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ABSTRACT Burst Buffer is widely used in supercomputer centers to bridge the performance gap between
computational power and the high-performance I/O systems. The primary role of Burst Buffer is to
temporarily absorb the bursty I/O and reduce the heavy access on Parallel File System (PFS). However, the
job resource manager on High-Performance Computer (HPC) systems prefers to use a dedicated Burst Buffer
allocation approach, which eventually leads to the severely underutilized Burst Buffer resource. To improve
the efficiency of using the expensive Burst Buffer resource, we analyze the I/O patterns on Burst Buffer in
depth.We propose Burst Buffer over-subscription allocationmethod, which improves Burst Buffer utilization
by allowing each job to access Burst Buffer only during its I/O phases so that the jobs can overlap each
other. Furthermore, we develop a new I/O congestion-aware scheduler and a transparent data management
system between Burst Buffer and PFS. Our approach also reduces the memory overhead and improves the
data persistence of the data management system by adapting the persistent memory. With the proposed
approach, not only the Burst Buffer utilization can be improved, but also HPC applications can achieve high
I/O performance by exploiting the powerful Burst Buffer hardware capabilities. Experimental results show
that BBOS can improve Burst Buffer utilization by up to 120% while more stable and higher checkpoint
performance is guaranteed even under high I/O loads compared to other state-of-the-art schedulers. Besides,
our approach can improve the hit ratio of restart requests by up to 96.4% and provides up to 210% higher
restart throughput on Burst Buffer.

INDEX TERMS Burst buffer, checkpoint, demotion, over-subscription, parallel file system, restart.

I. INTRODUCTION
As computational capability has grown over one petaflop,
a large number of system components have been deployed in

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

HPC systems, thereby resulting in increased overall system
failures [1], [2], [3]. For a fail-safety purpose, HPC applica-
tions tend to aggressively utilize checkpoint and restart strat-
egy, which is the most common fault tolerance mechanism.
The checkpoint and restart mechanism inevitably generates
bursty I/O, occupying 75%∼80% of total I/O traffic of overall
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HPC system [2], [4]. Since PFS consists of cheap HDDs
or low-end flash SSDs, heavy I/O accesses generated by
checkpoint and restart operations makes it difficult for PFS to
handle and eventually leads to low I/O performance. To alle-
viate the overhead on PFS and speed up the I/O performance,
Burst Buffer composed of high-end flash SSDs (e.g., 3D
XPoint SSD and NVMe SSD) [5], [6] has been introduced as
a new storage tier located between compute nodes and PFS.
Due to the substantial performance difference delivered by
Burst Buffer and PFS, HPC users prefer to allocate dedicated
Burst Buffer resource for a whole lifetime of the submitted
jobs.

However, current dedicated Burst Buffer allocationmecha-
nism leads to severely underutilized Burst Buffer resource for
the following two reasons. First, HPC users prefer to request
overabundant amount of Burst Buffer resources (e.g., up to
six times [3]). According to the real-world log data col-
lected from the NERSC (National Energy Research Scientific
Computing Center) Cori supercomputer system, only 5% of
overall Burst Buffer resource is actively used. The reasons
for over-requesting the Burst Buffer resource include pre-
venting possible I/O errors, improving the I/O performance,
and avoiding the complicated data movement between Burst
Buffer and PFS. Second, since HPC applications use Burst
Buffer only during the I/O phases, Burst Buffer stays idle
for the rest of the time. Although checkpoint dominates the
I/O traffic of the HPC system, long interval exists between
two successive checkpoint operations. As a result, allocated
Burst Buffer resource is wasted for most of the time during
the application lifetime.

In this paper, we propose an efficient HPC storage man-
agement approach using the Burst Buffer over-subscription
allocation method, called BBOS (Burst Buffer Over-
Subscription). To support the Burst Buffer over-subscription
method in the HPC storage systems, we transparently man-
age data movement between Burst Buffer and PFS when
scheduling the I/O jobs. The key idea behind BBOS is to
utilize the characteristics of checkpoint and restart operations
that occupy most of the I/O traffic in HPC storage systems.
Since checkpoint and restart mechanism has specific I/O
characteristics, using primitive data management approach
such as a kernel data management approach betweenmemory
and storage layers or commonly used approaches for stor-
age tiers within PFS can result in low performance. In this
work, we introduce a new data placement scheduling policy
between Burst Buffer and PFS that considers the charac-
teristics of checkpoint and restart operations. To show the
improved Burst Buffer utilization and checkpoint/restart per-
formance with BBOS, we evaluate our approach in compar-
ison to Cray DataWarp [7], the current representative HPC
scheduler which uses the dedicated Burst Buffer allocation
method, and Harmonia [8], which is the Burst Buffer based
dynamic I/O scheduler in consideration of Burst Buffer over-
subscription method. Compared to DataWarp, Burst Buffer
utilization is improved by up to 120% while maintaining
stable and high checkpoint performance by using the BBOS

framework. Besides, our approach can provide high check-
point performance and improve restart performance by up
to 96.4% on Burst Buffer by utilizing the characteristics of
checkpoint and restart operations.

In the previous work [9], we implemented the Burst Buffer
over-subscription framework to solve the Burst Buffer under-
utilization problem shown in most of the HPC systems.
The BBOS framework consists of an I/O engine, a data
management engine, and an in-memory key-value store to
efficiently handle the checkpoint and restart operations of
HPC applications. We extend the original work by using
persistent memory on the BBOS framework. We implement
an improved version of the framework using NVDIMM on
the Redis in-memory key-value database. Specifically, the
memory capacity can be increased with low cost and the data
persistence is guaranteed even when power failure occurs.
We show that there is no I/O performance degradation shown
with NVDIMM-applied BBOS that stores most of the data in
NVDIMM.We further extend the original work by evaluating
theNVDIMM-applied BBOS design, showing the implemen-
tation details, and explaining the workflow of checkpoint,
restart, and demotion operations when applying the BBOS
framework on Burst Buffer.

Our contributions are as follows:
• We adopt the over-subscription Burst Buffer allocation
method to efficiently utilize the Burst Buffer resource.

• We analyze the characteristics of checkpoint and restart
operations of HPC applications in detail.We find that the
existing data management approach does not consider
checkpoint and restart characteristics of HPC applica-
tions, which results in low I/O performance.

• We propose BBOS, a novel HPC data management
approach that provides high Burst Buffer utilization
as well as stable and high checkpoint and restart per-
formance. BBOS schedules I/O jobs, adjusts demotion
threshold and I/O bandwidth of checkpoint and demo-
tion adaptively, and manages data placement policy
between Burst Buffer and PFS.

• We implement a BBOS prototype by adding multiple
modules on GlusterFS.We utilize the persistent memory
to lower the DRAM overhead and add data persistence
when adopting the BBOS framework on Burst Buffer.

II. BACKGROUND AND MOTIVATION
A. UNDERUTILIZED BURST BUFFER
Burst Buffer is located in the intermediate layer between
computational nodes and storage systems to absorb bursty
I/O in HPC systems [10], [11]. Each Burst Buffer node
consists of expensive hardware resources, such as high-speed
storage media and high-speed network. Most of the super-
computers, including Cori supercomputer [12] at NERSC
and Summit supercomputer at ORNL (Oak Ridge National
Laboratory), allocate Burst Buffer resources by using a ded-
icated Burst Buffer allocation method. The users specify
the desired capacity or desired nodes to be used for the
applications and the specified space is provided by an HPC
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scheduler [13], [14] during the whole lifetime of the appli-
cations. However, the dedicated allocation method leads to
severe underutilization problem of Burst Buffer as the HPC
users normally reserve Burst Buffer space larger than the
actual capacity they need for the following reasons.

