
UCLA
UCLA Previously Published Works

Title
Blind Hyperspectral Unmixing Based on Graph Total Variation Regularization

Permalink
https://escholarship.org/uc/item/4mc446tz

Journal
IEEE Transactions on Geoscience and Remote Sensing, 59(4)

ISSN
0196-2892

Authors
Qin, Jing
Lee, Harlin
T., Jocelyn
et al.

Publication Date
2021-04-01

DOI
10.1109/tgrs.2020.3020810
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mc446tz
https://escholarship.org/uc/item/4mc446tz#author
https://escholarship.org
http://www.cdlib.org/


1

Blind Hyperspectral Unmixing Based on Graph
Total Variation Regularization

Jing Qin, Member, IEEE, Harlin Lee, Student Member, IEEE, Jocelyn T. Chi, Lucas Drumetz, Member, IEEE,
Jocelyn Chanussot, Fellow, IEEE, Yifei Lou, Member, IEEE, and Andrea L. Bertozzi, Member, IEEE

Abstract—Remote sensing data from hyperspectral cameras
suffer from limited spatial resolution, in which a single pixel
of a hyperspectral image may contain information from several
materials in the field of view. Blind hyperspectral image unmixing
is the process of identifying the pure spectra of individual
materials (i.e., endmembers) and their proportions (i.e., abun-
dances) at each pixel. In this paper, we propose a novel blind
hyperspectral unmixing model based on the graph total variation
(gTV) regularization, which can be solved efficiently by the
alternating direction method of multipliers (ADMM). To further
alleviate the computational cost, we apply the Nyström method
to approximate a fully-connected graph by a small subset of
sampled points. Furthermore, we adopt the Merriman-Bence-
Osher (MBO) scheme to solve the gTV-involved subproblem
in ADMM by decomposing a grayscale image into a bit-wise
form. A variety of numerical experiments on synthetic and real
hyperspectral images are conducted, showcasing the potential
of the proposed method in terms of identification accuracy and
computational efficiency.

Index Terms—Blind hyperspectral unmixing, Nyström method,
graph Laplacian, graph total variation, alternating direction
method of multipliers.

I. INTRODUCTION

Hyperspectral imaging (HSI) is an important and useful
tool to acquire high resolution data in the electromagnetic
spectrum with many applications in remote sensing, includ-
ing surveillance, agriculture, environmental monitoring, and
astronomy. With hundreds to thousands of spectral bands,
a hyperspectral image provides a detailed description of a
scene. However, due to limited spatial resolution of imag-
ing sensors, the acquired hyperspectral data at each pixel
represents a collection of material signatures in the field of
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view of each pixel. The signature corresponding to one pure
material is called an endmember in hyperspectral data analysis
[1]. Given the endmembers of all materials present in the
scene, hyperspectral unmixing aims to estimate the proportions
of constituent endmembers at each single pixel, called the
abundance map. If the spectral information of endmembers is
unavailable, then the problem becomes a blind hyperspectral
unmixing problem that requires simultaneously identifying the
endmembers and estimating the abundance map. There are a
large number of hyperspectral mixing and unmixing methods
[2], [3], including linear and nonlinear models, depending
on assumptions about the interaction of the light with the
observed scene.

In this paper, we focus on the linear mixing model. Specif-
ically, by assuming that each light ray interacts with only one
endmember in the field of view before reaching the sensor,
we model the spectrum at each pixel as a linear combina-
tion of all endmembers. Due to the physical interpretation
of the hyperspectral mixing model, it is also reasonable to
assume that each element of endmembers and abundances
is nonnegative. Another commonly used constraint is that
abundances from all the endmembers at each pixel sum up
to one, which implies that all abundance vectors belong to the
probability simplex, determined by the standard unit vectors
in a Euclidean space. Note that one can remove the sum-to-
one constraint for physically motivated reasons, e.g., when
illumination conditions or the topography of the scene change
locally in the image [4]. We adopt the sum-to-one constraint
due to the interpretability of the abundances.

Nonnegative matrix factorization (NMF) [5], decomposing a
given matrix into a product of two matrices with nonnegative
entries, is widely used in blind hyperspectral unmixing [6],
[7], [8]. Suppose the given hyperspectral image X is of size
w× n, where w is the number of spectral bands and n is the
number of spatial pixels. One aims to write X as a product of
two nonnegative matrices S ∈ Rw×k and A ∈ Rk×n with k
being the total number of the endmembers. Note that the rank
of the matrix SA is at most k, and k is usually much smaller
than w and n. Then the hyperspectral unmixing problem can
be formulated as a nonnegative least squares problem,

min
S∈Ωw×k

A∈Ωk×n

1

2
‖X − SA‖2F , (1)

where Ωl×m denotes the set of all nonnegative real matrices
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of size l ×m, i.e.,

Ωl×m := {X ∈ Rl×m |Xij ≥ 0, i = 1, . . . , l, j = 1, . . . ,m}.
(2)

However, non-convexity of the objective function in (1) may
lead to multiple local minima for NMF. To address this
issue, various regularization techniques have been developed
to enforce some desirable properties on the endmembers
or abundance matrices. For example, methods based on the
spatial sparsity of abundances include the use of the `0-norm
[9], the `1-norm [10], the `2-norm in fully constrained least
squares unmixing (FCLSU) [11], the `1/2-norm [12], and the
mixed `p,q-norm for group sparsity [13].

