shadow +

Sharpen + Random noise . 153

9.3 The learning curves of Time-in-state and Fixed latency (worst case = 5x4.12 ms) for

HalfCheetah task. Fixed latency converges faster. Time-in-state is trained across a vast

range of delay variations, and as seen in Figure 4.11 it outperforms worst case policies

across a range of delay variations. 156

xix

LIST OF TABLES

2.1 The list of devices that participated in the chirp system clock study: five iOS devices

and eight Android devices. 14

2.2 Test accuracy of baseline models . 21

3.1 Clock synchronization accuracy across peripherals for three smartphones with respect

to a reference Pixel phone. Results are 95% confidence intervals. 40

4.1 Prediction error in neural network inference latency using different approaches and

inference latency variations studied by researchers. Across a suite of devices, neu-

ral network inference latency can be predicted within 10% error on an average using

different proposed approaches. 54

4.2 (a) Comparison of time-in-state (TS) and domain randomization (DR) policies in com-

pleting laps on the real track out of 24 trials at different execution latencies. (b) The

average speed used by TS and DR. TS adapts its speed with increase in execution

latency. 63

5.1 Policy architecture used by Eagle. 91

5.2 Different tracking scenarios in the increasing order of tracking complexity to evaluate

Eagle. The goal of Sc-1 to Sc-2 is to track vehicles. Dynamic tasking (DT) trains a

policy to track either a vehicle or human characters. 92

5.3 Evaluation of Eagle policies trained for different scenarios in Fixed background scene.

Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Table 5.2. 95

5.4 Evaluation of Eagle policies trained for different scenarios in Variable backgrounds+Trees

scenes. Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Table 5.2. 96

xx

5.5 Evaluation of Eagle policies trained for different scenarios in Variable backgrounds+Trees+Humans

scenes. Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Table 5.2. 96

5.6 Generalization of Eagle policies trained for Sc-4 and Sc-5 (see Table 5.2) scenarios to

track HatchBackgreen and Truckblue vehicles which were not present during training. . 98

5.7 The dynamic tasking (DT) performance of Eagle policies to track either a humans

character (DTh) or a vehicle (DTv). 99

5.8 %Tracking of Eagle policies at different heights (meters) of the PTZ camera. 100

5.9 Comparison of Eagle with the current state-of-the art approaches for different scene

complexities. 103

5.10 Performance of multi-stage approaches when perfect bounding boxes are available

from EagleSim simulator. 103

5.11 Performance of PTZ tracking using lightweight object detectors having an architecture

similar to the Eagle’s policy network. Six different networks are trained to predict the

bounding boxes of a car from images. Two image sizes (240×240) and three train-

ing datasets (50k, 100k, 150k) are used. 240 150k refers to the model trained using

240×240 image input on 150k image dataset. In simple tracking scenes having Fixed

background, all approaches have a very high tracking duration (around 98% Track-

ing) and maintain other parameters also very well. In complex scenes (Variable back-

grounds + Trees + Humans), Eagle outperforms the next best approach (240 150k) by

16% tracking duration and maintain other metrics also similar. 109

5.12 Inference time in milliseconds (ms) of Eagle and optimized Yolo5s on embedded cam-

era platforms. 111

6.1 Wall clock time (sec) taken by optimizers to sample next evaluation in sequential,

parallel, and CASH settings. 138

xxi

9.1 Execution latency (∆τη) on GAP8 increases with the increase in the number of CNN

layers in the neural network. 151

xxii

ACKNOWLEDGMENTS

I want to thank all the fantastic people I interacted with at UCLA. My advisor, Professor Mani

Srivastava, whose guidance throughout this journey was inspiring and a learning experience that

I will cherish forever. I want to thank my thesis committee, Professor Anthony John Nowatzki,

Professor Omid Abari, and Professor Puneet Gupta, for their time and suggestions that helped me

to improve my research directions.

I want to thank my parents (Sulakhan Singh and Ramandeep Kaur) and younger brother (Jashan

Meet) for supporting me. I appreciate the support of NESL members and Industry collaborators

who became close friends in this long journey. Special thanks to the computer science department

graduate office for their help. I want to thank the past and current members of the Computer

Science Graduate Student Association (CS-GSA) who made UCLA a home away from home.

Finally, I want to thank the Almighty, Waheguru Ji, for giving me the strength and wisdom to

enjoy this learning adventure.

The research presented in this dissertation is supported in part by the CONIX Research Cen-

ter, one of six centers in JUMP, a Semiconductor Research Corporation (SRC) program sponsored

by DARPA, by the IoBT REIGN Collaborative Research Alliance funded by the Army Research

Laboratory (ARL) under Cooperative Agreement W911NF-17-2-0196, by the National Science

Foundation (NSF) under awards # CNS-1329755 and IIS-1636879. The views and conclusions

contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the ARL, DARPA, NSF, SRC, or the U.S. Gov-

ernment. The U.S. Government is authorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation here on.

xxiii

VITA

2010-2014 Bachelor of Technology, Computer Science, IIT Roorkee.

2014 Member of Technical Staff, Oracle.

2014-2016 User Experience Professional, IBM Research.

2016-2018 M.S., Computer Science, UCLA.

2017-2022 President, Computer Science Graduate Student Association (CS-GSA), UCLA.

2021 Outstanding Mentorship Award, Computer Science Department, UCLA.

2022 Student Commencement Speaker, Henry Samueli School of Engineering,

UCLA.

PUBLICATIONS

Sandha, S.S., Balaji, B., Garcia, L. and Srivastava, M., 2022, Eagle: End-to-end Deep Reinforce-

ment Learning based Autonomous Control of PTZ Cameras, (Under Review)

Sandha, S.S., Aggarwal, M., Saha, S.S. and Srivastava, M., 2021, December. Enabling hyper-

parameter tuning of machine learning classifiers in production. In 2021 IEEE Third International

Conference on Cognitive Machine Intelligence (CogMI) (pp. 262-271). IEEE.

Sandha, S.S., Garcia, L., Balaji, B., Anwar, F. and Srivastava, M., 2021, October. Sim2Real

xxiv

Transfer for Deep Reinforcement Learning with Stochastic State Transition Delays. In Conference

on Robot Learning (pp. 1066-1083). PMLR.

Saha, S.S., Sandha, S.S. and Srivastava, M., 2021. Deep Convolutional Bidirectional LSTM for

Complex Activity Recognition with Missing Data. In Human Activity Recognition Challenge (pp.

39-53). Springer, Singapore.

Sandha, S.S., Aggarwal, M., Fedorov, I. and Srivastava, M., 2020, May. Mango: A python li-

brary for parallel hyperparameter tuning. In ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3987-3991). IEEE.

Sandha, S.S., Noor, J., Anwar, F.M. and Srivastava, M., 2020, April. Time awareness in deep

learning-based multimodal fusion across smartphone platforms. In 2020 IEEE/ACM Fifth Inter-

national Conference on Internet-of-Things Design and Implementation (IoTDI) (pp. 149-156).

IEEE.

Sandha, S.S., Noor, J., Anwar, F.M. and Srivastava, M., 2019, November. Exploiting smartphone

peripherals for precise time synchronization. In 2019 IEEE Global Conference on Signal and

Information Processing (GlobalSIP) (pp. 1-6). IEEE.

Sandha, S.S., Cabrera, W., Al-Kateb, M., Nair, S. and Srivastava, M., 2019. In-database dis-

tributed machine learning: demonstration using Teradata SQL engine. Proceedings of the VLDB

Endowment, 12(12).

Xing, T., Sandha, S.S., Balaji, B., Chakraborty, S. and Srivastava, M., 2018, June. Enabling edge

devices that learn from each other: Cross modal training for activity recognition. In Proceedings

of the 1st International Workshop on Edge Systems, Analytics and Networking (pp. 37-42).

xxv

CHAPTER 1

Introduction

Cyber-physical systems, commonly termed CPS, combine sensors and computing with physical or

software elements to monitor and control an environment. The first generation of CPS has been

using heuristic or first principle algorithms to make decisions. Recently, with the advent of machine

learning, the new generation of CPS is increasingly adopting learning-enabled components such

as deep neural networks in their processing pipelines. This trend is further exacerbated by the rise

of computing platforms providing rich sensing modalities allowing complex inferences directly at

the edge.

A typical pipeline of a learning-enabled CPS is shown in Figure 1.1. The different components

include sensing of the Environment by multimodal Sensors such as vision, audio, lidar, and radar.

Machine learning models (neural networks) use the sensed data to make an Inference for a specific

application. The inference is communicated to the Actuators. The Actuators apply the action

that may or not impact the sensed Environment. Several CPS applications can be mapped to the

pipeline of Figure 1.1. Due to the promise of superior performance, it is desirable to replace

traditional decision-making algorithms with neural networks in the decision pipeline of CPS. But

adopting neural network models faces several challenges at each stage of CPS. In this dissertation,

we specifically focus on the following challenges:

1

Figure 1.1: Different components in a typical Cyber-physical systems application.

1.1 Challenge 1: Data Misalignment due to Timestamp Uncertainty

Common to many CPS applications is their reliance on the rich suite of sensors present on or acces-

sible by edge devices such as smartphones. With each modality capturing an alternate perspective,

its fusion can often improve application performance [NKK11, MHM16]. A key assumption in

multimodal fusion is that underlying inputs are synchronized [FBA16,KBM15]; however, this may

not be the case when inputs are captured across multiple devices. For example, sensing modalities

timestamped using the system clock can be misaligned due to clock errors between smartphones.

We focus on the data timestamp uncertainty1 and its impact on deep learning-based multimodal

fusion classifier accuracy.

We present a systematic study to quantify the system clock’s accuracy and precision across

modern smartphones. The observed clock discrepancies range from tens of milliseconds across

iOS devices to as much as 5+ seconds across Android devices. To understand Android’s errors, we

1By uncertainty [DP12], we refer to the quantity that is not known by the application at runtime. It might be hard
to measure, resulting in a tradeoff between lack of information and data acquisition cost.

2

present an analysis of the procedure by which the Android kernel maintains system time. We ana-

lyze the impact of data timestamp uncertainty on the accuracy of deep learning-based multimodal

fusion classifiers showing it can cripple the classifier accuracy.

1.1.1 Improving Time and Training Resilient Classifiers

To mitigate the data timestamp uncertainty, we study several approaches to improve time syn-

chronization across smartphones by exploiting their rich peripherals. We introduce the notion of

cross-peripheral evaluation to enable applications using multiple sensors across smartphones in

deciding the optimal synchronization methodology. For example, our cross-peripheral evaluation

results suggest that a single peripheral can synchronize time for multiple sensing modalities for

smartphones with similar software stack and hardware. However, in practice, timing synchroniza-

tion errors are inevitable. To account for that, we propose a novel Time-Shift data augmentation

technique to develop deep learning classifiers that are resilient to residual timing errors. Our eval-

uation shows that Time-Shift data augmentation can improve the deep learning-based multimodal

classifier’s resilience to data timestamp errors of up to 600ms. In essence, Time-Shift data aug-

mentation prevents the classifier from overfitting on timing characteristics of data.

1.2 Challenge 2: Delay Awareness in Deep Reinforcement Learning

It is desirable to replace conventional first principle controllers in CPS applications with emerg-

ing deep reinforcement learning (RL) policies that enable end-to-end control directly using rich

multimodal observations and are shown to have better performance [BMG20, TFR17]. Several

applications, such as navigation [BMG19], manipulation [TFR17], and locomotion [HLD19] op-

erate in a closed-loop system where delays from sensing to the actuation significantly impact the

application performance. We show that handling variable delay is crucial to ensuring the success

of deep reinforcement learning (RL) policies.

The inference latency is a leading contributor to the end-to-end delay from sensing to actu-

3

ation for neural network policies trained using deep-RL. Various factors can result in variable

inferencing latency at runtime, such as power management, computational resources, and com-

plex operating system (OS) environments [WWD94, TSS17]. The sensors’ sampling rate can also

vary widely depending on both software and hardware characteristics [SBB15]. Traditional con-

trollers can model and incorporate the variable delays in their design [Nil98, LR90]; however, in

the context of deep reinforcement learning, black-box neural networks don’t allow explicit delay

modeling. We study the impact of variable2 sampling rate and end-to-end delays on the neural

network policies trained using deep-RL. Currently, researchers widely use the approach of domain

randomization [PAZ18, ABC20] and worst-case delay modeling [KE03, SBB10] to train deep-RL

policies in the presence of variable delays. We demonstrate that deep reinforcement learning-based

controller performance degrades due to variability in delays even when using the state-of-the-art

domain randomization technique.

1.2.1 Handling Variable Delays

We propose Time-in-State RL, a delay-aware Deep-RL approach. The Time-in-State approach

extends the system’s observed state by explicitly including temporal properties (such as sensor

sampling rate and execution latency) during training. During deployment, the Time-in-State ap-

proach monitors the temporal properties to adapt its actions. Our evaluation of Time-in-State in

simulation and on a real robot using a scale car shows its superior performance compared to domain

randomization. We also compare Time-in-State with the worst-case delay controllers showing its

superior performance when worst-case delays are significant. Time-in-State showcases a practi-

cal approach to train delay adaptive deep neural networks for control pipelines utilizing complex

modalities.

2By variability, we mean a quantity that can be measured directly/indirectly at runtime by the application; thus, an
intelligent application can learn to adapt.

4

1.3 Challenge 3: Realizing Training Environments to enable End-to-end

Control

The realization of end-to-end control, such as Deep-RL policies for CPS applications, is preferred

over the traditional multi-stage approaches as it is hard to optimize multiple stages jointly. How-

ever, deep-RL policies are extremely data-hungry and thus are very difficult to train in the real

world. Thus, researchers train these policies in simulators. Training in simulators opens up a

challenging question of how to realize accurate training environments to transfer policies from

simulation to real-world deployments.

To study end-to-end control, we focus on the application of pan-tilt-zoom (PTZ) cameras to

track objects of interest. Existing autonomous PTZ controllers have multiple stages, namely

detection of objects, tracking of their trajectories, and control of PTZ parameters to keep ob-

jects in the field-of-view [BVS07, CSB15, MRF10]. It is common to use neural object detec-

tors to identify objects of interest, first-principles-based algorithms such as Kalman filters for

trajectory prediction using model-based state estimation on bounding boxes, and a separate con-

troller [BGO16, UNC19, LMC21].

The multiple stages suffer from performance bottlenecks as it is non-trivial to tune each step.

For example, tuning the parameters of the Kalman filter requires expert domain knowledge and can

incur many trial-and-errors [Kyr21,LSZ19]. Further, it is often infeasible to run multi-stage control

algorithms in real-time on platforms [Ard22,Kyr21] having memory and computation constraints.

For example, even the lightweight object detectors (such as YOLO [RF17, Kyr21] with several

millions of network parameters are too complex for embedded camera platforms. Even though

multiple stages have lower performance and are computationally demanding, developers often have

no choice as it is very challenging to develop and evaluate controllers in the real world [PAZ18,

BMG20].

5

1.3.1 Deep Reinforcement Learning-based Controllers for PTZ Cameras

We propose Eagle, an end-to-end deep-RL approach using raw images to control a PTZ camera.

Eagle trains a neural network policy directly mapping raw images to pan-tilt-zoom actions remov-

ing the multiple stages of object detection, localization, and control. To our knowledge, there

has not yet been any attempt to develop an end-to-end Deep-RL policy for PTZ cameras. This

is partly due to the challenges of training deep-RL in the real world as it requires a large number

of environment interactions, expensive experimental setups, and labeling efforts [LSZ19,BMG20,

ABC20, PAZ18] and the difficulty of creating PTZ tracking scenarios in the real world. To enable

successful training of Eagle, we also introduce EagleSim, a simulation framework for placement

and control of PTZ cameras in photo-realistic virtual worlds.

Addressing simulation-to-reality gap: Although training in simulators is extensively explored

in deep-RL as it is cheaper and safer, transferring simulation policies to the real world is still a

challenge [BMG20,PAZ18,LSZ19]. EagleSim includes a significant engineering effort to provide

scene variations with multiple objects (vehicles and human characters) and different surroundings

(background materials/patterns and trees). We highlight that these rich scene variations are neces-

sary to bridge the simulation and the real-world gap.

1.4 Challenge 4: Training Machine Learning Models with Optimal Hyper-

parameters in Production

Enabling the training of machine learning models at a production scale is crucial in providing op-

timal classifiers for emerging CPS/IoT applications. However, a typical machine learning training

pipeline in production can be too specialized and complex, demanding a trained team of human

experts with specific domain knowledge for classifier selection with optimal hyperparameters.

Automating hyperparameter tuning in production is becoming increasingly difficult, with many

choices for classifiers and their rich parameter spaces. Consequently, to speed up the search, intel-

6

ligent parallel algorithms utilizing parallel computing are needed.

1.4.1 Enabling Hyperparameter Tuning in Production

Although several hyperparameter tuning frameworks exist, they have limitations in their search

algorithms, include software dependencies, or are closed source. To enable state-of-the-art hy-

perparameter tuning in production, we propose the design of a lightweight library (1) having a

flexible architecture and (2) parallel optimization algorithms allowing combined classifier selec-

tion and hyperparameter tuning. We present Mango, a parallel hyperparameter tuning library, to

realize the proposed design. Mango is available open-source and is currently used in production at

Arm for more than 30 months. Our evaluation shows that Mango outperforms existing libraries in

tuning hyperparameters of ML classifiers when complex search spaces are explored. We discuss

two use cases of Mango deployed in production at Arm, highlighting its flexible architecture and

ease of adoption. The first use case trains ML classifiers using Mango to design Arm’s commercial

integrated circuits. We introduce an AutoML framework using Mango to train optimal classifiers

as a second use case. Finally, we present the third use-case of Mango in enabling neural archi-

tecture search (NAS) to transfer deep neural networks to TinyML platforms (microcontroller class

devices) used by CPS/IoT applications.

1.5 Dissertation outline

The above challenges and our solution approaches are organized in different chapters as follows:

• Chapter 2 characterizes the data timestamp uncertainty across modern smartphone devices.

We evaluate the impact of data misalignment on a machine learning classifier’s accuracy

using a representative human activity recognition application. Finally, we present the vision

of making deep learning-based multimodal fusion time-aware.

• Chapter 3 presents different approaches to improve the shared notion of time across smart-

7

phones. We evaluate the accuracy of time synchronization approaches realized using audio,

Wi-Fi, and BLE peripherals across smartphone devices. Based on our findings, we dis-

cuss the limitation of each synchronization approach and provide recommended application-

specific solutions.

• Chapter 4 studies the impact of delay variations on the performance of deep-RL policies.

We present a new Time-in-State RL approach to bring delay-awareness to the RL-based

end-to-end control.

• Chapter 5 introduces the challenges in the existing multi-stage pipeline of autonomous con-

trollers for PTZ cameras. We discuss our approach to developing training environments

to enable end-to-end control policies. We present Eagle, an end-to-end deep-RL approach

mapping input raw images directly to the pan, tilt, and zoom actions. To enable the develop-

ment of Eagle, we also introduce a new software simulator environment and show the direct

transfer of Eagle policies from simulation to real scene videos.

• Chapter 6 focuses on training machine learning classifiers with optimal hyperparameters in

production. We discuss existing frameworks’ shortcomings and introduce a new open-source

library called Mango. Mango is designed to be production scalable with state-of-the-art

parallel search algorithms. We discuss several use cases of Mango, highlighting its superior

performance and flexible deployment architecture.

• Finally, we present the possible future directions in Chapter 7 and the conclusion in Chap-

ter 8.

8

CHAPTER 2

Data Timestamp Uncertainty and its Impact on Multimodal

Fusion

2.1 Distributed Sensing using Smartphones

Modern smartphones are used by a wide variety of emerging applications, such as those in crowd-

sensing, smart homes, mobile health, transportation, and public safety [Kan11, JLM15, JPG13,

KB13, LPR13, WTX14]. Common to many of these applications is their reliance on the rich suite

of sensors present on or accessible by smartphones. Given the broad outreach of smartphones, we

study the timestamp uncertainty in data captured across modern smartphone devices.

2.1.1 Data Timestamping in Smartphones

Developers often rely on the smartphone system clock to timestamp multimodal sensor data across

devices (e.g., [HHS17]). The system clock is (i) universally available despite the heterogeneous

and fragmented smartphone ecosystem, (ii) easily accessible to geo-distributed applications (even

without network connectivity), and (iii) does not require access to external hardware peripherals.

Given the universal applicability of the system clock it is critical for developers to be aware of the

possibile range of system clock errors across smartphones.

Researchers have previously noted that the system time across smartphones is unreliable, but

have yet to quantify and characterize these errors [LRS15b, MDB16]. Although there have been

previous studies conducted to understand the variable characteristics of the Network Time Proto-

9

col (NTP) [Mil91] for various wired, wireless and embedded devices [MDB16], smartphones have

remained excluded from these analyses. Due to the protected system clock update mechanisms on

smartphone platforms (barring a rooted device), minimal access to the timing stack has restricted

the ability to thoroughly characterize these systems. In this chapter, we present a systematic study

to quantify the system clock’s accuracy and precision across a suite of modern smartphones. Ob-

served clock discrepancies range from tens of milliseconds across iOS devices to as much as 5+

seconds across Android devices. To understand these drastic errors, we present an analysis of the

procedure by which the Android kernel maintains system time.

2.1.2 Deep Learning-Based Multimodal Fusion

With each data modality capturing an alternate perspective, its fusion can often result in improved

application performance [NKK11, MHM16]. Given the wide success of deep learning, emerg-

ing applications are transitioning towards approaches of using deep learning for multimodal fu-

sion [NKK11], which can achieve state-of-the-art accuracy and provide robustness to noise in

sensors [RRV19, ESS15]. A fundamental assumption in multimodal fusion is that underlying

inputs are synchronized [FBA16, KBM15]; however, this may not be the case when inputs are

captured across multiple devices. For example, sensing modalities timestamped using the system

clock can be misaligned due to clock errors between smartphones [XSB18]. Although researchers

have previously designed traditional machine learning approaches to handle asynchronous modal-

ities [DL00, Ben03], deep learning-based approaches have yet to be evaluated. We provide the

quantification of the impact of timing errors on the accuracy of a deep learning classifier fusing

modalities. Specifically, we evaluate an architecture fusing modalities at an intermediate layer

for human activity recognition, which is shown to outperform the traditional techniques of feature

concatenation and model ensemble [RTB18, OSG19, ESS15, KZX11]. We show that timing errors

of 600ms can result in a 3% drop in the classifier accuracy, and an error of 5 seconds can degrade

accuracy by up to 25%. To the best of our knowledge, this is the first analysis of the impact of

timing errors on deep learning-based sensor fusion.

10

The significant impact of timing errors on deep learning classifiers over multi-device input

could be theoretically avoided with perfect synchronization. However, in practice, data timestamp

errors are unavoidable. To address asynchronous data, we propose an extensible two-fold solu-

tion; we suggest (1) improving time synchronization across smartphones by replacing the system

clock with an application-level timing library based on NTP, and (2) making deep learning models

resilient to residual timing errors using Time-Shift data augmentation. Our evaluation shows Time-

Shift data augmentation can improve the deep learning-based multimodal classifier resilience to

timing errors of up to 600ms. Another way to look at the Time-Shift data augmentation approach

is to prevent the classifier from overfitting on timing characteristics of data.

2.2 Background and Related Work

Smartphone System Clock: The two methods currently used by the smartphone platforms for

clock synchronization are the Network Identity and Time Zone (NITZ) [Sca18] and Network Time

Protocol (NTP) [Mil91]. Android employs both NITZ and NTP for maintaining system time. To

guarantee precise timing across Apple Watches, Apple built and deployed their own set of Stratum

One NTP timeservers [Ula15]. They claim their watches are accurate to within ±50 milliseconds

of UTC as measured by atomic clocks [Wil15].

Time Synchronization Approaches: The synchronization approaches proposed for wireless sen-

sor networks, including reference broadcasts [EGE02], TPSN [GKS03], FTSP [MKS04], and Puls-

eSync [LSW15], while theoretically possible, are currently not achievable in practice across smart-

phones due to the requirements of a shared wireless connection, specialized MAC-layer times-

tamping, and timing stack control. Although smartphones have a GPS module, vendor-specific

implementations [MDB16] and poor indoor signal prohibit GPS-based time synchronization. Sev-

eral synchronization works that exploit ambient signals, including skin electric potential [YLT17],

powerline radiation [RGR09], and radio data system [LXS11] require specialized external hard-

ware, thereby limiting their adoption.

11

Deep Learning-Based Multimodal Fusion: The traditional approaches of multimodal fusion in-

clude feature concatenation and ensemble classifiers [OSG19,NKK11]. Recently, researchers have

proposed deep learning architectures [NKK11] doing mid-layer fusion on the extracted features

from individual modalities, which achieves state-of-the-art accuracy across domains including hu-

man activity recognition [RTB18], object detection [ESS15], and emotion recognition [OSG19].

Classifier Resilience to Timing Errors: Handling asynchrony across audio-visual modalities [DL00,

Ben03] has been studied in the context of the traditional classifiers. Dupont et al. [DL00] learn

asynchrony between audio-visual modalities for a Multistream Hidden Markov Model (HMM).

Asynchronous HMM is presented by Bengio et al. [Ben03] to handle audio-visual modalities.

Wollmer et al. [WAE09] present a dynamic time warping algorithm to fuse asynchronous data

streams. To the best of our knowledge, the impact of asynchronous data streams due to the timing

errors across smartphones have not been evaluated for deep learning-based multimodal fusion.

The approach of Model refinement [RNG18] uses new labeled data to account for variations in

the deployment setting. In contrast, we introduce a novel time-shift augmentation technique to im-

prove the classifier resilience to timing errors without requiring the collection of new deployment-

specific labeled data. Time-shift augmentation adds artificial misalignments between modalities to

account for variations in timing characteristics during deployment. The introduced augmentation

also compliments application-specific approaches that either observe or add selective events (like

chirps) in data to align the data streams [FBA16, PCH12].

The notion of learning models over labeling uncertainty has been addressed by Adams and

Marlin [AM17, AM18]. They developed techniques to account for errors in human labeling of

time-series data, proposing frameworks for learning time-series detection and segmentation models

from temporally imprecise labels. The underlying sensor data is assumed to be time-synchronized;

in contrast, our work focuses on the imprecision of the input data streams themselves.

12

Figure 2.1: Observed system clock errors across all devices when compared to an NTP baseline

during the undisturbed 5-day study. Three significant time adjustments (>100ms) occur: A6 at

minute 1396, A8 at minute 6166, and A2 at minute 6457.

2.3 Smartphone System Clock Study

To provide a quantitative analysis of the timing errors present on smartphones, we conduct an

observational study to reveal system clock errors. Table 2.1 describes the participating device

specifications. These 13 devices were placed in an isolated room within 50cm of a speaker that

played a periodic square wave chirp approximately every twenty seconds. Each device ran an

application in the foreground that monitored the microphone. When the chirp event’s low-to-high

transition is observed by the application, the device system time is recorded. During the study,

the background system tasks were running to allow typical device behavior. We used the audio

subsystem to measure the system clock due to its high sampling rate. The per-device delay in the

audio pipeline is typically around 10-60ms [Inc18] for smartphones, making it a suitable candidate

to compare system clocks at a coarser granularity.

13

Table 2.1: The list of devices that participated in the chirp system clock study: five iOS devices

and eight Android devices.

ID Device OS Year SIM?

I1 iPhone 6 iOS 12.1.4 2014 N

I2 iPad Pro 9” iOS 12.1.4 2016 N

I3 iPhone 7+ iOS 12.1.4 2016 N

I4 iPhone 6S iOS 12.1.4 2015 N

I5 iPhone 6 iOS 12.1.4 2014 Y

A1 Nexus 5X Android 8.1.0 2015 Y

A2 Nexux 7 Tab Android 6.0.1 2012 N

A3 Huawei P9 Android 7.0 2016 N

A4 OnePlus A1 Android 5.1.1 2014 N

A5 Samsung GTS2 Android 7.0 2015 N

A6 Nexus 5X Android 8.1.0 2015 Y

A7 Nexus 7 Tab Android 6.0.1 2012 N

A8 Pixel 3 Android 9.0 2018 Y

All devices had the “Set Time Automatically” setting enabled and were connected to campus

Wi-Fi. A T-Mobile unlimited data plan was used for devices with SIM cards due to its NITZ

support. To ensure a warm start, devices were on and connected to the internet for at least 24 hours

before data collection. As such, system clock errors observed at time 0 refer to devices that have

been online for some time.

2.3.0.1 5-day Study

Over a span of five days, periodic audio chirps were independently observed and timestamped by

each device. Figure 2.1 presents the approximate system clock error with respect to a baseline

14

over the course of five days. The baseline was generated by an application-level NTP clock that

frequently synchronized to a fixed pool of timeservers. Given that typical NTP error is on the

order of tens of milliseconds [LRS15b], and an audio latency variability with similar magnitude

[Inc18], the reported system clock errors are accurate on the order of tens of milliseconds. The

overall spread of error ranged from 3-6 seconds. All major system clock errors can be attributed to

Android devices; iOS devices always timestamped within 110ms of the baseline NTP clock.

Three Android devices corrected their system clocks once during the five days; the other five

never adjusted their clock. Two of the three Android corrections, A8 at minute 6166 and A2 at

minute 6457, still resulted in significantly erroneous system clocks. Of the three Android devices

with an active SIM card, two performed a system clock adjustment, one increasing clock error, and

the other decreasing clock error. The older devices, tablets A2 and A7, presented the largest clock

errors. Newer Android devices kept a smaller error spread of around 2 seconds.

Figure 2.2: Observed iOS system clock errors during a 6-hour snapshot of the 5-day study. iOS

errors are an order-of-magnitude less compared to Android due to the aggressive clock correction

that occurs at semi-periodic intervals.

15

In contrast to Android, iOS devices maintained significantly more accurate system time. Figure

2.2 presents iOS system clock errors over a 6-hour window of the 5-day study. The spread of error

is an order-of-magnitude less than the Android devices; iOS appears to correct the system clock

aggressively. This results in a semi-periodic trend in which the clock drifts away and is adjusted

approximately every hour. No iOS system clock ever reported a chirp time that was more than

110ms different from the baseline NTP time. The presence of a cellular connection seemed to

have no notable effect on the system clock time of iOS devices.

2.3.0.2 Drift

Due to manufacturing variations, the device’s timekeeping oscillators deviate from their nominal

frequency. As a result, system clocks derived from these oscillators drift in time with respect to

each other. Older Android devices, such as A2 and A7, drifted 37 and 24 ms per hour, respectively,

amounting to a total change in the system clock time of 3-4 seconds. Newer phones such as A1 and

A5 drifted less than 1ms per hour. Similarly, the older iPhones I1 and I5 drift much more rapidly

compared to newer iOS devices.

2.3.0.3 Jitter

Each device presented a variability in recorded system clock offset between two consecutive chirps.

The contributing factors include variance in audio latency, audio data processing, system clock

read latency, NTP baseline, and application/system management. The distribution of jitter was

approximately gaussian across devices with an average near zero. The standard deviation of jitter

ranged from 10-15 ms for all devices except for A2 and A7, which presented a standard deviation

of around 60ms.

16

2.3.1 Understanding Android System Time

The errors encountered across Android devices demanded further investigation. To understand the

mechanisms by which Android performs time synchronization, we studied the Android operating

system kernel. A detailed description of this process, as of Android 10.0, is as follows1:

The Android system clock time is set via two protocols, NITZ and NTP, in which NITZ receives

priority. The Radio Interface Layer (RIL) socket is monitored for a NITZ packet arrival, upon

which the system clock is updated. If a NITZ timing update has not occurred within a specified

window specified by the configuration (set to 24 hours) config_ntpPollingInterval, NTP

time is used. NTP updates are triggered at 4 key action points: (1) when the phone boots up, (2)

when the “set time automatically” option is enabled, (3) when the default network connection

changes, and (4) when a timer fires (set and always reset to 24 hours since the last NTP trigger).

Independently of whether an NTP sync is performed, the system clock is only corrected if the

following conditions are met: (1) no NITZ update has occurred, (2) a successful NTP sync has

occurred within the previous 24 hours, and (3) the system clock differs from NTP time by at least

config_ntpThreshold (5 seconds). The system clock is updated using settimeofday, a

system call that directly overwrites the current system time, resulting in a direct jump that affects

clock monotonicity (i.e., time may go backward).

2.3.2 Forcing a Sync Event

With the knowledge of how the Android kernel is updating its system clock, we performed a

restart event to forcefully trigger an update to the system clock in all devices simultaneously. The

observed timing errors after this event represents a best-case scenario given the current system

design.

After the restart event, iOS devices showed the least notable change. All five Android devices

1To absolve these issues, we submitted a simple patch to Android [Noo19]. Our patch was reviewed, but ignored,
and instead, refactoring changes were made that reduce (but still do not fix) these core issues.

17

Figure 2.3: System clock error of an Android Nexus 5X device after triggering 100 independent

NITZ timing updates.

without a SIM card performed an NTP sync and update, resulting in a system time error within

±40ms of an NTP baseline. The three NITZ-enabled devices, A1, A6, and A8, updated their

system clock times to an error between -295 and -830 ms. Despite all devices updating their

system clock time, the total spread of error after the restart was still over 800ms.

2.3.3 NITZ vs NTP

Given the Android prioritization of NITZ over NTP, we performed an analysis of the accuracy and

variability of these two protocols. To generate a NITZ sync, a phone with a SIM card was restarted.

To generate an NTP sync, the SIM was removed, and the phone was restarted. In order to verify

the true cause of each update, we performed this study on a rooted phone that logged the cause for

each update. This process was repeated 100 times to generate a distribution of errors with respect

to a baseline.

The total system clock error due to NITZ updates, as shown in Figure 2.3, ranged from -1190ms

to 70ms. NITZ time notably lags behind the NTP baseline. In contrast, NTP updates as shown in

Figure 2.4 are significantly more accurate in comparison to NITZ; 75% of all updates were within

10ms of the NTP baseline, and 90% within 20ms. This shows that the application level solution

18

Figure 2.4: System clock error of an Android Nexus 5X device after triggering 100 independent

NTP timing updates.

based on NTP can provide an accurate time in the order of tens of milliseconds.