The application jobs fail with I/O error when there is not
enough Burst Buffer capacity to handle the I/O. To avoid fail-
ure, the users are recommended by a supercomputer providers
to request the surplus amount of Burst Buffer capacity [3].
Not only for the failure, but users may also request a bountiful
capacity expecting higher performance as well. Another rea-
son for overabundant requests arises from complicated data
management in multi-tier HPC storage systems (i.e., local
storage of a compute node, Burst Buffer, and PFS). Since
current supercomputers manage Burst Buffer and PFS sep-
arately, the users are challenged with redundant and compli-
cated management. For instance, if the users use a limited
amount of Burst Buffer capacity for writing only one check-
point, they should copy data manually from Burst Buffer
to PFS at every end of the checkpoint phase to make Burst
Buffer space for the next phase [15].

Performing the Burst Buffer reservation process without
considering the characteristics of the checkpoint and restart
operations is also the critical reason that causes resource
underutilization problem. HPC applications perform check-
point operations during a fixed amount of time [16], [17],
[18], called checkpoint period, by repeating compute phase
and I/O phase periodically. However, as the checkpoint period
lasts from tens of minutes to tens of hours, expensive Burst
Buffer resources stay idle during compute phases. Moreover,
Burst Buffer needs to be reserved for at least twice as much
the capacity for the checkpoint data since old checkpoint
file should be kept until a new checkpoint file is completely
written safely. If HPC users decide to store multiple ver-
sions of checkpoint files in Burst Buffer to increase data
durability, Burst Buffer becomes severely underutilized as
the rest of the old version files except the latest one are
rarely accessed. The addressed problems caused by using the
dedicated Burst Buffer allocation method motivate our over-
subscription-based HPC storage management approach.

B. CHARACTERISTICS OF CHECKPOINT AND RESTART
OPERATIONS
Unlike common applications, HPC applications have check-
point and restart-related characteristics. To apply the Burst
Buffer over-subscription method on the HPC storage sys-
tem, a novel data management scheme needs to be devel-
oped considering the following five checkpoint and restart
characteristics.

First, most of the HPC applications solve computationally
intensive problems and perform checkpoint operations at a
particular cycle. We observe that the total amount of the
checkpoint written to Burst Buffer in a certain period, called
Data Written Per Period (DWPP) in this paper, is kept quite
steady. As so, it is possible to predict future DWPP of a job
using the previous DWPP values run.

Second, each application has a specific checkpoint period
and an intermediate time interval between two checkpoint
operations. Thus, each application accesses the Burst Buffer
only during a specific checkpoint period. For instance, HPC
applications with short checkpoint periods access Burst
Buffer more frequently than ones with long checkpoint
periods.

Third, HPC applications tend to keep multiple versions of
checkpoint files to increase data durability [19]. HPC users
prefer to keep the old versions of checkpoint files without
deleting them even though only the latest version of the
checkpoint file is required in the restart process. Since users
demand different degree of data reliability when they run the
jobs, each application job maintains the different number of
checkpoint versions.

Fourth, HPC applications have different failure rates. Fail-
ure is occurred by individual components, such as processors,
disk, memory, power supplies, network, cooling systems,
and the physical connections between them [20]. The large
number of the components together unavoidably leads to
frequent failures [21], [22]. The prior studies show that the
Mean Time Between Failure (MTBF) on a single node is
thousands of hours, whileMTBF on a large-scale cluster with
hundreds of nodes is dozens of hours. In other words, failure
rates increase linearly with the number of nodes used by HPC
applications [23], [24].

Lastly, there is no data locality across the checkpoint files
of HPC applications. Temporal locality does not exist across
checkpoint files, because the checkpoint file is accessed only
when the failure occurs. Also, spatial locality does not exist
across checkpoint files. The checkpoint files will not be
accessed unless failure occurs, even if they are stored around
the other requested checkpoint file.

C. PROBLEM ANALYSIS
Different from the dedicated Burst Buffer allocation method,
the Burst Buffer over-subscription method allocates more
space to the applications than the actual capacity. To make
this possible, the applications are allowed to access Burst
Buffer only during the I/O phases. Applications in the com-
putation phase should yield Burst Buffer to other applications
in the I/O phase by moving data from Burst Buffer to PFS.
Therefore, an efficient data management approach between
Burst Buffer and PFS that does not degrade the overall per-
formance is required. There are several previous works that
propose efficient data management policy in the multi-tiered
system [3], [8], [25], [26]. However, these approaches are
not suitable for the HPC storage system where checkpoint
dominates most of the I/O traffic for the following reasons.

The previous works use static demotion threshold without
considering the amount of data to be moved between storage
tiers. With the prior approaches, demotion is operated only
when Burst Buffer is idle. When the total used capacity
of Burst Buffer reaches the threshold, demotion has to be
operated concurrently with checkpoint operations. Using the
over-subscriptionmethod, the number of jobs accessing Burst
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FIGURE 1. Checkpoint performance with different DWPPs. Checkpoint
files with total 1.3 times, 1.6 times, and 1.9 times the size of Burst Buffer
are written in a checkpoint period with 1.3S, 1.6S, and 1.9S DWPPs.

Buffer is increased and Burst Buffer is filled up quickly with
checkpoint data. As a result, demotion operations interrupt
the checkpoint operations more aggressively.

Figure 1 shows checkpoint performance with different
DWPPs after setting the demotion threshold to 90% of total
Burst Buffer capacity. As S represents the total capacity of
Burst Buffer, 1.3S, 1.6S, and 1.9S write 1.3 times, 1.6 times,
and 1.9 times the size of Burst Buffer in a certain period,
respectively. Each dot in the figure represents the application
job that runs on Burst Buffer as time goes by.We only assume
the over-subscription scenarios where the total size of check-
point files is larger than Burst Buffer size (DWPP> S), which
can improve the Burst Buffer utilization. When only small
number of jobs are reserved to use Burst Buffer (DWPP< S),
Burst Buffer utilization would remain low with each job
having high I/O performance.

When DWPP is 1.3S, the performance of the jobs gets
slightly decreased after 1000 seconds since the number of
jobs run concurrently increases. Yet whenDWPP increases to
1.6S, Burst Buffer is fully used in the middle of checkpoint
I/O operations and the performance begins to drop over time.
In the 1.9S case, almost half of the jobs get four times lower
performance compared to the others as checkpoint operations
have to be stopped and wait for demotion to make free space
in Burst Buffer.

Another limitation of the previous works is that the arrival
pattern of checkpoint operations is not considered in data
management policy. For instance, the HPC jobs issue check-
point operations with different periods.When the inter-arrival
time is long enough, there exists a sufficient amount of Burst
Buffer idle time between the checkpoint operations. Then the
files can be demoted to PFS making space in Burst Buffer for
the next I/O jobs. However, if the checkpoint operations are
issued with small inter-arrival time, the lack of Burst Buffer
idle time makes it difficult to finish data migration before
the next checkpoint operation. This inevitably leads to Burst
Buffer capacity depletion.

Figure 2 shows that checkpoint performance is highly
related to the I/O job congestion rate under the same DWPP.
Three I/O job congestion patterns, Low, Med, and High,
represent the rate of how busy I/O jobs arrive and the
jobs are allowed to use 1.9 times the size of Burst Buffer.

FIGURE 2. Checkpoint performance with different I/O job congestion
rates. Time interval of each I/O job is equal and evenly distributed within
the period under Low congestion rate. Time interval of each I/O job is
halved and tenth of Low case under Med and High congestion rates.

The figure shows that the jobs under a Low congestion rate
get high performance as there is a sufficient amount of idle
time between the I/O operations. On the contrary, when the
I/O jobs become to arrive in crowds in Med and High cases,
some of the I/O jobs experience low checkpoint performance.