Due to the success of the total variation (TV) [14] in the
image processing community, the TV regularization has been
applied to hyperspectral unmixing to preserve the piecewise
constant structure of the abundance map for each material.
For example, sparse unmixing via variable splitting augmented
Lagrangian and total variation (SUnSAL-TV) [15] involves a
two-dimensional TV regularization. Other TV-based variants
include TV with `1 [16], TV with sparse NMF [17], TV
with nonnegative tensor factorization [18], and an improved
collaborative NMF with TV (ICoNMF-TV) [19] that combines
robust collaborative NMF (R-CoNMF) [20] and TV. Recently,
TV is considered as a quadratic regularization promoting
minimum volume in the NMF framework, referred to as
NMF-QMV [21]. An extension of TV to nonlocal spatial
operators [22], [23] has led to nonlocal TV being considered
for the blind hyperspectral unmixing problem [24], [25]. TV
has also been extended from vectors in Euclidean space to
signals defined on a graph. For example, the graph TV (gTV)
[26] is a special case of the p-Dirichlet form [27], [28] in
graph signal processing. Some graph regularization techniques
for hyperspectral imaging include graph NMF (GNMF) [29],
structured sparse regularized NMF (SS-NMF) [30], graph-
regularized `1/2-NMF (GLNMF) [31], and graph-regularized
multilinear mixing model (G-MLM) based on superpixels
[32]. However, most of these graph-based approaches suffer
from intensive computation, especially when computing the
pairwise similarity between all pixels. To reduce the com-
putational cost, the Nyström method [33] generates a low-
rank approximation of the graph Laplacian, which can be
incorporated into unmixing.

In this work, we propose an efficient framework for blind
hyperspectral unmixing based on an approximation of gTV
to exploit the similarity of spectral information at different
pixels and preserve sharp edges of the abundance map. By
treating the spectral vector at each pixel as a vertex, the given
hyperspectral data can be modeled as a graph, whose adja-
cency matrix is determined by the pairwise similarity between
any two vertices. Instead of using the incidence matrix to
define the discrete graph derivative operator and thereby graph
TV [27], [28], [34], [26], we approximate gTV by the graph
Laplacian. This approach is inspired by a theoretical result
in [35]: the TV semi-norm of a binary function defined on
a graph is well-approximated by the graph Ginzburg-Landau
(GL) functional involving the graph Laplacian and a double-
well potential. In order to relax the restriction on binary data,

we adopt a bitwise decomposition [36] to deal with grayscale
images. Specifically, we decompose the input data into eight
bits, solve the optimization problem at each bit channel, and
aggregate all bits into grayscale values.

Our framework incorporates several techniques to increase
the computational efficiency. To avoid a direct calculation of
the graph Laplacian, we adopt the Nyström method [33] in
graph clustering to approximate the eigenvalues and eigenvec-
tors of the graph Laplacian. The Nyström method is a low-
rank approximation of the weight-matrix that does not require
the computation of all pairwise comparisons between feature
vectors. Rather, it uses random sampling to construct a low
rank approximation that is roughly O(N) for the number of
feature vectors rather than computing the full matrix which
is O(N2). This is a reasonable assumption in cases where
the image is thought to be representable by a relatively
small number of features as would be the case with a mod-
est number of endmembers. This approximation significantly
reduces the computational costs in both time and storage,
which makes our approach scalable to high-dimensional data.
Moreover, we design an efficient numerical algorithm to solve
the proposed model via the alternating direction method of
multipliers (ADMM) [37], [38]. In particular, the gTV-related
subproblem can be solved efficiently by the Merriman-Bence-
Osher (MBO) scheme [39], [40] at each bit channel. We can
readily incorporate an accelerated version [41] of the MBO
scheme and the Nyström method into the proposed framework.
To demonstrate the effectiveness of these approximations,
we conduct extensive experiments on various synthetic and
real hyperspectral datasets, showing the great potential of
the proposed method in terms of accuracy and computational
efficiency.

The main contributions of this paper are three-fold:

1) We propose a novel data-driven type of graph regular-
ization, i.e., graph TV based on the similarity of spectral
information, imposed on the abundance map. To the best
of our knowledge, this is the first time that the graph
total variation regularization has been applied to solve a
hyperspectral unmixing problem.

2) We apply the Nyström method to efficiently approximate
eigenvalues and eigenvectors of a normalized graph
Laplacian, which significantly improves the scalability
of our approach.