2.4 Impact of Timing Errors on Deep Learning-Based Multimodal Fusion

System clock discrepancies range from tens of ms across iOS devices to as much as 5+ seconds

across Android devices. For distributed applications that combine data across smartphones, tablets,

wearables, or other Android devices, the reliance on system time can lead to timing errors on the

order of seconds, with potential jumps of 5 seconds or more. Next, we analyze the impact of timing

errors of this magnitude on a popular application leveraging multimodal data fusion to enhance the

accuracy of a deep learning classifier.

2.4.1 Multimodal Deep Learning for Human Activity Recognition

We leverage a multi-device dataset captured across smartphones to train a classifier for human ac-

tivity recognition. Our multimodal neural network architecture fuses modalities in an intermediate

layer [RTB18, OSG19, ESS15], which is shown to outperform traditional approaches of feature

concatenation and ensemble classifiers.

19

Figure 2.5: The architecture of Multimodal Audio-IMU Network with separate branches fused

in cross sensing layers. Conv and fc refer to convolutional modules and fully connected layers,

respectively.

2.4.1.1 Dataset

We use the CMActivities dataset [SX19] containing video, audio, and IMU modalities collected

using two smartphones from users performing activities. We refer to the user performing activities

as performer hereafter. Here we explain, the data collection setting for one performer. An observer

is holding the first smartphone, which is used to record and timestamp the video (along with audio)

of the performer. In this way, the first smartphone is acting as an ambient sensor that is recording

(video and audio) the performer. The second smartphone was in the trouser’s front pocket of the

performer. The second smartphone is used to timestamp the IMU data captured from the left and

right wrist sensors worn by the performer. Both smartphones were synchronized using NTP.

The dataset is collected by repeating the above procedure with another performer. The data

is obtained for seven activities (upstairs, downstairs, walk, run, jump, wash hand, and jumping

jack). Every data collection session roughly lasted for 10 seconds, where the performer performed

a singular activity. Due to the presence of multiple smartphones used in data collection, this dataset

20

illustrates a representative scenario for evaluating the impact of time synchronization errors when

fusing modalities across smartphones. The dataset was split into 624 training sessions and 71

testing sessions, where each split contains data from both performers.

2.4.1.2 Baseline Models

Three models were built: (i) IMU data only, (ii) audio data only, and (iii) combined audio+IMU

data. To show the benefits of data fusion, we compare individual classifiers with a multimodal

classifier. We use the method of Xing et al. [XSB18] to train classifiers by using extracted audio

features and raw IMU samples. For IMU data, the device sampling rate of 25Hz was fluctuating.

We downsample it to 20Hz.

(a) Audio Network is motivated by the acoustic event classifier used by Gencoglu et al. [GVH14]

and has five fully connected layers with a total of 157K parameters.

(b) IMU Network has two convolutional modules (convolution + maxpooling layers) followed by

four fully connected layers. It has 130K parameters and is based on the classifier proposed by Yang

et al. [YNS15] for human activity recognition.

(c) Multimodal Audio-IMU Network has separate branches for audio and IMU modalities. These

different branches are joined in the unifying cross sensor layers, as shown in Figure 2.5. It has a

total of 287K parameters.

Table 2.2: Test accuracy of baseline models

Networks Audio IMU Multimodal Audio-IMU

Test Accuracy 91.34% 90.10% 96.12%

The test accuracies of Audio Network, IMU Network, and Audio-IMU Network over an av-

erage of five training experiments are shown in Table 2.2. Multimodal Audio-IMU Network has

around 5% better accuracy than the individual networks. This is due to the superior feature rep-

resentations with access to observations from alternate perspectives [NKK11, RTB18]. As such,

21

multimodal networks can be an ideal choice, but sensor fusion requires synchronized modalities.

To this end, we evaluate the impact of synchronization errors on the performance of the Multimodal

Audio-IMU network.

2.4.1.3 Inducing Time Synchronization Errors

To imitate a real-world scenario where timing errors exist across smartphones, we induce errors by

shifting the IMU data with respect to audio data. With a 20 Hz IMU sampling rate, one sample shift

corresponds to 50ms of sync error. We incrementally introduce these shifts in the test data only

and evaluate the accuracy of the Multimodal Audio-IMU Network. A range of 0 to 100 samples

shift corresponds to 0 to 5 seconds of effective time sync errors. As shown in our timing study

in Section 2.3, the errors of 5 seconds can occur between two smartphones. When shifting IMU

samples, activity labels are aligned with the audio data.

Figure 2.6 shows the degradation in the accuracy of Multimodal Audio-IMU Network with

timing errors. The accuracy drops due to a combination of the following two reasons: first, timing

errors cause modalities to capture different windows over the same overall activity. Second, the

shift in IMU data samples across activity transition boundaries results in incorrect classification.

The impact of transitions is more pronounced for frequently changing activities. To evaluate the

contribution of activity transitions, we replicate testing the model with varying activity periods.

(i) 10-Sec Period: Each activity spans 10 seconds. For example, a user performs walking for 10

seconds, then upstairs for 10 seconds, and so-on. (ii) 20-Sec Period: In this setting, we consider

each activity spans for 20 seconds. (iii) 60-Sec Period: Finally, we consider a case where users

perform each activity for 60 seconds.

With no time sync errors, accuracy is the same for all periods. As shown in Table 2.2, fusion

improves accuracy by 5% over individual classifiers. Although deep learning can handle slight

misalignment, significant timing errors can cause accuracy to drop by up to 25%. For 10-Sec Pe-

riod, 1000ms of time errors result in the Multimodal Audio-IMU Network accuracy to drop to

22

Figure 2.6: Variation in the accuracy of the Multimodal Audio-IMU network with increased timing

errors between smartphones collecting audio and IMU data. 10-Sec, 20-Sec, and 60-Sec periods

represent varying duration between activity changes. 1000ms of timing error results in an accuracy

drop of 6% for 10-Sec Period.

23

90%. This shows that time errors of one second are enough to negate the benefits of fusion. The

larger periods (20-Sec & 60-Sec) also suffer degradation in accuracy within 2-3% with 1000ms

errors. To avoid the need for time sync across smartphones, a central hub can be used to times-

tamp the data, and classifiers can use the most recent window to make the inference. However,

this approach may suffer from asymmetric transmission delays resulting in misaligned modalities.

Future work is needed to study the magnitude of this misalignment.

2.5 Strategies to Mitigate Timing Errors

Through the study conducted in Section 2.3, the Android system clock has been determined to

have timing errors on the order of seconds. We now discuss mitigation strategies to handle the

timing errors in smartphones.

2.5.1 System Clock Replacement

In the cases where intermittent network connectivity is available, developers can leverage application-

level NTP solutions. To this end, we offer GoodClock [SN19], an easy-to-use library, to enable

high-quality time synchronization over wide-area networks. GoodClock is available for iOS, An-

droid and also has a python implementation to extend usage to IoT devices. GoodClock includes

drift correction and performs multiple successive NTP requests, selecting responses with the low-

est round-trip time. Our evaluation of the library, available at [SN19], reduces clock errors from

seconds to a few milliseconds. Smartphones in the future can improve system clock by adopting

the Precision Time Protocol (PTP) [EL02]. Since PTP is designed mostly for local area networks,

its extension to wirelessly networked smartphones needs future exploration.

24

2.5.2 Time-Shift Data Augmentation

Even with the best synchronization techniques, timing discrepancies are unavoidable. We advocate

the design of applications, which are robust to the expected timing errors. To train models that are

resilient to timing errors, we present Time-Shift data augmentation. Time-Shift data augmenta-

tion exploits the observation that timing characteristics are variable for the devices capturing data

during training and deployment.

We modify the training data by artificially shifting IMU data samples with respect to audio.

This results in an overall time shift between input data sources. For the purposes of our evaluation,

we generate two different augmented datasets. Note that the validation and test datasets are not

augmented.

Augmentation 50-100ms: Two datasets are generated by shifting IMU data (20Hz) by 50ms (1

sample) and 100ms (2 samples) with respect to the audio data. We add these two augmented

datasets to the original training dataset.

Augmentation 50-1000ms: In this augmentation, we add four augmented datasets to the original

training data by shifting the IMU modality by 50ms (1 sample), 100ms (2 samples), 500ms (10

samples), and 1000ms (20 samples) with respect to audio.

Figure 2.7 shows the variation in accuracy of Multimodal Audio-IMU Network trained using

augmented datasets due to time errors in the test dataset. Data augmentation enables input data to

cover the unexplored space of modality misalignment. With no artificially induced timing errors,

Time-Shift data augmentation provides a boost in accuracy, thus confirming the fact that timing

errors are inherently present in the training data and more generally in any deployment setting.

The test data is considered with the 10-Sec Period, as discussed in Section 4.1.4. Figure 2.7

shows that the augmented models perform significantly better in comparison to the baseline. With

time synchronization errors of 1000ms between modalities in test data, the accuracy of the Multi-

modal Audio-IMU Network trained on original training dataset drops to 90.1% (6% drop), whereas

the accuracy of Multimodal Audio-IMU Network trained using augmented datasets only drops

25

Figure 2.7: Comparison of Multimodal Audio-IMU Network test accuracy with different aug-

mented training datasets. The augmented models can preserve classifier accuracy despite 250ms

and 600ms of timing error. Without augmentation, 600ms of error results in model accuracy drop

by 3%, from 96.5% to 93.5%.

26

to 93.75% and 92.5% for Augmentation 50-1000ms and Augmentation 50-100ms, respectively.

This shows that data augmentation can achieve notably improved classifier resilience, even with

1000ms of timing errors. As seen in Figure 2.7, Augmentation 50-100ms maintains the accuracy

at 96.5% even with an error of 250ms, and Augmentation 50-1000ms maintains classifier accuracy

of >96.5% even for errors of up to 600ms. In contrast, without augmentation, accuracy drops by

3% from 96.5% to 93.5%. By artificially time-shifting to enrich training data, data augmentation

improves overall model performance and resilience to timing errors.

Once significant timing errors are introduced, all trained models degrade and suffer from no-

table declines in the accuracy. This suggests that Time-Shift data augmentation helps mitigate

timing errors to a reasonable extent, after which improvements are lost. Therefore, an accurate

shared notion of time across devices for deep learning-based multimodal fusion is a necessity;

the inclusion of a system clock replacement like GoodClock with the Time-Shift data augmenta-

tion approach compliment each other. Prior knowledge of the expected time errors may guide the

augmentation strategy in deciding the number of shifts necessary in training data.

2.6 Discussion

Due to the wide applicability of the smartphone system clock, we quantified the accuracy of the

system clock, which highlighted the troublesome degree of errors in Android. We use an ex-

ample of human activity recognition to show that timing errors across smartphones profoundly

impact deep learning-based multimodal fusion classifier. Several strategies are discussed to im-

prove the system clock errors. Our system clock characterization empowers future developers

with the knowledge of expected timing errors in smartphones, which can help them to develop

application-specific mitigation strategies. To improve the robustness of deep learning-based mul-

timodal applications to timing errors, we introduce a data augmentation approach to handle the

inevitability of timing errors.

27

CHAPTER 3

Synchronizing Time across Smartphones

3.1 Shared Notion of Time across Smartphones

A shared notion of time is an essential requirement for applications intending to fuse data and/or co-

ordinate concerted actions across multiple devices [DR17]. Applications on smartphones including

beamforming and localization require precise time synchronization on the order of microseconds

to maintain correctness [LRS15b]. Popular apps such as AmpMe, which converts a collection

of smartphones into a distributed music player, requires sync error of less than 10 milliseconds

to prevent ear fatigue [Kha18]. Other IoT systems where smartphones serve an integral role, in-

cluding crowdsensing, robotics, and cross-modal deep learning at the edge, demand best-effort

synchronization on the order of milliseconds [DR17, XSB18].

3.1.1 Challenges and Tradeoffs

Achieving precise time synchronization across a suite of smartphones pose unique challenges.

First, hardware support for protocols such as PTP [EL02] is unavailable. Second, these devices

operate exclusively via wireless networking, which has been shown to exacerbate the variability

of achievable accuracy [MDB16]. Third, given the overall difficulty in achieving precise time,

evaluating the accuracy of a particular synchronization mechanism is in-and-of-itself a troublesome

task; that is, a ground truth baseline is impossible to attain. Finally, and most importantly, the

smartphone platforms (e.g., Android, iOS) restrict timing stack control solely to the underlying

operating system, with poor clock maintenance [MDB16].

28

Given the rich suite of capabilities on smartphones, there is a myriad of alternative techniques

that can be employed to achieve clock synchronization. For local area relative synchronization,

Lazik et al. [LRS15b] introduced an audio-based clock synchronization method that relies on

external beacons to achieve sub-millisecond precision. For wide-area synchronization, Yan et

al. [YLT17] leverage skin electric potentials measured from external wearables, achieving accu-

racy on the order of milliseconds. For general-purpose timing, wireless NTP client libraries are

available that can typically provide accuracy in the order of tens of milliseconds [Mil12].

Each of the available mechanisms for smartphone synchronization possesses unique tradeoffs

that result in one size does not fit all policy. Selecting the appropriate technique then becomes

a function of the requirements and characteristics of a particular application over distributed de-

vices. Some synchronization requires external infrastructure or tightly integrated peripheral sen-

sors [LRS15a]. Others are restrictive to local area networks [LRS15b]. In considering these trade-

offs, the questions we pose and strive to answer in this chapter are: (1) which peripherals can be

used to synchronize distributed smartphones? (2) Which synchronization technique best suits a

particular peripheral? Also, (3) how do different peripheral synchronizations compare with each

other?

To answer these questions, this work exploits various peripherals on smartphones to provide a

comprehensive implementation and evaluation of precise clock synchronization solutions for mod-

ern distributed applications spanning smartphones. We begin by describing various smartphone pe-

ripherals over which clock synchronization can be achieved. Provided implementations are based

on either receiver-receiver [EGE02] or sender-receiver [GKS03] synchronization protocols. Due

to fundamental hardware limitations of specific smartphone peripherals and their reliance on exter-

nal infrastructure for synchronization, we focus on audio subsystem, Bluetooth Low Energy, and

Wi-Fi in particular. Given the difficulty in evaluating time sync approaches on smartphones, we

show how to probe the accuracy of a particular technique effectively.

We present the first work that provides a detailed comparison of cross-peripheral synchroniza-

tion on a smartphone. Traditionally, reliance on specialized hardware for low-level timestamping

29

and precise synchronization of peripheral clocks has restricted the use of one peripheral sync for

the other. In this work, we argue that cross-peripheral sync is viable without low level timestamp-

ing or specialized hardware support by using the shared monotonic clock. Given symmetric stack

delays of a particular peripheral across smartphones, we provide cross-peripheral sync that is good

for timestamping and generating synchronous events across different peripherals. We provide an

offering of open source library implementations for specific techniques to reduce the developer

overhead [San19].

3.2 Background and Related Work

Peripherals are key to synchronizing distributed devices with each other. For example, audio pe-

ripherals form synchronized acoustic sensing arrays for range finding and target localization [GE01].

The availability of Bluetooth Low Energy (BLE) in consumer electronics and its low power ar-

chitecture has made it a viable choice for sensor fusion and time sync [SMG16]. Packet-based

synchronization protocols over IEEE 1588 [EL02], 802.11 [MGT11], 802.14.5 [AS17] are used

extensively for high precision depending upon the quality of transmission and reception times-

tamps. Note that most of these peripherals expose IO capabilities on embedded platforms for

precise synchronization. Although smartphones possess a rich suite of peripherals, they do not

provide IO capabilities that can be exploited for high quality timestamping and synchronization.

Synchronizing smartphone clocks in the context of localization has been discussed in recent

literature. Lazik et al. localize a smartphone by synchronizing to a network of beacons producing

ultrasonic chirps [LRS15b]. Beacons are also fed to a smartphone audio peripheral to synchronize

a phone with a speaker [LRS15a]. The audio peripheral is widely used in smartphone-based lo-

calization, either with infrastructure beacons or speakers. In this chapter, however, we seek to go

beyond acoustic capabilities and compare the synchronization capabilities of various peripherals

on a smartphone.

There are many applications in distributed sensing that rely on time synchronized smartphones

30

without any infrastructure support. The only available system clock – maintained and controlled

by the operating system – is disciplined via NTP and NITZ protocols1 [MDB16, SNA20]. Times-

tamping variability and poor disciplining mechanisms of system clock exacerbate timing precision

in smartphones [MDB16, SNA20]. In contrast, this chapter provides various alternatives to smart-

phone synchronization with a comprehensive guideline to which synchronization technique best

meets the needs of a particular distributed application.

3.3 Smartphone Time Synchronization

Given the diverse set of hardware attachments and sensing modalities on modern smartphones, a

plethora of techniques can achieve clock synchronization. However, due to the differences in the

underlying hardware characteristics (e.g. sampling rate, variance, latency), some approaches are

more fundamentally limited in achievable performance.

3.3.1 Time Synchronization Approaches

There are two general approaches to synchronizing a collection of devices, commonly referred

to as receiver-to-receiver (R2R) and sender-to-receiver (S2R). R2R relies on a common event ob-

served by all devices, thus providing a unified reference point for each device to independently

establish and maintain its own clock relative to the reference signal [EGE02]. In recent litera-

ture, RF [EGE02], acoustic [GE01], and power line signals [RGR09] provide reference signals for

R2R. S2R relies on a server-client model, with a designated device serving as a reference clock

by which other devices attempt to relatively synchronize their clocks [GKS03] [Mil12]. Both R2R

and S2R techniques have their pros and cons; while R2R eliminates sender side non-determinism,

S2R compensates for propagation delays in the network.

Across distributed smartphone devices, R2R and S2R synchronization can be achieved through

1To the best of our knowledge, GPS is not used to adjust the Android system clock.

31

a variety of alternative peripherals. An R2R broadcast reference signal may be either opportunis-

tically observed or intentionally generated, and can potentially span any of the available sensing

modalities available (e.g. audio, ambient light, proximity, IMU, camera, bluetooth, network). Sim-

ilarly, S2R synchronization may occur over any of the available wireless networking mediums (e.g.

Wi-Fi, Bluetooth, cellular). We select and implement a subset of possible sync techniques across

different peripherals; open-source implementations are available at [San19]. Our goal is to pro-

vide a set of plausible, real-world solutions that can be reasonably integrated without requiring a

fundamental re-working of the overall system.

3.3.1.1 Receiver-to-Receiver

Many of the sensing modalities on smartphones that can be leveraged for R2R synchronization

possess fundamental hardware, infrastructure, or compute limitations restricting its practicality in

deployment. The IMU, ambient light, and proximity sensors operate at frequencies of 100Hz or

less, resulting in a theoretical clock sync limitation of 10ms or more [Goo19]. The camera can

offer a slightly higher sampling rate (up to 240Hz), but requires significant compute overhead to

inference and extract reference signals, making it generally impractical. Furthermore, generating

a reference signal in many of these domains require external infrastructure.

We select the audio subsystem for our R2R implementation due to its high sampling rate.

A notable benefit of the audio subsystem is its support for system timestamping, which results

in comparatively less jitter in timestamp delays. As such, audio presents the best potential for

achieving good performance in precise clock synchronization. Finally, generating a broadcast

signal in the audio domain is relatively straightforward; smartphones themselves have speakers

capable of generating these reference events.

To achieve audio clock synchronization, all smartphones listen for a broadcasted audio event,

which may be opportunistically observed or intentionally generated. Each smartphone indepen-

dently timestamps the event upon observation using the reported system timestamping. One smart-

32

phone is designated as the reference clock and shares its observed audio event timestamp with all

other smartphones. Each device then computes its relative clock offset with respect to the reference

device. Previous work by Lazik et al. [LRS15a] noted high audio sampling variability in Android,

which potentially leads to degraded clock sync performance. In our provided implementation, we

account for this variability to enable precise audio clock sync across Android smartphones.

3.3.1.2 Sender-to-Receiver

S2R synchronization can be accomplished through various peripherals, including cellular, wifi, and

bluetooth. Cellular in particular often incurs large latencies and asymmetry; as such we collapse

its usage into a Wi-Fi based implementation. In contrast, bluetooth offers a close proximity carrier

signal with efficient energy consumption, making it a valuable alternative to standard networking.

Given that many embedded sensing platforms support Bluetooth Low Energy (BLE), oftentimes

without Wi-Fi (e.g. wearables), a bluetooth sync solution improves compatibility with a wider

application domain. Devices periodically ping a reference device, either an external server or one

of the smartphones, and compute a relative clock offset. Due to the lack of smartphone support for

system timestamping of bluetooth or Wi-Fi events, application-level timestamping must be used.

In summary, some peripherals serve as sub optimal mediums for precise clock synchronization.

Therefore, we select and implement three synchronization techniques across the audio, bluetooth,

and Wi-Fi peripherals.

3.3.2 Time Synchronization Comparison

When two smartphones are synchronized using a particular peripheral, the clock difference fails to

capture the true offset, as it is affected by the peripheral timestamping delays. Figure 3.1 illustrates

the timestamp delays in audio (taudio), Wi-Fi (twi f i) and BLE (tble) peripherals in Android to capture

the occurrence of an event observed by the hardware. Audio, Wi-Fi and BLE peripherals have

access to timestamping capabilities at different stack layers. Kernel level timestamping is available

33

Figure 3.1: Timestamping events for audio, Wi-Fi and BLE peripherals in Android. Timestamp

delays are not drawn to scale.

for audio, whereas for Wi-Fi and BLE peripherals timestamping is only available in the application

layer. If smartphone A and B are synchronized using a particular peripheral p, the computed

o f f set between two clocks in timestamping p’s events is, o f f setp = o f f settrue +(tA
p − tB

p), where

p ∈ {audio, ble, wi f i, ...}, o f f settrue is the difference between smartphones monotonic clocks

in the absence of the timestamp delays, and tA
p and tB

p correspond to the timestamp delays for a

peripheral p on smartphone A and B, respectively.

After synchronizing smartphones clocks using one peripheral, the same peripheral can be used

to listen and generate synchronous events. More precisely, if A and B are synchronized using audio

peripheral, the expected error in capturing synchronous audio events on both smartphones is the

variability of the term (tA
audio− tB

audio) i.e, the sync error corresponds to timestamp delay jitter of

the phones audio pipeline after accounting for clock drift. For minimum variability, it is preferred

that timestamp delays are minimized and taken as close to the hardware as possible. Similarly,

the accuracy of the Wi-Fi peripheral to observe and generate synchronous network events is the

variability of the term (tA
wi f i− tB

wi f i). The same applies to the BLE peripheral.

Under certain conditions, one synchronized peripheral can be used to timestamp and generate

distributed synchronous events across other peripherals. For example, if smartphone A and B are

34

synchronized using audio peripheral, this synchronization can be used to generate synchronous

network events on the Wi-Fi peripheral. This is possible only if timestamp delays for a particular

clock are symmetric across different devices for the same peripherals. We capture this condition

in the following equations:

o f f setp1 = o f f settrue +(tA
p1− tB

p1) (3.1)

o f f setp2 = o f f settrue +(tA
p2− tB

p2) (3.2)

Subtracting (1) and (2),

o f f setp1−o f f setp2 = (tA
p1− tB

p1)− (tA
p2− tB

p2) (3.3)

In these equations, note that both peripherals p1 and p2 timestamp events relative to the same

monotonic clock as shown in Figure 3.1. If p1 is audio and p2 is Wi-Fi, this error comparison

captures the difference between audio and Wi-Fi offset calculations, which directly corresponds to

the mismatch in timestamp delays across these peripherals. According to (3.3), if the timestamping

delays of the audio peripheral in devices A and B are the same, and the timestamping delays of the

Wi-Fi peripheral in A and B are the same, then their difference in clock offsets are the same.

This implies that synchronization across one peripheral can be used for other peripheral events if

there is no mismatch in their timestamping delays. In summary, the above equations capture the

heterogeneity in timestamp delays for different peripherals stacks. An important observation is

that timestamping delays are symmetric when the devices possess the same hardware, kernel, and

application load.

3.4 Evaluation

Given a particular sync approach and implementation, a challenge arises in how to determine its

accuracy. As a ground truth baseline is impossible to attain on smartphones, alternative techniques

must be used to approximate overall accuracy and precision of a given time synchronization solu-

tion.

35

First and foremost, a sync solution performed via a particular peripheral is best suited to mea-

sure events that occur across that same peripheral. For example, audio subsystem sync is able

to most precisely record audio events. Previous work by [LRS15b] introduced a methodology of

observing variability in sync offsets (Equation 3.1) after repeated audio sync attempts as a means

of quantifying the accuracy of the audio sync solution. More generally, a broadcasted reference

event (e.g. audio chirp) can be repeatedly observed and timestamped across multiple smartphones

to evaluate sync precision. Hence, variability evaluations capture sync precision for the same pe-

ripheral.

An alternative evaluation methodology is to compare two sync solutions that are performed in

parallel. This cross-peripheral comparison better quantifies the ability of a particular sync tech-

nique using one peripheral to accurately capture events over other peripherals. For example, one

might evaluate the accuracy of a Wi-Fi sync implementation with respect to an audio sync im-

plementation. The observed results are fundamentally limited by the combined precision of the

two sync solutions. For these results to be meaningful, the baseline must be more accurate than

the evaluated approach. As such, this methodology offers an upper bound on precision, indicating

how well a particular sync solution maps to other forms of events observable by the smartphone

device.

3.4.1 Experimental Setup

Two Pixel 3 and two Nexus 5X smartphones comprised the set of devices used for the evalua-

tion. One Pixel 3 was designated as the reference device onto which other smartphones attempt

to relatively synchronize their clock. Note that all peripherals are synchronizing the monotonic

clock maintained by the operating system. We disable other system level sync attempts to this

monotonic clock. The experimental setup consisted of repeated sync attempts for each of the three

peripherals. After every successful sync, the computed relative clock offset is recorded. For Wi-Fi

and BLE sync, our S2R implementations are based on NTP. Evaluations based on NTP over Wi-Fi

best captures performance both at local and global scale for smartphones. Other S2R protocols

36

such as PTP [EL02] and TPSN [GKS03] require specialized hardware support and as such are not

optimized for smartphone sync.

3.4.2 Variability Evaluation

For each of the synchronization techniques introduced, we begin with a reflective evaluation; that

is, the precision of each of audio, BLE, and Wi-Fi sync in capturing audio, bluetooth, and wifi

events, respectively. These results indicate the ability of a particular sync solution when solely

capturing events generated by the same peripheral used to perform synchronization.

3.4.2.1 Drift Correction

Figure 3.2 indicates the normalized relative offset for three of the smartphones over the course of

an hour, specifically for audio sync. The fourth phone, serving as the reference, is excluded as it

would by definition maintain an offset of exactly zero. Due to the differences in clock drift between

each smartphone and the reference, each smartphone experienced a different rate of overall change

in the total clock offset. A least-squares regression line is plotted for each phone, with the slope

indicating the rate of relative drift between each smartphone clock with respect to the reference.

The error of each sync attempt can then be estimated as the difference between recorded offsets

and this regression line.

3.4.2.2 Results

Figure 3.3 presents three histograms detailing the estimated sync error for the audio (3.3a), blue-

tooth (3.3b), and Wi-Fi (3.3c) implementations in capturing their own respective peripherals. Au-

dio achieves the best accuracy, with 86% of sync attempts falling within 200µs of the estimated true

offset, and a total spread of just over one millisecond. Bluetooth sync had an order of magnitude

more variability, with 85% of sync attempts falling within 3000µs, and a spread of approximately

20ms. Wi-Fi sync variability fell in between the two, with 95% of sync attempts falling within

37

Figure 3.2: Relative clock offset for audio-based sync over time, with respect to a fourth phone

(Pixel) serving as a reference clock. Results are normalized to the initial computed offset for

each device. Due to clock drift, offsets change as a function of the relative drift between the

synchronizing device and the reference device. A regression line for each device indicates the

overall relative drift trend.

1000µs and a spread of 3ms. Despite the fact that wireless NTP has been previously shown to

present errors on the order of tens of milliseconds [MDB16], our controlled experiment with a

collection of local smartphones synchronizing with the same server (17.253.26.253) over campus

Wi-Fi was able to achieve a precision of only three milliseconds. Wi-Fi NTP round trip time was

commonly observed between 4 to 8ms, whereas BLE NTP round trip time was typically between

35 and 50ms.

38

(a) Audio sync variability

(b) BLE sync variability

(c) Wi-Fi sync variability

Figure 3.3: Sync offset variability with respect to the fourth (Pixel) reference device for (a) audio,

(b) BLE, and (c) Wi-Fi implementations. 86% of audio sync attempts fall within ±200µs. 85% of

BLE sync attempts fall within ±3000µs. 95% of Wi-Fi sync attempts fall within ±1000µs.

39

Table 3.1: Clock synchronization accuracy across peripherals for three smartphones with respect

to a reference Pixel phone. Results are 95% confidence intervals.

Audio vs Wi-Fi Audio vs BLE Wi-Fi vs BLE

Pixel 3 1.51±1.50 ms 2.20±5.06 ms 0.51±5.06 ms

Nexus 5X1 13.12±1.50 ms 13.85±4.00 ms 2.15±5.46 ms

Nexus 5X2 12.39±1.50 ms 12.93±3.74 ms −0.86±4.5 ms

3.4.3 Cross-Peripheral Evaluation

A variability evaluation characterizes the precision of a particular sync implementation in captur-

ing events generated across its own peripheral. However, in practical deployment synchronized

clocks are often used to timestamp events across a wide suite of peripherals. Given the diverse

set of capabilities on smartphones (e.g. ambient light, audio, bluetooth, camera, IMU, proximity,

network, proximity), exclusively reporting a sync method’s precision with respect to its own pe-

ripheral is insufficient. A complete evaluation captures the differences across peripherals; this can

be accomplished by comparing two parallel synchronization methods using alternate peripherals.

Table 3.1 presents the results from comparing each of the three clock sync techniques with respect

to the other two synchronized clocks using Equation 3.3. One of the Pixel phones was reserved

as the reference device to which other phones are attempting to synchronize. Each sync technique

was performed and compared at least 100 times; 95% confidence intervals are reported. Confi-

dence interval sizes are a function of the combined variability of the two peripherals; as such, the

comparisons using BLE present the highest error bounds. One interesting observation is the sig-

nificant bias induced when comparing clock sync solutions between varying hardware. While the

Audio-WiFi and Audio-BLE overall comparison are near zero when comparing two Pixel devices,

a bias of ˜13ms are induced when comparing Nexus to Pixel devices. This is a direct result of

the varying audio, Wi-Fi, and BLE stack latencies between Pixel and Nexus smartphones. These

results indicate that an audio sync solution in particular fails to extrapolate to other peripherals; in

40

contrast, WiFi-BLE comparisons maintain reasonably comparable results independent of the hard-

ware devices evaluated. On the other hand, when comparing peripherals across similar hardware,

audio sync can be used to synchronously generate Wi-Fi and BLE events; this is shown by the

minimal differences in stack latencies across both Pixel devices.

3.5 Discussion

The choice in selecting a sync solution for a smartphone incurs varying tradeoffs. No technique

is objectively optimal; the appropriate selection is dependent on a number of application factors,

most notably the range of participating devices and the active peripherals required.

3.5.1 Tradeoffs

Bluetooth presents the most straightforward tradeoff; it has high variability and limited range, and

as such should be reserved for usage where the gain in energy efficiency is worth the sacrifice in

precision. Averaging offsets from repeated bluetooth sync attempts can help alleviate the impact

of this variability. The exception to this tradeoff is when interfacing with devices that only sup-

port bluetooth; when capturing bluetooth events, bluetooth sync will most accurately account for

differing BLE stack latencies across varying hardware.

The audio subsystem tradeoffs are more complex. While system timestamping provides audio

sync with the lowest variability, processing broadcasted audio events demand low relative ambient

noise in the generated audio frequency band (i.e. sufficient signal-to-noise ratio). This restricts the

environments where audio sync can be deployed, and places a dynamic range limitation. Finally,

despite the fact that audio has the lowest variability, Table 3.1 indicates that clocks synchronized

with audio events are limited in their accuracy of cross-peripheral timestamping; this is likely due

to notable differences in audio subsystem latencies across varying hardware platforms.

Wi-Fi synchronization is the most general-purpose and flexible solution. While other tech-

41

niques rely on local-area relative synchronization, NTP over Wi-Fi can support wide-area deploy-

ments. However, as network characteristics differ, so does the achievable clock sync precision.

Nevertheless, NTP over a local network can achieve precision on the order of a few milliseconds

with minimal effort and relatively low-overhead (i.e. does not require microphone, speaker, or

bluetooth to be active).

3.5.2 Recommended Sync Solution

Given the order of magnitude reduction in precision when comparing same peripheral variability to

cross-peripheral clock comparisons, an overwhelmingly clear message arises: in order to precisely

timestamp events arriving across a particular peripheral, that same peripheral should be used to per-

form clock synchronization. For applications combining information across multiple peripherals

and multiple smartphones, one phone should be selected as a reference device onto which all other

smartphones synchronize each peripheral independently. An exception to this rule is when periph-

erals incurs similar latencies across different devices; in this case, one peripheral synchronization

can be used to synchronously sense and/or generate events across the other peripheral.

42

CHAPTER 4

Variable End-to-end Delays in Deep Reinforcement Learning

Deep Reinforcement Learning (RL) has shown promising results for a range of robotics applica-

tions, such as navigation [BMG19], manipulation [TFR17], and locomotion [HLD19]. Deep-RL

policies are often trained with simulations due to cost, time to train, and safety concerns that arise

when training on real robots [TFR17]. Simulations are imperfect and difficult to calibrate. The re-

sulting modeling discrepancies cause a reality gap, which makes the transfer of RL policies from

simulation to the real-world (Sim2Real) a challenge [KMD10]. Prior works have proposed domain

randomization and adaptation techniques to address the reality gap in dynamics [TFR17, ABC20]

and image observations [SL16]. We study the reality gap introduced due to uncertainty in time

between state transitions and the resultant impact on dynamics in agile robotic tasks such as loco-

motion and navigation.