Naively using data eviction policy algorithms including
FIFO, LRU, and LFU can leads to low Burst Buffer uti-
lization. HPC applications have specific checkpoint periods
and keep different number of checkpoint files to be used for
data recovery. When the FIFO algorithm is used, the latest
checkpoint file of application with long checkpoint period
is considered cold data while old-version checkpoint file of
application with short period is considered hot. As a result,
the application with long checkpoint period experiences low
recovery performance, which makes Burst Buffer inefficient.
Also, the checkpoint files do not have data locality and spatial
locality and LRU, LRU or other hotness-aware algorithm is
not suitable for data eviction policy. To better classify which
checkpoint files to be evicted, the failure rates need to be
considered. Without taking the failure rates into account,
checkpoint files with high failure rates might be chosen as
cold data, instead of checkpoint files with low failure rates.

III. DATA MANAGEMENT IN BURST BUFFER
Applications may suffer from severe performance degrada-
tion when the characteristics of checkpoint and restart oper-
ations are not fully considered. In this paper, we set the
demotion threshold on Burst Buffer and adjust the speed
of checkpoint and demotion operations in advance to avoid
the performance degradation. Also, we develop novel data
placement policy that manages the data movement between
Burst Buffer and PFS.

A. ADAPTIVE DEMOTION ADJUSTMENT
In order to make free space in Burst Buffer when using over-
subscription method, we determine a demotion threshold
considering both DWPP and I/O job congestion rate, which
data can be retrieved from the log history of application
jobs. As shown in Figure 1, DWPP affects the amount of
data to be demoted in a certain period. Large DWPP means
that there are large amounts of I/O to be written to Burst
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FIGURE 3. Optimal aggregated checkpoint bandwidth on burst buffer
under different DWPP .

Buffer. In this case, the data needs to be demoted promptly
to make free space in Burst Buffer. Burst Buffer may fill up
quickly depending on the I/O job congestion rate as well as
shown in Figure 2. The checkpoint and demotion throughput
is another factor that needs to be considered when configur-
ing the demotion threshold. When checkpoint and demotion
operations are performed together, there exists an inverse
relationship between write and read bandwidth within Burst
Buffer I/O capability. As a result, the minimum demotion
throughput (Brmin: minimum read throughput provided by
Burst Buffer) is determined by the maximum checkpoint
throughput (Bwmax: maximumwrite throughput provided by
Burst Buffer). The minimum checkpoint throughput(Bwmin:
minimum write throughput provided by Burst Buffer) is
determined by the maximum demotion throughput(Brmax:
maximum read throughput provided by Burst Buffer) as
shown in equation (1). Note that read throughput provided by
Burst Buffer is affected by write throughput provided by PFS.
Also,m and b valued are decided depending on the device I/O
capability. In order to avoid the worst case when Burst Buffer
is running out of space, our policy adjusts the checkpoint
throughput from Bwmax to Bwmin, and demotion throughput
from Brmin to Brmax after used Burst Buffer space reaches
demotion threshold.

BWw = m× BWr + b (m < 0) (1)

Figure 3 shows the aggregated Burst Buffer write band-
width under different DWPP. The overall goal is to sustain
the maximum checkpoint bandwidth possible while handling
the DWPP amount of data written to Burst Buffer within the
checkpoint period. With S being the capacity of Burst Buffer,
we refer to Data Written So Far (DWSF) as the amount of
data written so far within the period. Within one period, the
time given to execute checkpoint operation at Bwmax without
any demotion is tc, while td is the time required to demote
C amounts of data with concurrent execution of checkpoint
operations. td is composed of tdd and tds: each representing
the time taken for demotion throughput to gradually increase
from Brmin to Brmax, and the time taken when the demotion
throughput is fixed to Brmax without changing, respectively.
We categorize the I/O patterns of the demotion operations into
three categories to decide the demotion threshold.

1) PATTERN 1: DEMOTION IS ONLY PERFORMED WHEN
BURST BUFFER IS IDLE
When DWPP is less than 1.0S, the checkpoint can be exe-
cuted with the bandwidth of Bwmax without the need for any
demotion as shown in Figure 3. When the checkpoint period
is finished, demotion can be performed in the Burst Buffer
idle time.

2) PATTERN 2: DEMOTION IS PERFORMED TOGETHER WITH
CHECKPOINT FOR SOME RANGE OF TIME
When DWPP exceeds 1.0S, some of the data in Burst Buffer
needs to be demoted concurrently with checkpoint oper-
ations. The time for demotion operations to be started is
calculated depending on DWPP. For instance, when DWPP
is 1.2S, the demotion threshold is calculated as 0.7S of
DWSF . In other words, demotion should be start even when
the checkpoint is being executed when 70% of total Burst
Buffer space is used. The checkpoint throughput is adjusted
in a range between Bwmax and Bwmin for demotion to be
executed and the demotion throughput is also changed in a
range between Brmin and Brmax accordingly.

3) PATTERN 3: DEMOTION IS ALWAYS PERFORMED
CONCURRENTLY WITH CHECKPOINT
When DWPP exceeds certain point, the demotion needs to
be executed concurrently with checkpoint operations all the
time. When DWPP exceeds 1.35S in Figure 3, the demotion
has to begin at the very beginning of the checkpoint period.
In this case, the demotion operations are executed with max-
imum throughput, Brmax, while checkpoint operations are
executed with minimum throughput, Bwmin, when more than
60% of total Burst Buffer space is used.

Using the following equation (3) and DWPP value, the
threshold capacity of Burst Buffer to start demotion and
corresponding demotion bandwidth are calculated.

tc > 0,∫ tc+tdd

0
BWw(t) dt

= Bwmax × tc + Bwmax+Bwmin
2 × tdd = DWPP∫ tc+tdd

0
BWr (t) dt

= Brmin× tc + Brmax+Brmin
2 × tdd = C (2)

tc = 0,∫ tdd+tds

0
BWw(t) dt

=
Bwmax+Bwmin

2 × tdd + Bwmin× tds = DWPP∫ tdd+tds

0
BWr (t) dt

=
Brmax+Brmin

2 × tdd + Brmax × tds = C (3)

Since all the data on Burst Buffer needs to be demoted
in order to avoid interference with checkpoint operations
on the next checkpoint period, the minimum required idle
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time between two checkpoint periods is calculated using the
following equation (4).

(idle_time− (tc + td ))× Brmax ≥ S (4)

B. DATA PLACEMENT POLICY
In this work, we develop a novel data placement policy that
takes into account the characteristics of checkpoint and restart
operations. The new policy keeps the latest checkpoint file
on Burst Buffer as long as possible so that there is no need
to prefetch data from PFS to Burst Buffer. Specifically, the
hotness of the data is determined by considering the version
of the checkpoint file and failure rate of HPC application.
Old version checkpoint files have the highest priority to be
considered as cold data since latest version checkpoint data
is also located in Burst Buffer. If there are no old version
checkpoint files left in Burst Buffer, we identify the coldness
based on failure rates of the applications that write checkpoint
files. As HPC users tend to reserve a large number of Burst
Buffer nodes to avoid failure, we consider the failure rate of
the applications proportional to the number of Burst Buffer
nodes used.

C. DIRECT CHECKPOINT ON PFS
The I/O capability of PFS can also be exploited to further
improve the Burst Buffer efficiency. Since cold data in Burst
Buffer is destined to be in PFS, those data do not need to
be written on Burst Buffer first. For this reason, we add
Burst Buffer bypassing option on the data management policy
once the data is considered to be cold compared to the other
data already stored on Burst Buffer. This is possible because
the failure rates of all the incoming checkpoint data can be
known in advance from the log history. The checkpoint data is
always checked whether it is hot or cold by comparing failure
rates with the ones of other checkpoint files on Burst Buffer.
If the incoming checkpoint data is determined to be cold, the
checkpoint is directed to be written on PFS. This reduces the
amount of demotion data to be written to Burst Buffer, which
also diminishes the concurrent execution of checkpoint and
demotion.