3) We present an effective graph-based framework that
integrates the Nyström method and the MBO scheme
into blind hyperspectral unmixing. We also provide a
thorough discussion of computational complexity and
parameter selection of the proposed algorithm.

The remainder of the paper is organized as follows. In
Section II, we provide a brief introduction of concepts and
methods used in our workflow, including the Nyström method,
the GL functional, and the MBO scheme. Section III presents
the proposed hyperspectral unmixing model, followed by
a detailed description of the proposed algorithm based on
ADMM and its complexity analysis. Extensive experiments are
provided in Section IV, followed by a discussion on parameter
selection in Section V. Finally, conclusions and future works
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are given in Section VI.

II. PRELIMINARIES

In this section, we provide preliminary knowledge for a set
of building blocks that are used in this work, including the
graph construction, the Nyström method for efficiently approx-
imating the similarity weight matrix, and the GL functional
with a fast solver to find its minimizer via MBO.

A. Graph Construction

Similarity graphs are an important mathematical tool to
describe directed/undirected pairwise connections between
objects. Typically, a graph consists of vertices (or nodes)
connected by edges with the associated weights. Consider a
collection of data points {xi}ni=1 ⊆ Rw, one simple way
to construct a graph G is to treat each point as a vertex of
the graph. Then the weight matrix (also known as the affinity
matrix) W ∈ Rn×n of G is defined by

Wij = e−d(xi,xj)2/σ, i, j = 1, . . . , n, (3)

where d(xi,xj) is the distance between the two vertices xi
and xj , and σ > 0 controls how similar they are. There are
two distance metrics widely used in graph-based applications:

1) Euclidean distance: d(xi,xj) = ‖xi − xj‖2;
2) cosine similarity: d(xi,xj) = 1− 〈xi,xj〉

‖xi‖2‖xj‖2
.

In this paper, we adopt the cosine similarity as the distance
function for hyperspectral data, which is physically motivated
by the fact that illumination effects change the scaling of
spectra but not their overall shape in the spectral domain [40],
[42], [41].

Based on the weight matrix W , we define the degree matrix,
denoted by D, as a diagonal matrix whose entries are the row
(or column) sums of W . There are several ways to define
graph Laplacian. For example, the standard graph Laplacian
is defined as L = D −W , while the (symmetric) normalized
graph Laplacian is given by

Ls = I −D−1/2WD−1/2. (4)

In this work, we adopt the symmetric normalized graph Lapla-
cian due to its outstanding performance in the graph-based
data classification [40], [43]. By denoting X = [x1, . . . ,xn] ∈
Rw×n, we have

〈X>, LsX>〉 =

n∑
i,j=1

‖x̂i − x̂j‖22Wij , (5)

where x̂i = xi/
√
dii with dij being the (i, j)-th entry of the

matrix D. Here, we use the standard inner product on matrices,
i.e., 〈X>, LsX>〉 = tr(XLsX

>), where tr(·) is the matrix
trace operator that returns the sum of all the diagonal elements.

B. Nyström Method

Computing and storing pairwise similarities of a fully-
connected graph is usually a bottleneck of many graph-based
algorithms. In order to reduce the time/space complexity, we
apply the Nyström method [33] to approximate the eigenvalues

and eigenvectors of W ∈ Rn×n by using only p sampled data
points with p� n. Up to permutations, the similarity matrix
W can be expressed in a block-matrix form,

W =

[
W11 W12

W21 W22

]
,

where W11 ∈ Rp×p is the similarity matrix of the sampled data
points, W12 = W>21 is the one of the sampled points and the
unsampled points, and W22 is the one of the unsampled points.
Assume that the symmetric matrix W11 has the eigendecompo-
sition W11 = U Λ̃U>, where U has orthonormal eigenvectors
as columns and Λ̃ is a diagonal matrix whose diagonal entries
are eigenvalues of W11. The Nyström extension gives an
approximation of W by using U and Λ̃ as follows,

W ≈ Ũ Λ̃Ũ>, where Ũ =

[
U

W21U Λ̃−1

]
. (6)

Note that the columns of Ũ require further orthogonalization.
See [33], [41] for more details.

In this work, we apply the Nyström method to calculate the
weight matrix for the sampled data and then use the approxi-
mated eigendecomposition (6) to approximate the normalized
graph Laplacian, i.e.,

Ls ≈ D−1/2Ũ(I − Λ̃)Ũ>D−1/2 := V ΛV >, (7)

where V = D−1/2Ũ ∈ Rn×p and Λ = I − Λ̃ ∈ Rp×p. In
this way, computation of pairwise similarities is significantly
reduced from the whole dataset to a small portion.