4.1 State Transition Delay in Deep-RL

RL agents make sequential decisions in a Markov Decision Process (MDP) in discrete time steps,

where the input to the agent is the current state st of the environment, where t is the current time

step, and output is the action at . The environment transitions to the next state st+1 once the action

is executed, and in turn used as the input for the next action at+1. If the states st and st+1 were

captured at world clock time τ and τ ′ respectively, the timing delay between state transitions is

defined as ∆τ = τ − τ ′. Note that t is a discrete time step in simulation while ∆τ represents

the actual passage of time on a robot. A common trend is to assume ∆τ is fixed for Sim2Real

transfer [BMG19, MCH19]. However, ∆τ varies in real robots due to variations in RL policy

43

execution time, sensor sampling interval and communication delays. In deep-RL, policy execution

time of neural networks dominates ∆τ and shows significant variation due to various factors –

uncertainties due to locally shared compute resources, asymmetric communication latencies with

use of shared cloud resources [CSH19], and delay variations due to processor throttling for thermal

and energy constraints [WWD94].

As the real robot operates in continuous world clock time, the state transitions observed by

the agent will change with variations in ∆τ . If these variations are not captured by the simulator

during training, it leads to poor Sim2Real transfer [MKK18,XBC18]. Prior works randomized the

state transition delays ∆τ during training for a successful Sim2Real transfer [ABC20]. We demon-

strate that the policy performance degrades with variation in ∆τ even with domain randomization.

Another approach is to artificially extrapolate varying delays to the worst case ∆τ . For example,

Molchanov et al. [MCH19] use a fixed ∆τ of 2ms for controlling a quadrotor while the neural net-

work inference latency was only 0.8ms. With this approach, one is forced to pick a conservative

∆τ that accounts for the worst case delays in the system or pick a small neural network to keep

inference latency to a minimum. Large ∆τ limits the applicability of deep-RL in agile tasks where

fast response times are required [WNL09], and small neural networks limit scalability for complex

tasks with large state-action space.

4.1.1 Time-in-State RL

We introduce Time-in-State RL (TSRL), a deep-RL approach that extends the observed state of

the system by explicitly including time-delays, i.e., incorporating ∆τ introduced by the sensor

sampling interval and execution latency at training time. Even though the inferencing latency

and sampling interval can vary for various reasons, they can be accurately measured by deep-RL

agents at runtime. We test the following hypothesis: if the agent observes the factors that impact

the ∆τ , and hence the state transitions, it helps the agent to learn a better policy compared to a

policy that partially observes the impact of changing ∆τ using domain randomization. We evaluate

our approach on simulation-to-simulation (Sim2Sim) transfer on PyBullet HalfCheetah, PyBullet

44

Ant [CB19] and DeepRacer [BMG19]. We evaluate our approach on Sim2Real transfer using a 1
18

th

scale car. We compare the TSRL policies with the policies trained using domain randomization

(DR) of timing characteristics. Our results demonstrate that the TSRL policies are robust to the

varying state transition delays and, as a result, transfer better across simulations and to real-world

environments than the DR policies.

4.2 Background

4.2.1 Temporal Variability in Deep-RL

RL agents learn to make sequential decisions in the environment to maximize the expected cumu-

lative discounted reward. At each discrete time step t of an MDP, the agent takes action at based

on state st , and the environment returns with scalar reward rt and next state st+1. We consider

episodic MDPs, where the environment is initialized with state s0 and the interaction continues

until the environment reaches the terminal state sT . p(st+1|st ,at) is the probability of transition to

state st+1 given current state st and action at , and π(a|s) represents the probability of taking action

a given state s by policy π . Any changes to the real state transition time ∆τ – as opposed to fixed

discrete time steps in t – directly impacts the state transition probability p(st+1|st ,at).

The objective of the agent is to learn a policy π that maximizes:

J = E
π(a|s)

p(st+1|st ,at)

[
T

∑
t=0

γ
t−1rt

]
(4.1)

where γ ∈ [0,1] discounts future rewards, T is the episode length, p(st+1|st ,at) is the probability

of transition to state st+1 given current state st and action at , and π(a|s) represents the probability

of taking action a given state s by policy π . Any changes to the real state transition time ∆τ

– as opposed to fixed discrete time steps in t – directly impacts the state transition probability

p(st+1|st ,at).

45

We focus on model free RL algorithms, where the state transition probabilities p(st+1|st ,at)

are unknown to the agent and are inferred indirectly through environment interactions. One of the

simplest deep-RL algorithms is REINFORCE, where the policy is represented by a neural network

with parameters θ . The policy is learned using gradient ascent on the objective function.

∇θ J(θ) =
N

∑
n=0

T

∑
t=0

∇θ logπθ (at |st)
T

∑
t=0

γ
t−1R(st ,at) (4.2)

where R(st ,at) is the reward function and data from N episodes is used for the update. REIN-

FORCE has high variance as the gradient update depends on the total discounted reward collected

during each episode. To reduce variance, the advantage function A(st ,at) is used for the gradient

update [Bai93, WSH15]:

∇θ J(θ) =
N

∑
n=0

T

∑
t=0

∇θ logπθ (at |st)A(st ,at) (4.3)

A(st ,at) = rt + γVφ (st+1)−Vφ (st) (4.4)

where Vφ (st) estimates the cumulative discounted reward from state st using a separate value net-

work with parameters φ . Intuitively, advantage estimates the relative benefit of taking action at

compared to other possible actions in state st . The value network is trained with a mean squared

error loss function:

Lφ =
1
2

∥∥∥∥∑
t

Vφ (st)−
(
rt + γVφ (st+1)

)∥∥∥∥2

(4.5)

Due to variable state transition delay ∆τ , the agent observes stochasticity in state transitions

p(st+1|st ,at) for the same state and action. Ignoring the variations in ∆τ during training results in

a distribution mismatch from simulations to the real world, leading to poor transfer. On the other

hand, if we introduce domain randomization in time by considering variable ∆τ during training,

the additional state transition stochasticity introduces noise in the value function estimates Vφ (s)

estimates in Equation 4.5 and makes it difficult to converge to a good policy.

To address variations in the state transition delay, we propose augmenting the agent state with

execution time ∆τη and sampling interval ∆τσ measurements: s̃ = [s,∆τη ,∆τσ] where s̃ represents

the augmented state. This simple trick enables the agent to distinguish between state transitions

46

introduced by variations in delays. We train the agent with the augmented state and introduce

delay variations in the simulator. As the delays are explicitly represented in state, it becomes much

easier to estimate the value function Vφ (s) using Equation 4.5. Since the delay measurements are

directly fed as input to both policy and value networks, the agent learns to generalize beyond the

exact numbers seen during training.

Figure 4.1: Delays for a typical sensing to actuation pipeline. TSRL augments the observed state

with sampling interval and inferencing latency.

4.2.2 Variability in Execution Latency and Sampling Interval

The delays in a typical sensing to actuation pipeline for a deep-RL agent are shown in Figure 4.1.

A typical state transition begins with sensing the current state st of the environment, executing the

agent action at on the environment, and again sensing the updated state st+1. Each of these steps

can have variability in the real world as determined by the sampling interval of sensors ∆τσ , the

execution latency ∆τη , and communication delays ∆τm. When multiple sensors are present, ∆τσ is

the maximum of individual sensor sampling intervals. Similar arguments are extended to ∆τη . We

assume communication delays ∆τm are small, and subsume them into execution latency ∆τη .

Execution Latency: Various factors can affect execution latency ∆τη such as power management,

computational resources, and complex operating system (OS) environments. Dynamic frequency

scaling [WWD94] is a commonly used technique to manage power dissipation [TSS17]. Frequency

over-clocking/under-clocking changes computation speed and lead to variable latencies. The OS

47

scheduling processes result in scheduling noise that varies with system load and affects process

latencies.

We analyzed the inference latencies of commonly used neural network architectures in deep-

RL policies on several hardware platforms. The runtime latency depends on the complexity of

neural network, hardware device, and multi-tenancy. On the GAP8 [FRC18] microcontroller, the

execution latency of a simple neural network increases from ∼8ms to ∼60ms when the number of

CNN layers increases from 2 to 4. For deep learning accelerators like the Intel Neural Compute

Stick 2 [Int], the execution latency of a 2 layer CNN network is increased from∼3ms to∼20ms in

presence of multiple inference tasks. We characterized the execution latency of the default deep-

RL policy in DeepRacer [BMG19], a 1/18th scale autonomous car that comes with an Intel Atom

processor and an integrated GPU. The execution latency varies from 15-20 ms on the GPU and

goes up to 34 ms on the CPU. We include additional analysis on execution latency in Section 9.1.

Sampling Interval: Stisen et al. [SBB15] demonstrate that sampling interval of accelerometers

can vary widely in smartphones depending on both software and hardware characteristics. We

characterized the variation of the frame rate in the DeepRacer front facing camera. The variation

in sampling interval was 20-45 ms in the 30Hz frame rate setting and 62-71ms in the 15Hz setting

respectively.

4.2.3 Impact of Temporal Variability on Deep-RL Policy

The impact of state transition time variations on the RL policy depends on the relative value of

sampling interval ∆τσ to execution latency ∆τη .

(a) ∆τσ ≪ ∆τη : When the sampling interval ∆τσ is very small, the variations in execution latency

∆τη dominate the impact on the policy. As ∆τη varies, the observed evolution of the environment

state in world clock time τ also varies correspondingly. Hence, the agent will observe stochasticity

in state transitions p(st+1|st ,at) for the same state and action. If we ignore the variation in ∆τη dur-

ing training, there will be distribution mismatch from simulations to the real world, leading to poor

48

transfer. Mahmood et al. [MKK18] and Xie et al. [XBC18] demonstrate that policies can break

down with small changes (<100 ms) in latency for manipulation and locomotion respectively. On

the other hand, if we introduce ∆τη variations during training [TFR17,ABC20], the additional state

transition stochasticity introduces noise in the value function Vφ (s) estimates in Equation 4.5 and

makes it difficult to converge to a good policy. We demonstrate this in both simulation and a real

robot in Section 4.5.

(b) ∆τσ ≫ ∆τη : In this case, variation in the sampling interval ∆τσ dominates the impact on the

RL policy. The agent needs to observe the effect of its action on the environment. When sampling

interval is large or if changes in state are minor with a single action, it is common practice to repeat

the agent action a fixed number of times [MKS15, LHP15]. With variations in ∆τσ , the number of

repeated actions need to be varied and the impact on the RL policy follows the same argument as

above.

(c) ∆τσ ∼ ∆τη : In this case, we want the agent to act for every sensed state [Hal13]. When

∆τσ and ∆τη vary, there is a phase shift in each state transition depending on when the state gets

sampled and when the action is executed. These phase shifts introduce noise in the state transition

probabilities p(st+1|st ,at), and impact the performance of the RL policy. While phase shifts do

occur in the other two cases, the impact on the policy is dominated by overall variation in either

∆τσ or ∆τη .

4.3 Related Work

4.3.1 Control System Approaches

Multiple researchers have investigated the design of classical controllers in the presence of delays.

The presented experiments in this chapter could be reformulated as classical control problems.

Control systems approaches typically model finite-dimensional systems that may require lineariza-

tion. Traditionally, the delay is modeled and incorporated in the design of optimal controllers to

49

compensate for it. The goal in these contexts is to develop robust controllers by approximating

the worst case time-delays [Beq03, LR90] and sampling variation [WRG14], or by compensating

for delays using damping components. Wittenmark et al. [WBN98] models the delays showing

complicated patterns in nested communication loops suggesting that it is important to consider

delays in the design of the controller. Hespanha et al. [HNX07] and Lian et al. [LMT01] discuss

the presence of variable delays in networked controlled systems. Luck et al. [LR90] propose the

design of a worst-case delay controller by using buffers in the closed-loop system. It is shown that

if the buffers are chosen larger than the expected worst-case delay, then the runtime delays can be

made deterministic. The approach of worst-case delay is popular for uncertain delays with known

upper bounds.

Nilsson et al. [Nil98] proposes the design of an event-driven controller, where the controller

actions are applied as soon as possible based on the delays in the pipeline. Nilsson et al. [Nil98]

compare an optimal event-driven controller with the worst-case delay controller proposed by Luck

et al. [LR90]. The results show that an optimal event-driven controller can outperform the worst-

case delay controller for linear control systems.

Our assumptions in designing Time-in-State (shown in Figure 4.1) are similar to the Nilsson

et al. [Nil98]. We assume that the sensing is clock-driven according to a sampling interval. The

sampling interval is not fixed and can vary at runtime, as discussed in Section 4.2.2. The action

application from the neural network is event-driven, where we apply action as soon as possible

according to the delays in the pipeline. As discussed, prior work [Nil98] has shown that optimal

event-driven controllers can outperform the worst-case delay controller for linear control systems.

The assumption by Nilsson et al. [Nil98] is that the past delays can be used to predict future ex-

pected delays. In Time-in-state, we also assume that the future expected delays could be predicted.

We evaluate Time-in-state assuming a measurement error of 20% in Section 4.5.2 and also com-

pare Time-in-state with worst-case delay (constant delay) controllers in Section 4.8. As discussed

in Section 4.3.3, the latency of neural networks at runtime across a diverse suite of devices can be

predicted within 10% measurement errors on an average.

50

Unlike a controller designed via analytical means, the DNN-based controller trained via RL is

a black box. There are no known mechanisms to compensate for delays. The introduced strategy of

Time-in-State shows a practical approach to modify the training of neural networks to enable vari-

able delay adaptation based on the runtime expected delay measurements. Because Time-in-State

is augmenting state space with measured time-delays, one may hypothesize that the adaptive poli-

cies are mimicking the classical control approaches in adapting the actions based on the expected

delays.

4.3.2 Handling Delays in Reinforcement Learning

Handling of delay variations in a robot has been identified as crucial for successful Sim2Real

transfer by many prior works [XBC18, MKK18, TFR17, ABC20]. Variable delays are studied in

the literature using different delay models. One approach is to apply action as fast as possible

and either train robust RL policies [MKK18,ABC20,XBC18] or learn system dynamics [WNL09,

CXL20] to account for delay variations. We call this approach in RL as the event-driven con-

troller as defined by Nilsson et al. [Nil98]. Another approach is to adopt the conventional con-

trol systems method [LR90] to convert the variable delay to constant delays by adding extra

delay buffers [SBB10, RP19, KE03]. We call this approach in RL as the worst-case delay con-

troller [LR90].

Event-driven controller: By default, in several robotic simulators, action is applied instanta-

neously, assuming no execution latency. For example, in HalfCheetah and Ant task in PyBullet

simulator [CB16], the simulation is paused during inference of the neural network, and the most

recent action is applied when advancing simulation. Thus no execution latency is assumed. Sev-

eral researchers [MKK18,ABC20,XBC18] propose the design of robust RL policies using domain

randomization during training to account for runtime delay variations. Mahmood et al. [MKK18]

examine the design decisions for the deployment of deep-RL policies for manipulation. They

present a computation model on a UR5 reacher robot running an RL controller where the action

is sent to the actuator as soon as possible. They highlight the lack of guidelines for picking state

51

transition times or implementing asynchronous mechanisms to reduce the state transition delays.

It is also empirically shown that for the UR5 reacher robot, there exists an optimal delay at which

the performance is best and beyond which performance degrades significantly. Andrychowicz et

al. [ABC20] studies dexterous hand robots where RL policy sends an action to the low-level con-

troller as soon as possible after an average inference latency of 25ms. They show the presence of

delay variations on real robots and use domain randomization by varying delays during training to

train a robust policy. Peng et al. [PAZ18] also observe the variable delays for a fetch robotic arm.

They use domain randomization to randomize the state transition delay each time step according to

an exponential distribution. We compare Time-in-state with the domain randomization approach

showing superior performance of Time-in-state policies.

Walsh et al. [WNL09] and Chen at al. [CXL20] studies action application in discrete steps.

They propose learning dynamics of the system using model-based RL that can work in the pres-

ence of variable discrete delays. Walsh et al. [WNL09] compare their controller that acts in every

discrete step with a constant delay controller (constant step delays), showing the superior perfor-

mance of their design. A limitation of the method proposed by Walsh et al. [WNL09] is that they

use model-based RL to study systems where state-space is simple/finite and has deterministic dy-

namics, and delay variations are in discrete steps only. Chen et al. [CXL20] shows that the constant

step delay controller doesn’t work when step delays are varied at runtime. In a way, this controller

is a discrete event-based controller which can act in every discrete step and outperforms a worst-

case controller that waits for an integer number of step delays. In contrast, in Time-in-state RL, we

propose an event-driven controller that can adapt to the continuous changes in the runtime delays.

Our proposed Time-in-state trains adaptive controllers without explicitly modeling the physics dy-

namics of the system and works for complex modalities. We show applications of Time-in-state to

both low-dimensional and high-dimensional state spaces and its direct transfer to the real robotic

car.

Worst-case delay controller: Worst-case delay or constant delay controller is an alternative

approach to make the run-time delays deterministic. Several researchers [RP19, KE03, SBB10]

52

have proposed constant delay MDP as an extension to the vanilla MDP. These works assume that

action is applied either at a fixed delay or at the end of a few time-steps. Ramstedt et al. [RP19],

and Katsikopoulos et al. [KE03] convert MDP with constant delays to MDP without delays by

modifying the state space and state transition structure. Ramstedt et al. [RP19] proposes a new

actor-critic algorithm for a single-step delay and shows it speeds up the training as compared to

the vanilla soft actor-critic method. Katsikopoulos et al. [KE03] present theoretical results on the

equivalence of the modified MDP representing constant delays. We compare our proposed Time-

in-state with worst-case delay (constant delay) controllers in Section 4.8.

4.3.3 Accuracy of Delay Measurements at Runtime

Our assumption in Time-in-State RL (TSRL) is that expected delays can be measured at runtime.

A significant part of the execution time is the inference latency of the neural network itself. At

runtime the variations in inference latency can happen due heterogeneity of devices (CPU, GPU,

mobile-CPU, embedded-GPU, TPU), neural network complexity, software stack optimizations,

shared resources and several other factors discussed in Section 4.2.2. We summarize a short sur-

vey on the current state-of-the-art showing error in the inference latency prediction at runtime in

Table 4.1. Table 4.1 also includes the reported inference latency variations due to factors such

as heterogeneity of devices and varying complexity of different neural networks. As seen, in the

survey results at runtime across a diverse suite of devices, neural network inference latency can

be predicted within 10% measurement errors on an average. We evaluate the TSRL policies with

measurement noises of up to 20% in Section 4.5.2 which is well within the prediction errors.

The approaches to predict latency can be divided into two categories:

(i) Using a look-up table: A look-up table of individual blocks or operations [CZH18, PMO21,

ZHW21] is developed using input/output feature map, kernel size, stride, etc. During prediction

latency of each operation is added to get the final expected inference latency.

(ii) Training a separate model to predict latency: Another widely used approach is to train a

53

Table 4.1: Prediction error in neural network inference latency using different approaches and in-

ference latency variations studied by researchers. Across a suite of devices, neural network infer-

ence latency can be predicted within 10% error on an average using different proposed approaches.

Method Prediction Error Latency Variations Tested Devices

Look-up table [CZH18] for 1% 80ms - 130 ms Pixel1

individual blocks

Look-up table and 12% 50ms - 1800 ms HUAWEI mobile

trained models [PMO21] devices

Modified Look-up table 10% on CPU/GPU 1ms -1000 ms Pixel4, Intel NCS2

using kernels [ZHW21] 10% on VPU Xiaomi Mi9

Trains a GCN model [DCA20] 10% 1ms - 100 ms Desktop CPU/GPU

on network graph Jetson Nano, TPU

Trains a DNN model [AWS22] 10% 1ms - 100 ms Desktop CPU/GPU

using performance counters

Trains a DNN model [LLC21] 10% 1ms - 100 ms Desktop CPU/GPU

using hardware embeddings Raspi4, FPGA

separate neural network [DCA20, AWS22, LLC21] to predict the inference latency of the desired

network across different hardware devices. This approach is shown to be generalizable across

unseen devices and networks.

Reason for prediction errors: The look-up table approach doesn’t account for the data move-

ments [PMO21] between block/operations, which results in prediction errors. Training a separate

model suffers from errors when generalizing to unseen devices and networks. The whole expected

search space needs to be carefully covered [PMO21].

Runtime latency variations: As seen in Table 4.1, the runtime latency varies from a few ms

to 1000’s ms across devices with different network complexities. This is because a particular

54

network’s runtime latency depends on the device’s choice and the specific implementation frame-

work [PMO21] as discussed in Section 4.2.2.

Due to the increased hardware compute capability of modern GPUs, often, a single inference

job cannot fully utilize the GPU resources. Enabling GPU sharing across applications can result in

inference latency overhead [GHY22]. Several scheduling approaches are proposed to either maxi-

mize the utilization, fairness, or timely response of critical applications [GHY22]. The commercial

Nvidia GPUs [Nvi22] support partitioning of a single GPU into as many as seven instances, each

fully isolated with its high-bandwidth memory, cache, and compute cores. Mendoza et al. [MW22]

have shown extra latency overhead of up to 130ms when sharing GPU across applications. We in-

clude additional analysis on execution latency variations in Section 9.1.

4.4 Training Deep-RL Policies with Temporal Variations

A common technique in literature is to do domain randomization during training to account for

uncertain and unmodeled environment dynamics [TFR17]. Domain randomization makes sense for

physical quantities such as friction and contact forces, as they are difficult to measure and calibrate

across real robots. However, state transition delay related variables such as execution time ∆τη and

sampling interval ∆τσ are measurable both in simulation and real robots. We propose augmenting

the agent state with these measurements: s̃ = [s,∆τη ,∆τσ] where s̃ represents the augmented state.

This simple trick enables the agent to distinguish between state transitions introduced by variations

in delays. We refer to the augmented state policies as Time in State (TS) policies.

For low-dimensional state spaces, the execution time and sampling interval can be directly

added as another state. For augmenting high-dimensional state spaces, such as images, the delay

observations are fused in an intermediate layer of both policy and value networks [NKK11]. To

evaluate TSRL, we instrumented HalfCheetahBulletEnv-v0 and AntBulletEnv-v0 environments in

the PyBullet simulator [CB16] to demonstrate Sim2Sim transfer on a low dimensional use case, as

well as DeepRacer [BMG19] to test both Sim2Sim and Sim2Real transfer on a high dimensional

55

use case. We train our policies using the Proximal Policy Optimization (PPO) [SWD17] algorithm

as implemented in the OpenAI Baselines1. We use PPO as it has been widely used in robotics

applications [BMG19, ABC20, MCH19].

Figure 4.2: The DeepRacer car on a real track and the simulated car in the Gazebo environment.

The OptiTrack motion capture system is used to quantify the performance of policies on the real

track.

4.4.1 Low Dimensional Use Cases: HalfCheetah and Ant

The implementation for HalfCheetahBulletEnv-v0 and AntBulletEnv-v0 in PyBullet simulator evolve

physics at a fixed time (SimTime) of 4.12 ms for each action. We modified the default environments

and advance the simulation for multiple simulation steps per action to vary the execution latency

1OpenAI Baselines: https://github.com/openai/baselines

56

https://github.com/openai/baselines

(a) HalfCheetah task (b) Ant task

(c) DeepRacer car

Figure 4.3: The learning curves for HalfCheetah, Ant and DeepRacer car for TS and DR policies.

and sampling interval. Thus, the granularity of the variation in the execution latency and sampling

interval in our PyBullet experiments is SimTime.

Variation of Timing Characteristics. We vary the state transition delays in the simulator when

training the policies and consider the setting where execution latency ∆τη ≤ sampling interval ∆τσ .

For reactive systems, this setting is desired so that the agent can act for every sensed state [Hal13].

The actuation of recent action is delayed by the execution latency ∆τη , and the next sensor sample

is available after the sampling interval ∆τσ . We select the range of execution latencies ∆τη between

[0 - 10∗SimTime] = [0 - 41.2 ms] and sampling interval ∆τσ values between [SimTime - 10∗SimTime]

= [4.12 ms - 41.2 ms]. We varying ∆τη and ∆τσ for HalfCheetah and Ant within their respective

ranges. Before the starting of episode, we fix ∆τη and then decide ∆τσ = max(4.12 ms , ∆τη).

57

(a) Sim2Sim for HalfCheetah task (b) Sim2Sim for Ant task

Figure 4.4: Comparison of time-in-state (TS) and domain randomization (DR) policies for

HalfCheetah and Ant tasks across different execution latencies (∆τη). The sampling intervals

(∆τσ) is selected to be maximum of (4.12 ms , ∆τη), so that agent can act for each sensed state.

The mean is shown in green, the black ’x’ marker shows the median of IQR. For both tasks, TS

policies achieve higher mean reward than DR policies.

Between consecutive steps, we introduce random jitter of ±SimTime in both ∆τη and ∆τσ .

Policy Training. The vanilla policy trained without varying state transition delays fails to work in

presence of variable (∆τη and ∆τσ). We present analysis of the vanilla policy in Section 4.7. We

use domain randomization (DR) as our baseline algorithm, where the policy is trained by varying

the state transition delays during training. We train the DR and TS policies by varying the ∆τη and

∆τσ as described above. When training DR policies, the default state from HalfCheetahBulletEnv-

v0 and AntBulletEnv-v0 is used. We augment the state with ∆τη and ∆τσ for TS policies. We

use 2-layer fully connected neural network with each layer having 64 nodes for policy and value

function. We include additional details for reproducibility in Section 9.2.

58

4.4.2 High-Dimensional Use Case: Autonomous Vehicle

We use Gazebo simulator2 to train navigation policies for the DeepRacer car [BMG19]. The

simulator includes a robot model that is matched to the properties of the real car. The simulation

advances in real-time. Images from the camera are used to navigate the car on the track. We modify

the sampling rate of camera and runtime execution latency by adding controlled timing delays.

Variation of Timing Characteristics. During training in simulator, the execution latency ∆τη is

varied between the discrete set of values from 10 ms to 120 ms. The sampling interval ∆τσ of 33

ms (30 Hz) is used when ∆τη ≤ ∆τσ , otherwise ∆τσ is matched to ∆τη . During policy training for

each episode, we fix the value of ∆τη and ∆τσ . The execution latency to do the policy network

inference and image processing on the server machine is ∼10ms. The execution latency on the

real car using integrated GPU is ∼20ms in the absence of other tasks. The sampling interval of

33 ms (30 Hz) corresponds to the supported camera sampling rate on the real car. The range of

variations in ∆τη and ∆τσ are selected to benchmark the policy behavior of navigational policy in

the presence of deployment variations of hardware, multi-tenancy, and communication delays.

Policy Training. The DR and TS policies are trained by varying the state transition delays as

described above. In addition, we use the recommended image augmentations [BMG19] to enable

the successful transfer of policy to the real car. Due to the image augmentation processing times

and variations in simulation advancement, a jitter of 5 ms is present in both ∆τη and ∆τσ . The

simulation setting, along with the track and simulated car, is shown in Figure 4.2. The simulated

track has a centerline of the length of 17 meters and a track width of 0.44 meters. The policy’s

goal is to follow the centerline of the track by controlling the steering angle and speed. The highest

reward of 1.1 is given when the center of the car matches the centerline, and the reward is scaled

to zero as the car moves away from the centerline to offtrack. Each episode consists of 500 steps.

The neural network is represented by 2 CNN layers followed by a 2 fully connected layers and an

output layer. The DR policy uses only the images from the camera as input. For TS policy, we fuse

2http://gazebosim.org/

59

http://gazebosim.org/

images with the execution latency and sampling interval in the first fully connected layer after the

CNN layers. We provide the details for reproducibility in Section 9.3.

Real-world environment. We created a real track as shown in Figure 4.2, with a center line

distance of 7.3 meters and the track width of 0.52 meters. We compared the performance of

policies by utilizing an OptiTrack motion capture system3 shown in Figure 4.2. We localized the

location of the car with respect to the center line of the real track.

4.5 Evaluation of Time-in-State RL

We compare the time-in-state (TS) based policies and the domain randomization (DR) policies in

simulation and on the real robot. We evaluate their robustness across varying sampling intervals

and execution latencies. This section compares the performance of fully connected policies. The

experiments with recurrent policies are discussed in Section 4.6.

4.5.1 HalfCheetah and Ant Tasks

TS and DR policies are trained for HalfCheetah and Ant tasks, as explained in Section 4.4.1. We

train three models for each task, both for TS and DR, with different seeds. The learning curves for

the policies are shown in Figure 4.3. For both tasks, TS achieves a better mean training reward than

the DR policies. The evaluation of policies for both HalfCheetah and Ant tasks across the three

trained models is shown in Figure 4.4. The spread of test reward is captured across 10 episodes for

each model at a particular sampling interval (∆τσ) and execution latency (∆τη). The analysis shows

that the TS polices perform better than the DR policies across state transition delay variations and

maintains a higher mean reward. Figure 4.4 also shows that, in general, the performance of deep-

RL policies degrades when exposed to higher sampling intervals and execution latencies. The

degradation in performance is task-specific.

3https://optitrack.com/

60

https://optitrack.com/

Next, we evaluates the policies with variable delays within an episode and with 20% timing

noises in delays for HalfCheetah.

4.5.2 Experiments with Variable Delays within an Episode and Timing Noises

The experiments at different delays shown in Figure 4.4 and Figure 4.7 highlight Time-in-state

policy’s superior performance across a wide range of delay variations, along with quantifying the

drop in performance as the delay magnitude is increased across episodes. Next, we expose the

trained fully connected policies of Halfcheeth and Ant tasks to variable delay in a single episode.

We consider three different multitenancy settings: (i) low load, (ii) heavy load, and (iii) mixed

load, exposing policies to a range of delay variations. These experiments simulate the arrival of

multiple parallel tasks on the same hardware running the deep RL policy. In the low load setting,

the execution latency is selected between [0-2∗SimTime] randomly for each step during the episode.

For both HalfCheetah and Ant Task, the SimTime = 4.12ms, and each episode consists of 1000 steps.

For heavy load, the execution latency is varied randomly between [6∗SimTime-10∗SimTime]. The

execution latency is varied randomly between [0-2 ∗ SimTime] for the first 333 steps, [3 ∗ SimTime-

5 ∗ SimTime] for the next 333 steps, and [6 ∗ SimTime-10 ∗ SimTime] for the remaining 334 steps in

the case of mixed load setting. The sampling interval is selected to be a maximum of (SimTime,

execution latency). A random jitter of±SimTime is added to the execution latency and the sampling

interval during each step to account for the measurement noises. This can result in measurement

noise of 2SimTime or 20%.

As shown in Figure 4.5, Time-in-State policies have superior performance as compared to the

domain randomization policies. The spread of reward is captured across 10 episodes for each

model at a particular multitenancy setting. The variation in Figure 4.5 follows the same behavior

shown in Figure 4.4. For example, at a low execution latency (in Figure 4.4) for the HalfCheetah

task, the difference in the performance of Time-in-state policy and domain randomization policy

is significant. A similar significant performance difference is observed in the low load setting for

61

(a) HalfCheetah task (b) Ant task

Figure 4.5: Comparison of time-in-state (TS) and domain randomization (DR) policies for

HalfCheetah and Ant tasks across different multitenancy settings. The mean is shown in green.

The back ’x’ marker shows the median of IQR.

the HalfCheetah task in Figure 4.5. The heavy load and mixed load also follow the performance

difference observed in Figure 4.4.

4.5.3 DeepRacer Robotic Car

Figure 4.3c shows the learning curve of TS and DR policies trained using DeepRacer simulator.

We train 3 models for each policy. DeepRacer simulator advances simulation in real-time, and

we train each model for 44 hours. Figure 4.7b shows the Sim2Sim of the policies across 3 set

of models using the DeepRacer simulator. We evaluate each model for 16 episodes (500 steps on

track for each episode). We test the policies across a spread of different sampling intervals (∆τσ)

and the execution latencies (∆τη). The results also show that as ∆τη and ∆τσ are increased, the

performance of the deep-RL policy degrades in general. However, in comparison to DR, the TS

policies have better performance.

62

Figure 4.6: A comparison of a single instance of two deep reinforcement learning-based controllers

on a 1/18th scale real autonomous car in the presence of 60 ms execution time. The proposed

Time-in-State (TS) based controller performs better than the domain randomization (DR) based

controller.

Table 4.2: (a) Comparison of time-in-state (TS) and domain randomization (DR) policies in com-

pleting laps on the real track out of 24 trials at different execution latencies. (b) The average speed

used by TS and DR. TS adapts its speed with increase in execution latency.

Latency 20 ms 60 ms 100 ms

TS 20 17 13

DR 20 11 7

(a)

Latency 20 ms 60 ms 100 ms

TS 1.50 m/s 1.45 m/s 1.40 m/s

DR 1.45 m/s 1.44 m/s 1.45 m/s

(b)

63

(a) (b)

Figure 4.7: Evaluation of time-in-state (TS) and domain randomization (DR) policies using Deep-

Racer car. (a) The distance of the real car from the centerline captured using OptiTrack cameras.

The number of points plotted is 2400, except the DR (∆τη=60ms), which has 1657 points. The

onboard camera of car was running at 30Hz. (b) Analysis of TS and DR policies across different

execution latencies (∆τη) in DeepRacer simulator. The sampling intervals (∆τσ) is selected to be

maximum of (33 ms , ∆τη). The green color shows mean, the black ’x’ marker shows the median

of IQR.

Sim2Real transfer. We compare the performance of the TS and DR policies on the DeepRacer

robot using the real track. The results for 24 trials in both the directions for TS and DR policies

across the 3 trained models are shown in Table 4.2a. The results shows the performance gain of

the TS policies is transferred to real robot. DR and TS policies work very well on the real track

by successfully completing higher number of laps for ∆τη = 20ms. As the ∆τη is increased to

60ms and 100ms, the performance of DR policies significantly degrade in comparison to the TS

policies. Table 4.2b shows the average action speed of policies in the simulator track. TS adapts

its speed with increasing execution latency by taking slower actions whereas DR does not change

its action speed. In our supplementary video, we show that the TS policy speed adaptation occurs

primarily on the curved regions of the track, and helps it achieve robust navigation. The ∆τη of

64

neural network policy using GPU of Car is within 15-20ms. We introduce extra delay and fix the

∆τη to 20ms, 60ms and 100ms respectively to generate the comparison of TS and DR policies.