IV. DESIGN AND IMPLEMENTATION
We propose Burst Buffer Over-Subscription scheme (BBOS),
a novel HPC data management approach that improves both
Burst Buffer utilization and maintains high checkpoint and
restart performance. Figure 4 shows the overall architecture
of the BBOS framework. BBOS is composed of two engines,
I/O engine and data management engine, and an in-memory
key-value store that helps engine process.

A. I/O ENGINE
On the system with BBOS scheme, I/O operations of HPC
application jobs are scheduled by BBOS I/O scheduler.
Since the over-subscription method increases the number of
the I/O jobs accessing Burst Buffer, an extreme I/O con-
gestion can happen with low I/O performance. The severe

FIGURE 4. Overall architecture of the BBOS scheme.

resource competition and interference among multiple I/O
jobs degrades the overall performance of the jobs [27], [28].
Thus, I/O jobs have to be scheduled in a way that they do not
overlap each other as much as possible. BBOS I/O engine
places multiple I/O queues for each Burst Buffer node and
assigns an individual queue to each application. The I/O jobs
with different applications access different I/O queues. Then
the scheduler retrieves the I/O jobs from I/O queues in a
round-robin manner so that the I/O jobs do not overlap each
other. I/O engine also manages multiple I/O worker threads
to execute I/O jobs. They determine which storage tier the
scheduled I/O jobs should access, either Burst Buffer or PFS,
with help of the in-memory key-value store.

B. DATA MANAGEMENT ENGINE
Data management engine consists of four modules: Throttler ,
Demoters, Deleters and Replicators. Throttler is responsible
for dynamically adjusting the bandwidth of the checkpoint
and the demotion operations. Demoters demote data from
Burst Buffer to PFS considering the version of each check-
point file and failure rate of each application. In the BBOS
data management system, demoted data remains in Burst
Buffer like a cache unless there is no space left for a new
checkpoint file to be written. Whenever Burst Buffer space
for new checkpoints is not sufficient, Deleters remove the
demote-finished data that still exists in Burst Buffer. Finally,
Replicators transfer checkpoint files from storage devices of
local PFS nodes to ones of remote PFS nodes within the same
replication group to enforce data consistency.

C. IN-MEMORY KEY-VALUE STORE
We utilize Redis [29], an open-source in-memory key-value
store to help the processing I/O and data management engines
in the BBOS framework. Since BBOS does not use page
cache for checkpoint and restart, the in-memory store utilizes
unused memory and facilitates the BBOS engine execution.
BBOS stores the data path of the checkpoint files and corre-
sponding metadata information required for data placement
in the Redis in-memory database. Based on the stored data,
Demoters demote the oldest checkpoint files first. If every
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FIGURE 5. BBOS in-memory key-value store with persistent memory.

checkpoint files stored in Burst Buffer are the latest version
data, Demoters start to demote the files starting from the
one having the highest failure rate. DWPP and DWSF are
also stored in the database to decide the demotion threshold
and constantly tracked to adjust the checkpoint and demotion
bandwidth. Nine key-value pairs used in BBOS in-memory
key-value store are shown in Table 1. The detailed explana-
tion of each pair is described in Section IV-F.

D. OPTIMIZED DESIGN FOR STABLE CHECKPOINT AND
DEMOTION PERFORMANCE
To provide stable checkpoint, restart and demotion perfor-
mance, the data management policy is optimized using sev-
eral techniques. First, Checkpoint and demotion bandwidth
are adjusted dynamically with BBOS engines. However, it is
difficult to accurately control I/O bandwidth in real-world
HPC systems. As the number of I/O operations per second
requested from each application job varies, the checkpoint
bandwidth may be different from what the data manage-
ment policy expects to be. Also, the system may not be
able to provide stable checkpoint performance due to the
inability to demote as much data as it should. For these
reasons, we use blkio [30] controller of the cgroup provided
by Linux kernel to throttle the speed of checkpoint and restart
operations precisely. Second, we utilize send_file() system
call [31] to maintain stable demotion performance. In the
demotion process, data must be read from Burst Buffer and
written to PFS. This process incurs context switch and data
copy overhead between user and kernel level, which leads to
low and unstable demotion performance. Since send_file()
system call supports zero-copy, demotion overhead can be
eliminated. Lastly, checkpoint and restart performance may
be degraded due to garbage collection occasionally. To avoid
the garbage collection overhead, we periodically request the
TRIM command after deleting the files. The TRIM through-
put is also controlled by using blkio controller in order to
minimize the performance degradation.

E. OPTIMIZED DESIGN USING PERSISTENT MEMORY
We further improve BBOS using persistent memory. A non-
volatile dual in-line memory module (NVDIMM) is a new

type of memory module that combines DRAM and storage in
a DIMM socket. HPC supercomputer systems can get bene-
fits from using NVDIMM as it provides memory-speed I/O
performance at a lower cost. BBOS uses Redis in-memory
key-value database to track the I/O-related metadata. When-
ever the I/O accesses Burst Buffer, Redis updates multiple
key-value pairs and uses those information to determine
where to locate the checkpoint file or adjust read-write band-
width. As a result, there are lots of accesses to the memory
during I/O operations. In order to ease the memory over-
head while improving data persistence, we take advantage of
NVDIMM with Redis. We utilize pmem-redis [32], a Redis
version that supports persistent memory to provide both high
performance and persistence. Among several features that
pmem-redis provides, we apply two features to the BBOS
framework. The overall architecture of the BBOS in-memory
key-value store using NVDIMM is shown in Figure 5.

First, considering NVDIMM as low-cost memory, we store
key-value pairs on both DRAM and NVDIMM with a
data placement strategy. Most of the HPC applications are
memory-intensive workloads and they require large amounts
of memory capacity when accessing Burst Buffer resources.
When BBOS manages the Redis database, it would increase
the memory usage as the data is served from memory. Con-
sequently, Redis has to limit its memory consumption in
order to not interfere with the I/O bandwidth of the HPC
applications. To increase the memory capacity that Redis can
utilize, pmem-redis provides a feature that can store large
values in NVDIMM. This is because NVDIMM shows better
performance on big and sequential data access pattern than
the small and random data access pattern compared to DRAM
performance. In this way, the DRAM usage on Redis can
be saved while still providing DRAM-like access to large
data. Specifically, all values with more than 64B size by
default are stored in NVDIMM and the rest including keys
and small values are stored in DRAM. Although NVDIMM
shows higher latency compared to DRAM, our experiment
shows that there is negligible overhead on pmem-redis when
applications issue I/O operations on Burst Buffer.

Second, NVDIMM has a hard disk aspect in that data in
persistent memory still exists after power failure and restart.
The information stored in Redis is an important factor for
the Burst Buffer scheduler to work properly. Also, whenever
the applications request checkpoint or restart operations, the
key-value pairs in Redis help locate the proper file while
assuring other I/O requests to get reasonable I/O bandwidth.
Default Redis offers two types of data persistence in order to
keep data safe in the database. The RDB persistence writes
all the data stored in memory to disk periodically, while AOF
persistence logs every insert/modify/delete command issued
to the servers to disk. These persistencemethods have amajor
drawback in that data has to be written to slow hard disk.
This is also a problem when there is a power outage and
the data has to be read from a slow disk on the restart pro-
cess. To improve Redis persistence performance, pmem-redis
writes a persistence file in the reserved space of NVDIMM.
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TABLE 1. Key-value pairs used in BBOS in-memory key-value store.

When the persistence data size exceeds the reserved space,
the data is evicted using LRU policy. As a result, periodic
persistence can get improvedwrite bandwidth and persistence
files can be read with DRAM-like bandwidth whenever the
power failure occurs.

F. IMPLEMENTATION
In this section, we describe the process flows of each engine
in the BBOS framework using the Redis in-memory key-
value store in detail. The BBOS framework is implemented
by modifying the Gluster file system (GlusterFS), a highly
scalable distributed file system. I/O engine and data manage-
ment engine are added to the GlusterFS so that the engines
can be processed interacting with the critical path of work-
flow. GlusterFS also interacts with the Redis server to collect
the information used in the Burst Buffer scheduling policy.