C. Ginzburg-Langdau Functional and MBO Scheme

The classic Ginzburg-Landau (GL) energy [43], [44] for
diffuse interface models is

ε

2

∫
Ω

|∇u|2dx+
1

ε

∫
Ω

Φ(u)dx,

where Φ(u) := 1
4u

2(u − 1)2 is a double-well potential to
enforce u to take binary values of {0, 1} on a domain Ω. The
term “diffuse interface” refers to a smooth transition between
two phases of u, where the smoothness is modeled by the H1-
semi norm and the scale of the transition is controlled by the
parameter ε > 0. It is proven in [45] that the GL functional
Γ-converges to the TV semi-norm, i.e., as ε→ 0,

ε

2

∫
Ω

|∇u|2dx+
1

ε

∫
Ω

Φ(u)dx→ C

∫
Ω

‖∇u‖dx,

for some constant C > 0.
In a series of works including [40], [42], [46], [47], [48],

the GL functional has been extended to graphs, defined as

GL(u) = ε〈u, Lu〉+
1

ε
Φ(u), (8)

where u = [u1, . . . , un]> ∈ Rn is a signal defined on a graph
G with ui being the state of vertex i and L is the graph
Laplacian of G or its variant. Here Φ(u) =

∑n
i=1 Φ(ui), which

can be extended to the matrix case, i.e., Φ(U) =
∑
i,j Φ(uij)

for any matrix U = (uij). Thanks to the double-well potential,
the GL functional has been successfully applied to binary data
classification [40] and multiclass classification [41], [46]. We
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employ the binary model here. By adding a fidelity term to the
GL energy, one obtains the following minimization problem

E(u) = GL(u) + λF (u), (9)

where F (u) is a differentiable functional that fits the unknown
variable u to the given data y, e.g., F (u,y) = 1

2 ‖u− y‖22.
The parameter λ > 0 balances the contributions between the
GL regularization term and the data fidelity term. When u is
binary, the energy E can be efficiently minimized via the MBO
scheme [39], [40]. In particular, the MBO scheme alternates
a gradient descent step that minimizes 〈u, Lu〉+ λF (u) and
a hard thresholding that minimizes the double-well potential
term. More precisely, the updated solution ut+1 from the t-th
iteration is given by{

ut+1/2 = ut − dt
(
Lut + λ∇F (ut)

)
ut+1 = H1/2(ut+1/2),

(10)

where ∇F is the gradient of F , dt > 0 is a time stepsize, and
H1/2(·) is a hard thresholding operator defined as

(H1/2(u))i =

{
1, if ui ≥ 1/2

0, if ui < 1/2,
(11)

for i = 1, . . . , n. To circumvent the restriction on binary
solutions in the MBO scheme, we use a bitwise scheme to
deal with grayscale images in Section III.

III. PROPOSED METHOD

Let X ∈ Rw×n be a hyperspectral image, where w is the
number of spectral bands and n is the number of pixels in
the image. We denote the spectral signature of pure materials,
called endmembers, as {sj}kj=1 with k being the number of
endmembers. Assume that the spectral signature at each pixel,
namely each column of X , follows the standard linear mixing
model, i.e.,

xi =

k∑
j=1

ajisj , i = 1, . . . , n, (12)

where aji is the proportion of the j-th material at the i-th
pixel. By concatenating all spectral signatures sj’s, we obtain
a matrix S ∈ Rw×k, which is called the mixing matrix.
Similarly, by assembling all weights aji’s, we obtain a matrix
A ∈ Rk×n, which is called the abundance map. Thus we can
rewrite (12) as X = SA. Different from [49], our method does
not require the presence of pure pixels, rather just to assume
the linear unmixing model (12).

By taking the noise into consideration, the blind unmixing
problem is to estimate both S and A simultaneously from the
noisy hyperspectral data X , i.e.,

X = SA+ η,

where η ∈ Rw×n is an additive noise term, which is typically
assumed to be Gaussian noise. This is a highly ill-posed
problem, and hence additional assumptions and regularizations
are required. First, due to the physical interpretation of (12),
both S and A are assumed to be nonnegative matrices, i.e.,
S ∈ Ωw×k and A ∈ Ωk×n with Ω defined in (2). In addition,

since each element of A is the proportion of one of the pure
materials in a single pixel, it is natural to impose the sum-
to-one assumption, i.e., 1>k A = 1>n , where 1m denotes the
all-one (column) vector of length m. We use the above two
assumptions as constraints to refine the solution space.

In the previous work [50], we considered a graph Laplacian
regularization for hyperspectral unmixing, i.e.,

JH1
(A) =

1

2

n∑
i,j=1

‖âi − âj‖22Wij , (13)

where ai is the i-th column of A and âi = ai/
√
dii.