The measured sampling interval ∆τσ was directly given as input to the TS policies. The camera

was running at the sampling rate of 30 Hz, which was measured to have variable sampling interval

from 25-45ms at runtime. Figure 4.6 shows an instance of the real run captured using OptiTrack

setup comparing TS and DR based policies for the sampling rate of 30 Hz and ∆τη of 60ms. The

TS policies have more stable performance on the real track as compared to the DR policies. We

analyzed the distance from the centerline maintained by both TS and DR policies on the real track.

The distance is captured using OptiTrack setup. The distance maintained is shown in Figure 4.7a.

TS policies maintain a closer distance to the centerline. The DR policies have more oscillating

behavior around the centerline. We believe the oscillating behavior is the reason for higher number

of points within [0-5 cm] for DR at ∆τη to 20ms.

65

Figure 4.8: Learning curves of time-in-state recurrent (TS-Recurrent), time-in-state fully con-

nected (TS-FF), domain randomization recurrent (DR-Recurrent), and domain randomization fully

connected (DR-FF) policies for HalfCheetah task. The fully connected policies are trained for ∼

2400 iterations whereas the recurrent policies are trained for ∼ 10000 iterations. TS policies

achieve higher training reward than the DR policies.

66

Figure 4.9: Sim2sim comparison of time-in-state recurrent (TS-Recurrent), time-in-state fully con-

nected (TS-FF), domain randomization recurrent (DR-Recurrent), and domain randomization fully

connected (DR-FF) policies for HalfCheetah task. The comparison is done across different execu-

tion latencies (∆τη). The sampling intervals (∆τσ) is selected to be maximum of (4.12 ms , ∆τη),

so that agent can act for each sensed state. The mean is shown in green, the black ’x’ marker shows

the median of IQR. TS policies achieve higher mean reward than DR policies.

67

4.6 Experiments with Recurrent Policies

The recurrent policies are known to perform better than the fully connected policies for tasks where

the partial state is observed. We evaluate TS and DR policies with recurrent architectures for the

HalfCheetah task. The state space, actions, and reward function used are the same as the one

discussed in Section 9.2 for fully connected policies. We modified the open-source code available

from Hafner et al. [HDV17] to train recurrent policies. The variation of timing characteristics

during the training was done as discussed in Section 4.4.1. The network architecture consists of a

fully connected layer with 64 nodes, followed by a GRU layer with 64 units, and an output layer.

We train 3 models each for recurrent TS and recurrent DR, with different seeds. Figure 4.8

compares the learning curves of recurrent and fully connected policies. The learning curves for

fully connected policies, also shown in Figure 4.3a, are added here for comparison. We stopped

the training of fully connected policies after ∼ 2400 iterations. The recurrent policies require a

significantly larger number of iterations (∼ 10000) to train. The recurrent TS and recurrent DR

achieve higher training rewards as compared to the fully connected TS and fully connected DR

respectively. The max average training reward achieved by fully connected TS and fully connected

DR is 1199 and 857 respectively. The recurrent TS and recurrent DR achieves max average training

reward of 1278 and 974 respectively. We observe that the fully connected TS achieves significantly

higher training reward than the recurrent DR, suggesting that adding time to the state is a better

approach than training a recurrent DR policy.

Figure 4.9 shows the comparison of recurrent policies and fully connected across three trained

models. The Sim2sim comparison of fully connected policies is added from Figure 4.4a for com-

parison. The spread of test reward is captured across 10 episodes for each model at a particular

sampling interval (∆τσ) and execution latency (∆τη). The TS policies perform better than the DR

policies across a range of state transition delay variations, maintaining a higher mean test reward.

68

(a) (b)
Figure 4.10: (a) The learning curves for vanilla policy training for the HalfCheetah task. (b) The

evaluation of vanilla policy across different execution latencies (∆τη). The sampling intervals

(∆τσ) is selected to be maximum of (4.12ms , ∆τη). The mean is shown in green. The back ’x’

marker shows the median of IQR.

4.7 Vanilla Deep Reinforcement Learning Policy without Varying Timing

Characteristics

We train a vanilla policy for the HalfCheetah task without varying the ∆τσ and ∆τη . This policy

is trained by using the default HalfCheetahBulletEnv-v0 environment in which the simulation is

advanced for a fixed time (SimTime) of 4.12 ms for each action. By default, the execution latency

(∆τη) of 0 is present, as the simulation is paused when deciding action (by doing neural network

inference and other processing). Since updated state is available every SimTime, it has a fixed

sampling interval (∆τσ = SimTime). We train a set of three models for the vanilla policy with

different seeds. The learning curve of the vanilla policy is shown in Figure 4.10a. Figure 4.10b

shows that vanilla policy fails to work for execution latencies (∆τη) ≥ 8.24 ms, which is twice

the SimTime. This motivates the need to have variable state transition delays (∆τσ and ∆τη) during

training to have policies robust to variable timing characteristics.

69

4.8 Comparison of Time-in-state with Worst Case Delay Controller

Here, we compare the TSRL with worst-case delay controllers for HalfCheetah task. The TSRL

policy is trained using the Section 4.4.1. We train 2 worst-case delay controller assuming 3x4.12

ms and 5x4.12 ms delays (3X and 5X) delays. The worst-case delay controller are trained by

assuming the fixed latency. The action is delayed by the desired execution latencies ∆τη (3x4.12

ms or 5x4.12 ms delays) during training. The learning curves for Time-in-state and 5x4.12 ms

worst-case delay (Fixed latency) are shown in Figure 9.3. Both Time-in-state policies and worst-

case delay policies are trained for 3000 iterations.

Performance comparisons Figure 4.11 compare the performance of Time-in-state (TS) with sev-

eral other approaches. The TS-Noise (20%) shows the performance when 20% noise is added to

the measured sampling interval and execution latency. The reward shown in Figure 4.11 is the

mean across 10 episodes for each model at a particular sampling interval (∆τσ) and execution la-

tency (∆τη). The sampling intervals (∆τσ) is selected to be maximum of (4.12 ms , ∆τη), so that

agent can act for each sensed state. We introduce a random noise of ±SimTime in both ∆τη and

∆τσ for TS-Noise (20%).

As seen in Figure 4.11 TS policies and TS-Noise (20%) policies work across all latency varia-

tions. The Worst-Case3x (3x4.12 ms) and Worst-Case5x (5x4.12 ms) have stable performance up

to 3X (12.3 ms) and 5X (20.6 ms) latencies. Both of these policies show immediate performance

loss beyond these limits. Worst-Case5x (5x4.12 ms) policies are also inferior to TS when latencies

are less than 3X (12.3ms). We see worst-case delays are a viable solution when the upper bounds

on delays are small, as in the case of Worst-Case3x, which outperforms all policies for delays

<3x4.12 ms. However, when the delay variations are larger or worst-case delays are significant,

TS policies are a clear winner.

70

Figure 4.11: The performance comparison of Time-in-state (TS), Time-in-state with noisy mea-

surements (TS-Noise), Domain Randomization, Worst-case delay of 3X (Worst-Case3x), and

Worst-case delay of 5X (Worst-Case5x) for HalfCheetah task. The Worst-Case3x (3x4.12 ms)

and Worst-Case5x (5x4.12 ms) have stable performance up to 3X (12.3 ms) and 5X (20.6 ms) la-

tencies. However, worst-case policies show immediate performance loss beyond their worst-case

limits. When the delay variations are large or worst-case delays are significant; TS policies are a

clear winner.

Discussion We empirically see in the analysis of the HalfCheetah task in Figure 4.11 that when the

worst-case latency is 3X (12.3 ms), the policy performs very optimally. However, when the delay

is increased beyond the expected worst-case limit, the worst-case policy is significantly impacted

and fails to work at higher delays. Further, when the worst-case delay is significant, as seen for

5X (20.6 ms), the Time-in-state policies can achieve superior performance even for smaller delays

71

(< 3X). Our introduced Time-in-state approach presents a way to train adaptive policy across

significant delay variations and maintains superior performance when worst-case delays notably

impact the performance. Time-in-state approach also trains a single policy instead of multiple

worst-case delay policies that can transfer to different deployment hardware (e.g., Mobile CPU,

embedded GPU, etc.) having variable delays at runtime.

4.9 Conclusion

We introduced Time-in-State RL (TSRL), a delay-aware deep reinforcement learning approach

that incorporates sampling interval and execution latency into its state space. By utilizing domain

randomization with time in the state, TSRL’s policies are robust against varying execution laten-

cies and sampling rates for both Sim2Sim and Sim2Real transfer. The application performance

characterization of TSRL can be exploited by policies to conserve platform resources by acting

slowly along with staying within the desired reward budget. The performance characterization

can also help developers make informed decisions in selecting appropriate compute hardware and

deployment settings. The evaluation of time in state policies show that the policies are able to

maintain higher rewards across a range of timing characteristics and, thus, can be used in presence

of deployment uncertainties impacting the timing characteristics at runtime. Through a range of

choices of latencies and sampling intervals, our study also shows different tasks can work reason-

ably only up to to a certain latency and after that suffers significant degradation in performance. We

hope the concepts and results introduced in this chapter will motivate the development of deep-RL

policies that are robust to runtime uncertainties.

72

CHAPTER 5

End-to-end Deep Reinforcement Learning for Autonomous

Control of PTZ Cameras

Enabling end-to-end data-driven control for CPS applications is preferred to avoid the dependence

on domain expertise to realize optimal multiple stages of conventional control pipelines. However,

end-to-end data-driven control approaches such as deep reinforcement learning are extremely data-

hungry and are almost impossible to train in the real world. In this chapter, we study the design of

end-to-end control in rich simulations using a representative application of a pan-tilt-zoom camera.

The conventional approaches for autonomous control of pan-tilt-zoom (PTZ) cameras use mul-

tiple stages where the object detection and localization are performed separately from the control

of the PTZ mechanisms. However, these approaches suffer from performance bottlenecks due

to multiple stages of information flow that are difficult to optimize jointly. The complex neural

networks widely adopted for the object detection stage also make them infeasible for real-time

deployment in resource-constrained environments. In contrast, we propose an end-to-end deep

reinforcement learning (RL) approach called Eagle to train a neural network policy that directly

takes an image as input to control the PTZ parameters.

Training reinforcement learning is cumbersome in the real world due to labeling effort, runtime

environment stochasticity, and fragile experimental setups. To enable successful training of Eagle,

we also introduce EagleSim, a photo-realistic simulation framework for PTZ cameras that auto-

matically captures ground truth annotations. EagleSim addresses the simulation-to-reality gap, a

significant challenge in deep-RL, by supporting rich scene variations with different background

materials, trees, human characters, and multiple types of vehicles. Another advantage of Eagle

73

policies is that they are lightweight (90x fewer parameters than Yolo5s) and can run on embedded

camera platforms such as Raspberry PI (33 FPS) and Jetson Nano (38 FPS), facilitating real-time

PTZ tracking for resource-constrained environments.

We also compare the performance of Eagle with PTZ trackers using custom-developed lightweight

object detectors. We train the lightweight object detectors using large datasets having rich scene

variations captured using the EagleSim simulator. We choose lightweight detectors with network

architecture similar to the Eagle policy, thus having the same inference latency as Eagle. Our

evaluation shows that Eagle achieves superior camera control performance by maintaining the ob-

ject of interest close to the center of captured images at high resolution and has up to 16% more

tracking duration than the next best approach. We test the generalizability of Eagle on unseen ob-

jects/scenes and highlight the direct transfer of policies trained purely in the simulator to the real

scene videos.

5.1 Introduction

Active vision endows applications with the ability to decide ‘where to look’ at runtime. Au-

tonomous control of pan-tilt-zoom (PTZ) cameras can provide superior monitoring for active

vision systems by tracking objects of interest in real-time [MRF10, CLK11]. Active vision sys-

tems are increasing deployment in resource-constrained environments such as remote surveil-

lance [MRF10, HZL17, BXD20] and mobile robotics [CLK11, UNC19] demanding lightweight

algorithms for real-time PTZ control.

Existing autonomous PTZ controllers have multiple stages, namely detection of objects of

interest, tracking of their trajectories, and control of PTZ parameters to keep objects in the field-

of-view [BVS07, CSB15, HZL17, WDH16, MRF10]. It is common to use neural object detec-

tors to identify objects of interest, first-principles-based algorithms such as Kalman filters for

trajectory prediction using model-based state estimation on bounding boxes, and a separate con-

troller [BGO16, UNC19, LMC21]. Although autonomous PTZ control algorithms have been stud-

74

ied for many years, the current multi-stage pipeline faces the following challenges:

1. Expensive fine-tuning efforts: The multiple stages suffer from performance bottlenecks as

it is non-trivial to tune each step. For example, tuning the parameters of the Kalman filter re-

quires expert domain knowledge and can incur many trial-and-errors [Kyr21,LSZ19]. Fine-tuning

neural object detectors for a specific deployment may require human efforts to label bounding

boxes [LSZ19, CSB15].

2. Real-time deployment on resource-constrained platforms: Even the lightweight object de-

tectors (such as YOLO [RF17,Kyr21] with several millions of network parameters are too complex

for embedded camera platforms. This make it infeasible to run multi-stage PTZ control algorithms

in real-time on platforms [Ard22, Kyr21] having memory and computation constraints.

Along with the above challenges, it is also difficult to evaluate the performance of existing

multi-stage approaches and to explore design of new control algorithms due to the complexity

of creating PTZ tracking scenarios in the real world. The dynamic nature of PTZ tracking in-

volves both sensing the objects of interest and control of the camera’s pan-tilt-zoom parameters

that can only be performed online [CSB15, SCD11]. The online nature makes it difficult to set up

and reproduce real-world experiments due to runtime stochasticity in object/camera movements,

illumination changes, and the requirement of ground truth annotations [CSB15].

To address these challenges, we propose Eagle, an end-to-end deep reinforcement learning

(RL) approach using raw images to control a PTZ camera. Eagle trains a neural network pol-

icy directly mapping raw images to pan-tilt-zoom actions removing the multiple stages of object

detection, localization, and control. Recently, deep-RL has been shown to outperform conven-

tional control for several robotic applications [LSZ19, BMG20, ABC20, PAZ18]; to the best of

our knowledge, there has not yet been any attempt to develop an end-to-end Deep-RL policy for

PTZ cameras. This is partly due to the challenges of training deep-RL in the real world as it re-

quires a large number of environment interactions, expensive experimental setups, and labeling

efforts [LSZ19,BMG20,ABC20,PAZ18]. This is further exacerbated due to the difficulty of creat-

75

Figure 5.1: Eagle trains end-to-end deep-RL controllers for PTZ cameras. Sample scenes for

vehicle and human tracking from the EagleSim simulator are shown. The direct transfer of Eagle

policies to real scene videos is also demonstrated.

ing PTZ tracking scenarios in the real world. Although several PTZ frameworks [SCD11, CSB15,

HZL17] exist, they either require human labeling effort or demand specialized equipment.

To enable successful training of Eagle, we also introduce EagleSim, a simulation framework

for placement and control of PTZ cameras in photo-realistic virtual worlds. EagleSim enables the

creation of reproducible tracking scenarios and automatically captures fine-grained ground truth

annotations. Although training in simulators is extensively explored in deep-RL, transferring sim-

ulation policies to the real world is still a challenge [BMG20, PAZ18, LSZ19, SGB20]. EagleSim

includes a significant engineering effort to provide scene variations with multiple objects (vehi-

cles and human characters) and different surroundings (background materials/patterns and trees)

as shown in Figure 5.1. We demonstrate that these rich scene variations are necessary to train a

generalizable policy and to bridge the gap between simulation and the real world. EagleSim allows

the creation of multiple parallel scenes that reduces the training times for complex vehicle tracking

scenarios from 17 days to 2.9 days on a GPU machine (GeForce RTX 3090 Ti [Bal21]).

Using EagleSim simulator, we compare Eagle with existing state-of-the-art approaches for

76

autonomous PTZ control in three categories: (i) Object detection+tracking+control, (ii) Ob-

ject detection+reinforcement learning, and (iii) Relative location+control. Our results show that

Eagle outperforms current approaches across a suite of vehicle tracking scenarios by achieving

more tracking duration. Eagle train lightweight neural network policies (79k model parameters

and 320KB model size) that are real-time deployable on resource-constrained embedded camera

platforms having computation limitations of Raspberry PI (30 FPS) and Jetson Nano (40 FPS)

class devices.

We further evaluate the performance of Eagle as the tracking complexity is increased and its

generalizability to unseen objects/surroundings. To enable flexible tracking goals, we introduce an

extra contextual input along with images during training. Depending on the application’s needs, the

contextual input can modify the policy behavior at deployments, such as either tracking vehicles

or humans.

We also investigate the design of custom PTZ trackers using lightweight object detectors. We

design lightweight object detectors for vehicles by removing the complexity of widely used object

detectors such as Yolo. The light object detectors have network complexity same as the Eagle

policy network. We train six different detectors on datasets captured using the EagleSim simulator.

Our results show that Eagle also outperforms the custom PTZ trackers utilizing lightweight object

detectors and maintains superior PTZ control performance having up to 16% more tracking du-

ration across scenarios. Finally, we show that Eagle policies trained purely in simulation transfer

directly to the real videos. To allow testing on real videos, EagleSim includes the capability to

simulate pan, tilt, and zoom on the pre-recorded videos.

In summary, we make the following contributions in this chapter:

• We present Eagle, an end-to-end deep-RL approach to control a PTZ camera directly us-

ing raw images. Eagle is lightweight to enable deployment on real-time embedded camera

platforms and doesn’t require multi-stage fine-tuning.

• We introduce a new simulator called EagleSim to study PTZ cameras in photo-realistic vir-

tual worlds. EagleSim is designed to create reproducible PTZ tracking scenarios with rich

77

Figure 5.2: Different approaches for autonomous control of PTZ cameras illustrated using a ve-

hicle tracking scenario. A PTZ camera is controlled to keep a car in the field-of-view (FoV). The

horizontal FoV (FoVh) and vertical FoV (FoVv) control zoom parameter. Approach-1 (Object-

detection+tracking+control): Represented by 1,2,3,4,9 is the widely used multi-stage technique

of identifying objects (using object detectors), followed by a short term tracker and a controller.

Approach-2 Object-detection+RL: Given by 1,2,5,9 shows a setting where the bounding boxes are

used to train a RL policy. Approach-3 Relative-location+control: Steps 1,6,7,9 shows an alter-

native to bounding boxes where a neural network predicts the relative location of objects that the

controller uses. Approach-4 Eagle: End-to-end deep-RL: Steps 1,8,9 show the proposed Eagle

approach to directly control the pan, tilt, and zoom parameters using the raw input images.

scene variations and includes software abstractions to enable the training of the proposed

Eagle approach in an end-to-end fashion.

• We compare Eagle with existing state-of-the-art methods to show its superior performance.

We evaluate the generalization of Eagle across different object/surrounding variations. We

further show that it is possible to modify the tracking goal of Eagle policies at runtime based

on application needs.

• Finally, we show the direct transfer of Eagle trained purely in EagleSim simulator to the real

videos.

78

5.2 Background and Related Works

5.2.1 Autonomous Control of PTZ Cameras

Our objective is to keep one or more objects of interest in field-of-view (FoV) of the PTZ camera

at high resolution. An autonomous controller achieves this by controlling the pan and tilt to keep

the desired object in the center of the captured image and zooming without clipping the object. It

is desired to keep an object in the center of the image to avoid target loss during sudden movemen-

t/direction changes. Figure 5.2 shows a sample object of interest (car) and a PTZ camera to track

the car. The configuration of pan, tilt and zoom decide if the car will be captured in the image.

Figure 5.2 represents the different steps in autonomous PTZ control for four classes of ap-

proaches. We compare the recently proposed approaches that use learning-based components for

active tracking. Luo et al. [LSZ19] have shown that neural network-based active trackers outper-

form the traditional tracker like MIL [BYB09], Meanshift [CRM00] and KCF [HCM14]. Each

approach is represented from the input image 1 to the control of camera parameters 9 .

Object detection+tracking+control [BVS07, UNC19, LMC21]: Steps 1 2 3 4 9 . The

objects of interest are detected in the image, followed by a short-term tracking algorithm to predict

their location in the future frame. The controller adjusts the pan-tilt-zoom to track the objects of

interest.

Bernardin et al. [BVS07] focus on human targets. They use a face detector followed by a mean-

shift tracker and a fuzzy controller in combination with expert knowledge to control the PTZ of the

camera. Unlu et al. [UNC19] present the control of a PTZ camera for UAV tracking where a neural

network (ResNet) based object detector is used for UAV identification, followed by a short-term

tracker to estimate the location of the bounding box in the future frame and three PID-controllers

for adjusting the PTZ parameters. Lopez et al. [LMC21] track less frequent objects using a PTZ

camera with a faster R-CNN object detector. The object occurrence probability identifies the less

frequent objects of interest, and a rule-based controller modifies the PTZ parameters to focus

on the object of interest. The usage of neural network object detectors makes it infeasible to

79

deploy this multi-stage pipeline on embedded camera platforms [Kyr21]. Multi-stage information

flow necessitates fine-tuning of each stage, and its performance is impacted by errors in each

stage [Kyr21, LSZ19]. E.g., the object detector’s errors impact the tracking performance [Kyr21].

Object detection+reinforcement learning [BXD20, RET14, KKP19]: Steps 1 2 5 9 .

These methods combine the tracking and control stages with a neural network policy trained us-

ing deep-RL on the detected object locations [KKP19]. Another variation of this approach is that

instead of using object detectors’ bounding boxes, researchers [RET14] assumes the availability

of the region of interest in the image. Bisagno et al. [BXD20], Rudolph et al. [RET14], and Kim

et al. [KKP19] show the control of PTZ camera using deep-RL where the inputs to the neural

networks are the information about the object of interest (e.g., bounding-boxes, location of pedes-

trians). An actual deployment may need to use external object detectors to measure these inputs

where the performance suffers from object detector errors and demands more compute resources

due to the complexity of detectors.

Relative location+control [Kyr21, PL19, HG19]: Steps 1 6 7 9 . A neural network is

trained using supervised machine learning to output the relative location of the object of inter-

est in the captured image. This relative location is used to control the pan-tilt-zoom parameters

without requiring an explicit object detector. However, training the relative locations from images

demands the availability of labeled bounding boxes in videos which are difficult to get for arbitrary

deployments. Further, a separate controller that uses the relative locations needs to be fine-tuned

for the specific scenario and camera parameters to make an end-to-end system.

Eagle: Steps 1 8 9 . We propose Eagle, an end-to-end deep-RL approach that directly uses

the raw input images to control the PTZ parameters of a camera. Luo et al. [LSZ19] propose end-

to-end deep-RL for first-person tracking, where the first-person observer moves along the object to

track. In contrast, we study end-to-end deep-RL to control PTZ cameras where the location of the

camera is fixed, but its PTZ parameters are modified to keep an object of interest in the field-of-

view. Eagle removes the need to develop and tune the multiple stages and provides superior PTZ

tracking performance. Further, the policies trained by Eagle are very lightweight, enabling their

80

real-time deployment on embedded devices.

5.2.2 Frameworks for Pan-Tilt-Zoom Cameras

Due to the difficulty of creating PTZ tracking scenarios in the real world, researchers have proposed

several PTZ frameworks. Chen et al. [CSB15] propose a framework where a virtual PTZ camera

is controlled to generate images from panoramic videos. However, this framework depends on

the human annotation of videos for ground truth. Further, creating new scenarios requires manual

video capture using specialized spherical cameras. Hanoun et al. [HZL17] propose a framework to

study PTZ camera placement using a CAD environment. However, they assume that the objects of

interest are available (similar to the object detectors), and it is not a photo-realistic environment.

Salvagnini et al. [SCD11] propose a framework by placing a real PTZ camera and a calibrated

projector screen. However, this requires specialized equipment, and the spherical screen limits

the PTZ camera motion. Hamesse et al. [HPL21] propose a PTZ tracker for air traffic control

using Unreal Engine. The simulator doesn’t keep track of ground truth annotation; instead, it uses

external object detectors and achieves only 3 FPS on a GPU server used by authors. The proposed

simulator [HPL21] lacks rich scene variations or control of objects in the scenes. It is also unclear

how to use existing simulation frameworks for end-to-end deep-RL due to a lack of capability to

learn from trial and error, requiring control of objects in the scenes and automatic ground truth

annotations for reward calculations.

EagleSim: We introduce the EagleSim simulator to train end-to-end deep-RL policies for PTZ

control. EagleSim provides software abstractions, built using Unreal Engine [unr22] and Air-

Sim [SDL18], for PTZ camera placement and control in photo-realistic virtual worlds. EagleSim

relieves the need to create real-world tracking scenarios and automatically provides ground truth

annotations of objects of interest. These ground truth annotations are perfect, unlike human labels

or pre-trained object detectors, which may be noisy. We address the challenging simulation-to-

reality gap in EagleSim by including virtual words with a wide variety of scenarios. EagleSim

includes packaged virtual worlds with multiple objects (30 types of vehicles and 9 types of human

81

characters), surroundings (25 types of background materials/patterns and 10 types of trees), and

image augmentations to support rich variations in tracking scenarios. These scene variations and

control of movements of other objects (trees, background materials, and human characters) are not

supported in the virtual worlds available from AirSim developers. Airsim API allows control of

specialized vehicles (a blue car and a drone) only and offer no abstractions to modify surrounding

scene objects (such as trees, human characters, other vehicles, and background patterns). EagleSim

provides the capability to control scene objects which are needed for trial and error learning of PTZ

tracker using deep-RL. We show that included scene variations are essential to train a generalizable

policy that can work with variations in objects/surroundings and is directly transferable from simu-

lation to real videos. EagleSim include capability to simulate pan, tilt, and zoom on the real videos.

EagleSim also enables parallel scenes supporting >200 FPS to speed up the learning process from

17 days to 2.9 days on a GPU machine (GeForce RTX 3090 Ti).

5.3 Eagle: End-to-end Deep-RL for PTZ

Eagle trains lightweight neural network policies that map input images directly to pan, tilt, and

zoom actions to track an object of interest in a scene. We consider a standard Markov decision

process where an agent learns from trial and error by interacting with an environment over many

discrete time steps. At each step, the agent receives a scalar reward defining its performance on the

task. The agent uses the current state of the environment to decide the action. The reward measures

the tracking performance.

5.3.1 State Space, Policy Network and Actions

The current state is represented by the most recent image captured from the PTZ camera. The

Agent uses the image at every step to decide the next action, where the step length is determined

by the video frame rate. We use lightweight network architecture for our policy to enable real-time

inference on resource-constrained devices. We use a discrete action space that modifies the current

82

values of pan, tilt, and zoom parameters. The implementation-specific details of the input size,

state transition delays, network architecture, and action space are discussed in Section 5.5.2.

5.3.2 Reward Function: Single Object

First, we formalize the reward function to track a single object of interest in a scene when no other

objects are present. This is our simplest setting. Later, we generalize to handle the presence of

other objects.

Consider an object Oa present in the scene. For active tracking, we formulate a reward function

to keep Oa near the center of the image with maximum possible resolution. Consider a scenario

in Figure 5.2, where a PTZ camera tracks a car as the object of interest Oa. A sample image of

Oa captured by the PTZ camera is shown in Figure 5.3. The bounding box of the car represented

by [Xmin,Y min,Xmax,Y max], image Height, and image Width. The center coordinate (x,y) of the

bounding box is defined as [x,y] = [(Xmin+Xmax)/2,(Y min+Y max)/2].

Knowing the bounding box and its center coordinate for Oa, we define the reward (ra
i) for step

i in Equation 5.1.

ra
i =

Centera

x ×Centera
y ×Ob ja

size×Clipa - P Condition

−L Otherwise
(5.1)

Where Condition is a binary value. For a single object setting, the Condition is given by la.

Here, la = 1, if Oa is captured in the image, else la = 0, if Oa is not captured. When Condition is

True, the reward is a multiplication of four terms Centera
x , Centera

y , Ob ja
size, and Clipa after penalty

P is subtracted. P > 0 is a hyper-parameter which slightly penalizes the agent on modifying the

camera’s PTZ parameters to avoid the jittery behavior. When the object Oa is not present in the

captured images, the agent receives a negative reward L, where L > 0 is a hyper-parameter.

83

Centera
x =

abs
(Width

2 − x
)

Width
2

(5.2)

Centera
y =

abs
(

Height
2 − y

)
Height

2

(5.3)

Ob ja
size =

(Xmax−Xmin)× (Y max−Y min)
Width×Height

(5.4)

Clipa =

M if Xmin =−(Height/2) or Y min =−(Width/2)

M if Xmax = (Height/2) or Y max = (Width/2)

1 otherwise

(5.5)

Ra =
N

∑
i=0

(ra
i) (5.6)

Centera
x , Centera

y and Ob ja
size are defined in Equations 5.2, 5.3, 5.4. Centera

x measures the

accuracy with which the agent can ensure the object Oa is centered on the X-axis of the image.

Similarly, Centery measures accuracy along the Y-axis. If the target is not close to the center of the

image, its probability of leaving FoV is high on sudden movements or its direction changes.

Ob ja
size measures the relative size of Oa in the image. Centera

x ,Centera
y ,Ob ja

size ∈ [0,1]. Clipa

is defined in Equation 5.5, where M ∈ (0,1) is a hyper-parameter. Clipa penalizes the reward ra
i

when Oa is clipped in the captured image. The total reward Ra for each episode of N steps is the

summation of step rewards ra
i as shown in Equation 5.6.

5.3.3 Generalizable PTZ Tracking

It is common to have multiple objects in a tracking scene. For example, a vehicle tracking scenario

can have other objects like trees, humans, and background patterns/buildings. Here, we extend the

reward function to complex scenes by modifying the Condition definition in Equation 5.1.

84

Figure 5.3: A sample bounding box for the object of interest (car). The center of the image is the

origin (0,0). (x,y) is the center of the bounding box (Xmin,Y min,Xmax,Y max).

Consider 2 classes of objects in a scene. The first class A = {Oa1, ...,OaT} is

a collection of objects that we are interested to track. For example, class A =

{SUVblue,SUVred,Sportsred,Sportsgrey,Pickupred,Pickupgrey} is representing different vehicles

that we are interested to track in a vehicle tracking scenario. The second class B = {Ob1, ...,ObU}

is the collection of objects to be ignored. For example, the objects in the class B may refer to

background buildings, trees, and human characters for a vehicle tracking scenario. We assume that

only one of the objects from class A is present at a given time in the scene, while the same policy

generalizes to all objects of class A. For example, the same policy can track SUVblue, Sportsred

or a Pickupgrey vehicle, but only one of them is present in the scene. The agent is given a reward

only when the objects of class A are captured in the image. We expressed this by modifying the

Condition, which is True when (la = 1) ∧ (a ∈ A).

We update the calculation of reward (ra
i) (Equation 5.1) using this new Condition. This incen-

tivizes an agent to track objects from the class A only. The approach to generalize is called domain

randomization (or environment augmentations) [LSZ19, BMG20]. The discussion also apply to

85

other scenarios such as tracking human characters. Here, the variations of human characters are

added to class A, and class B contain objects to be ignored in the scene.

When multiple objects of class A are present in the same scene, we observe that the policy

trained using Equation 5.1 is incentivized to track an object giving better future rewards. Future

rewards depend on the relative size of objects in the initial image and their center locations, as

discussed in Section 5.6. We introduce the idea of dynamic tasking next to enable selective tracking

of objects.

5.3.4 Dynamic Tasking of Eagle Policies

We define dynamic tasking as the capability to change the tracking goal at deployment. More

specifically, the same policy can be tasked to track a specific object from class A during deploy-

ment. This is particularly important when multiple objects belonging to the class A are present in

the same scene.

Dynamic tasking in existing multi-stage approaches is enabled by changing the object detection

stage. The identified objects from the object detectors are filtered during deployment to change the

tracking behavior [MRF10]. However, in Eagle, there is no separate object detector. To allow

dynamic tasking, we modify the training of Eagle by including an extra contextual input along

with the current PTZ camera image and do the reward shaping [Grz17].

We use structured contextual input in the integer space to specify different sub-class of ob-

jects in class A. To simplify notation, we explain dynamic tasking with an example of two

sub-classes in class A = {SUVblue,SUVred,Human1,Human2}. The first sub-class of vehicles

Av = {SUVblue,SUVred} and the second sub-class of human characters Ah = {Human1,Human2}.

The contextual input CI ∈ {0,1} represents two integer values. The formulation generalizes to

more complex contextual inputs at the expense of increased training time. Our goal is to task pol-

icy at runtime to either track sub-class Av when CI = 0 or sub-class Ah when CI = 1. We define a

new Condition in the Equation 5.7 to allow this.

86

Figure 5.4: The architecture of EagleSim and its integration with Eagle. Step-1 shows placement

of a PTZ camera for vehicle tracking. Step-2 shows an image captured by camera. Step-3 shows a

bounding box for the object of interest (car).

Condition =

True Cv ∨Ch

False otherwise
(5.7)

Where Cv is True when (la = 1) ∧ (a ∈ Av) ∧ (CI = 0) and Ch is True when (la = 1) ∧ (a ∈

Ah) ∧ (CI = 1). The Condition in the Equation 5.7 brings in the domain knowledge to ensure that

the agent can learn to associate a specific contextual input with a particular sub-class of objects of

interest.

87

5.4 Design of EagleSim

To train Eagle in an end-to-end fashion, we need to set up online tracking scenarios where an agent

can learn from trial and error. Deep-RL training in the real world is difficult due to large number

of environment interactions, labeling effort for ground truth annotations, and fragile experimental

setups [BMG20, PAZ18, ABC20]. Further, the creation of PTZ tracking scenarios with vehicles,

humans, and background variations is not trivial in the real world. To enable training of Eagle, we

introduce a new simulator called EagleSim. Next, we discuss the architecture of EagleSim shown

in Figure 5.4.