There are total of nine kinds of key-value pairs stored in
Redis in-memory key-value store as shown in Table 1. Redis
records all the metadata information of the files written to
and read from Burst Buffer. First, Redis stores file path for
every file written in Burst Buffer and PFS so that the data
management engine can have fast access to the files that need
to be demoted or read. Every checkpoint files written by HPC
applications have a specific application ID used by GlusterFS
in the I/O flow. We refer to application-specific metadata as
App ID. In order to identify victim checkpoint files to be
demoted to PFS when there is not enough space on Burst
Buffer, we manage Sorted Set with key name ‘‘VICTIM’’.
The Sorted Set records App IDs inMTBF order, which repre-
sents the failure rate of each application. ‘‘CLEAN’’ key has
a list of applications that have demotion-finished checkpoint
files. In this case, the files stored in Burst Buffer can be
erased. ‘‘APP’’ key manages a list of applications that have
more than two different versions of checkpoint files stored in
Burst Buffer. When there is not enough space in Burst Buffer,
the old version checkpoint files have to be erased for those
applications. Also, the ‘‘DWSF’’ key records the amounts
of data written so far within the checkpoint I/O phase. The
checkpoint and demotion bandwidth can be calculated using
the current DWSF value. ‘‘REPLICA’’ key manages the list
of files that needs to be replicated on the remote storage
nodes. AppID+‘‘restart’’ key records the restart time and
new MTBF calculated accordingly whenever the checkpoint
file is read. AppID+deviceID key records the version and

Algorithm 1 Pseudo-Code for Checkpoint
1: if freespace ! = enough
2: Signal to DELETER
3: if get(‘AppID+"BB"’, temp) ! = NULL
4: put(‘"APP"’, AppID)
5: put(‘AppID+deviceID’, ‘FileName’)
6: put(‘FileName’, ‘path’)
7: Execute checkpoint operation
8: put(‘"DWSF"’, ‘DWSF + current file size’)

Algorithm 2 Pseudo-Code for Restart
1: get(‘AppID+"restart"’, {prev_MTBF, timestamp})
2: new_MTBF = (prev_MTBF + (current Time - times-

tamp)) / 2
3: update(‘AppID+"restart"’, {new_MTBF, current Time})

4: if get(‘AppID+"BB"’, temp) ! = NULL
5: update(‘"VICTIM"’, {new_MTBF, AppID})
6: get(‘FileName’, ‘path’)
7: Execute restart operation

the name of the checkpoint files stored in each Burst Buffer
device. This helps track the checkpoint files when a file
demotion needs to be performed. Finally, AppID+‘‘BB’’ key
is recorded so that BBOS engines can check whether the
checkpoint files of the applications are previously written
in Burst Buffer. Using the information stored in the Redis
database, the I/O engine, and data management engine of
the BBOS framework improves the Burst Buffer utilization
while offering stable performance. The rest of this subsection
presents implementation detail of the BBOS framework using
the nine key-value pairs.

I/O engine schedules I/O jobs and finds appropriate storage
tier for each checkpoint file. Algorithm 1 shows pseudo-code
for process flow of checkpoint operation. Demoted data can
stay in Burst Buffer unless there is not sufficient capacity for
a new checkpoint file. Thus, the I/O engine first checks if
there is enough space left before processing the checkpoint
operation. If there is not enough space left, the engine sends
Deleters a signal to delete demotion-finished files or outdated
files (line 1-2). In addition, the engine checks if there are any
outdated checkpoint files of the application on Burst Buffer.
After the new checkpoint files are safely written, old versions
of checkpoint files do not need to remain in Burst Buffer.
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Algorithm 3 Pseudo-Code for Demotion
1: pop(‘"APP"’, AppID)
2: if AppID != exists
3: pop(‘"VICTIM"’, {MTBF, AppID})
4: flush← TRUE
5: pop(‘AppID+deviceID’, {ver, FileName})
6: for each file of files
7: if(flush == TRUE)
8: demote file from Burst Buffer to PFS
9: put(‘"CLEAN"’, AppID)
10: else
11: demote old version file from Burst Buffer to PFS
12: delete file on Burst Buffer
13: update(‘FileName’, ‘path’)
14: put(‘"REPLICA"’, ‘FileName’)

In order to figure out the outdated files, the engine checks the
Redis database if there is a key of the application in pair #9.
If the key exists, the engine inserts the application to pair #4
so that Deleters can handle outdated files later on (line 3-4).
The engine enlists checkpoint file names of each application
and the device ID they are written to on pair #8 (line 5).
Also, the engine saves the file path for each file name in pair
#1 (line 6). After checkpoint operations are completed, the
engine updates pair #5 with the current file size (line 7-8).
The reason for continuously recording the DWSF value in
the database is that the capacity of Burst Buffer will always
remain full as our system keeps demotion-finished data in
Burst Buffer until free space is actually necessary. BBOS
would not know the actual amounts of data written if DWSF
is not tracked during the checkpoint phases.

The process flow of restart operation is shown in Algo-
rithm 2. When the system fails and the restart operation
is requested, two new values are updated to let Demoters
choose the victims. At first, the MTBF of the application
that needs restart operation and the latest restart time is read
from pair #7 (line 1). Then the module calculates newMTBF
and updates pair #7 (line 2-3). At the same time, the engine
checks whether the checkpoint file of the application exists
on Burst Buffer or not by using pair #9. If the checkpoint
file to be read is stored on Burst Buffer, pair #2 is updated
with new MTBF (line 4-5). After all the process is done, the
engine reads checkpoint files of the application with pair #1
(line 6-7).

While the I/O engine schedules the I/O jobs accessing
Burst Buffer, the data management engine manages an effi-
cient demotion process between Burst Buffer and PFS using
the four modules. First, Throttler regulates the bandwidth
of the checkpoint and the restart operations by monitoring
DWSF . Throttler obtains DWSF from pair #5 and decides
whether to start the demotion. When DWSF exceeds the
demotion threshold, Throttler regulates the checkpoint and
restart bandwidth to the reconfigured bandwidth. Second,
Demoters receive a signal from Throttler about which device
in Burst Buffer needs the demotion. Then, Demoters col-
lect information from the in-memory store to execute the

demotion. The pseudo-code for the demotion process is
described in Algorithm 3. Demoters first check for every
victim checkpoint file in pair #4 since the oldest version of
the checkpoint file should be demoted first (line 1). If there
is no victim, the victim file is retrieved from pair #2 which
is ordered by MTBF (line 2-3). In this case, the victim file
has to be demoted even though it is the latest checkpoint file
of a certain application. If the victim is found from pair #2,
the victim file is not deleted from Burst Buffer right after the
demotion is finished. The file has to be stored in both Burst
Buffer and PFS to preserve restart performance (line 7-8).
However, it is necessary to mark that victim file in pair #3
in order to erase the file when Burst Buffer needs available
capacity (line 9). If the victim is retrieved from pair #4,
it also means that the application has an old version of the
checkpoint file. Since the file of the old version does not need
to stay in Burst Buffer, the file can be deleted (line 10-11).
Finally, Demoters update pair #1 (line 12) and put the name
of the file in pair #6 for Replicators to handle the repli-
cations (line 13). Third, Deleters erase demotion-finished
files after receiving a signal from I/O workers. Specifically,
Deleters pop information of the application first which is
inserted in pair #3, and delete the files from Burst Buffer
using pair #1 and #8. Lastly, Replicators replicate checkpoint
files from the local storage device to the remote devices
within the same replication group. Each storage node has
a mount point of PFS which consists of storage nodes
in the same replication group except itself. PFS-only low-
speed network is additionally installed between each storage
node. Thus, Replicators transfer the demoted data to the
mount point by using pair #6 without hindering Burst Buffer
performance.