However, the graph Laplacian regularization usually causes
oversmoothing due to the presence of `2-norm in (13). To
mitigate the oversmoothing artifacts, we propose a graph total
variation (gTV) regularization on the abundance map, i.e.,

JTV (A) =
1

2

n∑
i,j=1

‖âi − âj‖1Wij . (14)

Minimizing JTV can preserve edges of the abundance map
for each material in a nonlocal fashion. The proposed gTV-
regularized model for blind hyperspectral unmixing can be
formulated as

min
S∈Ωw×k

A∈Ωk×n,1>
k

A=1>n

1

2
‖X − SA‖2F + λJTV (A), (15)

where λ is a positive tuning parameter. Note that we use
the given hyperspectral data X to generate a weighted graph
by assuming that spectral signatures and abundance maps
share the same spatial smoothness. Note that the sum-to-
one constraint on the abundance map is commonly used in
hyperspectral unmixing [2]; it implicitly enforces sparsity
because it is related to the `1-norm. By considering only
the sparsity of spatial gradients, the spatial TV regularization
has a tendency to oversmooth the abundance map [51]. On
the contrary, the proposed gTV regularization considers the
similarity of spectral information at different pixels and hence
it can preserve fine spatial features in the abundance map.

In order to apply the ADMM framework, we rewrite the
constraints in (15) using indicator functions. In general, the
indicator function χ∆ of a set ∆ is defined as

χ∆(Z) =

{
0, Z ∈ ∆;

∞, otherwise.

By denoting Π := {Z ∈ Rk×n : Z ∈ Ωk×n,1
>
k Z = 1>n }, we

can rewrite the model (15) as an unconstrained problem,

min
S,A

1

2
‖X − SA‖2F +λJTV (A) +χΩw×k

(S) +χΠ(A). (16)

We introduce two auxiliary variables B ∈ Rk×n, C ∈ Rw×k
and rewrite the objective function (16) as its equivalent form,

min
S,A,B,C

1

2
‖X − CA‖2F + λJTV (B) + χΩw×k

(S) + χΠ(A)

s.t. A = B, S = C.
(17)
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The corresponding augmented Lagrangian is

L =
1

2
‖X − CA‖2F + λJTV (B) + χΩw×k

(S) + χΠ(A)

+
ρ

2

∥∥∥A−B + B̃
∥∥∥2

F
+
γ

2

∥∥∥S − C + C̃
∥∥∥2

F
,

where B̃, C̃ are dual variables and ρ, γ are two positive
parameters. Then the ADMM algorithm requires solving four
subproblems at each iteration, i.e., minimizing L with respect
to C, S,A and B individually while fixing the others. Specif-
ically, the C-subproblem reads as

argmin
C

1

2
‖X − CA‖2F +

γ

2

∥∥∥S − C + C̃
∥∥∥2

F
,

which has a closed-form solution. The S-subproblem seeks the
projection of C − C̃ onto the set of all nonnegative matrices,
which can be solved by hard thresholding. As for the A-
subproblem, the solution can be obtained by projecting a least
squares solution onto the convex set Π, i.e.,

A = PΠ

(
(S>S + ρI)−1

(
S>X + ρ(B − B̃)

))
, (18)

where PΠ is the projection operator on the set Π that can be
implemented by a fast algorithm [52].

For the B-subproblem, we approximate the nondifferen-
tiable gTV by the graph GL functional. To remove the binary
restriction of MBO, we approximate any real number in
[0, 1] by its best M -bit binary representation [36]. We apply
the MBO scheme on each channel separately, which can be
implemented in parallel. Finally, we combine all the channels
to get an approximated solution with elements in [0, 1] for the
B-subproblem. In all our experiments, we set M = 8. More
specifically, we approximate the matrix B by a set of M binary
matrices Bm ∈ Rk×n with m = 1, · · · ,M such that

Bij ≈
M∑
m=1

2−m(Bm)ij , (19)

where M is the total number of bits being considered and Bm
is the m-th bit channel of the matrix B, i.e., (Bm)ij ∈ {0, 1}.
Likewise, we approximate A and B̃ in the same manner and
get two sets of binary matrices {Am}Mm=1 and {B̃m}Mm=1.
Then for each channel, we approximate the gTV regularization
JTV by the graph GL functional (8). Note that 〈A>, LsA>〉 =
tr(ALsA

>) due to (5) and hence we obtain the following
minimization problem for each Bm,

min
Bm

ε tr(BmLsB
>
m) +

1

ε
Φ(Bm) +

ρ

2λ
‖Bm −Am − B̃m‖2F,

(20)
where Ls and Φ are defined in Section II. Note that we assume
that the graph structure at each channel is consistent with the
one that is defined by the given hyperspectral data X .