5.4.1 Photo-Realistic Virtual Worlds

EagleSim can be integrated with arbitrary virtual worlds created in the Unreal engine and precom-

piled virtual world binaries available for Airsim. With these integrations, developers can simulate

PTZ cameras in static worlds. Although AirSim enables control of a drone and a car in virtual

worlds, it doesn’t support different types of vehicles, control over human characters, background

trees, boundaries, and surroundings. These scene variations are needed to create a rich tracking

scenario and to generalize Eagle policies. Creating rich scene variations is non-trivial, and requires

a significant engineering effort. To address this, we design new virtual worlds (4300 lines of c++

code in Unreal engine) supporting rich variations and include them with EagleSim.

Packaged virtual worlds in EagleSim: We package virtual worlds for vehicle tracking and human

tracking scenarios. The vehicle tracking virtual world keeps track of ground truth annotations of

vehicles, whereas the human tracking world keeps track of human characters. Each virtual world

supports 6 types of vehicles (SUV1, Pickup, Sports, HatchBack, SUV2, Truck) in five colors (30

different vehicles), 6 human characters, 25 background materials/patterns, and 10 types of trees.

EagleSim also supports image augmentations to add random shadows, salt-pepper noises, random

contrast and brightness changes to the PTZ images.

Each virtual world represents an open space (70 meters × 70 meters) with boundaries. The

88

boundaries can be made invisible, creating a simple scene with a blue skyline (see Sc-1 setting

in Figure 5.5). The background patterns can be applied to the floor and the boundaries to create

variations of urban, forest, and rural areas, as shown in Figure 5.1. Vehicles and humans can move

freely within the open space. The different placement of objects, their movements, and scene

variations allows the creation of endless tracking scenarios. A sample vehicle and human tracking

scenes are shown in Figure 5.1 and Figure 5.5. The speed and steering of vehicles are controlled

using AirSim API. We implemented abstractions directly using the Unreal engine to control human

characters, background patterns, and tree placements. The image augmentations are implemented

using python functions.

Addressing simulation-to-reality gap: A major challenge with policies trained in a simulator

is to make them transferable to the real world. The research community represents this as the

simulation-to-reality gap [PAZ18, BMG20] due to sensing and dynamics differences between the

simulators and the real world. For example, the images in the real world can have observations

(such as object variations, backgrounds, shadows, occlusions, and illuminations) never observed

in the static/simple simulations.

The virtual worlds packaged with EagleSim are carefully designed to address the simulation-to-

reality gap. We use domain randomization to train a policy that can generalize to unseen variations

of objects and surroundings. The idea is to train policies on a combination of different scene

variations. The hypothesis is that the real world lies in one of the training variations.

5.4.2 PTZ Abstractions

The PTZ abstractions in EagleSim provide four modular components. Figure 5.4 shows a sample

vehicle tracking scene. A PTZ camera in step 1 is placed using Camera Placement component.

The camera is controlled using the Camera Controller. 2 shows a sample camera image. The car

may or may not get captured in the image depending on the camera location, car’s location, and

PTZ parameters. The bounding box (3) is captured by the Object Tracker.

89

Camera Placement places the PTZ camera at any arbitrary location in the scene. We use AirSim

API to anchor the camera to a vehicle. For each camera in the virtual world, a new vehicle is

spawned. The relative location of the camera and vehicle is controllable, allowing the vehicle to

be placed in the far area of the scene without interfering with the control of the PTZ camera.

Camera Controller exposes control of pan, tilt, and zoom parameters of the cameras at runtime.

The resolution supported for pan and tilt is one degree. The zoom is controlled by modifying the

horizontal field-of-view (FoV) at runtime with a resolution of 1 degree. The vertical FoV is based

on the aspect ratio and the horizontal FoV: verticalFoV = horizontalFoV ∗height/width.

Object Tracker provides bounding boxes of objects of interest captured in the PTZ image. A

bounding box is calculated by transforming the 3-D outer coordinate mesh of the object available

from the Unreal engine to the 2-D image coordinates using a pinhole camera model. We imple-

mented this using the object detector abstractions from AirSim. The bounding boxes of EagleSim

are perfect, unlike the bounding boxes predicted by a neural network-based object detector, which

may have prediction errors. The bounding boxes are used to calculate rewards (Section 5.3) to

train Eagle.

Scene Controller selects scene variations to enable the evolution of the training environment by

integrating the capturing of images from PTZ cameras, controlling the pan, tilt, and zoom param-

eters and exposing rewards (bounding boxes) of PTZ tracking.

5.5 Evaluation

First, we discuss the performance metrics for PTZ tracking. Then, we evaluate the performance

and generalizability of Eagle policies as the complexity of the PTZ tracking task is increased

gradually. Later, we compare Eagle with the current state-of-the-art, showcase its transfer to real-

scene videos, and measure its deployment delays on embedded platforms.

90

Table 5.1: Policy architecture used by Eagle.

Layer 1 2 3 4 5 6 7 8

Config C5x5-64 C3x3-32 C3x3-32 C3x3-16 64 64 64 3,3,3

5.5.1 Performance Metrics for PTZ Tracking

The end-to-end approach doesn’t produce intermediate bounding boxes, which are generally avail-

able in multi-stage approaches. So it is not possible to compare the detection performance with

standard object detection metrics. We adopt metrics (% Tracking, Centerx, Centery, Ob jsize) to

evaluate the camera control performance directly. The metric of tracking duration (referred to as

% Tracking) [Kyr21] measures the duration for which the controller successfully keeps an object

of interest in the FOV of the camera. When % Tracking is 100, the object was kept in the camera’s

FoV for the entire duration. Tracking duration is also equivalent to the episode length adopted by

Luo et al. [LSZ19]. Instead of the number of steps, we report the percentage. Like the tracking

duration, Chen et al. [CSB15] uses track fragmentation which is the number of steps as a fraction

between 0 and 1.

One of the goals of the PTZ controller is to capture an object in the center of the image to

avoid its loss on sudden movements or direction changes. To measure center location error, we

directly use the average Centerx (Equation 5.2) and average Centery (Equation 5.3) maintained by

controller for the entire trajectory. The metrics of Centerx and Centery are equivalent to the center

location error used by Chen et al. [CSB15] to evaluate PTZ controller performance. To compare

the resolution of the object in the captured image, we adopt Ob jsize (Equation 5.4), which measures

the relative size of an object in the captured image.

91

Table 5.2: Different tracking scenarios in the increasing order of tracking complexity to evaluate

Eagle. The goal of Sc-1 to Sc-2 is to track vehicles. Dynamic tasking (DT) trains a policy to track

either a vehicle or human characters.

Scenario Tracking Goal Scene Variations

Sc-1 SUV 1blue Fixed background

Sc-2 SUV 1blue Fixed background+Trees+

Image augmentations

Sc-3 SUV 1blue Variable backgrounds+Trees+

Image augmentations

Sc-4 SUV 1blue + SUV 1red Variable backgrounds+Trees+

+SUV 1grey Image augmentations+Humans

Sc-5 SUV 1blue + SUV 1red+ Variable backgrounds+Trees+

Pickupgrey + Pickupred+ Image augmentations+Humans

Sportsblue + Sportsgrey

Dynamic SUV 1blue/Humans Variable backgrounds+Trees+

Tasking Image augmentations

92

Figure 5.5: Visualization of scenarios shown in Table 5.2. Sc-1 has a fixed background. In Sc-2,

fixed background is extended with random tree placements and image augmentations. Sc-3 shows

background variations with image augmentations and trees. Sc-4 extends the Sc-3 scenes with

humans and same vehicle with different colors. In, Sc-5, we add vehicles of different types as

well. DT shows the scenes for dynamic tasking of policy to track human characters.

93

5.5.2 Implementation of Eagle

State Space, Policy Network and Actions: We downsample the PTZ camera images to 120×120

and convert them to grayscale. This reduces the input dimensionality as working directly with

large color images is computationally demanding [MKS15, Kyr21]. The policy network architec-

ture is shown in Table 5.1, which consists of 7 hidden layers and an output layer. This network

architecture is motivated from neural networks trained for Atari games by Mnih et al. [MKS15]

The first five layers are convolution layers, each with a stride 2 and a rectifier nonlinearity. The

first layer denoted by C5x5-64 convolves 64 filters of 5 × 5 each. The fifth, sixth, and seventh

layers are fully connected and consist of 64 rectifier units each. The last layer produces 3 discrete

outputs to control each of the pan, tilt, and zoom parameters. The policy network is designed to

be lightweight to enable real-time inference of Eagle on Raspberry PI 4B and Jetson Nano devices

and has a total of 79k model parameters.

The 3 outputs modify the current parameter values as follows: [-2 degrees, 0 degrees, 2 degrees]

for pan and tilt. We control the FoV with three possible outputs for the zoom configuration: [-1

degree, 0 degree, 1 degree]. The horizontal FoV and vertical FoV are equal in our setting due to

the same aspect ratio of input images. We use the ground truth bounding boxes from EagleSim to

calculate the episodic reward (Equation 5.6) and use L = 10, M = 0.3, and Penalty = 0.01 as the

hyperparameters.

State Transitions: During training, we maintain an end-to-end delay from sensing a state (image)

to action at 30 milliseconds. This delay is matched to the embedded PTZ camera platform [Ard22]

when deploying Eagle policy using Raspberry PI 4B. We use an episode length of 2000 steps

during training which translates to one minute of continuous tracking.

Distributed Training: EagleSim supports the creation of multiple scenes in parallel, giving control

of each scene to the developer. The reward calculations from each scene are exposed using Python

wrappers in the OpenAI Gym [BCP16] format. This allows the integration of EagleSim with state-

of-the-art reinforcement learning libraries. We use 6 parallel scenes to train a single policy in 69

94

Table 5.3: Evaluation of Eagle policies trained for different scenarios in Fixed background scene.

Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Table 5.2.

Fixed background

%Tracking Centerx Centery Ob jsize

Sc-1 99.6±4.3 0.87±0.1 0.85±0.1 0.31±0.1

Sc-2 99.9±0.1 0.87±0.1 0.86±0.1 0.30±0.1

Sc-3 99.1±8.5 0.87±0.1 0.86±0.1 0.30±0.1

Sc-4 99.7±4.3 0.87±0.1 0.86±0.1 0.29±0.1

Sc-5 99.7±5.4 0.86±0.1 0.85±0.1 0.27±0.1

hours (2.9 days) on a GPU server machine (GeForce RTX 3090 Ti) [Bal21] to track vehicles (see

Figure 5.6). Without 6 parallel scenes, it would take 17 days (2.9*6) for an agent to collect the

same amount of data from a sequential environment.

Training Algorithm: We train Eagle using the distributed implementation of Proximal Policy

Optimization (PPO) [SWD17] algorithm from the stable-baselines3 [RHE19] library. The default

hyperparameters of PPO present in the library are used, except the updates to the network are

performed every 24576 (4096*6) steps collected from 6 parallel environments and a batch size of

256.

5.5.3 Tracking Scenarios

We consider five vehicle tracking scenarios (Sc-1 to Sc-5) with increasing tracking complexity and

a dynamic tasking (DT) scenario, as shown in Table 5.2. The scenes from tracking scenarios are

shown in Figure 5.5. Sc-1 tracks a single SUV 1blue car in a Fixed background. In Sc-5, the agent

tracks any of the 6 vehicles (SUV 1blue, SUV 1red , Pickupgrey, Pickupred , Sportsblue, Sportsgrey)

in the presence of variable backgrounds, tree, image augmentations and human characters. Vari-

able backgrounds refers to the random selection of background materials (any one of 25 materials

95

Table 5.4: Evaluation of Eagle policies trained for different scenarios in Variable back-

grounds+Trees scenes. Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Table 5.2.

Variable backgrounds+Trees

%Tracking Centerx Centery Ob jsize

Sc-1 9.7±6.3 0.65±0.2 0.63±0.2 0.13±0.2

Sc-2 18.8±16.2 0.81±0.2 0.79±0.2 0.29±0.2

Sc-3 98.9±6.9 0.87±0.1 0.86±0.1 0.30±0.1

Sc-4 98.9±7.4 0.86±0.1 0.86±0.1 0.29±0.1

Sc-5 99.3±6.9 0.86±0.1 0.86±0.1 0.27±0.1

Table 5.5: Evaluation of Eagle policies trained for different scenarios in Variable back-

grounds+Trees+Humans scenes. Sc-1 to Sc-5 are the vehicle tracking scenarios shown in Ta-

ble 5.2.

Variable backgrounds+Trees+Humans

%Tracking Centerx Centery Ob jsize

Sc-1 8.5±4.4 0.64±0.2 0.62±0.2 0.08±0.1

Sc-2 17.2±14.8 0.81±0.2 0.77±0.2 0.27±0.2

Sc-3 90.0±22.1 0.86±0.1 0.85±0.1 0.31±0.1

Sc-4 99.1±6.3 0.86±0.1 0.86±0.1 0.29±0.1

Sc-5 99.2±4.6 0.86±0.1 0.85±0.1 0.27±0.1

96

Figure 5.6: Average training reward of Eagle policies for scenarios shown in Table 5.2. We calcu-

late average reward by training three policies for each scenario and show its min-max spread. Each

policy is trained for 69 hours (2000 iterations).

97

Table 5.6: Generalization of Eagle policies trained for Sc-4 and Sc-5 (see Table 5.2) scenarios to

track HatchBackgreen and Truckblue vehicles which were not present during training.

HatchBackgreen Vehicle

%Tracking Centerx Centery Ob jsize

Sc-4 83.0±28.2 0.85±0.1 0.86±0.1 0.21±0.1

Sc-5 88.1±25.4 0.84±0.1 0.85±0.1 0.22±0.1

Truckblue Vehicle

%Tracking Centerx Centery Ob jsize

Sc-4 92.8±19.4 0.87±0.1 0.82±0.1 0.27±0.1

Sc-5 95.1±16.3 0.84±0.1 0.83±0.1 0.34±0.1

included in EagleSim) during different training episodes. Various trees and human characters are

randomly placed in the scene when enabled. Dynamic tasking (DT) trains a policy to track objects

from one of the two sub-classes based on the contextual input. The first sub-class contains a single

vehicle (SUV 1blue), and the second sub-class contains 4 different human characters.

Tracking setup: During training and evaluation, the vehicles are given random trajectories by

controlling steering and throttle in the virtual world in an open space of 70 meters × 70 meters.

A vehicle has an average speed of 6 m/s. The vehicle comes to a standstill when reaching the

boundary and randomly changes its direction, and has a max speed of 16 m/s. A PTZ camera is

placed at the mid-point of the south (or bottom) boundary at the height of 8 meters as shown in

Figure 5.4 (step 1). The camera initially looks at the wider scene, capturing a zoomed-out image

with a vehicle in it. As the vehicle moves, the goal is to track and focus on it. This tracking setup

is shown for different scenes in Figure 5.5 (Sc-1 to Sc-4), where the initial image shows a wider

view of the scene, and subsequently, the PTZ camera tracks the car. With the tracking progress,

the PTZ camera focuses more on the object of interest, as seen in the right images of Figure 5.5.

While tracking the vehicle, variations are enabled in specific scenarios, as seen in Figure 5.5. For

98

Table 5.7: The dynamic tasking (DT) performance of Eagle policies to track either a humans

character (DTh) or a vehicle (DTv).

Fixed background

%Tracking Centerx Centery Ob jsize

DTv 98.8±7.6 0.86±0.1 0.85±0.1 0.30±0.1

DTh 95.8±15.2 0.90±0.1 0.90±0.1 0.27±0.1

Variable backgrounds+Trees

%Tracking Centerx Centery Ob jsize

DTv 92.0±18.7 0.85±0.1 0.84±0.1 0.30±0.1

DTh 86.3±22.7 0.89±0.1 0.90±0.1 0.28±0.1

Variable backgrounds+Trees+Humans

%Tracking Centerx Centery Ob jsize

DTv 88.7±21.4 0.85±0.1 0.84±0.1 0.29±0.1

DTh 83.6±23.7 0.89±0.1 0.90±0.1 0.28±0.1

the dynamic tasking (DT) scenario, a human character is placed in the scene along with the vehicle

(SUV 1blue), where both are initially visible to the wider view of the PTZ camera as shown in

Figure 5.5: DT. Both human and vehicle move on random trajectories. A random human character

(out of 4) is selected during each training episode.

Training reward: The training reward for different scenarios is shown in Figure 5.6. The policies

are trained using 6 parallel environments for 69 hours (2000 iterations). The training reward is

calculated as an average of three policies for each scenario. As seen, the simpler tracking scenario

converges faster. We also see with the increasing complexity of scenarios, Eagle policies converge

to a lower training reward. Next, we analyze the performance of policies trained for different

scenarios to understand this behavior.

99

Table 5.8: %Tracking of Eagle policies at different heights (meters) of the PTZ camera.

Height 20m 15m 10m 8m 5m 4m

%Tracking 96.5±15 99.7±2.4 99.7±3.1 99.7±5.4 99.3±6.6 90.2±23

5.5.3.1 Performance of Eagle Policies

We evaluate the policies using the checkpoint with the highest training reward. For each scenario,

three policies with different random seeds are trained, and a checkpoint is evaluated from each

policy. Each checkpoint is evaluated for 100 episodes (each episode is of 2000 steps or 1 minute

of tracking). We report the mean performance metrics (Tracking duration (% Tracking), Centerx,

Centery, Ob jsize) and their std.

Table 5.3, Table 5.4 and Table 5.5 show the performance of Eagle policies to track

SUV 1blue in scenes having Fixed background, Variable backgrounds+Trees, and Variable back-

grounds+Trees+Humans. The SUV 1blue vehicle is present during training of all scenarios (Sc-1

to Sc-5) (Table 5.2). The test settings are different from training due to the random placement

of objects (backgrounds, trees, and human characters when enabled) and random vehicle/human

trajectories.

Policy behavior in simple scenes and understanding training rewards: Looking at the Fixed

background evaluation in Table 5.3, we see Eagle policies trained using all scenarios can success-

fully track >99% of the time and maintain similar Centerx and Centery metrics. However, the

policy zooms in conservatively on the object of interest when the training complexity of scenes is

increased. The Ob jsize maintained by policies decreases for Sc-1 to Sc-5 gradually. Our hypothesis

is that the behavior to reduce zoom is learned so as to track different kinds of vehicles in the pres-

ence of other objects/occlusions and scene variations. Due to the reduction in Ob jsize, the average

training reward decreases from Sc-1 to Sc-5.

Generalization to unseen scene variations: Eagle policies for Sc-1 and Sc-2 are trained using a

Fixed background. We see these policies doesn’t work when tested under unseen scenes variations

100

(Variable backgrounds+Trees and Variable backgrounds+Trees+Humans as shown in Table 5.4)

and Table 5.5). Adding Image augmentations in Sc-2 results in better performance in comparison

to Sc-1 for unseen variations. During training, Sc-3 doesn’t observe human characters; however,

the policy can still maintain a tracking duration of 90% even in the presence of human characters.

This shows variation in backgrounds is critical during training to have a generalizable tracking pol-

icy. We also see that Sc-4 and Sc-5 have similar behavior. This is because Sc-4 and Sc-5 are trained

with variable backgrounds, trees, and human characters for SUV 1blue vehicle. However, Sc-5 is

also trained to track rich categories of vehicles, and next, we see how Sc-4 and Sc-5 generalize to

unseen vehicle variations.

Generalization to unseen variations in object of interest: We analyze the performance of

Sc-4 and Sc-5 policies to track vehicles not present during training. The performance is

shown in Table 5.6 to track HatchBackgreen and Truckblue for a scene with Variable back-

grounds+Trees+Humans. HatchBack and Truck vehicles were not present during training. Also,

no green color vehicles were present during training. As seen, the policies trained for Sc-5 out-

performs; this is because Sc-5 has different types of vehicles with multiple colors whereas Sc-4

has one type of vehicle with multiple colors. Hence, having variation in vehicle types generalizes

better. Further, HatchBackgreen refers to a setting where neither the vehicle (HatchBack) nor the

color (green) was present during training, which gives slightly worse performance than Truckblue.

blue color vehicles were present during the training of policies. Sc-5 maintains superior tracking

duration (% Tracking) along with other metrics.

Dynamic Tasking Performance: Table 5.7 shows the performance of Eagle policies to track

either SUV 1blue (DTv) or a Human (DTh) character. In Fixed background and Variable back-

grounds+Trees only one of the object of interest (SUV 1blue or a Human character is present).

In Variable backgrounds+Trees+Object both SUV 1blue and Humans are present in the scene and

contextual input is use to decide the tracking goal. Dynamic tasking represents the most complex

scenario in Table 5.2 as the agent needs to learn adaptation of its tracking goal across diverse ob-

jects (vehicle or humans). We also see this in the policy performance. In the absence of another

101

competing object, policy performs much better, whereas it suffers a performance degradation as

measured by the tracking duration (% Tracking) in Variable backgrounds+Trees+Object. The dy-

namic tasking goal also has different complexity between the vehicle and human sub-class. The

vehicle sub-class contains only a single vehicle (SUV 1blue), whereas the human sub-class contains

4 different characters. The average performance on 4 human characters is shown. We hypothesize

that the imbalance in tracking complexity results in performance differences between DTv and DTh.

Camera height: Eagle policies are trained by placing a camera at 8 meters(m) height as discussed

in Section 5.5.3 (Tracking setup). Table 5.8 shows the performance of Sc-5 policies trained at

8m by varying the height during evaluation. The %Tracking is captured across 100 episodes to

track SUV 1blue vehicle moving on random trajectories (avg speed of 6 m/s) in scenes having Fixed

Background. The other metrics are similar across heights. The action space of Eagle modifies

the current PTZ parameters (Section 5.5.2) and works well between 5m to 15m heights during

deployment, even when trained at 8m. A significant performance drop happens when the height is

below 5m or above 15m. This suggests with a substantial camera placement difference between

training and deployment, policy retraining is needed for optimal performance.

Summary: As the PTZ tracking complexity is increased for vehicle tracking scenarios (Sc-1 to

Sc-5), Eagle policies learn a more conservative behavior. The zoom-level maintained on the object

of interest is reduced in complex scenes. Policies trained in simpler scenes don’t transfer well

to unseen backgrounds and cannot work in the presence of other objects like trees or humans.

The trained policies for Sc-5 use complex scenes, which also perform better for unseen variations

in the object of interest. This shows the complex scenes in EagleSim simulator are critical to

developing generalizable policies. The evaluation of dynamic tasking showed that contextual input

enables goal modification during the deployment; however, enabling dynamic tasking comes at a

performance cost.

102

Table 5.9: Comparison of Eagle with the current state-of-the art approaches for different scene

complexities.

Approach Fixed background

%Tracking Centerx Centery Ob jsize

Eagle 99.7±5.4 0.86±0.1 0.85±0.1 0.27±0.1

Yolo+Kalman+Controller 95.1±18.2 0.81±0.1 0.85±0.1 0.24±0.1

Yolo+Deep RL 39.1±18.9 0.81±0.2 0.82±0.2 0.19±0.2

NN+Controller 81.2±26.1 0.83±0.1 0.82±0.1 0.22±0.1

Approach Variable backgrounds+Trees+Humans

%Tracking Centerx Centery Ob jsize

Eagle 99.2±4.6 0.86±0.1 0.85±0.1 0.27±0.1

Yolo+Kalman+Controller 75.4±30.6 0.81±0.1 0.84±0.1 0.25±0.1

Yolo+Deep RL 36.8±19.0 0.84±0.2 0.82±0.2 0.20±0.2

NN+Controller 53.6±31.5 0.86±0.1 0.85±0.1 0.23±0.1

Table 5.10: Performance of multi-stage approaches when perfect bounding boxes are available

from EagleSim simulator.

Approach %Tracking Centerx Centery Ob jsize

PerfectBB+ 98.5±8.5 0.85±0.1 0.81±0.2 0.36±0.1

Deep RL

PerfectBB+ 98.3±8.4 0.85±0.1 0.83±0.1 0.33±0.1

Kalman+

Controller

103

5.5.4 Eagle vs Other Approaches

Here, we compare the performance of Eagle with the current state-of-the-art approaches. First, we

discuss our realization of other approaches, and then present their control performance.

5.5.4.1 Object detection+tracking+control

We use Yolo5s [yol22], a state-of-the-art lightweight object detector, followed by a Kalman filter

for state estimation on bounding boxes. We use the open-source [BGO16] implementation of the

SORT algorithm for the Kalman filter. Finally, the tracking outputs are used to control the PTZ

parameters using a separate controller [LMC21]. The controller uses the centroid and the size of

the target object to adjust the PTZ parameters. We fine-tune the thresholds of the controller us-

ing Mango [SAF20]. The input to the object detector is an image of size 240×240. We call this

tracking setting, Yolo+Kalman+Controller. Yolo5s is trained to detect 80 different classes of ob-

jects [yol22]. To improve its performance on the specific SUV 1blue vehicle used in the evaluation,

we finetune Yolo5s by collecting a labeled dataset of 50k images from EagleSim. The dataset is

collected by observing the SUV 1blue vehicle in Variable backgrounds+Trees+Humans scenes and

at varying zoom levels. The default hyperparameters recommended by Yolo5s developers [Ult22]

were used to finetune the model for 100 epochs. We use the finetuned Yolo5s in our experiments.

Finally, to completely remove object detector errors, we also implement another setting that uses

the oracle bounding boxes provided by the EagleSim simulator as input to the Kalman filter. We

call this setting, PerfectBB+Kalman+Controller, where PerfectBB signifies the perfect bounding

boxes.

Kalman filter: We adopted the Kalman filter from the SORT algorithm [BGO16]. The state

of the tracked object is modeled using seven variables. Four variables are used to represent the

bounding box, two variables for the velocity (U, V) variables for the center of the bounding box,

and one variable to track the changes in the size of the object. The current bounding box is given

as input to the tracker. The assumption is that the aspect ratio of the object is constant. This

104

may not be true when a vehicle changes its orientation during motions. A constant velocity model

is assumed during predicting objects in future frames. Bewley et al. [BGO16] mention that the

constant velocity model is a poor predictor of true dynamics. Bewley et al. [BGO16] also observe

that the object detection accuracy significantly affects the Kalman tracking performance.

Parameter tuning: We fine-tune the parameters of this pipeline using Mango [SAF20], a state-of-

the-art hyperparameter tuning library. We use Equation 5.6 as the objective function for Mango to

tune Kalman filter covariances for 1000 episodes (each of 2000 steps) in EagleSim. This amounts

to a total tuning time of 16.6 hours.

5.5.4.2 Object detection+reinforcement learning

We use the bounding boxes in this approach to train a deep-RL model. The input state of deep-

RL consists of a vector of 4 variables (([Xmin,Y min,Xmax,Y max]) that represents the current

bounding box as shown in Figure 5.3. The policy network is a 2-layer fully connected neural

network, each having 64 hidden nodes, followed by an output layer with 3 discrete outputs for

pan, tilt, and zoom parameters. The training is done using the PPO algorithm with the same

hyperparameters as Eagle (Section 5.5.2).

We evaluate this approach at test time in two different ways: (i) Using the bounding boxes from

the framework, which are error-free, called PerfectBB+Deep RL. This is similar to the training

setting. (ii) Using the bounding boxes from the finetuned Yolo5s object detector, Yolo+Deep RL.

The input to object detector is an image of size 240×240. This shows the usage of object detectors

for a realistic setting when perfect bounding boxes are not available.

5.5.4.3 Relative location+control

We build on the method proposed by Kyrkou et al. [Kyr21] using supervised machine learning for

pan-tilt control. The training requires image datasets with annotated bounding boxes. We extend

the proposed [Kyr21] approach by including a relative zoom variable. A neural network is trained

105

to predict three outputs defining a relative location: (i) RelX = x
Width/2 , (ii) RelY = y

Height/2 , and (iii)

RelZoom = (Xmax−Xmin)∗(Y max−Y min)
Width∗Height . Where x, y, Width, Height, Xmax, Xmin, Y max and Y min are

shown in Figure 5.3. The RelX , RelY , and RelZoom varies between -1 and 1. A separate controller

uses the RelX and RelY to control the pan and tilt of the camera and uses RelZoom to modify the

zoom.

The neural network has the same architecture as the policy network of Eagle (shown in Ta-

ble 5.1), with a different output layer. The output layer consists of 3 nodes for each of RelX , RelY ,

and RelZoom with a linear activation. The input to the network is an image of size 240×240. This

setting is called NN+Controller. We train this neural network by using the 50k labeled images cap-

turing the relative location of SUV 1blue vehicle in Variable backgrounds+Trees+Humans scenes

from the EagleSim simulator.

5.5.4.4 Performance Comparisons

The comparison of Eagle with the current state-of-the-art approaches is shown in Table 5.9. The

performance numbers for Eagle are added for policies trained for the scenario Sc-5 (from Table 5.3

and Table 5.5). For fairness, all approaches are evaluated for an end-to-end delay of 30ms from

sensing image to applying PTZ actions. The evaluation in Table 5.9 is to track SUV 1blue vehicle

moving on random trajectories (with an average speed of 6 m/s) for 100 episodes (each episode

is of 2000 steps or 1 minute in duration). The tracking setup of PTZ camera placement used for

evaluation is the same as discussed in Section 5.5.3 (Tracking setup).

Removing the external object detector Yolo5s, we show the performance of multi-stage ap-

proaches using perfect bounding boxes in Table 5.10. The accuracy of perfect bounding boxes

doesn’t depend on the scene’s complexity (or on the presence of backgrounds/other objects). But,

these settings are not realistic, as, in practice, there will be errors in neural object detectors; how-

ever, this evaluation presents a valuable insight into the upper bound of performance as the object

detectors improve in the future.

106

In simple scenes having a Fixed background, Eagle outperforms the next best approach of

Yolo+Kalman+Controller by 4.6% in tracking duration (% Tracking). Eagle also maintains the

metrics of Centerx, Centery and Ob jsize better than others. With perfect bounding boxes (Ta-

ble 5.10), controller performance improves as expected. However, when bounding boxes are

imperfect (Table 5.9), there is a significant degradation. Yolo+Deep RL suffers more degrada-

tion in comparison to Yolo+Kalman+Controller. This is because for Yolo+Kalman+Controller,

Mango (hyperparameter tuner) selects lower Ob jsize during tuning to maintain a higher tracking

duration. However, in Yolo+Deep RL, such fine-tuning is not possible and on replacing perfect

bounding boxes with Yolo5s, object detector errors impact significantly. We see Eagle slightly

outperforms even the PerfectBB+Kalman+Controller and PerfectBB+Deep RL in tracking dura-

tion; we hypothesize that the raw images provide much richer information such as the orientation

of the vehicle and the presence of other objects which is not available in the perfect bounding

boxes.

In more complex scenes (Variable backgrounds+Trees+Humans), Eagle outperforms the next

best approach (Yolo+Kalman+Controller) by 23.8% in tracking duration (% Tracking) and also

maintains other metrics better in centering (Centerx, Centery) the tracked object with superior

resolution (Ob jsize). This is because in more complex scenes, object detectors face more challenges

in identifying the object of interest.

5.5.5 PTZ Tracking using Lightweight Object Detectors

We evaluate PTZ tracking using lightweight object detectors for vehicles having an architecture

similar to the Eagle’s policy network. We use the labeled dataset collected using EagleSim to train

regression networks directly predicting bounding boxes of only vehicles in the images.

Training dataset: We collect the training data by driving 6 different vehicles (SUV 1blue, SUV 1red ,

Pickupgrey, Pickupred , Pickupgrey, Pickupred) in scenes having Variable backgrounds+Trees+humans.

This data collection setup is same as the Sc-5 scenario (Table 5.2) used to train Eagle policies. We

107

Figure 5.7: Learning curves of 6 different networks trained to predict bounding boxes of a car from

images. The validation loss is shown for 1000 epochs. 240 150k refers to the model trained using

240×240 image input on 150k image dataset. The mean and min-max spread of checkpoints for

each network are shown.

use three different datasets (50k, 100k and 150k) of images captured by varying zoom levels of

camera using the same tracking as discussed in Section 5.5.3 (Tracking setup).

Network architecture: We adopt the networks having same architecture as the Eagle’ policy net-

work (Table 5.1). We train the network using two different image inputs (120×120 and 240×240)

in grayscale. The output layer of the network has four nodes predicting the bounding box of a

vehicle in the image where the [Xmin, Ymin, Xmax, Ymax] are scaled between 0 and 1.

Learning curves: We train the networks using the mse loss function and adam optimizer for 1000

epochs. We train three checkpoints for each network with different random seeds and use 20% of

the training data as the validation, and save the checkpoint with the lowest validation loss. The

learning curves of 6 different networks (two different image sizes and three different dataset sizes)

are shown in Figure 5.7.

PTZ tracking performance: We use these custom-trained object detectors to develop multi-stage

108

Table 5.11: Performance of PTZ tracking using lightweight object detectors having an architecture

similar to the Eagle’s policy network. Six different networks are trained to predict the bounding

boxes of a car from images. Two image sizes (240×240) and three training datasets (50k, 100k,

150k) are used. 240 150k refers to the model trained using 240×240 image input on 150k im-

age dataset. In simple tracking scenes having Fixed background, all approaches have a very high

tracking duration (around 98% Tracking) and maintain other parameters also very well. In com-

plex scenes (Variable backgrounds + Trees + Humans), Eagle outperforms the next best approach

(240 150k) by 16% tracking duration and maintain other metrics also similar.