V. EVALUATION
A. EXPERIMENTAL ENVIRONMENT
We evaluate the BBOS HPC storage management scheme on
the small-scale testbed environment consists of eight compute
nodes and a single storage node. Burst Buffer and PFS are
configured together in the storage node. Four of the compute
nodes consist of Intel Xeon Phi CPU 7290 processor with
72 physical cores and others are of Intel Xeon Phi CPU
7250 with 68 physical cores. The storage node consists of
dual 12-core Intel Xeon Silver CPU 4115 and 32 GB mem-
ory. Burst Buffer is configured using four 800 GB FADU
NVMe SSDs provided by a semiconductor start-up com-
pany [33], with the sequential write and read performance up
to 920 MB/s and 3,200 MB/s. Also, 16GB Dell NVDIMM-N
is deployed in the storage node in order to increase mem-
ory capacity and improve data persistence for the Redis
in-memory database. PFS on the same storage node with
Burst Buffer is composed of four 4TB Samsung 860 EVO
SATA SSDs. The compute nodes and the storage node are
connected with a 100 GbE Mellanox SN2100 switch.

We use GlusterFS [34] version 5.6 each configured for
Burst Buffer and PFS and the file system configurations
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FIGURE 6. Burst buffer utilization.

are tuned for high performance. GlusterFS is modified by
adding multiple modules for BBOS scheme. Each variable
of the BBOS framework is configured as following by con-
sidering the capable I/O bandwidth provided by storage
devices: Bwmax as 3.56 GB/s, Bwmin as 3 GB/s, Brmax as
1.6 GB/s, Brmin as 0.08 GB/s, and period as 3800 seconds.
For experiments, we execute large sequential write I/O to
simulate checkpoint operations by using a microbenchmark
FIO [35]. Since failure rate and MTBF have an inverse rela-
tionship [36], MTBF is used to represent failure rates of the
applications in this evaluation.

We compare BBOS with DataWarp, one of the currently
deployed HPC schedulers which use the dedicated Burst
Buffer allocation, and two scheduling policies presented in
Harmonia [26] which is the state-of-the-art scheduler that
uses the Burst Buffer over-subscription method. Since Har-
monia is not an open-source work, we make an emulation
scheduler based on the paper. DataWarp does not perform
I/O scheduling, while Harmonia schedules I/O jobs for pre-
venting them from overlapping each other. MaxEff, one of
Harmonia’s policies, optimizes the Burst Buffer system effi-
ciency by maximizing the Burst Buffer utilization. As the
policy aims to maintain the high capacity of free Burst Buffer
space, it always demotes data at full speed (Brmax) even
when the checkpoint is performed concurrently. On the other
hand, MaxBW, another policy introduced in Harmonia, aims
to provide maximum checkpoint bandwidth to applications.
The checkpoint and the demotion cannot be performed at the
same time with the MaxBW scheduling policy. The demotion
threshold of MaxEFF is 0S of DWSF while threshold of
MaxBW is 1S of DWSF in Figure 3.

B. BURST BUFFER UTILIZATION
In this section, we evaluate the Burst Buffer utilization with
four scheduling policies. We assume that each application
requests to write an 80 GB checkpoint file once a period. The
Burst Buffer utilization is decided by the number of applica-
tions that finish writing the checkpoint file within the period,
which also indicates the maximum DWPP each scheduler
can provide. The Burst Buffer utilization of four scheduling
metrics is shown in Figure 6. DataWarp shows 0∼100% of
Burst Buffer utilization since it allocates Burst Buffer capac-
ity as much as the users demand with a dedicated allocation
method. The best scenario is that the total Burst Buffer capac-
ity is fully used within the checkpoint period even when all

users demand Burst Buffer allocation as much as they need.
This results in 100% of Burst Buffer utilization. However,
Burst Buffer utilization remains low due to overabundant
Burst Buffer capacity requests in most cases. On the other
hand, Harmonia and BBOS can make Burst Buffer accom-
modate more I/O requests within the period since they use an
over-subscription Burst Buffer allocation method. MaxBW
does not allow demotion to be performed together with the
checkpoint to ensure maximum checkpoint throughput of the
applications. As a result, 190% of Burst Buffer utilization
can be achieved using theMaxBW scheduling policy.MaxEff
shows 210% of Burst Buffer utilization because demotion is
always performed at maximum demotion throughput taking
the risk of low checkpoint performance. BBOS is similar to
MaxEff in that demotion is performed at any time possible
without interfered by checkpoint operations. Hence, Burst
Buffer can be utilized by up to 210% with BBOS.

C. CHECKPOINT PERFORMANCE
To evaluate the checkpoint performance on BBOS frame-
work, we conduct experiments under various I/O scenarios
with different I/O job congestion rates andDWPPs. Since the
maximumDWPP of DataWarp is equal to the total capacity of
Burst Buffer, we evaluate DataWarp with DWPP at 1S while
others withDWPP at 1.3S, 1.6S, and 1.9S. We make different
I/O job congestion patterns on the following three scenarios:
• Low: Time interval of each I/O job is equal and evenly
distributed within the period.

• Med: Time interval of each I/O job is halved of Low
case.

• High: Time interval of each I/O job is tenth of Low case.
For instance, if I/O jobs are requested every 50 seconds under
the Low I/O congestion rate, I/O jobs arrive every 25 seconds
and every 5 seconds under the Med and High I/O congestion
rates, respectively. All applications are assumed to request
an 80 GB checkpoint file once per period for simplicity.

Figure 7 shows the checkpoint throughput and latency
under different I/O scenarios. Checkpoint latency includes
1) the time to wait until the previous job is finished to prevent
concurrent execution of I/O jobs (wait time), 2) the time to
wait until free Burst Buffer space is reserved (stall time), and
3) the execution time of I/O job (execution time). When there
is sufficient amount of idle time between the I/O jobs, data
written during checkpoint period can be demoted during idle
time with the DataWarp. As a result, DataWarp can provide
high checkpoint throughput under the Low I/O job congestion
rate. On the contrary, the checkpoint throughput remains low
under the High I/O job congestion rate. This is because there
is no time to make free space in Burst Buffer as I/O jobs
arrive in crowd even when the previous jobs are not finished.
As a result, DataWarp provides the lowest average checkpoint
throughput and similar average latency even with DWPP at
1.0S compared to BBOS.
Different from DataWarp, Harmonia and BBOS schedule

I/O jobs in a way that mitigate I/O interference across the
jobs. Since MaxBW does not allow concurrent execution of
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FIGURE 7. Checkpoint throughput and latency. Low, Med, High refer to I/O job congestion rates and S refers to DWPP .

FIGURE 8. Wait time of I/O jobs with MaxBW policy.

demotion and checkpoint, high checkpoint throughput can be
ensured all the time. However, some of the I/O jobs still have
to stall in order to wait for available Burst Buffer capacity
before the execution. Under the Low congestion rate scenario,
none of the applications have to wait to avoid I/O interference
or to make space in Burst Buffer as there is sufficient idle
time between the I/O jobs. As the I/O jobs arrive in crowds
and DWPP increases, some of the applications begin to
experience high latency. Specifically, the checkpoint latency
starts to increase with Harmonia and BBOS under Med I/O
job congestion rate and DWPP over 1.6S. The large DWPP
represents that there is not much idle time between the jobs
and the checkpoint latency increases as DWPP increases.
When the I/O job congestion rate is High, jobs have towait for
the longest time and results in the highest checkpoint latency.

In addition,MaxBW shows extreme performance variance.
Figure 8 shows the wait time of the first 45 I/O jobs under the
Med I/O congestion rate at DWPP of 1.9S. The later arrived
I/O jobs have to wait for a long time, resulting in severe
performance fluctuation. On the other hand, BBOS makes
sure that data is demoted in advance so that Burst Buffer
always reserve free space for the incoming jobs. Thewait time

under BBOS scheme gradually increasing from the begin-
ning, preventing a sudden burst in the wait time in any case.
In summary,MaxBWprovides higher performance compared
to BBOS when there is no wait time. When there is not
enough Burst Buffer idle time per period or idle time between
I/O jobs,MaxBW shows the higher latency and higher perfor-
mance variance compared to BBOS. This is because BBOS
always prepares for the worst case and adjust the check-
point performance to reserve free space in Burst Buffer in
advance.