We apply the MBO scheme (10) to minimize (20), which
is a two-step iterative algorithm. In particular, the first step
requires solving for B>m from

LsB
>
m +

ρ

λ
(B>m −A>m − B̃>m) = 0. (21)

Motivated by [41], we further accelerate the MBO by taking
advantage of the approximated eigendecomposition of Ls

given in (7). Multiplying both sides of (21) with V > from the
left, we get ΛV >B>m + ρ

λ

(
V >B>m − V >(A>m + B̃>m)

)
= 0,

or equivalently

BmV Λ +
ρ

λ

(
BmV − (Am + B̃m)V

)
= 0, (22)

since V >V = I . As a result, we only need to solve for BmV ∈
Rk×p with a reduced problem size. Denote Zm = BmV and
Dm = ρ

λ

(
BmV − (Am + B̃m)V

)
. At the (τ + 1)-th iteration,

we have the following algorithm to update Bm:

Zτ+1
m = Zτm(I − dτΛ)− dτ ·Dτ

m

Bτ+1/2
m = V Zτ+1

m

Dτ+1
m =

ρ

λ

(
Bτ+1/2
m − (Am + B̃m)

)
V

Bτ+1
m = H1/2(Bτ+1/2

m ).

(23)

Here the first three equations in (23) are obtained by applying
fixed-point iteration to solve (22), and the last equation in (23)
is from the MBO scheme in (10). Our numerical experiments
show that five iterations of (23) for each Bm-subproblem are
sufficient to produce reasonable results. If the B-subproblem
can be solved within certain accuracy, then the convergence
of ADMM can be guaranteed [53].

In summary, each subproblem in the ADMM algorithm
can be solved efficiently either through a closed-form so-
lution or within a few iterations. The entire algorithm is
presented in Algorithm 1, which terminates when either the
relative error between two subsequent mixing matrices, i.e.,∥∥St − St+1

∥∥
F
/ ‖St‖F, or the relative error between two

subsequent abundance maps, i.e.,
∥∥At −At+1

∥∥
F
/ ‖At‖F, is

smaller than a given tolerance.

Algorithm 1 Blind Hyperspectral Image Unmixing Based on
the Graph TV and MBO

Input: data X; parameters ρ, λ, maximum numbers of
outer/inner loops Tout/Tin, and tolerance tol.
Output: S and A.
Initialize: S0, A0, and use the Nyström method to get the
reduced eigendecomposition form of the graph Laplacian
L = V ΛV >.
for t = 0, . . . , Tout − 1 do

Ct+1 = (X(At)T + γ(St + C̃t))(At(At)T + γI)−1.
St+1 = max(Ct+1 − C̃t, 0).
At+1 = PΠ

(
((St)TSt+ρI)−1((St)TX+ρ(Bt−B̃t))

)
.

Bitwise update Bt+1 via (23) with τ = 1, . . . , Tin.
Set B̃t+1 = B̃t + (At+1 −Bt+1).
Set C̃t+1 = C̃t + (St+1 − Ct+1).
Stop if the stopping criteria are met.

end for

Here we discuss the complexity of the proposed algo-
rithm and compare it with the other two related methods.
The computational complexity of the Nyström method is
O(wpn+p2n), mainly for computing W12 and singular value
decomposition in (6). This is much smaller than calculating the
graph Laplacian matrix directly as described in Section II-A,
which is O(wn2). As for the space complexity, using the
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approximated graph Laplacian requires storing only O(pn)
numbers, while using the full graph Laplacian would need
to store O(n2) numbers.

The time complexity of each step in Algorithm 1 is sum-
marized as follows:
• C update: O(wkn);
• S update: O(wk);
• A update: O(wkn+ nk log k) = O(wkn);
• B update per bit channel: O(kpn);
• B̃, C̃ update: O(kn).

Therefore, the time complexity for our algorithm per iteration
is O(kn(w + p)) in total. Given p � n and k < w, this is
faster than the other two related methods: SUnSAL-TV [15]
and GLNMF [31], which are in the order of O(wn(w+log n))
and O(kn(w + kn)), respectively.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct extensive experiments on syn-
thetic and real data to demonstrate the performance of the
proposed approach, referred to as “gtvMBO”, in compari-
son with the state-of-the-art methods in blind and nonblind
hyperspectral unmixing. Methods that we compare include
FCLSU [11], SUnSAL-TV [15] (denoted by STV), GLNMF
[31], fractional norm `q regularized unmixing method with
q = 0.1 (denoted by FRAC) [13], NMF-QMV [21] (denoted
by QMV), and our earlier unmixing work based on the graph
Laplacian [50] (denoted by GraphL).

To quantitatively measure the performance, we adopt the
following metrics to calculate the error between an estimation
Ŷ ∈ Rr×c and the reference Y ∈ Rr×c.

1) Root-mean-square error (RMSE)

RMSE(Y, Ŷ ) =
1

c

√√√√1

r

r∑
i=1

‖yi − ŷi‖22,

where yi ∈ Rc is the i-th row of Y .
2) Normalized mean-square error (nMSE)

nMSE(Y, Ŷ ) =
‖Y − Ŷ ‖F
‖Y ‖F

.

3) Spectral angle mapper (SAM) in degrees

SAM(Y, Ŷ ) =
1

c

c∑
j=1

arccos

(
y>j ŷj

‖yj‖2‖ŷj‖2

)
,

where yj ∈ Rr is the j-th column of Y . The index j is
skipped in the sum when ‖yj‖2‖ŷj‖2 = 0.