Approach Fixed background

%Tracking Centerx Centery Ob jsize

Eagle 99.7±5.4 0.86±0.1 0.85±0.1 0.27±0.1

240 150k 97.8±10.6 0.84±0.1 0.84±0.1 0.29±0.1

240 100k 98.0±11.1 0.84±0.1 0.84±0.1 0.30±0.1

240 50k 97.6±11.8 0.85±0.2 0.84±0.2 0.30±0.1

120 150k 97.8±10.8 0.84±0.1 0.84±0.1 0.29±0.1

120 100k 98.4±10.0 0.85±0.1 0.84±0.1 0.28±0.1

120 50k 98.3±10.2 0.85±0.1 0.84±0.1 0.28±0.1

Approach Variable backgrounds+Trees+Humans

%Tracking Centerx Centery Ob jsize

Eagle 99.2±4.6 0.86±0.1 0.85±0.1 0.27±0.1

240 150k 82.5±29.4 0.84±0.1 0.84±0.1 0.28±0.1

240 100k 81.5±29.1 0.85±0.1 0.84±0.1 0.28±0.1

240 50k 77.7±31.1 0.84±0.1 0.85±0.1 0.28±0.1

120 150k 82.0±29.6 0.85±0.1 0.84±0.1 0.28±0.1

120 100k 81.8±28.1 0.85±0.1 0.84±0.1 0.27±0.1

120 50k 78.5±31.2 0.84±0.1 0.85±0.1 0.27±0.1

109

pipeline using Kalman filter [BGO16] and a rule-based controller [LMC21]. The Kalman filter and

controller parameters are tuned using Mango similarly as discussed in Section 5.5.4. We evaluate

these trackers for an end-to-end delay of 30ms from sensing image to applying PTZ actions as

done for other evaluations in this chapter. The evaluation in Table 5.11 is to track SUV 1blue vehicle

moving on random trajectories (with an average speed of 6 m/s) for 100 episodes (each episode

is of 2000 steps or 1 minute in duration). The tracking setup of PTZ camera placement used for

evaluation is the same as discussed in Section 5.5.3 (Tracking setup).

As seen in the evaluation, for simple scenes having Fixed background, all approaches perform

very well. This shows lightweight object detectors for vehicles work very well in predicting the

bounding boxes of a car when no other objects are present in the scene and the background is a

simple floor (Sc-1 shown in Figure 5.5). However, in complex scenes (Variable backgrounds +

Trees + Humans), the tracking performance of lightweight object detectors degrades significantly.

This is because detecting accurate bounding boxes becomes a harder task in the presence of other

objects in the scenes. Eagle outperforms the next best approach (240 150k) by 16% tracking dura-

tion and maintains other metrics also similar to other approaches. We also see that the performance

of object detectors using 240×240 images and 120×120 images is similar. The increase in the size

of the dataset doesn’t impact the performance in simple scenes, but in complex scenes, we ob-

serve a slight improvement in tracking performance from the 50k image dataset to the 150k image

dataset.

5.5.6 Transfer of Eagle to the Real Scene Videos

Here, we show the direct transfer of Eagle policies trained purely in simulation to the real scene

videos. EagleSim support capability to simulate pan-tilt-zoom actions on real videos. This is

realized by simulating the effect of policy actions on an initial wider view containing an object

of interest in the video. This evaluation presents a visual way to see the behavior of Eagle poli-

cies when transferred to real scenes. The simulation on real videos doesn’t provide ground truth

bounding boxes and cannot modify objects for trial and error learning. It thus doesn’t scale to train

110

Table 5.12: Inference time in milliseconds (ms) of Eagle and optimized Yolo5s on embedded

camera platforms.

Device Raspberry Pi 4B Jetson Nano

Eagle 9.2 ± 1.3 ms 6.2 ± 2 ms

Yolo5s 1817 ± 14.1 ms 86.2 ± 1.5 ms

deep-RL from real videos.

We simulate the pan-tilt-zoom actions from Eagle policies trained for Sc-5 on real-scene videos.

The results are shown in Figure 5.8 for two different scenes. The left scene consists of a toy blue

SUV vehicle moving on a concrete floor. The variations in this scene are much simpler. The

tracking progress is shown from the top image to the bottom image in Figure 5.8:A. The initial

bounding box of wide view (PTZ View) is manually selected, which is given as an input to the

trained policy. The actions predicted by the policy are used to update the selected bounding box by

moving it left-right for pan and up-down for tilt. The zoom action controls the size of the bounding

box.

The scene in Figure 5.8:B shows a real vehicle of grey color moving in a background having

trees/patterns. The tracking progress is again shown from top to bottom, where the first image of

PTZ View shows the wider view given as an input to the policy. As the tracking progresses, the

policy focuses on the object of interest and follows it. As seen, the PTZ view identifies the vehicle

in the initial wide view and follows it in the video based on the policy actions. This shows that the

Eagle is a very promising alternative to replace existing multi-stage approaches in the presence of

richer scene variations of the real world.

5.5.7 Runtime of Eagle on Embedded Cameras

Next, we measure the runtime of Eagle policies on embedded camera platforms. We consider Rasp-

berry Pi 4B and Jetson Nano devices which are also supported by embedded PTZ cameras [Ard22].

111

Figure 5.8: Eagle policies on real videos. The arrows show the vehicle to track in the video scene.

The PTZ view is maintained by Eagle while tracking the vehicle. The top images show the starting

point where the PTZ view is not focused.

112

We compare Eagle with the next best approach of Yolo+Kalman+Controller (Table 5.9), and with

the PTZ tracker using the lightweight object detector designed in Section 5.5.5.

Eagle policies have only 79k network parameters compared to Yolo5s’ 7.2 million parameters.

The inference latency of Eagle and Yolo5s is reported in Table 5.12. On Raspberry Pi, we optimize

the inference for Eagle and Yolo5s using TensorFlow Lite [Ten22a]. On Jetson Nano, the Yolo5s

model has an inference latency of 218 milliseconds (ms). We optimize Yolo5s for Jetson Nano

using TensorRT [Ten22b] and further quantize the model to float16 to reduce its inference latency.

The inference latency of optimized Yolo5s on Jetson Nano is reported in Table 5.12.

The PTZ camera [Ard22] supports a frame rate of 120 Hz, which when tested with neural

network inference reduces to 100 Hz. The camera supports PTZ actions with a resolution of 1

degree and has an actuation delay of 10 ms. When using Eagle for PTZ control on Raspberry

PI, end-to-end delay is around 30 ms (10 ms for inference, 10 ms for sensing (100 Hz), and 10

ms for actuation), enabling a real-time deployment with 33 FPS. Yolo5s has an inference latency

of 1817 ms on Raspberry PI, making it completely infeasible to run Yolo+Kalman+Controller on

Raspberry PI.

On Jetson Nano, Eagle achieves an even higher FPS of 38 (inference latency of 6.2ms and

similar sensing+actuation delay of 20ms). Yolo+Kalman+Controller, even when using optimized

Yolo5s, has a significantly higher inference latency of 86.2ms on Jetson Nano. Considering the

sensing and actuation delays, the total end-to-end delay for Yolo+Kalman+Controller is 106.2 ms,

which results in a very low FPS of 9.

The PTZ tracker using a lightweight object detector in Section5.5.5 has similar inference la-

tency as Eagle due to the same network architecture. This tracker also outperforms the Yolo5s

pipeline; however, in complex scenes having background variations, trees, and human characters,

Eagle policies have superior control performance, as shown in Table 5.11. Hence, Eagle policies

represent a lightweight controller with superior control performance for real-time deployment.

113

Figure 5.9: A sample scene with multiple objects of interest.

5.6 Discussion

Policy behavior on multiple objects of interest: Eagle policies in Section 5.3.3 are trained by

assuming a single object from class A is present at a given time in the scene, while the same policy

generalizes across all objects of class A. Here, we test the policy behavior by adding multiple ob-

jects from class A to the same scene as shown in Figure 5.9. We see that the reward of Equation 5.1

incentivizes an agent to track the larger object lying closer to the center of the image to achieve a

higher expected sum of rewards. In Figure 5.9, we test the policy of the Sc-5 scenario in a scene

having two SUV 1blue vehicles. As seen in the images from left to the right, the policy tracks the

larger car and follows it as it moves in the scene.

Speed of objects: We evaluated controller performance on vehicles moving at an average of 6m/s

and with a max speed of 16m/s. Vehicles come to a complete stop at the boundaries of the virtual

worlds and randomly move in a different direction. The action space of Section 5.5.2 works across

these speed variations and tracks slow-moving humans as well. To track even faster-moving ob-

jects, the action space can have more options, or the end-to-end delay can be reduced to modify

the PTZ parameters faster.

Multiple cameras: EagleSim can capture bounding boxes of multiple objects of interests and

also allows the control of multiple PTZ cameras in the same scenes. Multiple cameras present a

problem of collaborative tracking. We leave the study of end-to-end controllers for collaborative

tracking as future exploration.

114

Limitations of Eagle: Changing the tracking goal in multi-stage approaches is easier by filtering

the outputs from the object detector. Modifying the tracking goal in Eagle to a new type of object

may require retraining of a new policy from scratch. EagleSim simulator is designed to automate

the retraining and alleviate the labeling efforts. We also saw that runtime tasking in Eagle to

selectively track humans and vehicles comes at a performance cost. Runtime tasking in multi-

stage approaches can be enabled by changing their tracking goal by adopting general-purpose

object detectors. In light of these limitations, Eagle is more suitable for applications where the

general categories of objects to track are known ahead, and lightweight controllers are required.

5.7 Conclusion

We introduced a new lightweight approach called Eagle for end-to-end PTZ control having superior

performance. To realize the proposed solution, we also introduced an accompanying simulator

called EagleSim, automating the training pipeline. The capability provided by EagleSim allows

reproducible scenarios to ease the development and benchmark different classes of autonomous

PTZ control algorithms. Further, the availability of Oracle bounding boxes in EagleSim enables

us to study multi-stage approaches by removing errors in their object detection pipeline showing

upper-performance bounds. We see that end-to-end control can slightly outperform these upper

bounds. Finally, the action predicted by end-to-end Eagle policies trained purely in photo-realistic

simulation can transfer to real-world videos, suggesting it is a promising alternative to conventional

approaches.

115

CHAPTER 6

Enabling Hyperparameter Tuning of Machine Learning

Classifiers in Production

Machine learning (ML) classifiers are widely adopted in the learning-enabled components of in-

telligent Cyber-physical Systems (CPS) and tools used in designing integrated circuits. Due to

the impact of the choice of hyperparameters on an ML classifier performance, hyperparameter

tuning is a crucial step for application success. However, the practical adoption of existing hy-

perparameter tuning frameworks in production is hindered due to several factors such as inflexible

architecture, limitations of search algorithms, software dependencies, or closed source nature. To

enable state-of-the-art hyperparameter tuning in production, we propose the design of a lightweight

library (1) having a flexible architecture facilitating usage on arbitrary systems, and (2) providing

parallel optimization algorithms supporting mixed parameters (continuous, integer, and categor-

ical), handling runtime failures, and allowing combined classifier selection and hyperparameter

tuning (CASH).

We present Mango, a black-box optimization library, to realize the proposed design. Mango

is currently used in production at Arm for more than 30 months and is available open-source

(https://github.com/ARM-software/mango). Mango outperforms other black-box op-

timization libraries in tuning hyperparameters of ML classifiers having mixed parameter search

spaces. We discuss two use cases of Mango deployed in production at Arm, highlighting its flexi-

ble architecture and ease of adoption. The first use case trains ML classifiers on the Dask cluster

using Mango to find bugs in Arm’s integrated circuits designs. As a second use case, we intro-

duce an AutoML framework deployed on the Kubernetes cluster using Mango. Finally, we present

116

https://github.com/ARM-software/mango

the third use-case of Mango in enabling neural architecture search (NAS) to transfer deep neural

networks to TinyML platforms (microcontroller class devices) used by CPS/IoT applications.

6.1 Introduction

Enabling Hyperparameter tuning at a production scale is crucial to designing better performing

ML classifiers embedded in emerging CPS/IoT applications. However, a typical ML pipeline in

production can be too specialized and complex, demanding a trained team of human experts with

specific domain knowledge for classifier selection with optimal hyperparameters. The combined

classifier selection and hyperparameter optimization in production face the following challenges:

1. Complex deployments: The production ML pipelines are complex and realized using a com-

bination of arbitrary systems (e.g., custom on-premise software, cluster frameworks, cloud infras-

tructures) decided by several factors, including the nature of application and developer preferences.

Therefore, flexible architecture with abstractions allowing usage on arbitrary systems is needed.

2. High complexity of the hyperparameter search: Search is becoming increasingly complex,

with many choices for classifiers and their rich parameter spaces. It is further exacerbated in pro-

duction pipelines due to the recurrent nature of tuning tasks triggered by data shifts or process

changes. Consequently, searching the space of several classifiers demands combined algorith-

m/classifier selection and hyperparameter optimization (CASH) [THH13]. Further, to speed up

the search, intelligent parallel algorithms utilizing parallel computing with abstractions to handle

runtime failures are needed.

Further, abstractions offering uniformity in local and cluster usage, including syntax compat-

ibility with the widely used ML libraries like Scikit-learn [PVG11], can reduce the effort needed

to integrate with existing deployments. While several hyperparameter tuning software exists,

their adoption in an arbitrary production pipeline is hindered due to their dependence on par-

ticular compute scheduling extensions [BYC13, SLA12, HHL11, ASY19, FKE15], closed source

nature [GSM17], search algorithm limitations [aut16a, aut16b] and significant overhead adopting

117

the entire software dependencies [LLN18,ZVP19,Roc15,Mou17]. For example, the parallel search

in Hyperopt [BYC13] is dependent on the MongoWorker processes or Apache Spark [Hyp19].

To enable hyperparameters tuning in production, we present Mango, a black-box optimiza-

tion library. Mango is a research project that provides hyperparameter tuning to ML pipelines at

Arm with more than 30 months of production usage. Mango is open-sourced under Apache 2.0

license to contribute and learn from the community. Mango provides the following core features

addressing the above challenges:

• Modular design that allows the user to schedule objective function evaluations on arbitrary

infrastructure. Furthermore, API provides a unique capability to handle runtime failures

crucial for production deployments.

• An efficient realization of Bayesian optimization using the Gaussian process (GP). We in-

corporate optimal handling of mixed parameters and intelligent batch sampling for parallel

search for practical adoption of GP.

• An algorithm to directly solve CASH problem using multiple GP surrogates. To the best of

our knowledge, existing GP libraries don’t solve the CASH problem.

To highlight the flexible architecture enabling the adoption of Mango in complex ML pipelines,

we discuss two production use cases (1) a bug hunting workflow deployed on the Dask clus-

ter [Roc15] using ML classifiers to optimize the design verification of Arm’s integrated circuits,

(2) an AutoML framework deployed on the Kubernetes cluster1. Figure 6.1 shows the first use case

doing design verification of integrated circuits at Arm. We evaluate the implemented optimization

algorithms in Mango on a collection of benchmark functions and classifiers. Finally, we present

a third use case of Mango enabling NAS for Cortex-M microcontrollers class devices found in

resource constrained IoT and CPS applications.

1https://kubernetes.io/

118

Figure 6.1: A Bug Hunting Workflow is illustrated which is part of the design verification of in-

tegrated circuits at Arm. A machine learning pipeline replaced the default pipeline to predict the

preferred input candidates. Mango is deployed on the Dask distributed cluster to automate the

hyperparameter tuning of ML models used for design verification.

119

6.2 Background and Related Work

The optimization algorithms and frameworks for automatic hyperparameter tuning are active re-

search areas. Here, we discuss the hindrances in production deployments of widely used hyperpa-

rameter tuning frameworks and briefly review the black-box optimization algorithms.

6.2.1 Hyperparameter Tuning Frameworks

The parallel hyperparameter frameworks can be categorized into two groups (1) software built on

distributed frameworks to provide hyperparameter tuning as a feature [LLN18,ZVP19,Aut,Mou17]

and (2) optimization libraries with integrated scheduling extensions [ASY19, BYC13, HHL11,

FKE15, THH13, aut16a]. However, the adoption of these frameworks in production ML pipelines

deployed on arbitrary systems faces hindrances primarily due to high overhead in adoption for the

former group and dependence on custom-built parallel schedulers for the latter.

For example, Katib [ZVP19] and Polyaxon [Mou17] are built on top of Kubernetes. Tune [LLN18]

is a python library deployed using the Ray framework. Dask-ml [Aut] provides hyperparameter

tuning using the Dask framework. These systems provide features like auto-scaling, failovers, and

rich scheduling abstractions. However, their integration into an arbitrary deployment demands

adopting the specific underlying framework and additional software dependencies, creating devel-

opment and maintenance overhead. For example, using Katib needs the Kubernetes framework’s

adoption and additional database, API server, and controller processes. These systems can be a

good fit if the application uses the underlying framework for all of its features.

The optimization libraries with integrated scheduling extensions have custom-built mecha-

nisms to run parallel workers. However, their distributed extensions lack features like auto-scaling,

failover, and architecture flexibility to deploy on any arbitrary underlying cluster computing frame-

work essential in a production deployment. For example, Optuna [ASY19], Hyperopt [BYC13],

SMAC [HHL11], Auto-sklearn [FKE15], GPyOpt [aut16a], and Auto-WEKA [THH13] lack sched-

uler abstractions to use arbitrary cluster computing frameworks. The parallel search in Hyperopt

120

is dependent on the Apache Spark or MongoDB [BYC13]. The parallel search in SMAC needs

a shared file system for multiple sequential runs to collaborate. Auto-sklearn’s parallel search is

dependent on the Dask cluster framework [Roc15] or requires a shared file system to run SMAC

parallelly. Further, Auto-sklearn and Auto-WEKA are dependent on the scikit-learn and WEKA,

respectively.

Mango: In contrast to the existing frameworks, Mango is designed with flexible modular architec-

ture providing local scheduler extensions, abstractions to enable integration with arbitrary compute

infrastructures, and consideration for the failures to ease the adoption in production deployments.

6.2.2 Hyperparameter Tuning Algorithms

The simple methods include random search, in which each parameter is selected independent of

the previous selections, and grid search, which selects parameters systematically along a grid.

However, generally, the guided search methods discussed next outperforms them.

Bayesian optimization algorithms: Sequential model-based Bayesian optimization (SMBO) is a

state-of-the-art approach to minimize the number of evaluations required to find optimal hyperpa-

rameters. SMBO uses a surrogate model to predict the performance of arbitrary parameter con-

figuration [SLA12, SKK09]. A cheap acquisition function is used to select the next evaluated

parameter using surrogate model predictions [SLA12]. Typical surrogate models widely used are

Gaussian process (GP) [SLA12,SKK09], tree-structured Parzen estimators (TPE) [BBB11], neural

network [SRS15], and random forest [HHL11].

The GP surrogate is shown to outperform TPE and random forest for functional benchmarks [ASY19]

and is available in GPyOpt, Auto-sklearn, and Auto-WEKA, among others. However, GP de-

mands special techniques when used for ML classifier to (1) handle categorical variables [GH20],

(2) search conditional parameter spaces [LDG17], and (3) reduce search computational complex-

ity [ASY19].

For parallel search, GP is extended to sample a batch of parameters. The proposed approaches

121

to sampling a batch use penalty [DKB14,GDH16,HHL11] in the acquisition function, select mul-

tiple peaks [NRG16, GP18] from the acquisition function, and Monte Carlo estimation [SLA12].

GPyOpt provides penalty and Monte Carlo estimation for parallel search. However, GPyOpt

doesn’t directly allow to solve the combined algorithm selection and hyperparameter optimiza-

tion (CASH). Auto-WEKA and Auto-sklearn use multiple sequential runs with random seeds to

simulate the parallel search.

TPE surrogate is available in Hyperopt library and Optuna framework. TPE is similar to kernel

density estimators. It transforms the hyperparameters’ generative process, replacing the distri-

butions of the configuration prior with non-parametric densities. By construction, it can handle

categorical and conditional parameters and scales linearly. However, TPE is designed to be se-

quential in nature [BYC13], thus suffers performance loss during the parallel search in comparison

to the specialized GP approaches sampling a batch. SMAC handles categorical and conditional

configurations using the random forest as the surrogate model. However, the intelligent parallel

search is missing in SMAC as it uses multiple sequential runs with random seeds.

Population-based training (PBT) and multi-fidelity optimization algorithms: PBT [Sim13] meth-

ods such as genetic and evolutionary techniques maintain a population of parameters and improve

this population by applying local perturbations. PBT methods are directly parallel, allowing the

population of size N to be evaluated on N machines. However, training a large number of configu-

rations is expensive. To speed up the search using PBT, multi-fidelity optimization algorithms like

successive having [JT16] and Hyperband [LJD17] use partial training. Although these approaches

are cheaper to evaluate, they may suffer from approximations errors in small budget evaluations,

but often the speedup achieved is more significant.

6.2.3 Algorithms Implemented in Mango

The algorithms implemented in Mango use Bayesian optimization using GP. Mango addresses the

limitations of the GP surrogate while maintaining its advantages over TPE and Random forest.

122

The implemented algorithms handle carefully the mixed numerical/categorical search spaces, al-

lows sampling of a batch intelligently for parallel evaluations, and supports combined classifier

selection and hyperparameter optimization while significantly reducing the computational com-

plexity associated with GP regression.

We discuss the challenges in enabling hyperparameter tuning in production, Mango features

addressing these challenges, hindrances in adopting existing frameworks, implemented algorithms,

and share the learning experiences by including two deployed use cases.

6.3 Mango

Mango has a functional-based API to integrate with a model training pipeline. The four ab-

stractions in Mango are (1) Parameter Space Definer, (2) Objective Specifier, (3) Tuner, and (4)

MetaTuner. The modular architecture enables the integration of new functionality and the ease of

production maintenance.

Parameter Space Definer provides python constructs to easily specify complex search spaces,

including mixed numerical/categorical values. The design of Objective Specifier allows classifiers’

training on local machines using an integrated scheduler and arbitrary systems (e.g., custom-local

software, cluster frameworks) by exposing sampled batches. Tuner exposes implemented algo-

rithms for serial and parallel search. MetaTuner solves a CASH problem. We show the skeleton

codes from production use cases to highlight these features. Figure 6.2 shows an example of

Mango for hyperparameter tuning of XGBClassifier on a local machine using the integrated paral-

lel scheduler. The default optimization algorithm and configurations can be modified.

6.3.1 Mango Abstractions

Parameter Space Definer: Mango uses Python constructs (range and list) to define search spaces

with mixed numerical/categorical values. As shown in Figure 6.2, param space is defined as a

123

from mango import Tuner, scheduler

from scipy.stats import uniform

from xgboost import XGBClassifier

...

param_space = {’learning_rate’: uniform(0, 1),

’gamma’: uniform(0, 5),

’max_depth’: range(1, 21),

’n_estimators’: range(1, 11),

’booster’:[’gbtree’,’gblinear’,

’dart’]}

@scheduler.parallel(n_jobs=4)

def objective(**params):

...

clf = XGBClassifier(**params)

accuracy = ...

return accuracy

tuner = Tuner(param_dict, objective)

Study = tuner.maximize()

Figure 6.2: An example of Mango to tune the hyperparameters of XGBClassifier from the Xgboost

library using a parallel scheduler on the local machine. Parameter space consists of distribution,

range, and categorical variables.

124

python dictionary. Continuous variables use distributions from Scipy2. All the 60+ distributions

from Scipy are supported, allowing the flexibility to specify preferred regions in the search space.

Mango supports user-defined parameter distributions. The parameter space definitions are compat-

ible with the Scikit-learn, allowing replacement for existing applications using Scikit-learn.

Objective Specifier: The objective specifications are available to train the classifier using a local

machine or any arbitrary system. The objective function training classifier uses an integrated par-

allel scheduler on the local machine is shown in the Figure 6.2. Here, the input to the objective()

function is a dictionary (params) with a single sampled point suggested for evaluation by Mango.

The @scheduler decorator specifies the number of parallel jobs.

For deployments on arbitrary systems, a more general skeleton of Objective Specifier is avail-

able, as shown in Figure 6.3. It exposes the sampled batch directly to the user-defined objective

function to evaluate an application-specific scheduler. This scheduler’s nature is decided based on

the deployment framework. We allows the user-defined objective function to discard the failed

evaluations as shown in objective function in the Figure 6.3 to make progress even with runtime

failures. The specific technique (e.g., timeout in Figure 6.3) to identify a failure is kept outside of

the Mango, as it may depend on the underlying compute platform and tuning task.

The skeleton code shown in Figure 6.3 is part of an AutoML framework (see Section 6.4.3)

deployed on the Kubernetes cluster at Arm. The objective function can return the result as a list of

values specifying the successful evaluations and their respective hyperparameters without waiting

for all the evaluations to complete. The batch objective function skeleton is kept independent of

the underlying compute infrastructure, with no dependency on the additional databases or a shared

file system, enabling its adoption across applications.

Tuner: A parameter space definition and the specified objective function are used by Tuner to

search optimal hyperparameters. The config parameter (Figure 6.3) is optional. It controls the

maximum number of iterations, the initial random iterations, the batch size for parallel search, and

2http://www.scipy.org/

125

from kubernetes import client

...

param_space = ...

def objective(params_batch):

train on cluster using the sampled parameters

jobs = [client.create_job(params, ...)

for params in params_batch]

poll for job completion

results = []

while not timeout or not all_done:

results = [job.result() for job in jobs

if job.complete()]

return results

control the max number of iterations, batch size,

conf = {’num_iteration’:100, ’initial_random’:5,

’batch_size’:4, ’parallel’:’clustering’}

tuner = Tuner(objective, param_space,conf)

Study = tuner.maximize()

Figure 6.3: Skeleton code of Mango on Kubernetes cluster that is deployed as part of the AutoML

framework at Arm. Partial results are returned by the objective function based on timeout. The

conf data structure modifies the default behavior of Tuner.

126

the optimization algorithm. Tuner exposes sequential and parallel search algorithms.

MetaTuner: MetaTuner is designed to solve a CASH problem. The skeleton code of MetaTuner

deployed in production on a Dask distributed framework [Roc15] is shown in Figure 6.4. This

code is part of the Bug Hunting Workflow shown in Figure 6.1. The param space data structure is

a list of search spaces for individual classifiers identified by their type during scheduling.

6.3.2 Optimization Algorithms in Mango

Mango algorithms are based on Bayesian optimization. Here, we summarize the sequential search,

handling of the categorical variables, batch sampling to enable parallel search, and the CASH

algorithm.

Sequential search: The sequential search uses Bayesian optimization with GP as the surrogate

model. We use the Matern kernel function and the upper confidence bound (UCB) as the acquisi-

tion function [SKK09]. The next sampled hyperparameter is selected based on the predicted mean

(exploitation) and the corresponding variance (exploration). The exploration factor is used to de-

cide a trade-off between exploitation and exploration. The exploration factor in Mango is fixed by

default to 2.0; however, for expert users, we allow adaptive exploration proposed by Srinivas et

al. [SKK09], where the exploration factor is heuristically decided based on the complexity of the

search space (domain size) and the current iteration count. The idea is to allow more exploration

when the classifier’s search space is huge. We do the Monte Carlo optimization of the acquisition

function by sampling the parameter space and then selecting the next point to evaluate based on the

acquisition function. The total number of samples drawn is decided based on the the complexity

of the search space inferred using the definition.

Handling categorical values: The naive GP assumes continuous input variables. Thus, handling

categorical and integer values requires careful consideration. We use one-hot encoding for the

categorical values. However, naively rounding off the categories or integers during evaluations

can result in poor performance as the actual point of objective evaluation may differ from the

127

from dask.distributed import Client

...

dask_client = Client()

param_clf_nn = {’type’: ’clf_nn’,...}

param_clf_svm = {’type’: ’clf_svm’,...}

param_spaces = [param_clf_nn, param_clf_svm]

def objective(params_batch):

futures = []

Submit Jobs to the Dask cluster

for params in params_batch:

#schedule classifier based on type

clf = params.pop(’type’)

future = dask_client.submit(fit_and_score,

clf, **params)

futures.append(future)

Job completion or wait for timeout

results = [future.result(timeout) for future in

futures]

return results

metatuner = MetaTuner(objective, param_spaces)

Study = metatuner.maximize()

Figure 6.4: Skeleton code deploying MetaTuner algorithm on the Dask cluster, which is part of the

bug hunting application used for design verification of Arm integrated circuits designs.

128

proposed point [GH20]. Our approach is motivated by the solution proposed by Garrido-Merchán

et al. [GH20]. We optimize the acquisition function by sampling only the valid points from the

search space; thus, there is no mismatch between the proposed and actual evaluation.

Parallel search: Conventionally, Bayesian optimization using GP is a sequential search since new

information must update the acquisition function. The challenge in selecting a batch of values is to

ensure exploration diversity in the batch. A simple technique to enforce diversity is that no choice

is selected twice in the batch. It can be done by ranking the choices according to the UCB and

then selecting top picks until new feedback is available. However, this naive approach has limited

exploration [DKB14], demanding intelligent parallel strategies. We provide two algorithms to

sample a batch of values in Mango.

The first algorithm, Clustering search used by default, is motivated by selecting peaks [GP18,

NRG16] of acquisition function within a batch. It has the following two steps: (1) First, we select

a set of promising domain samples (top 25% by default) based on the acquisition function. (2)

Next, these domain samples are clustered based on their distance in the search domain space. We

select the hyperparameter choice from each cluster with the highest acquisition function value and

add it to the batch. We use K-Means clustering.

The second algorithm is hallucination search which is based on the idea of applying penalty [DKB14,

GDH16] to sample a batch using the acquisition function.

MetaTuner algorithm to solve CASH: Direct addition of an extra algorithm selection parameter

in GP assumes that information is shared between the hyperparameters of different classifiers. A

regular GP would make an invalid credit assignment in these settings [LDG17,JAG17]. To address

this, we train multiple GP surrogates for each classifier independently. Our approach is moti-

vated by the idea of exploiting the structure of the optimization problem proposed by Bergstra et

al. [BBB11] and Jenatton et al. [JAG17]. Algorithm 1 is the serial version of MetaTuner algorithm.

Some classifiers can have an exploration bias occurring from the evaluation of good accuracy

regions early on. To avoid these issues, we use random exploration (metaxpl) with a decay rate

129

Algorithm 1: MetaTuner algorithm.
input : list of parameter spaces PList , objective function obj fxn, and configuration Con f

output: type of classifier Ctype, optimal parameters Opar

1 metaxpl ← 1.0, minxpl ← exp value;

2 decayrate← decay value, accmax = 0;

3 Ctype← None, Opar← None;

4 for i← 1 to Con f [max iterations] do

5 Currcl f ← None, Currpar ← None;

6 rand← random();

7 if rand<metaxpl then

8 Currcl f ← randINT(1,no of clf)

9 Currpar, ← get gp acq(PList [Currcl f],Con f);

10 metaxpl ← max(metaxpl ∗ decayrate, minxpl);

11 else

12 for i← 1 to Size(PList) do

13 X [i],Y [i]← get gp acq(PList [i],Con f);

14 end

15 Currcl f ← argmax(Y [i]);

16 Currpar ← X [Currcl f];

17 end

18 curr evaluation← obj fxn ([Currcl f ,Currpar]);

19 update gp([Currcl f ,Currpar,curr evaluation]);

20 update gp exp([Currcl f]);

21 if curr evaluation>accmax then

22 accmax← curr evaluation;

23 Ctype←Currcl f , Opar ←Currpar;

24 end

25 end

26 return Ctype, Opar 130

(decayrate) along with a minimum exploration (minxpl) across classifier. Lines[7-10] do random

exploration across classifiers using metaxpl . Function get gp acq suggests the parameter and the

respective acquisition function value using the parameter space definition and configuration of

the used classifier. Lines[12-16] select a classifier and hyperparameter to evaluate based on its

acquisition value. The objective function evaluation for the selected classifier and the Gaussian

process surrogate update is done in Lines[18-19]. Line-20 updates the surrogate’s exploration

for the classifier that is evaluated. The idea is to favor other classifiers for future evaluations

by using more exploration factors if they have high uncertainty due to their large search space.

Finally the best performing classifier and optimal parameter is maintained in the Lines[21-23].

The default values (decayrate=0.9, minxpl=0.1) available in MetaTuner are the same that are used

for experiments.

A batch version of this algorithm is implemented in Mango, where we initially select a batch

|B| of values from individual surrogates (get gp acq) using parallel search, and then rank these

(N ∗ |B|) values, where N is the number of classifiers, to select |B| points to evaluate in parallel.

Note that a mix of classifiers may be evaluated in batch based on their acquisition function.

6.4 Evaluation and Case Studies

6.4.1 Optimization Performance Evaluation

We compare Mango with several black-box optimization libraries using the multiple criteria method-

ology proposed by Dewancker et al. [DMC16], also used by Akiba et al. [ASY19]. Specifically, we

measure performance by the solution’s proximity to the optimal point (accuracy) and the number

of iterations required to reach the optima (speed). We performed experiments across two classes of

optimization tasks: (1) Synthetic test functions and (2) ML classifiers. Each optimization task uses

80 iterations and is repeated 30 times to account for the algorithm’s stochastic nature [DMC16].

Results are statistically compared for accuracy and speed criteria using paired Mann-Whitney U

test with α = 0.01 [DMC16]. Libraries to compare against are chosen to represent different fla-

131

vors of Bayesian optimization: Hyperopt with TPE surrogate, Optuna with a mixture of TPE and

CMA-ES, SMAC with random forest surrogate. GPyOpt with Gaussian process surrogate, and

lastly, random search serves as the baseline.

6.4.1.1 Synthetic test functions

We used a collection of 53 functions having continuous search spaces from a benchmark suite of

test functions [DMC16]. Figure 6.5a shows the results where the objective function is evaluated

sequentially. Mango is worse than Optuna in 5/53 tests and Hyperopt in 2/53 tests. This is expected

because the GP surrogate provides a more accurate representation of the objective function than

TPE [ASY19]. Mango performs worse than SMAC in 12/53 tests. The performance of Mango

is competitive when compared to the other GP-based optimizer GPyOpt (worse in 22/53, tied in

10/53 tests).

Figure 6.5b shows the results for parallel search where the objective function is evaluated using

four workers. Mango’s clustering parallel search performance is compared with GPyOpt’s local

penalization approach, Optuna’s random sampling, and random search. Mango performs worse

than Optuna in the 17/53 test and worse than GPyOpt in the 32/53 tests. Hyperopt and SMAC

also provide distributed optimization using custom-built scheduling frameworks. However, we

could not complete the experiments for them due to repeated failures of their custom scheduling

framework.

GPyOpt internally uses a gradient-based method to optimize the acquisition function, while

Mango uses Monte Carlo sampling. The gradient-based method provides a slight advantage to

GPyOpt in continuous search spaces, which is the case for these test functions. However, Mango’s

sampling approach is more suitable for heterogeneous search spaces that include categorical and

integer parameters, which is the case for hyperparameter tuning of ML classifiers, as discussed in

the next section.