Both MaxEff and BBOS perform demotion in advance
for Burst Buffer not to overflow. MaxEff shows the lowest
checkpoint throughput because the data is always demoted at
the maximum demotion speed. In this way, relatively large
amounts of Burst Buffer capacity can be maintained. Conse-
quently,MaxEff provides lower checkpoint latency compared
to MaxBW. BBOS adjusts checkpoint throughput within the
range from Bwmax to Bwmin depending on DWPP. The
smaller DWPP, the higher checkpoint throughput can be
achieved by avoiding unnecessary concurrent execution of
checkpoint and demotion.When there is enough time tomake
free Burst Buffer capacity, only the checkpoint throughput
affects the latency. Hence, BBOS shows lower checkpoint
latency compared to MaxEff when DWPP is small. MaxEff
shows higher checkpoint latency compared to BBOS when
DWPP is large, even thoughMaxEff performs demotionmore
aggressively than BBOS does. This is becauseMaxEff always
demotes data at full demotion speed. In order to demote data
in the maximum speed, the checkpoint throughput has to be
decreased. As a result, checkpoint I/O jobs need towait longer
to be scheduled. In our experiments, the difference in latency
of MaxEff and BBOS seems small (about tens of seconds)
because the difference between Bwmax and Bwmin is not
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FIGURE 9. Direct checkpoint on PFS by bypassing burst buffer.

large. If the difference gets greater, we expect significantly
lower I/O latency with BBOS compared to MaxEff.

Overall, BBOS is the novel approach that takes advantage
of and complements the shortcomings of MaxBW andMAX-
Eff. By adjusting checkpoint and demotion speed depend-
ing on DWPP and I/O job congestion rate dynamically,
BBOS always provides relatively high checkpoint throughput
and low latency compared to the other approaches. Further-
more, our result shows that there is no I/O overhead shown
with managing BBOS framework on Burst Buffer. In other
words, applications can get expected I/O performance as
BBOS throttles the speed of checkpoint and restart operations
depending on decisions made by BBOS I/O scheduler. As a
result, BBOS can adjust the checkpoint throughput of the jobs
in real-world HPC systems with thousands of storage nodes
likewise to the checkpoint throughput under single Burst
Buffer node system. Since BBOS runs with pre-determined
system configurations setting, BBOS always provides stable
checkpoint performance within a configured range under
hardware limits.

D. DIRECT CHECKPOINT ON PFS
When the difference of the I/O bandwidth provided by PFS
and Burst Buffer is not large, bypassing Burst Buffer and
directly accessing PFS can eliminate unnecessary demo-
tion overhead. We conduct experiments with three differ-
ent DWPP: 1.3S, 1.6S, and 1.9S. Each application requests
an 80 GB checkpoint during one hour and MTBF of all
the applications are set randomly from 0 to 100 minutes.
We optimize the BBOS framework by checking the MTBF
of the applications that issue checkpoint requests. Before
serving the request, the I/O engine first checks whether the
Burst Buffer capacity is fully used. Only when the demo-
tion is needed in order to make free space in Burst Buffer,
the engine next checks whether the checkpoint file to be
written is cold data or not by comparing the failure rates of
the applications and the version number among the check-
point files of the same application. The application with
large MTBF is considered to write cold data since there is
less possibility to get failure. Also, when there are multiple
checkpoint files with different version numbers, only the
latest file is considered to be hot. When the cold data is
to be written when there is not enough Burst Buffer space,

FIGURE 10. Hit ratio of restart requests on burst buffer. Low, Med, High
refer to MTBF variance of applications.

optimized BBOS bypass the Burst Buffer and write directly
on PFS. Figure 9 shows the normalized demotion data size
with optimized BBOS under differentDWPP scenarios. In the
case of DWPP being 1.9S, large amounts of checkpoint files
that are considered to be cold data are written directly on
PFS, which decreases the amounts of demoted data by up
to 38%. Since less amount of data is demoted concurrently
with checkpoint operations, more applications can experience
higher checkpoint throughput.

E. RESTART PERFORMANCE
We evaluate restart performance on Burst Buffer by compar-
ing the hit ratio using different scheduling policy: LRU, FIFO,
and BBOS. DWPP is configured as 1.5S, 1.7S, 1.9S, and
2.1S, and we randomly setMTBF of the applications between
the following ranges: 0 to 20 minutes (Low), 0 to 50 minutes
(Med), and 0 to 100 minutes (High). The applications that
need restart is selected based on the expected MTBF , as the
failure rate is in the inverse relationship with MTBF . All the
checkpoint periods are fixed to be equal and the checkpoint
size of each application is set to 80 GB.

Figure 10 shows the hit ratio under different configura-
tions. In every case, BBOS shows the highest hit ratio on
Burst Buffer. Since the checkpoint files have a higher pos-
sibility to be in Burst Buffer with low DWPP, the hit ratio
increases with lowDWPP under all three scheduling policies.
In the case of LRU and FIFO algorithms, however, cold data
is chosen based on the order of data written time. As a result,
the variance of the hit ratio of each experiment is high and
the result is unrelated to the variance of MTBF . In contrast,
BBOS shows an increased hit ratio as the MTBF variance
gets higher. With low MTBF variance, the effectiveness of
our system is relatively low compared to other policies since
failure rates of the applications are similar. On the other hand,
the checkpoint files are well distributed on Burst Buffer and
PFS, sorted by the failure rates in case of the high variance
ofMTBF . As a result, BBOS provides up to 3.4 times higher
hit ratio of restart requests on Burst Buffer compared to the
others.
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FIGURE 11. Version-aware data placement. 1:1:1 and 5:2:1 refer to the
ratio of the number of the applications with 60, 30 and 20 minutes
checkpoint period, respectively.

F. VERSION-AWARE DATA PLACEMENT
In order to keep the hit ratio high on Burst Buffer, BBOS
uses the version-aware data placement method by identifying
outdated checkpoint files as cold data. To demonstrate the
effectiveness of the version-aware data placement method,
we choose three checkpoint periods for applications as fol-
lows: 60 minutes, 30 minutes, and 20 minutes. Each user is
to request an 80 GB-size checkpoint data and MTBFs of the
applications are decided randomly from 0 to 100. We assume
that the applications maintain three or more versions of
checkpoint files. Thus, the applications with a 60-minute
period have one checkpoint version within a one-hour period,
two versions for a 30-minute period, and three versions for a
20-minute period. We also arrange the ratio of the number of
applications having every three periods as 1:1:1 and 5:2:1 and
the DWPP is fixed to be 1.9S.

Figure 11 shows the hit ratio of restart requests on Burst
Buffer with and without using the version-aware method.
When the numbers of applications with different checkpoint
periods are same, all the latest checkpoint files can be stored
in Burst Buffer with the version-aware method and results in
96.4% hit ratio in the ideal case. Our result shows the slight
decrease in hit ratio because the checkpoint file with the high-
est MTBF has to be demoted even though it is the latest one
whenever the free Burst Buffer space is needed for incoming
I/O requests. When the version-aware data placement is not
used, cold data is decided only based on the MTBF of the
applications and the latest checkpoint files with high MTBF
may be stored on PFS while old version files with lowMTBF
stay on Burst Buffer. As a result, only 80.1% hit ratio is shown
in our evaluation. In the case of the 5:2:1 ratio, there are large
number of applications with low checkpoint period and every
checkpoint files cannot all be stored in Burst Buffer. Thus,
92.5% of the restart requests can be handled in Burst Buffer
with version-aware placement policy and only 71.7% of the
requests can be handled without the policy.