In order to make a fair comparison, we use the initial-
ization steps in [13] for all the methods considered in this
paper. In particular, VCA [54], which returns 10k endmember
candidates that are clustered into k groups. This is directly
used as S for FCLSU and FRAC, while we use the mean
spectrum within each group and the sum of the abundances
estimated by FCLSU within each group as an initial guess
of S0 and A0, respectively, for all compared methods. We
set σ = 5 in the weight computation (3) and randomly select
0.1% samples from the entire pixel list in the Nyström method

to approximate the graph Laplacian. As for γ, ρ and λ, we
choose the optimal parameters that minimize nMSE(A, Â). We
first perform a coarse grid search with parameter candidates
evenly spaced over the interval on a log scale, then do a
finer grid search around the best parameters, e.g., search for
an optimal λ in {102.5, 102.75, . . . , 103.5} given λ = 103

from the coarse grid search. For GraphL and gtvMBO,
the coarse grid search is over λ ∈ {10−5, 10−4, . . . , 105},
ρ/λ ∈ {10−3, 10−2, . . . , 103}, and γ ∈ {102, 103, . . . , 105}.
For FRAC, we fix ρ = 10 as suggested in [13] and search for
λ among {10−5, 10−4, . . . , 105}. For QMV, we search for λ
(denoted by β in [21]) ∈ {10−5, 10−4, . . . , 105}. For GLNMF
and STV, we search for λ, µ ∈ {10−5, 10−4, . . . , 105}. See
Section V for a detailed discussion on parameter selection
and sensitivity of our method. Our Matlab source codes are
available at https://github.com/HarlinLee/gtvMBO-public. All
experiments are performed in Matlab 2018b on a MacBook
Pro 2017 with an 2.9 GHz Intel Core i7 and 16GB RAM in
double precision.

A. Synthetic Data

To evaluate the performance of all methods, we construct
a set of synthetic data X with ground truth mixing matrix
S and endmember matrix A. Fig. 1 shows the ground truth
abundance maps. We adopt the same simulation procedure as
in [15], where an endmember library is generated by randomly
selecting 240 materials from the USGS 1995 library with
224 spectral bands. The noise-free hyperspectral image with
75×75 pixels is generated by a random selection of 5 spectral
signatures from the library. The respective ground truth abun-
dances are randomly fixed as 0.1149, 0.0741, 0.2003, 0.2055,
and 0.4051. The noisy hyperspectral data is then obtained by
adding zero-mean Gaussian noise with a signal-to-noise ratio
(SNR) of 10db and 20db, respectively.

Table. I compares all methods on the noisy data quanti-
tatively. To get a visual comparison, we present the case of
SNR= 10dB in Fig. 2. In particular, we show all the recon-
structed abundance maps corresponding to the fifth ground-
truth abundance in Fig. 1. We exclude the results of FCLSU
and FRAC in Fig. 2, as both fail to recover the abundance
maps under such a low SNR scenario. One can see that STV
and GLNMF have a different color range on the background
comparing to other methods, while the QMV background is
still noisy. The proposed gtvMBO achieves a balance between
recognizable objects and background noise, while the result
of GraphL is slightly oversmoothed. Note that the proposed
gtvMBO only considers the regularization on A, while QMV
uses the minimum-volume based regularization on S, but
our method still gives comparable results in recovering S
compared to QMV, and has an advantage on reconstructing A,
especially when the underlying abundance map has spectral
geometries. In addition, gtvMBO can reconstruct A well
within a few iterations but it takes more iterations to get
a good reconstruction of S. In the preprocessing step, both
GraphL and gtvMBO take less than a second to estimate the
eigenvalues and eigenvectors of the low-rank approximation to
the graph Laplacian by the Nyström method, while GLNMF

https://github.com/HarlinLee/gtvMBO-public
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FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

SNR = 10

RMSE(A, Â) 0.242 0.157 0.248 0.24 0.093 0.0513 0.051

nMSE(A, Â) 1.05 0.696 1.07 1.03 0.435 0.364 0.327

RMSE(S, Ŝ) 0.14 − − 0.211 0.612 0.16 0.16

nMSE(S, Ŝ) 0.205 − − 0.321 0.881 0.244 0.241

SAM(S, Ŝ) 10.2 − − 14.8 40.5 8.65 8.57

SNR= 20

RMSE(A, Â) 0.106 0.106 0.065 0.107 0.048 0.043 0.065

nMSE(A, Â) 0.523 0.523 0.314 0.521 0.227 0.242 0.314

RMSE(S, Ŝ) 0.055 − − 0.067 0.037 0.095 0.054

nMSE(S, Ŝ) 0.092 − − 0.104 0.053 0.13 0.091

SAM(S, Ŝ) 2.67 − − 3.18 2.69 6.88 2.65

TABLE I: Unmixing results on the synthetic dataset.

typically takes a minute to calculate the graph Laplacian. In
terms of running time, gtvMBO is slower than FRAC and
GraphL, but much faster than the other competing methods.