132

6.4.1.2 Tuning ML classifiers

We compared the performance for hyperparameter tuning of three ML classifiers: Xgboost, K-

Nearest Neighbor (KNN), Support Vector Machines (SVM) to maximize the 3-way cross-validation

accuracy for the iris plants dataset, wine recognition dataset, and breast cancer Wisconsin (diag-

nostic) dataset taken from Scikit-learn, i.e., a total of 9 tuning tasks (three classifiers trained using

three datasets). The search space includes continuous, integer, and categorical parameters with

the exact definitions available [Res21]. The experiment setup is the same as before, having 80

iterations and 30 repeated runs. Results are shown in Figure 6.6. As seen in Figure 6.6a, Mango

performs better than all other libraries in 6 or more tasks out of 9. Figure 6.6b shows the results

for parallel hyperparameter tuning with four workers.’ As seen, the clustering search algorithm of

Mango outperforms GPyOpt’s local penalization approach and Optuna’s random sampling.

6.4.1.3 Hyperparameter Tuning across Classifiers

We compare the performance of MetaTuner to solve the CASH problem with Optuna’s TPE+CMA-

ES surrogate, Hyperopt’s TPE surrogate, SMAC’s random forest surrogate, and naive random

search. GPyOpt is not included in this evaluation as it doesn’t allow conditional search spaces.

Sampling for the naive random search is done by uniformly choosing a classifier followed by

randomly sampling a hyperparameter from the corresponding search space. The optimization ob-

jective is to find the best classifier and corresponding hyperparameters from the neural network,

Xgboost, KNN, SVM, and decision tree. Experiments are done for three datasets taken from

Scikit-learn: iris plants dataset, wine recognition dataset, and breast cancer Wisconsin (diagnostic)

dataset. The exact parameter search spaces for all the classifiers are listed online [Res21].

Figure 6.7 shows the results for 150 serial iterations and an average of 30 runs. Optuna per-

forms better than MetaTuner on iris dataset and breast cancer Wisconsin (diagnostic) dataset.

MetaTuner performs better than Optuna on the wine recognition dataset. MetaTuner performs

better than the Hyperopt and SMAC on all three datasets The results show that the MetaTuner

133

(a) Sequential optimization

(b) Parallel optimization with 4 workers

Figure 6.5: Comparison of Mango to optimize functions.

134

(a) Sequential optimization

(b) Parallel optimization with 4 workers

Figure 6.6: Comparison of Mango to tune hyperparameters.

135

algorithm performs comparably with TPE and random forest surrogates that directly support con-

ditional search spaces.

6.4.1.4 Optimizer sampling time

One disadvantage of GP surrogate is that it is computationally expensive due to the cubic com-

plexity in the number of samples evaluated. Comparatively, TPE surrogate used in Hyperopt and

Optuna is very inexpensive. In Mango, we have reduced the computational complexity by us-

ing Monte Carlo optimization of acquisition function instead of commonly used gradient-based

methods like L-BFGS. We evaluate this feature by comparing various optimizers’ sampling times

in sequential, parallel, and CASH settings. Results are shown in Table 6.1. We did 30 runs of

80 iterations to calculate the average time taken per iteration. The sampling time depends on

the complexity of the parameter space. For serial and parallel, we use the Xgboost’s parameter

space definition [Res21]. The CASH sampling time is shown for the Xgboost parameter space

definition [Res21]. As expected TPE based optimizers are the fastest; however, Mango (GP) is

significantly faster than the GPyOpt (GP) and SMAC (Random-forest). It is important to note that

this comparison is inconsequential for hyperparameter tuning because the time taken to train ML

models would dwarf the optimizer sampling time.

Summary: Mango outperforms other libraries in hyperparameter tuning for classifiers with mixed

parameter (continuous, integer, and categorical) spaces. When evaluated for CASH problems,

Mango’s is competitive in performance to Optuna. In the case of functional benchmarks, Mango

is competitive with the GpyOpt. However, Optuna performs poorly for functional benchmarks

and tuning parameters for a single classifier. Further, GpyOpt performs poorly when tuning ML

classifiers. Overall, Mango offers state-of-the-art algorithms having better or at par performance

across settings.

136

(a) (b)

(c)

Figure 6.7: The comparison of Mango’s MetaTuner for combined classifier selection and hyper-

parameter optimization problem with other libraries. The evaluation uses five different classifiers

(Xgboost, k-nearest neighbor, Support Vector Machines, decision tree, and neural network). Sub-

figure (a) is for the Breast cancer dataset, sub-figure (b) the Iris plants dataset, and sub-figure (c)

the Wine recognition dataset. Mango performs better than Hyperopt and SMAC and is competitive

with Optuna.

137

Table 6.1: Wall clock time (sec) taken by optimizers to sample next evaluation in sequential,

parallel, and CASH settings.

Optimizer (Surrogate) Sequential Parallel CASH

Hyperopt (TPE) 0.001±0.005 na 0.02±0.001

Optuna (TPE) 0.07±0.035 0.02±0.006 0.02±0.001

Mango (GP) 0.16±0.008 0.12±0.021 0.11±0.002

GPyOpt (GP) 0.37±0.051 1.76±0.223 na

SMAC (Random forest) 0.70±0.046 na 0.94±0.037

6.4.2 Case Study: Bug Hunting in Design Verification of Integrated Circuits

The goal of design verification of integrated circuits (ICs) is to test the functionality correctness by

generating input signals and evaluating the resulting output against the expected values. Modern

ICs may contain billions of devices, so manual design verification is no longer feasible to verify

all possible functionality. Standard practice in design verification is to generate the test signal can-

didates using constrained-random stimulus [Meh18]. The random input generation is controlled to

allow a rich and diverse set covering the desired functionality. These inputs are simulated and mon-

itored for bugs in the design. The bugs are then analyzed, fixed, and the entire process is repeated

to verify the updated design. The input space for design verification is astronomically large, using

a lot of computing using the random search. It is evident from the fact that the verification process

accounts for a large fraction (50 %) of the total compute budget during development [Meh18].

At Arm, we are using ML to increase design verification efficiency. ML models are trained to

classify test candidates likely to find bugs. The test candidates are then passed through the ML

filter to select the tests with a high probability of failure. This process, called bug hunting ML

flow, has been deployed in production and has been shown to increase the efficiency, measured as

compute cycles used to find the same number of bugs by 40 %. The overall workflow is shown

in Figure 6.1. The bug hunting workflow requires ML models to be frequently re-trained as the

138

design is updated or the test bench that generates the test candidates is modified. We also prefer

training ML classifiers on the entire dataset to avoid partial training errors when comparing the

hyperparameters. Overall our goal is to ensure that the compute budget for training ML models

does not grow and eat into the gains made in the verification process. Hence our inclination for

Bayesian optimization to reduce training iterations. Besides, we required the following features in

the tuning library:

Deployment dependencies: The bug hunting workflow is implemented on a computing cluster us-

ing Dask distributed framework. Therefore, ideally, the hyperparameter tuning library should have

the capability of being integrated with Dask without significant external dependencies. Further-

more, the library’s compatibility with Scikit-learn’s estimator interface would ease the integration

due to the existing usage of a similar interface.

Runtime failures: Due to a cluster deployment, it is required that the library should expose ab-

stractions to discarding the failed evaluations due to failed jobs, communication issues, or incorrect

parameter values. This is critical to reducing the manual maintenance/debugging time in deploy-

ment.

CASH Problem Multiple ML classifiers are re-trained every time the training event is triggered,

and the best model is chosen based on a custom metric.

The RandomizedSearchCV from Dask-ML partially supported these features and was used in

the past ML production pipeline. However, the key missing features were efficient search and

CASH. Mango provided all the required features with flexible, lightweight architecture, allowing

scheduling on Dask without additional dependencies. Mango was integrated into the production

ML pipeline to tune the ML models used for Arm’s ICs designs’ verification process. An extensive

evaluation using Mango on six proprietary design verification benchmark datasets (3 test benches

for 2 different designs) in comparison to the RandomizedSearchCV from Dask-ML showed that

Mango reduces the model training iterations by an average of 45% across all experiments, with

the range being 23% - 69%.

139

Figure 6.8: Workflow of the AutoML framework using Mango for hyperparameter tuning on the

Kubernetes (K8s) cluster.

6.4.3 Case Study: AutoML Framework

At Arm, an AutoML platform was developed to provide a simple interface for non-data scientists

to train and deploy ML models. The platform is deployed on a Kubernetes cluster. The AutoML

framework uses the Kubernetes Jobs API to orchestrate distributed hyperparameter tuning. The

hindrances in adopting Katib and Polyaxon hyperparameter tuning frameworks built on top of

Kubernetes is their dependencies on components like API server, database, and persistent storage

volumes increasing the maintenance and development overhead substantially. Mango provided a

lightweight and robust alternative with efficient search algorithms.

Figure 6.8 shows the process flow of AutoML platform. The process is initiated by a POST

request to the RESTful API server with the training task’s configuration data. The configuration

140

data includes the dataset reference from S3, training type (classification, forecasting, regression),

target column, performance metric, etc. The API server authenticates the request, fetches the rel-

evant metadata from the database, and starts a master AutoML process using the Kubernetes Jobs

API (Step 2). The master AutoML process is responsible for orchestrating the training task and

invoking Mango for hyperparameter tuning. Mango’s flexible scheduler interface is used to create

parallel ML training tasks using the Kubernetes Jobs API (Step 3). Once tuning is complete, the

master AutoML process saves the best model deployed as a Docker image in a container registry

(Step 4). The pseudo-code of Mango used by the AutoML framework is shown in Figure 6.3. We

use a timeout and return the partial results to make progress on the search.

6.4.4 Case Study: Network Architecture Search for TinyML Platforms

Modern CPS/IoT applications are bringing ML classifiers to microcontroller class devices. These

devices, dubbed TinyML devices, have stringent hardware constraints. As a result, the neural

architecture search (NAS) needs to be optimized by target hardware specifications [FAM19] to

balance accuracy and efficiency via hardware-aware NAS.

We show the use case of Mango to model the search for limited flash and RAM requirements.

The search space Ω consists of neural network weights w, hyperparameters θ , network structure

denoted as a directed acyclic graph (DAG) g with edges E and vertices V representing activation

maps and common ML operations v (e.g., convolution, batch normalization, pooling, etc.) respec-

tively, which act on V . The goal is to find a neural network that maximizes the hardware SRAM

and flash usage within the device capabilities while minimizing the error metric.

fopt = λ1 ferror(Ω)+λ2 fflash(Ω)+λ3 fSRAM(Ω) (6.1)

where

ferror(Ω) = Ltest(Ω),Ω = {{V,E},w,θ ,v} (6.2)

141

(a) (b)

(c) (d)
Figure 6.9: Performance of Mango for hardware-aware NAS for OxIOD and RoNIN datasets.

Subgraphs (a) and (b) illustrate how Mango maximizes resource usage with looser compute and

memory constraints to improve error metrics for three different hardware models. Subgraph (c)

shows the difference in model size and error metric with and without hardware-in-the-loop (HIL)

for the RoNIN dataset on three different hardware models. Subgraph (d) shows the relation be-

tween FLOPS and latency for the RoNIN dataset and the difference in error metric with and without

HIL.

142

fflash(Ω) =

− ||hFB(w,{V,E})||0

flashmax
∨−HIL information

flashmax

∞, fflash(Ω)> flashmax

(6.3)

fSRAM(Ω) =

−maxl∈[1,L]{||xl ||0+||al ||0}

SRAMmax
∨−HIL information

SRAMmax

∞, fSRAM(Ω)> SRAMmax

(6.4)

a = w∨ y, y =
K

∑
k=1

vkgk(x,wk)

Error metric (e.g. RMSE or accuracy) serves as a proxy for the error characteristics ferror(Ω) of

the model candidate. When real hardware is absent, we use the size of the flatbuffer model schema

hFB(·) [DDJ21] as a proxy for flash usage. Moreover, we use the standard RAM usage model as a

proxy for SRAM usage fSRAM(Ω), with intermediate layer-wise activation maps and tensors being

stored in SRAM [FAM19]. When hardware-in-the-loop (HIL) is available, we obtain the SRAM

and flash parameters directly from the target compiler and real-time operating system (RTOS). All

hardware parameters are normalized by device capacity or target metrics.

Evaluation We evaluate our NAS formulation on three ARM Cortex-M microcontrollers with

different compute and memory constraints. The task is to learn the velocity regression on the

Oxford Inertial Odometry (OxIOD) [CZL20] and RoNIN datasets [HYF20] using a temporal con-

volutional network (TCN) having the parameter search space definition available here [Res21].

The performance of a classifier is measured by average test root-mean-square error (RMSE). Fig-

ure 6.9 illustrates the performance of Mango in finding optimal TCN networks on the two datasets.

From Figure 6.9a and Figure 6.9b, it is evident that Mango attempts to exploit the full device

capabilities within the resource constraints to minimize the error metric rather than choosing the

smallest model every time. Thus, as compute capability improves, the network size for the target

hardware also increases. In addition, we compare the performance between using HIL and using

proxies to model device constraints and error metric in Figure 6.9c and Figure 6.9d. We observe

that there is a constant offset between HIL and proxies in SRAM usage, stemming from model

runtime interpreter and RTOS overhead on target hardware. However, the error metric can be opti-

143

mized further through HIL than proxies as compute constraints relax. The evaluation of latency in

Figure 6.9d shows latency is proportional to FLOPS, thereby FLOPS servers a good latency proxy

for microcontroller class devices.

6.5 Discussion

We presented the limitations of existing hyperparameter tuning frameworks hindering their adop-

tion in production. Mango, a black-box optimization library with flexible architecture and state-

of-the-art algorithms, was designed to address these limitations. Mango is evaluated on a set of

functions and classifier tuning tasks to benchmark its superior performance. Finally, case studies

are examined to highlight the adoption of Mango in production ML pipelines at Arm.

144

CHAPTER 7

Discussion and Future Work

The integration of machine learning components in CPS applications faces challenges at each stage

of sense, infer/decide and actuate. We looked at the challenges of sensor data misalignment due to

timestamp errors, training optimal model for inferences, and handling end-to-end delay variations

during actuation. The final decision-making stage can have multiple steps, which are often difficult

to optimize jointly. To address this, we explored the design of end-to-end controllers using deep

reinforcement learning. To train optimal models, we introduced a new hyperparameter tuning li-

brary. Each of our presented works looks at bottlenecks at different stages of CPS pipelines, which

can be extended further in many ways. Here, we discuss some of the future possible extensions.

7.1 Extending Timing Analysis

A unified timing system that provides synchronization solutions across cloud-to-edge via various

complementary mechanisms is needed for modern distributed applications. We quantified the pe-

ripheral delays across smartphones. This can be extended across the different peripheral stacks of

other edge devices of an entire distributed ecosystem of CPS, such as smartwatches, edge micro-

controllers, etc. This will enable multiple devices and peripherals to synchronize, thus accurately

providing a true shared notion of time across varying hardware platforms, vendors, smartphones,

and other wireless and embedded devices.

An extended analysis of the introduced time-shifting data augmentation technique character-

izing its limitations and providing recommended approaches for various time-series domains can

145

benefit immense CPS applications. Factors including dataset size and expected timing errors be-

tween training and deployment will likely play a key role in determining optimal augmentation.

7.2 A Vision of Timing Stack for Deep Reinforcement Learning

The introduced approach of including sensed timing state of the CPS system during deep-RL

training showed a new way to rethink time-awareness in policies. These policies showed superior

performance. But a major assumption in this analysis is that the policies can measure timing

delays at runtime. Our research showed that the runtime timing measurements could account for

jitters and noises. However, a proper timing stack is needed for CPS applications to convey to

the application the expected sensing delays, execution latencies, and actuation delays. This is also

important for CPS applications deployed across the network where the transfer of state and action

may have to consider many delay variations depending on the network characteristics.

Most of the deep-RL training is done using a simulator. The timing delays in the simulator

depend on the compute available and developer implementation, whereas in real-world deploy-

ments, time is a fundamental fabric of the system evolution. In a real deployment, the time also

varies with hardware and deployment-specific characteristics like communication network, obser-

vation complexity, inference policy, etc. Bridging this gap between simulator time and real-world

time is very important, given our analysis shows policy failures when time is not considered. We

envision a very accurate timing stack to match different delays between training and deployment

expectations for the future success of deep-RL.

7.3 Future Training Environments for CPS Applications

We consider the current success in deep-RL as the first generation of end-to-end controllers, which

are easy to develop using past simulation efforts from the research community for Attari games

and simplified robots (supported in Pybullet/Mujoco). The superior performance shown by these

146

end-to-end controllers offers a considerable promise for the complex control pipelines of CPS

applications, as we showed for pan-tilt-zoom cameras. However, a significant hurdle in this direc-

tion is the lack of appropriate training environments in rich CPS settings to simulate multimodal

sensing, real-world characters, their interactions, communication paradigms, and abstractions to

integrate reinforcement learning algorithms.

Significant efforts are needed to develop rich training environments for broad adoption of the

end-to-end controller with superior performance and low compute overheads. These training en-

vironments must be designed carefully to mimic the real deployment settings to bridge the gap

between simulation and the real world.

7.4 Limitations of End-to-end Control

The end-to-end control has its limitations in explaining the output. Multi-stage control offers an

output of intermediate steps which are often human-understandable and interpretable. For exam-

ple, if a multi-stage pipeline in autonomous pan-tilt-zoom cameras is failing, we can analyze if the

objects are detected, the tracking accuracy, and the controller separately. However, this interme-

diate analysis is not possible directly in an end-to-end control. We need new ways to explain the

end-to-end control from the CPS perspective. What will explanation looks like is an essential topic

of research itself.

Also, end-to-end control using deep-RL faces the challenge of modifying the tracking goal.

This may require training a new policy from scratch. Finetuning or transfer learning can be ex-

plored as an alternative method to using pre-trained policies.

7.5 Possible Extension in Mango

There are a few features that can enhance the applicability of Mango. The implemented MetaTuner

algorithm allows Mango to solve the CASH problem, which is an instance of the conditional

147

search. Naively handling general purpose conditional spaces using meta-variables in Gaussian

Process is shown to under-perform [LDG17]. A new form of the conditional search can be realized

by modifying the distance functions in the Gaussian Process kernel function [LDG17].

148

CHAPTER 8

Conclusion

Adopting learning-enabled components in CPS systems opens up venues to realize future appli-

cations working directly with rich multimodal datasets. We looked at the challenges of accurate

timestamps of sensor data, variable delays during actuation, optimal classifier search for inference,

and creation of training environments. When machine learning classifiers are part of a complex

CPS application, the overall data flow from multiple stages impacts the classifier performance,

which in turn decides the application’s success or failure. Hence, when designing a new CPS ap-

plication, we need to carefully analyze each stage and characterize the impact of the uncertainties

and variations on the classifier’s performance. The superior performance of machine learning clas-

sifiers cannot be seen in isolation from the sensing and actuation stages. The presence of timing

uncertainties in sensor data can cripple the application’s performance. The delay variations in actu-

ation can result in complete task failure. We advocate that future CPS applications need to design

approaches to characterize runtime uncertainties and variations carefully.

The different steps in conventional CPS control are being replaced by end-to-end control,

among which deep-RL offers a promising alternative. However, deep-RL policies are very data-

hungry. Thus to adopt such paradigms for real applications, rich training environments must be

designed first. Often these training environments are created using simulators. Using simulators,

we see the gap between simulation and reality decides the performance of end-to-end controllers in

the real world. Finally, selecting an optimal classifier for the inference stage is challenging due to

the scale of choices available and their hyperparameters. Accurate hyperparameter choice, along

with the imposition of memory/compute/latency deployment constraints, is the key to selecting the

149

best performing classifiers for ubiquitous CPS devices such as microcontrollers.

150

CHAPTER 9

Appendix

9.1 Delay Measurements on Different Hardware Platforms

Figure 9.1a shows the delay measurements of the navigational policy using the Deepracer robotic

car. The execution latency (∆τη) is dependent on the choice of the hardware resource at runtime

(GPU vs. CPU). Deepracer camera supports a sampling rate of 15Hz and 30Hz. The sampling

interval (∆τσ) is 20-45 ms in the 30Hz frame rate setting and 62-71ms in the 15Hz setting, re-

spectively. We also measure the execution latency when the complexity of the neural network is

increased by adding more CNN layers and in the presence of other inference tasks. The complex-

ity of the neural network and the required compute requirements vary with additional CNN layers

that can happen when an application selects a more complex network to achieve better inference

accuracy. The case for computing in the presence of other inference tasks can show up in two

ways: (i) multiple models need to run for the same robotic application; (ii) an edge server acting

like a machine learning model server for several applications.

We analyze the execution latency of shallow neural networks on a low power microcontroller

Table 9.1: Execution latency (∆τη) on GAP8 increases with the increase in the number of CNN

layers in the neural network.

Num. of CNN layers 2 3 4

Network parameters 54k 157k 267k

Execution Latency 7.5ms 19.75ms 55.85ms

151

(a) Execution latency (∆τη) and sampling

interval (∆τσ) measurements on DeepRacer

robotic car.

(b) Variation of the execution latency (∆τη) on In-

tel neural compute with parallel inferencing tasks.

Figure 9.1: Delay measurements on deepracer and Intel neural compute stick. The mean is shown

in green. The back ’x’ marker shows the median of IQR.

device (GAP8) and edge accelerator (Intel neural compute stick 2). GAP8 is a milli-watt range

microcontroller device having a dedicated CNN accelerator enabling battery-operated edge devices

with rich analytics capabilities. We analyze the execution latency of the neural network trained

using the MNIST dataset on GAP8 as the number of CNN layers is increased from 2 to 4. The

network consists of the CNN layers followed by an output layer. Table 9.1 shows the increase in

inferencing latency from 7.5ms to 55.90ms on increasing CNN layers from 2 to 4. Average results

for 10 runs are reported. The variations across individual runs are very small (few microseconds).

Intel neural compute stick 2 (NCS2) is a deep learning processor on a USB stick that provides

faster neural network inference capabilities to Raspberry Pi like edge devices. We analyze the

variation in execution latency of a neural network with 2 CNN layers and an output layer trained

using the MNIST dataset in the presence of other inference tasks on NCS2. We simulation parallel

inference tasks by hosting the same neural network multiple times, all of which are running paral-

lel. Figure 9.1b shows the results. As seen, when more parallel tasks are using the same hardware

resource, in this case, the NCS2, the execution latency can increase up to 10x times.

152

(a) (b)

(c) (d)

Figure 9.2: Image augmentations applied to enable successful Sim2Real transfer. (a) Original

Image, (b) Random Shadows, (c) Random Shadow + Sharpen, (d) Random Shadow + Sharpen +

Random noise

153

9.2 Additional Details on HalfCheetah and Ant Tasks

We vary the state transition delays (∆τσ and ∆τη) in the simulator when training the policies for

HalfCheetah and Ant Tasks. For HalfCheetah and Ant Tasks, PyBullet simulator evolves physics at

a fixed time (SimTime) of 4.12 ms for each action. When the agent acts, the simulation is advanced

by applying the past action for ∆τη

SimTime
simulation steps, and the most recent action for ∆τσ−∆τη

SimTime

simulation steps.

State space. The default state of HalfCheetahBulletEnv-v0 and AntBulletEnv-v0 is used for domain

randomization policies. To train a policy with time in the state, ∆τσ and ∆τη are directly added as

another state thereby increasing the input dimensions by 2.

Actions. The actions available in default environments for HalfCheetahBulletEnv-v0 and AntBulletEnv-

v0 is used.

Reward function. For every agent’s action, the simulation is advanced for multiple simulation

steps depending on the ∆τη and ∆τσ . This results in multiple reward calculation for each simulation

step. For every agent’s action, we take the average of the rewards from all simulation steps. This

ensures the reward is on the same scale as the default environments.

Hyperparameters. For training, we use the default hyperparameters from OpenAI Baselines PPO

implementation other than making the following changes. We used a learning rate of 3∗10−4 and

10,000 steps between policy update.

9.3 Additional Details on Autonomous Vehicle Task

State space. The images (160x120) are directly used to train the domain randomization (DR)

policy. For time in state (TS) policy, the sampling interval and execution latency are fused with

images using the approach of multimodal fusion.

Image augmentations. We apply augmentations to the image by modifying its brightness ran-

domly, adding random shadows, sharpen and random noises during the training of both DR and

154

TS policies so as to enable successful transfer to the real track in the presence of sensor noises.

Without image augmentations, we observe an inferior Sim2Real transfer. Figure 9.2 visualizes the

image augmentations.

Actions. The action space of the agent consists of speed and steering angle. The agent is given

a choice of 15 actions which consists of 3 different speeds (1.2m/s,1.5m/s, 1.8m/s) and 5 steering

angels which are (-30,-15,0,15,30) in degrees.

Reward function. The reward signal is calculated based on the distance of the car from the

centerline of the track. The highest reward of 1.1 is given when the center of the car matches the

centerline, which is scaled to zero when the distance from the centerline makes the car close to

offtrack. The agent is rewarded more for high-speed actions. A negative reward of -30 is given to

the agent when the car goes off the track.

Hyperparameters. We use the default hyperparameters from OpenAI Baselines PPO implemen-

tation other than making the following changes. We fixed 7,000 Steps between policy update and

an entropy coefficient of 0.001.

155

9.4 Learning Curves of Worst-Case Delay Policy

Figure 9.3: The learning curves of Time-in-state and Fixed latency (worst case = 5x4.12 ms) for

HalfCheetah task. Fixed latency converges faster. Time-in-state is trained across a vast range of

delay variations, and as seen in Figure 4.11 it outperforms worst case policies across a range of

delay variations.

156

REFERENCES

[ABC20] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz,
Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, et al. “Learning dexterous in-hand manipulation.” The International Journal of
Robotics Research, 39(1):3–20, 2020.

[AM17] Roy J Adams and Benjamin M Marlin. “Learning time series detection models from
temporally imprecise labels.” Proceedings of machine learning research, 54:157,
2017.

[AM18] Roy Adams and Benjamin M Marlin. “Learning Time Series Segmentation Models
from Temporally Imprecise Labels.” In UAI, pp. 135–144, 2018.

[Ard22] Arducam. “Embedded vision for raspberry pi, jetson, Arduino and more.”, Apr 2022.

[AS17] Fatima M Anwar and Mani B Srivastava. “Precision time protocol over LR-WPAN
and 6LoWPAN.” In 2017 IEEE International Symposium on Precision Clock Syn-
chronization for Measurement, Control, and Communication (ISPCS), pp. 1–6. IEEE,
2017.

[ASY19] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
“Optuna: A next-generation hyperparameter optimization framework.” In Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2623–2631, 2019.

[Aut] The Dask ML Authors. “Dask-ML.” url="https://ml.dask.org/",. Ac-
cessed: 2021-1-29.

[aut16a] The GPyOpt authors. “GPyOpt: A Bayesian Optimization framework in python.”
http://github.com/SheffieldML/GPyOpt, 2016.

[aut16b] The Skopt authors. “Skopt: scikit-optimize.” https://scikit-optimize.
github.io/, 2016.

[AWS22] Saad Abbasi, Alexander Wong, and Mohammad Javad Shafiee. “Maple: Microproces-
sor a priori for latency estimation.” In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2747–2756, 2022.

[Bai93] Leemon C Baird III. “Advantage updating.” Technical report, WRIGHT LAB
WRIGHT-PATTERSON AFB OH, 1993.

[Bal21] Michael Balaban. “Deep Learning Hardware Deep Dive – RTX 3090, RTX 3080, and
RTX 3070.”, Aug 2021.

157

 url = "https://ml.dask.org/",
http://github.com/SheffieldML/GPyOpt
https://scikit-optimize.github.io/
https://scikit-optimize.github.io/

[BBB11] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. “Algorithms for
hyper-parameter optimization.” Advances in neural information processing systems,
24:2546–2554, 2011.

[BCP16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. “Openai gym.” arXiv preprint arXiv:1606.01540,
2016.

[Ben03] Samy Bengio. “An asynchronous hidden markov model for audio-visual speech recog-
nition.” In Advances in Neural Information Processing Systems, pp. 1237–1244, 2003.

[Beq03] B Wayne Bequette. Process control: modeling, design, and simulation. Prentice Hall
Professional, 2003.

[BGO16] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. “Simple
online and realtime tracking.” In 2016 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 3464–3468, 2016.

[BMG19] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet
Khare, Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, et al. “DeepRacer: Edu-
cational Autonomous Racing Platform for Experimentation with Sim2Real Reinforce-
ment Learning.” arXiv preprint arXiv:1911.01562, 2019.

[BMG20] Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet
Khare, Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, et al. “Deepracer:
Autonomous racing platform for experimentation with sim2real reinforcement learn-
ing.” In 2020 IEEE International Conference on Robotics and Automation (ICRA), pp.
2746–2754. IEEE, 2020.

[BVS07] Keni Bernardin, Florian Van De Camp, and Rainer Stiefelhagen. “Automatic person
detection and tracking using fuzzy controlled active cameras.” In 2007 IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2007.

[BXD20] Niccolò Bisagno, Alberto Xamin, Francesco De Natale, Nicola Conci, and Bern-
hard Rinner. “Dynamic Camera Reconfiguration with Reinforcement Learning and
Stochastic Methods for Crowd Surveillance.” Sensors, 20(17):4691, 2020.

[BYB09] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. “Visual tracking with online
multiple instance learning.” In 2009 IEEE Conference on computer vision and Pattern
Recognition, pp. 983–990. IEEE, 2009.

[BYC13] James Bergstra, Dan Yamins, and David D Cox. “Hyperopt: A python library for
optimizing the hyperparameters of machine learning algorithms.” In Proceedings of
the 12th Python in science conference, pp. 13–20. Citeseer, 2013.

158

[CB16] Erwin Coumans and Yunfei Bai. “Pybullet, a python module for physics simulation
for games, robotics and machine learning.” 2016.

[CB19] Erwin Coumans and Yunfei Bai. “PyBullet, a Python module for physics simulation
for games, robotics and machine learning.” http://pybullet.org, 2016–2019.

[CLK11] Shengyong Chen, Youfu Li, and Ngai Ming Kwok. “Active vision in robotic systems:
A survey of recent developments.” The International Journal of Robotics Research,
30(11):1343–1377, 2011.

[CRM00] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. “Real-time tracking of non-
rigid objects using mean shift.” In Proceedings IEEE Conference on Computer Vision
and Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 2, pp. 142–149.
IEEE, 2000.

[CSB15] Gengjie Chen, Pierre-Luc St-Charles, Wassim Bouachir, Guillaume-Alexandre
Bilodeau, and Robert Bergevin. “Reproducible evaluation of pan-tilt-zoom tracking.”
In 2015 IEEE International Conference on Image Processing (ICIP), pp. 2055–2059.
IEEE, 2015.

[CSH19] Sandeep Chinchali, Apoorva Sharma, James Harrison, Amine Elhafsi, Daniel Kang,
Evgenya Pergament, Eyal Cidon, Sachin Katti, and Marco Pavone. “Network Offload-
ing Policies for Cloud Robotics: A Learning-Based Approach.” In Proceedings of
Robotics: Science and Systems, FreiburgimBreisgau, Germany, June 2019.

[CXL20] Baiming Chen, Mengdi Xu, Liang Li, and Ding Zhao. “Delay-Aware Model-Based
Reinforcement Learning for Continuous Control.” arXiv preprint arXiv:2005.05440,
2020.

[CZH18] Han Cai, Ligeng Zhu, and Song Han. “Proxylessnas: Direct neural architecture search
on target task and hardware.” arXiv preprint arXiv:1812.00332, 2018.

[CZL20] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham, and
Niki Trigoni. “Deep-Learning-based Pedestrian Inertial Navigation: Methods, Data
Set, and On-Device Inference.” IEEE Internet of Things Journal, 7(5):4431–4441,
2020.

[DCA20] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and
Nicholas Lane. “Brp-nas: Prediction-based nas using gcns.” Advances in Neural
Information Processing Systems, 33:10480–10490, 2020.

[DDJ21] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries, Jian Li, Nick
Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al. “TensorFlow Lite Micro:
Embedded Machine Learning for TinyML Systems.” Proceedings of Machine Learn-
ing and Systems, 3, 2021.

159

http://pybullet.org

[DKB14] Thomas Desautels, Andreas Krause, and Joel W Burdick. “Parallelizing exploration-
exploitation tradeoffs in Gaussian process bandit optimization.” The Journal of Ma-
chine Learning Research, 15(1):3873–3923, 2014.

[DL00] Stéphane Dupont and Juergen Luettin. “Audio-visual speech modeling for continuous
speech recognition.” IEEE transactions on multimedia, 2(3):141–151, 2000.

[DMC16] Ian Dewancker, Michael McCourt, Scott Clark, Patrick Hayes, Alexandra Johnson,
and George Ke. “A strategy for ranking optimization methods using multiple criteria.”
In Workshop on Automatic Machine Learning, pp. 11–20. PMLR, 2016.

[DP12] Didier Dubois and Henri Prade. Possibility theory: an approach to computerized pro-
cessing of uncertainty. Springer Science & Business Media, 2012.

[DR17] Sandeep D’souza and Ragunathan Raj Rajkumar. “Time-based coordination in geo-
distributed cyber-physical systems.” In 9th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 17), 2017.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. “Fine-grained network time syn-
chronization using reference broadcasts.” ACM SIGOPS Operating Systems Review,
36(SI):147–163, 2002.

[EL02] John Eidson and Kang Lee. “IEEE 1588 standard for a precision clock synchronization
protocol for networked measurement and control systems.” In Sensors for Industry
Conference, 2002. 2nd ISA/IEEE, pp. 98–105. Ieee, 2002.

[ESS15] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller, and
Wolfram Burgard. “Multimodal deep learning for robust RGB-D object recognition.”
In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 681–687. IEEE, 2015.

[FAM19] Igor Fedorov, Ryan P Adams, Matthew Mattina, and Paul N Whatmough. “SpArSe:
Sparse Architecture Search for CNNs on Resource-Constrained Microcontrollers.”
Advances in Neural Information Processing Systems, 32, 2019.