G. PERFORMANCE OF BBOS USING NVDIMM
The BBOS framework is further improved by using
NVDIMM on Redis in-memory database. We show two
evaluation results in this section: the performance of
NVDIMM-aware Redis database and the I/O performance of
Burst Buffer with NVDIMM-applied BBOS.

FIGURE 12. Performance overhead of NVDIMM-applied BBOS.

FIGURE 13. Aggregated disk usage rate over time in burst buffer with
NVDIMM-applied BBOS. The red dashed line refers to the average I/O
performance of burst buffer without using NVDIMM.

First, to focus on the performance of Redis with persistent
memory, we use memtier benchmark [37] and compare the
performance of default Redis and pmem-redis version Redis.
We set the range of the requested data size to be between 64B
and 256B, which is chosen empirically as the same size of
data is read and written to Redis in the BBOS framework
when Burst Buffer serves the checkpoint and restart opera-
tions. We set the ratio of GET operations to SET operations
as 10:0, 0:10, and 5:5, while the number of requests is set to
5,000, 10,000, and 20,000. Figure 12 shows the transaction
rates when using default Redis and Redis with NVDIMM,
respectively. Every key is kept in DRAM while value larger
than 64B is written to NVDIMM. As every value size is
larger than 64B in our configuration, every value is kept
in NVDIMM. Although DRAM space is saved using this
approach, an additional data copy is required in order to move
value data from DRAM to NVDIMM. Also, data written in
NVDIMM requires longer latency to read or write compared
to that of DRAM. As a result, pmem-redis version of Redis
provides 0.4% to 15.7% lower performance compared to
default Redis.
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Second, we evaluate the I/O performance of Burst Buffer
with NVDIMM-applied BBOS. Figure 13 shows the aggre-
gated disk I/O rate over time on a single Burst Buffer node
when BBOS runs using Redis with NVDIMM. The red
dashed line in the graph refers to the average I/O performance
of Burst Buffer without NVDIMM.We do not throttle the I/O
performance in this evaluation. The result shows that even
when Redis stores most of the data in NVDIMM, the disk
I/O rate does not decrease under heavy I/O load. In other
words, the optimized version of Redis using persistent mem-
ory rarely harms the bandwidth of the I/O workloads. To sum
up, we consider the low performance of pmem-redis version
of Redis is acceptable as the experimental result shows that
the I/O bandwidth of Burst Buffer still reaches the maximum
performance limit.

When bursty I/O comes in crowd in Burst Buffer system
with BBOS framework, not only the data movement among
multiple tiers but data replication and file system processes
to manage I/O operations increase memory usage. Under the
real-world HPC system environment that consists of thou-
sands of compute nodes and storage nodes, the memory con-
sumption would extremely increases and eventually harms
the overall system performance. As such, it is advantageous
to maintain a large amount of free memory as possible.
Considering that exploiting NVDIMM can easily increase
memory capacity with lower cost, our solution is capable of
maintaining sufficient amount of memory space with no I/O
performance degradation.

VI. RELATED WORK
Burst Buffer has been widely deployed in HPC storage sys-
tems in the past few years to improve the I/O performance.
A large number of scientific HPC applications can benefit
from high I/O performance provided by Burst Buffer [10],
[38]. Depending on the architecture designs, Burst Buffer can
be either located within the compute nodes or independently
located as dedicated Burst Buffer nodes [11], [39], [40].
Common Burst Buffer design used in HPC systems is shared
Burst Buffer organization, which shows higher I/O perfor-
mance compared to local Burst Buffer design [41]. To further
optimize the Burst Buffer system, numerous studies have
been made in HPC communities with different approaches.

As Burst Buffer works as a cache layer in HPC storage
systems, several studies have proposed the novel optimization
techniques on Burst Buffer framework. Khetawat et al. [42]
designed a simulation framework that can accurately find the
best Burst Buffer configuration setting considering the I/O
characteristics of real-world HPCworkloads. Aupy et al. [43]
minimized the I/O contention by sizing and partitioning Burst
Buffer using polynomial time algorithms. After Burst Buffer
is widely used as high-performance cache layer, researchers
have also focused on improving checkpoint and restart per-
formance using Burst Buffer. One of the approaches is to
write checkpoint files on multiple layers including compute
nodes, Burst Buffer, and PFS [44]. To reduce checkpoint
overhead on PFS,Moody et al. [25] developed themulti-level

checkpointing mechanism considering the different degree of
reliability and the checkpoint cost of each tier in theHPC stor-
age system. Data Elevator implemented by Dong et al. [45]
offloads I/O access from Burst Buffer to PFS to reduce the
contention on Burst Buffer. Different from Data Elevator
that needs users to specify the final destination of the data,
BBOS dynamically manages direct checkpointing on PFS
when there is not enough free space in Burst Buffer. Since
multi-level checkpointing can lead to high failure rates on
a large-scale HPC environments, Sato et al. [46] combined
the multi-level checkpointing and non-blocking mechanism
so that data can be transferred asynchronously on checkpoint
operations. Similar to the previous studies, our work also
focuses on improving checkpoint and restart performance on
Burst Buffer on multi-layered HPC systems.

Burst Buffer can be fully utilized with help of proper I/O
scheduling policies, likewise to the policy that exists for
PFS [27], [47], [48]. Han et al. [28] observed that the I/O
capability of Burst Buffer cannot be fully used when mul-
tiple HPC users simultaneously use Burst Buffer. To address
the problem, they proposed Burst Buffer with multi-stream
SSDs by assigning each user a separate I/O stream to
remove the I/O interference. Koo et al. [49] further improved
the I/O separation scheme on Burst Buffer by proposing
stream-aware scheduling policy on Burst Buffer I/O pools.
Thapaliya et al. [47] also reported the I/O interference prob-
lem in shared Burst Buffer system and Gainaru et al. [50]
attempted to dynamically schedule the I/O jobs based on
the past I/O patterns of the jobs. TRIO is the Burst Buffer
I/O scheduling policy that efficiently transfer the I/O traffic
from Burst Buffer to PFS [2]. Similar to the above works,
BBOS introduces novel I/O scheduling policy that efficiently
handle data between Burst Buffer and PFS considering the
checkpoint characteristics.

Several works claimed that HPC applications have fre-
quently accessed data including checkpoint files [3], [51].
By placing hot data on Burst Buffer, the I/O intensive applica-
tions can get benefit from using Burst Buffer. Shin et al. [15]
automatically placed data on HPC multi-tiered storage sys-
tem using goal-driven data management scheme, while
Shi et al. [52] regulated I/O traffic onBurst Buffer and PFS by
using the write access patterns of the applications. Our work
also considers I/O patterns and characteristics of checkpoint
operations when making data placement decision.

VII. CONCLUSION
BBOS, the new I/O scheduling framework for Burst
Buffer-based HPC storage system, uses the over-subscription
scheduling method by allocating Burst Buffer only during
I/O phases to improve Burst Buffer utilization. In order to
mitigate performance degradation, the Burst Buffer aware I/O
scheduler and the data management module are implemented
in BBOS. We analyzed and utilized the characteristics of
checkpoint and restart operations to design the BBOS mod-
ules. Based on the characteristics, data is transferred from
Burst Buffer to PFS transparently by dynamically adjusting
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the thresholds and the speed of the demotion. We also identi-
fied the cold data considering different versions and failure
rates of the checkpoint files. All the metadata related to
the BBOS framework is handled in the Redis in-memory
database, which is improved by using persistent memory.
As a result, we improved Burst Buffer utilization by up to
120% compared to the default dedicated Burst Buffer allo-
cation method and guaranteed higher checkpoint throughput
without sudden performance reduction. Also, 96.4% of restart
requests can be handled in Burst Buffer and provided up to
3.1 times higher restart performance with BBOS framework.
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