[FBA16] Lex Fridman, Daniel E Brown, William Angell, Irman Abdić, Bryan Reimer, and
Hae Young Noh. “Automated synchronization of driving data using vibration and
steering events.” Pattern Recognition Letters, 75:9–15, 2016.

[FKE15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. “Efficient and robust automated machine learning.” In Ad-
vances in neural information processing systems, pp. 2962–2970, 2015.

[FRC18] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent
Rotenberg, and Luca Benini. “GAP-8: A RISC-V SoC for AI at the Edge of the
IoT.” In 2018 IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 1–4. IEEE, 2018.

160

[GDH16] Javier González, Zhenwen Dai, Philipp Hennig, and Neil Lawrence. “Batch bayesian
optimization via local penalization.” In Artificial intelligence and statistics, pp. 648–
657, 2016.

[GE01] Lewis Girod and Deborah Estrin. “Robust range estimation using acoustic and mul-
timodal sensing.” In Proceedings 2001 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next
Millennium (Cat. No. 01CH37180), volume 3, pp. 1312–1320. IEEE, 2001.

[GH20] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. “Dealing with categor-
ical and integer-valued variables in bayesian optimization with gaussian processes.”
Neurocomputing, 380:20–35, 2020.

[GHY22] Wei Gao, Qinghao Hu, Zhisheng Ye, Peng Sun, Xiaolin Wang, Yingwei Luo, Tianwei
Zhang, and Yonggang Wen. “Deep Learning Workload Scheduling in GPU Datacen-
ters: Taxonomy, Challenges and Vision.” arXiv preprint arXiv:2205.11913, 2022.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B Srivastava. “Timing-sync protocol for
sensor networks.” In Proceedings of the 1st international conference on Embedded
networked sensor systems, pp. 138–149. ACM, 2003.

[Goo19] Google. “Android Sensors.” https://source.android.com/devices/
sensors/index.html, 2019. Accessed: 2019-03-26.

[GP18] Matthew Groves and Edward O Pyzer-Knapp. “Efficient and Scalable Batch Bayesian
Optimization Using K-Means.” arXiv preprint arXiv:1806.01159, 2018.

[Grz17] Marek Grzes. “Reward shaping in episodic reinforcement learning.” 2017.

[GSM17] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D Sculley. “Google vizier: A service for black-box optimization.” In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 1487–1495, 2017.

[GVH14] Oguzhan Gencoglu, Tuomas Virtanen, and Heikki Huttunen. “Recognition of acous-
tic events using deep neural networks.” In 2014 22nd European Signal Processing
Conference (EUSIPCO), pp. 506–510. IEEE, 2014.

[Hal13] Nicolas Halbwachs. Synchronous programming of reactive systems, volume 215.
Springer Science & Business Media, 2013.

[HCM14] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. “High-speed track-
ing with kernelized correlation filters.” IEEE transactions on pattern analysis and
machine intelligence, 37(3):583–596, 2014.

161

https://source.android.com/devices/sensors /index.html
https://source.android.com/devices/sensors /index.html

[HDV17] Danijar Hafner, James Davidson, and Vincent Vanhoucke. “Tensorflow agents: Effi-
cient batched reinforcement learning in tensorflow.” arXiv preprint arXiv:1709.02878,
2017.

[HG19] Tyler Highlander and John Gallagher. “Attention Neural Networks for Pan-Tilt-Zoom
Control with Active Hand-Off.” In 2019 7th International Conference on Robot Intel-
ligence Technology and Applications (RiTA), pp. 130–135. IEEE, 2019.

[HHL11] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Sequential model-based op-
timization for general algorithm configuration.” In International conference on learn-
ing and intelligent optimization, pp. 507–523. Springer, 2011.

[HHS17] Syed Monowar Hossain, Timothy Hnat, Nazir Saleheen, Nusrat Jahan Nasrin, Joseph
Noor, Bo-Jhang Ho, Tyson Condie, Mani Srivastava, and Santosh Kumar. “mCere-
brum: A Mobile Sensing Software Platform for Development and Validation of Dig-
ital Biomarkers and Interventions.” In Proceedings of the 15th ACM Conference on
Embedded Network Sensor Systems, p. 7. ACM, 2017.

[HLD19] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis,
Vladlen Koltun, and Marco Hutter. “Learning agile and dynamic motor skills for
legged robots.” Science Robotics, 4(26):eaau5872, 2019.

[HNX07] Joo P Hespanha, Payam Naghshtabrizi, and Yonggang Xu. “A survey of recent results
in networked control systems.” Proceedings of the IEEE, 95(1):138–162, 2007.

[HPL21] Charles Hamesse, Benoı̂t Pairet, Rihab Lahouli, Timothée Fréville, and Rob Hael-
terman. “Simulation of Pan-Tilt-Zoom Tracking for Augmented Reality Air Traffic
Control.” In 2021 International Conference on 3D Immersion (IC3D), pp. 1–5. IEEE,
2021.

[HYF20] Sachini Herath, Hang Yan, and Yasutaka Furukawa. “RoNIN: Robust Neural Inertial
Navigation in the Wild: Benchmark, Evaluations, & New Methods.” In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3146–3152. IEEE,
2020.

[Hyp19] Hyperopt. “hyperopt-mongo-worker.” https://hyperopt.github.io/
hyperopt/, 2019. Accessed: 2021-1-29.

[HZL17] Samer Hanoun, James Zhang, Vu Le, Burhan Khan, Michael Johnstone, Michael Field-
ing, Asim Bhatti, Doug Creighton, and Saeid Nahavandi. “A framework for designing
active Pan-Tilt-Zoom (PTZ) camera networks for surveillance applications.” In 2017
Annual IEEE International Systems Conference (SysCon), pp. 1–6. IEEE, 2017.

[Inc18] Superpowered Inc. “Android Audio’s 10 Millisecond Problem: The An-
droid Audio Path Latency Explainer.” https://superpowered.com/
androidaudiopathlatency, 2018. Accessed: 2019-03-26.

162

https://hyperopt.github.io/hyperopt/
https://hyperopt.github.io/hyperopt/
https://superpowered.com/androidaudiopathlatency
https://superpowered.com/androidaudiopathlatency

[Int] Intel. “Intel Neural Compute Stick 2 Product Specifications.”.

[JAG17] Rodolphe Jenatton, Cedric Archambeau, Javier González, and Matthias Seeger.
“Bayesian optimization with tree-structured dependencies.” In International Confer-
ence on Machine Learning, pp. 1655–1664. PMLR, 2017.

[JLM15] Kasthuri Jayarajah, Youngki Lee, Archan Misra, and Rajesh Krishna Balan. “Need
accurate user behaviour?: pay attention to groups!” In Proceedings of the 2015 ACM
international joint conference on pervasive and ubiquitous computing, pp. 855–866.
ACM, 2015.

[JPG13] Prem Prakash Jayaraman, Charith Perera, Dimitrios Georgakopoulos, and Arkady Za-
slavsky. “Efficient opportunistic sensing using mobile collaborative platform mosden.”
In 9th IEEE International Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing, pp. 77–86. IEEE, 2013.

[JT16] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic best arm identification and
hyperparameter optimization.” In Artificial Intelligence and Statistics, pp. 240–248,
2016.

[Kan11] Salil S Kanhere. “Participatory sensing: Crowdsourcing data from mobile smart-
phones in urban spaces.” In 2011 IEEE 12th International Conference on Mobile Data
Management, volume 2, pp. 3–6. IEEE, 2011.

[KB13] Fahim Kawsar and AJ Brush. “Home computing unplugged: why, where and when
people use different connected devices at home.” In Proceedings of the 2013 ACM
international joint conference on Pervasive and ubiquitous computing, pp. 627–636.
ACM, 2013.

[KBM15] Aggelos K Katsaggelos, Sara Bahaadini, and Rafael Molina. “Audiovisual fusion:
Challenges and new approaches.” Proceedings of the IEEE, 103(9):1635–1653, 2015.

[KE03] Konstantinos V Katsikopoulos and Sascha E Engelbrecht. “Markov decision processes
with delays and asynchronous cost collection.” IEEE transactions on automatic con-
trol, 48(4):568–574, 2003.

[Kha18] J Khari. “AmpMe plans to kill Bluetooth speakers by syncing music be-
tween smartphones.” https://venturebeat.com/2018/07/03/
ampme-plans-to-kill-bluetooth-speakers-by-syncing-music-between-smartphones/,
2018. Accessed: 2019-06-28.

[KKP19] Dongchil Kim, Kyoungman Kim, and Sungjoo Park. “Automatic PTZ camera con-
trol based on deep-Q network in video surveillance system.” In 2019 International
Conference on Electronics, Information, and Communication (ICEIC), pp. 1–3. IEEE,
2019.

163

https://venturebeat.com/2018/07/03/ampme-plans-to-kill-bluetooth-speakers-by-syncing-music-between-smartphones/
https://venturebeat.com/2018/07/03/ampme-plans-to-kill-bluetooth-speakers-by-syncing-music-between-smartphones/

[KMD10] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. “Crossing the reality
gap in evolutionary robotics by promoting transferable controllers.” In Proceedings of
the 12th annual conference on Genetic and evolutionary computation, pp. 119–126,
2010.

[Kyr21] Christos Kyrkou. “C3 Net: end-to-end deep learning for efficient real-time visual
active camera control.” Journal of Real-Time Image Processing, pp. 1–13, 2021.

[KZX11] Matthew Keally, Gang Zhou, Guoliang Xing, Jianxin Wu, and Andrew Pyles. “Pbn:
towards practical activity recognition using smartphone-based body sensor networks.”
In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems,
pp. 246–259. ACM, 2011.

[LDG17] Julien-Charles Lévesque, Audrey Durand, Christian Gagné, and Robert Sabourin.
“Bayesian optimization for conditional hyperparameter spaces.” In 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 286–293. IEEE, 2017.

[LHP15] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with deep rein-
forcement learning.” arXiv preprint arXiv:1509.02971, 2015.

[LJD17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Tal-
walkar. “Hyperband: A novel bandit-based approach to hyperparameter optimization.”
The Journal of Machine Learning Research, 18(1):6765–6816, 2017.

[LLC21] Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. “Hardware-adaptive
efficient latency prediction for nas via meta-learning.” Advances in Neural Information
Processing Systems, 34:27016–27028, 2021.

[LLN18] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and
Ion Stoica. “Tune: A research platform for distributed model selection and training.”
arXiv preprint arXiv:1807.05118, 2018.

[LMC21] Ezequiel López-Rubio, Miguel A Molina-Cabello, Francisco M Castro, Rafael M
Luque-Baena, Manuel J Marı́n-Jiménez, and Nicolás Guil. “Anomalous object de-
tection by active search with PTZ cameras.” Expert Systems with Applications,
181:115150, 2021.

[LMT01] Feng-Li Lian, James Moyne, and Dawn Tilbury. “Time delay modeling and sample
time selection for networked control systems.” In Proceedings of ASME-DSC, vol-
ume 20, pp. 11–16. DCS New York, 2001.

[LPR13] Neal Lathia, Veljko Pejovic, Kiran K Rachuri, Cecilia Mascolo, Mirco Musolesi, and
Peter J Rentfrow. “Smartphones for large-scale behavior change interventions.” IEEE
Pervasive Computing, 12(3):66–73, 2013.

164

[LR90] Rogelio Luck and Asok Ray. “An observer-based compensator for distributed delays.”
Automatica, 26(5):903–908, 1990.

[LRS15a] Patrick Lazik, Niranjini Rajagopal, Oliver Shih, Bruno Sinopoli, and Anthony Rowe.
“ALPS: A bluetooth and ultrasound platform for mapping and localization.” In Pro-
ceedings of the 13th ACM conference on embedded networked sensor systems, pp.
73–84. ACM, 2015.

[LRS15b] Patrick Lazik, Niranjini Rajagopal, Bruno Sinopoli, and Anthony Rowe. “Ultrasonic
time synchronization and ranging on smartphones.” In 21st IEEE Real-Time and Em-
bedded Technology and Applications Symposium, pp. 108–118. IEEE, 2015.

[LSW15] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. “PulseSync: An efficient
and scalable clock synchronization protocol.” IEEE/ACM Transactions on Networking
(TON), 23(3):717–727, 2015.

[LSZ19] Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang.
“End-to-end active object tracking and its real-world deployment via reinforce-
ment learning.” IEEE transactions on pattern analysis and machine intelligence,
42(6):1317–1332, 2019.

[LXS11] Liqun Li, Guoliang Xing, Limin Sun, Wei Huangfu, Ruogu Zhou, and Hongsong Zhu.
“Exploiting FM radio data system for adaptive clock calibration in sensor networks.”
In Proceedings of the 9th international conference on Mobile systems, applications,
and services, pp. 169–182. ACM, 2011.

[MCH19] Artem Molchanov, Tao Chen, Wolfgang Hönig, James A Preiss, Nora Ayanian, and
Gaurav S Sukhatme. “Sim-to-(multi)-real: Transfer of low-level robust control poli-
cies to multiple quadrotors.” arXiv preprint arXiv:1903.04628, 2019.

[MDB16] Sathiya Kumaran Mani, Ramakrishnan Durairajan, Paul Barford, and Joel Sommers.
“Mntp: Enhancing time synchronization for mobile devices.” In Proceedings of the
2016 Internet Measurement Conference, pp. 335–348. ACM, 2016.

[Meh18] Ashok B Mehta. “Constrained Random Verification (CRV).” In ASIC/SoC Functional
Design Verification, pp. 65–74. Springer, 2018.

[MGT11] Aneeq Mahmood, Georg Gaderer, Henning Trsek, Stefan Schwalowsky, and Nikolaus
Kerö. “Towards high accuracy in IEEE 802.11 based clock synchronization using
PTP.” In 2011 IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 13–18. IEEE, 2011.

[MHM16] Abhinav Mehrotra, Robert Hendley, and Mirco Musolesi. “Towards multi-modal an-
ticipatory monitoring of depressive states through the analysis of human-smartphone
interaction.” In Proceedings of the 2016 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing: Adjunct, pp. 1132–1138. ACM, 2016.

165

[Mil91] David L Mills. “Internet time synchronization: the network time protocol.” IEEE
Transactions on communications, 39(10):1482–1493, 1991.

[Mil12] David Mills. “Executive Summary: Computer Network Time Synchronization.”
https://www.eecis.udel.edu/˜mills/exec.html, 2012. Accessed:
2019-03-26.

[MKK18] A Rupam Mahmood, Dmytro Korenkevych, Brent J Komer, and James Bergstra. “Set-
ting up a reinforcement learning task with a real-world robot.” In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 4635–4640.
IEEE, 2018.

[MKS04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. “The flooding time
synchronization protocol.” In Proceedings of the 2nd international conference on Em-
bedded networked sensor systems, pp. 39–49. ACM, 2004.

[MKS15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. “Human-level control through deep reinforcement learning.” Nature,
518(7540):529–533, 2015.

[Mou17] Mourad Mourafiq. “Polyaxon: Cloud native machine learning automation platform.”
Web page, 2017.

[MRF10] Christian Micheloni, Bernhard Rinner, and Gian Luca Foresti. “Video analysis in pan-
tilt-zoom camera networks.” IEEE Signal Processing Magazine, 27(5):78–90, 2010.

[MW22] Daniel Mendoza and Sijin Wang. “Predicting latency of neural network inference.”,
Jul 2022.

[Nil98] Johan Nilsson et al. “Real-time control systems with delays.” 1998.

[NKK11] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y
Ng. “Multimodal deep learning.” In Proceedings of the 28th international conference
on machine learning (ICML-11), pp. 689–696, 2011.

[Noo19] Joseph Noor. “improves system clock accuracy - Gerrit Code Review.”
https://android-review.googlesource.com/c/platform/
frameworks/base/+/1148834, 2019. Accessed: 2019-01-31.

[NRG16] Vu Nguyen, Santu Rana, Sunil K Gupta, Cheng Li, and Svetha Venkatesh. “Budgeted
batch Bayesian optimization.” In 2016 IEEE 16th International Conference on Data
Mining (ICDM), pp. 1107–1112. IEEE, 2016.

[Nvi22] Nvidia Nvidia. “Nvidia multi-instance gpu(mig).”, Jul 2022.

166

https://www.eecis.udel.edu/~mills/exec.html
https://android-review.googlesource.com/c/platform/frameworks/base/+/1148834
https://android-review.googlesource.com/c/platform/frameworks/base/+/1148834

[OSG19] Juan DS Ortega, Mohammed Senoussaoui, Eric Granger, Marco Pedersoli, Patrick
Cardinal, and Alessandro L Koerich. “Multimodal Fusion with Deep Neural Networks
for Audio-Video Emotion Recognition.” arXiv preprint arXiv:1907.03196, 2019.

[PAZ18] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. “Sim-
to-real transfer of robotic control with dynamics randomization.” In 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 1–8. IEEE, 2018.

[PCH12] Thomas Plotz, Chen Chen, Nils Y Hammerla, and Gregory D Abowd. “Auto-
matic Synchronization of Wearable Sensors and Video-Cameras for Ground Truth
Annotation–A Practical Approach.” In 2012 16th International Symposium on Wear-
able Computers, pp. 100–103. IEEE, 2012.

[PL19] Liliana Lo Presti and Marco La Cascia. “Deep Motion Model for Pedestrian Tracking
in 360 Degrees Videos.” In International Conference on Image Analysis and Process-
ing, pp. 36–47. Springer, 2019.

[PMO21] Evgeny Ponomarev, Sergey Matveev, Ivan Oseledets, and Valery Glukhov. “Latency
estimation tool and investigation of neural networks inference on mobile gpu.” Com-
puters, 10(8):104, 2021.

[PVG11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning
in Python.” Journal of Machine Learning Research, 12:2825–2830, 2011.

[Res21] Arm Research. “Parameter search spaces use to evaluate Mango on clas-
sifiers.” https://github.com/ARM-software/mango/blob/master/
benchmarking/Parameter_Spaces_Evaluated.ipynb, 2021.

[RET14] Stefan Rudolph, Sarah Edenhofer, Sven Tomforde, and Jörg Hähner. “Reinforcement
learning for coverage optimization through PTZ camera alignment in highly dynamic
environments.” In Proceedings of the International Conference on Distributed Smart
Cameras, pp. 1–6, 2014.

[RF17] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger.” In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 7263–
7271, 2017.

[RGR09] Anthony Rowe, Vikram Gupta, and Ragunathan Raj Rajkumar. “Low-power clock
synchronization using electromagnetic energy radiating from ac power lines.” In Pro-
ceedings of the 7th ACM Conference on Embedded Networked Sensor Systems, pp.
211–224. ACM, 2009.

167

https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb
https://github.com/ARM-software/mango/blob/master/benchmarking/Parameter_Spaces_Evaluated.ipynb

[RHE19] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
and Noah Dormann. “Stable Baselines3.” https://github.com/DLR-RM/
stable-baselines3, 2019.

[RNG18] Seyed Ali Rokni, Marjan Nourollahi, and Hassan Ghasemzadeh. “Personalized hu-
man activity recognition using convolutional neural networks.” In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[Roc15] Matthew Rocklin. “Dask: Parallel computation with blocked algorithms and task
scheduling.” In Proceedings of the 14th python in science conference, volume 126.
Citeseer, 2015.

[RP19] Simon Ramstedt and Chris Pal. “Real-time reinforcement learning.” In Advances in
Neural Information Processing Systems, pp. 3073–3082, 2019.

[RRV19] Hazem Rashed, Mohamed Ramzy, Victor Vaquero, Ahmad El Sallab, Ganesh Sistu,
and Senthil Yogamani. “FuseMODNet: Real-Time Camera and LiDAR based Mov-
ing Object Detection for robust low-light Autonomous Driving.” arXiv preprint
arXiv:1910.05395, 2019.

[RTB18] Valentin Radu, Catherine Tong, Sourav Bhattacharya, Nicholas D Lane, Cecilia Mas-
colo, Mahesh K Marina, and Fahim Kawsar. “Multimodal deep learning for activity
and context recognition.” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 1(4):157, 2018.

[SAF20] Sandeep Singh Sandha, Mohit Aggarwal, Igor Fedorov, and Mani Srivastava. “Mango:
A Python Library for Parallel Hyperparameter Tuning.” In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
3987–3991. IEEE, 2020.

[San19] Sandeep Singh Sandha. “Github: Time Sync Across Smartphones.” https://
github.com/nesl/Time-Sync-Across-Smartphones, 2019. Accessed:
2019-05-05.

[SBB10] Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. “Control delay
in reinforcement learning for real-time dynamic systems: a memoryless approach.”
In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3226–3231. IEEE, 2010.

[SBB15] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow, Mikkel Baun
Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen. “Smart devices are
different: Assessing and mitigatingmobile sensing heterogeneities for activity recog-
nition.” In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, pp. 127–140. ACM, 2015.

168

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/nesl/Time-Sync-Across-Smartphones
https://github.com/nesl/Time-Sync-Across-Smartphones

[Sca18] Enrico Scarrone. “3GPP Specification 22.042.” https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=576, 2018. Accessed: 2019-03-26.

[SCD11] Pietro Salvagnini, Marco Cristani, Alessio Del Bue, and Vittorio Murino. “An exper-
imental framework for evaluating PTZ tracking algorithms.” In International Confer-
ence on Computer Vision Systems, pp. 81–90. Springer, 2011.

[SDL18] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. “Airsim: High-fidelity
visual and physical simulation for autonomous vehicles.” In Field and service robotics,
pp. 621–635. Springer, 2018.

[SGB20] Sandeep Singh Sandha, Luis Garcia, Bharathan Balaji, Fatima Anwar, and Mani Sri-
vastava. “Sim2Real Transfer for Deep Reinforcement Learning with Stochastic State
Transition Delays.” pp. 1066–1083, 2020.

[Sim13] Dan Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

[SKK09] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. “Gaussian
process optimization in the bandit setting: No regret and experimental design.” arXiv
preprint arXiv:0912.3995, 2009.

[SL16] Fereshteh Sadeghi and Sergey Levine. “Cad2rl: Real single-image flight without a
single real image.” arXiv preprint arXiv:1611.04201, 2016.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian optimization
of machine learning algorithms.” Advances in neural information processing systems,
25:2951–2959, 2012.

[SMG16] Sabarish Sridhar, Prasant Misra, Gurinder Singh Gill, and Jay Warrior. “Cheepsync: a
time synchronization service for resource constrained bluetooth le advertisers.” IEEE
Communications Magazine, 54(1):136–143, 2016.

[SN19] Sandeep Singh Sandha and Joseph Noor. “Github: GoodClock Library.” https:
//github.com/nesl/GoodClock, 2019. Accessed: 2020-01-31.

[SNA20] Sandeep Singh Sandha, Joseph Noor, Fatima M Anwar, and Mani Srivastava. “Time
Awareness in Deep Learning-Based Multimodal Fusion Across Smartphone Plat-
forms.” In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things De-
sign and Implementation (IoTDI), pp. 149–156. IEEE, 2020.

[SRS15] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan
Sundaram, Mostofa Patwary, Mr Prabhat, and Ryan Adams. “Scalable bayesian opti-
mization using deep neural networks.” In International conference on machine learn-
ing, pp. 2171–2180, 2015.

169

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=576
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=576
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=576
https://github.com/nesl/GoodClock
https://github.com/nesl/GoodClock

[SWD17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
“Proximal policy optimization algorithms.” arXiv preprint arXiv:1707.06347, 2017.

[SX19] Sandeep Singh Sandha and Tianwei Xing. “Github: CMActivities DataSet.” https:
//github.com/nesl/CMActivities-DataSet, 2019. Accessed: 2020-01-
31.

[Ten22a] Tensorflow Tensorflow. “Tensorflow Lite: ML for Mobile and edge devices.”, Jun
2022.

[Ten22b] Tensorflow Tensorflow. “Tensorflow/TENSORRT: Tensorflow/TENSORRT integra-
tion.”, Jun 2022.

[TFR17] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. “Domain randomization for transferring deep neural networks from simu-
lation to the real world.” In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23–30. IEEE, 2017.

[THH13] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. “Auto-
WEKA: Combined selection and hyperparameter optimization of classification algo-
rithms.” In Proceedings of the 19th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 847–855. ACM, 2013.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. “{CLKSCREW}: expos-
ing the perils of security-oblivious energy management.” In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pp. 1057–1074, 2017.

[Ula15] Lance Ulanoff. “Here’s how Apple synchronized all your Apple Watches.”
https://mashable.com/2015/12/30/apple-watch-synchronized/
#DvsLrXLHeZq4, 2015. Accessed: 2019-03-26.

[Ult22] Ultralytics Ultralytics. “Train Custom Data · ultralytics/yolov5 wiki.”, Apr 2022.

[UNC19] Halil Utku Unlu, Phillip Stefan Niehaus, Daniel Chirita, Nikolaos Evangeliou, and
Anthony Tzes. “Deep learning-based visual tracking of UAVs using a PTZ camera
system.” In IECON 2019-45th Annual Conference of the IEEE Industrial Electronics
Society, volume 1, pp. 638–644. IEEE, 2019.

[unr22] “The most powerful realtime 3D creation tool.”, Apr 2022.

[WAE09] Martin Wöllmer, Marc Al-Hames, Florian Eyben, Björn Schuller, and Gerhard Rigoll.
“A multidimensional dynamic time warping algorithm for efficient multimodal fusion
of asynchronous data streams.” Neurocomputing, 73(1-3):366–380, 2009.

170

https://github.com/nesl/CMActivities-DataSet
https://github.com/nesl/CMActivities-DataSet
https://mashable.com/2015/12/30/apple-watch-synchronized/#DvsLrXLHeZq4
https://mashable.com/2015/12/30/apple-watch-synchronized/#DvsLrXLHeZq4

[WBN98] Björn Wittenmark, Ben Bastian, and Johan Nilsson. “Analysis of time delays in syn-
chronous and asynchronous control loops.” In Proceedings of the 37th IEEE Confer-
ence on Decision and Control (Cat. No. 98CH36171), volume 1, pp. 283–288. IEEE,
1998.

[WDH16] Rui Wang, Hao Dong, Tony X Han, and Lei Mei. “Robust tracking via monocular
active vision for an intelligent teaching system.” The Visual Computer, 32(11):1379–
1394, 2016.

[Wil15] Rhiannon Williams. “Why the Apple Watch will be the most
accurate way to ring in the New Year.” https://www.
telegraph.co.uk/technology/apple/watch/12074452/
Why-the-Apple-Watch-will-be-the-most-accurate-way-to-ring-in-the-New-Year.
html, 2015. Accessed: 2019-03-26.

[WNL09] Thomas J Walsh, Ali Nouri, Lihong Li, and Michael L Littman. “Learning and plan-
ning in environments with delayed feedback.” Autonomous Agents and Multi-Agent
Systems, 18(1):83, 2009.

[WRG14] Karl Worthmann, Marcus Reble, Lars Grune, and Frank Allgower. “The role of sam-
pling for stability and performance in unconstrained nonlinear model predictive con-
trol.” SIAM Journal on Control and Optimization, 52(1):581–605, 2014.

[WSH15] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando
De Freitas. “Dueling network architectures for deep reinforcement learning.” arXiv
preprint arXiv:1511.06581, 2015.

[WTX14] Yu Wang, Rui Tan, Guoliang Xing, Jianxun Wang, Xiaobo Tan, Xiaoming Liu, and
Xiangmao Chang. “Aquatic debris monitoring using smartphone-based robotic sen-
sors.” In Proceedings of the 13th international symposium on Information processing
in sensor networks, pp. 13–24. IEEE Press, 2014.

[WWD94] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. “Scheduling for reduced
CPU energy.” In Mobile Computing, pp. 449–471. Springer, 1994.

[XBC18] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel van de Panne.
“Feedback control for cassie with deep reinforcement learning.” In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1241–1246.
IEEE, 2018.

[XSB18] Tianwei Xing, Sandeep Singh Sandha, Bharathan Balaji, Supriyo Chakraborty, and
Mani Srivastava. “Enabling Edge Devices that Learn from Each Other: Cross Modal
Training for Activity Recognition.” In Proceedings of the 1st International Workshop
on Edge Systems, Analytics and Networking, pp. 37–42. ACM, 2018.

171

https://www.telegraph.co.uk/technology/apple/watch/12074452/Why-the-Apple-Watch-will-be-the-most-accurate-way-to-ring-in-the-New-Year.html
https://www.telegraph.co.uk/technology/apple/watch/12074452/Why-the-Apple-Watch-will-be-the-most-accurate-way-to-ring-in-the-New-Year.html
https://www.telegraph.co.uk/technology/apple/watch/12074452/Why-the-Apple-Watch-will-be-the-most-accurate-way-to-ring-in-the-New-Year.html
https://www.telegraph.co.uk/technology/apple/watch/12074452/Why-the-Apple-Watch-will-be-the-most-accurate-way-to-ring-in-the-New-Year.html

[YLT17] Zhenyu Yan, Yang Li, Rui Tan, and Jun Huang. “Application-layer clock synchro-
nization for wearables using skin electric potentials induced by powerline radiation.”
In Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems,
p. 10. ACM, 2017.

[YNS15] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and Shonali Krish-
naswamy. “Deep convolutional neural networks on multichannel time series for human
activity recognition.” In Twenty-Fourth International Joint Conference on Artificial In-
telligence, 2015.

[yol22] “Yolo neural object detector.”, Apr 2022.

[ZHW21] Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and
Yunxin Liu. “nn-Meter: towards accurate latency prediction of deep-learning model
inference on diverse edge devices.” In Proceedings of the 19th Annual International
Conference on Mobile Systems, Applications, and Services, pp. 81–93, 2021.

[ZVP19] Jinan Zhou, Andrey Velichkevich, Kirill Prosvirov, Anubhav Garg, Yuji Oshima, and
Debo Dutta. “Katib: A distributed general automl platform on kubernetes.” In 2019
{USENIX} Conference on Operational Machine Learning (OpML 19), pp. 55–57,
2019.

172

	Introduction
	Challenge 1: Data Misalignment due to Timestamp Uncertainty
	Improving Time and Training Resilient Classifiers

	Challenge 2: Delay Awareness in Deep Reinforcement Learning
	Handling Variable Delays

	Challenge 3: Realizing Training Environments to enable End-to-end Control
	Deep Reinforcement Learning-based Controllers for PTZ Cameras

	Challenge 4: Training Machine Learning Models with Optimal Hyperparameters in Production
	Enabling Hyperparameter Tuning in Production

	Dissertation outline

	Data Timestamp Uncertainty and its Impact on Multimodal Fusion
	Distributed Sensing using Smartphones
	Data Timestamping in Smartphones
	Deep Learning-Based Multimodal Fusion

	Background and Related Work
	Smartphone System Clock Study
	Understanding Android System Time
	Forcing a Sync Event
	NITZ vs NTP

	Impact of Timing Errors on Deep Learning-Based Multimodal Fusion
	Multimodal Deep Learning for Human Activity Recognition

	Strategies to Mitigate Timing Errors
	System Clock Replacement
	Time-Shift Data Augmentation

	Discussion

	Synchronizing Time across Smartphones
	Shared Notion of Time across Smartphones
	Challenges and Tradeoffs

	Background and Related Work
	Smartphone Time Synchronization
	Time Synchronization Approaches
	Time Synchronization Comparison

	Evaluation
	Experimental Setup
	Variability Evaluation
	Cross-Peripheral Evaluation

	Discussion
	Tradeoffs
	Recommended Sync Solution

	Variable End-to-end Delays in Deep Reinforcement Learning
	State Transition Delay in Deep-RL
	Time-in-State RL

	Background
	Temporal Variability in Deep-RL
	Variability in Execution Latency and Sampling Interval
	Impact of Temporal Variability on Deep-RL Policy

	Related Work
	Control System Approaches
	Handling Delays in Reinforcement Learning
	Accuracy of Delay Measurements at Runtime

	Training Deep-RL Policies with Temporal Variations
	Low Dimensional Use Cases: HalfCheetah and Ant
	High-Dimensional Use Case: Autonomous Vehicle

	Evaluation of Time-in-State RL
	HalfCheetah and Ant Tasks
	Experiments with Variable Delays within an Episode and Timing Noises
	DeepRacer Robotic Car

	Experiments with Recurrent Policies
	Vanilla Deep Reinforcement Learning Policy without Varying Timing Characteristics
	Comparison of Time-in-state with Worst Case Delay Controller
	Conclusion

	End-to-end Deep Reinforcement Learning for Autonomous Control of PTZ Cameras
	Introduction
	Background and Related Works
	Autonomous Control of PTZ Cameras
	Frameworks for Pan-Tilt-Zoom Cameras

	Eagle: End-to-end Deep-RL for PTZ
	State Space, Policy Network and Actions
	Reward Function: Single Object
	Generalizable PTZ Tracking
	Dynamic Tasking of Eagle Policies

	Design of EagleSim
	Photo-Realistic Virtual Worlds
	PTZ Abstractions

	Evaluation
	Performance Metrics for PTZ Tracking
	Implementation of Eagle
	Tracking Scenarios
	Eagle vs Other Approaches
	PTZ Tracking using Lightweight Object Detectors
	Transfer of Eagle to the Real Scene Videos
	Runtime of Eagle on Embedded Cameras

	Discussion
	Conclusion

	Enabling Hyperparameter Tuning of Machine Learning Classifiers in Production
	Introduction
	Background and Related Work
	Hyperparameter Tuning Frameworks
	Hyperparameter Tuning Algorithms
	Algorithms Implemented in Mango

	Mango
	Mango Abstractions
	Optimization Algorithms in Mango

	Evaluation and Case Studies
	Optimization Performance Evaluation
	Case Study: Bug Hunting in Design Verification of Integrated Circuits
	Case Study: AutoML Framework
	Case Study: Network Architecture Search for TinyML Platforms

	Discussion

	Discussion and Future Work
	Extending Timing Analysis
	A Vision of Timing Stack for Deep Reinforcement Learning
	Future Training Environments for CPS Applications
	Limitations of End-to-end Control
	Possible Extension in Mango

	Conclusion
	Appendix
	Delay Measurements on Different Hardware Platforms
	Additional Details on HalfCheetah and Ant Tasks
	Additional Details on Autonomous Vehicle Task
	Learning Curves of Worst-Case Delay Policy

	References