B. Real Data

We use the real hyperspectral data X with the references S
and A from [55], including Samson, Jasper Ridge and Urban
data sets. In particular, the endmembers are manually selected
from the image data by assuming k distinct materials with one
signature per material and neglecting possible spectral variabil-
ity issues. The reference abundances are obtained via FCLSU.
This way of generating references for endmembers/abundances
has been widely used for assessing the performance of various
unmixing algorithms. As no ground-truth is available for the
real data, it is common to compare the unmixing results to the
reference endmembers/abundances.

1) Samson: In the first experiment, we use the Samson data
with 95×95 pixels and 156 spectral bands after preprocessing,
whose reference has three endmembers. The unmixing results
are given in Figs. 3-4 and Table II for endmembers, abundance
maps, and quantitative metrics, respectively. In Fig. 3, all
endmember plots can capture the rough shape and discon-
tinuities in the ground truth but with different heights. The
gtvMBO result has many endmember elements that are close
to zero since we enforce the nonnegative constraint on the
endmember S by using the hard thresholding operator in the
S-subproblem. For the abundance maps, the STV results look
blurry when trying to preserve spatial smoothness and the
GLNMF results are noisy in the homogeneous areas, as its
graph Laplacian is based on the entire data that may contain
certain amount of noise. Both blurring and noisy artifacts
can be mitigated by the low-rank approximation of graph
Laplacian in the Nyström method as in GraphL and gtvMBO.
On the other hand, gtvMBO yields sharper edges than GraphL,
thanks to the graph TV regularization. Table II reports that
GLNMF gives the best estimations in S at the cost of high
computational costs, whereas the proposed method is the best
in reconstructing the abundance maps. Note that “graph time”
in Table II is referred to as the time needed to compute

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.044 − − 0.036 0.073 0.052 0.070

nMSE(S, Ŝ) 0.169 − − 0.153 0.302 0.203 0.296

SAM(S, Ŝ) 3.64 − − 4.49 12.8 7.86 9.84

RMSE(A, Â) 0.18 0.165 0.165 0.187 0.148 0.139 0.096

nMSE(A, Â) 0.455 0.429 0.375 0.502 0.428 0.302 0.243
Graph time (sec) − − − 66.4 − 0.082 0.082
Alg. time (sec) 2.34 0.052 4.08 8.73 1.6 0.094 0.609

λ − 1 0.01 1 102.75 10−5.25 10−3.75

ρ − 10 − − − 10−1.75 10−2.25

γ − − − − − 105 104

µ − − − 1 − − −
Iterations − 2 1000 1000 101 30 30

TABLE II: Unmixing results on the Samson dataset.

the adjacency matrix (for GLNMF) and the graph Laplacian
matrix (for GraphL and gtvMBO), while “algorithm time,”
or “alg. time” in short, refers to the time needed to run the
unmixing algorithm after initialization and graph construction.
The overall computation time of gtvMBO is the sum of “graph
time” and “time,” which is comparable to QMV and much
faster than GLNMF.

2) Jasper Ridge: In the second experiment, we test the
Jasper Ridge data which has 100×100 pixels and 198 spectral
bands. The unmixing results for endmembers and abundance
maps are shown in Figs. 5-6. In Fig. 6, the FRAC abun-
dance maps have the highest image contrast, while mistakenly
identifying trees and roads in some areas, especially the top
right part. The STV abundance maps are over-smoothed,
especially in the Dirt abundance map. Since only the five
nearest neighbors are considered when calculating the pairwise
weight of a fully-connected graph, GLNMF may miss some
global features while preserving fine details. For example,
some variations in the water are captured but some roads
are not identified in the GLNMF abundance maps. One can
see that both GraphL and gtvMBO perform very well at
identifying Water and Road abundance maps because of the
learned graph structure in the Nyström method. Specifically
for the road abundance, these two methods can recover the
road on the rightmost part of the image. This phenomenon
could be explained by the fact that it is a very narrow structure
and the nonlocal similarity with road pixels across all bands
plays an important role, illustrating an advantage of using
graph TV over spatial TV. The gtvMBO results are even
better than GraphL in preserving the sharpness especially in
the Dirt abundance map. The endmember spectral plot in
Fig. 5 also confirms that the methods failing for the road
extract a very poor signatures compared to the reference.
Table III compares all the methods quantitatively. It is true
that QMV gives the best results on this dataset, which is
probably because that the assumptions made by QMV hold on
Jasper, but not on the other data sets. The proposed gtvMBO
can recover endmembers and abundance maps in a balanced
manner. The comparison results imply that a good RMSE on
the reconstructed data can not guarantee a good unmixing
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Fig. 1: Ground truth abundance maps of the synthetic data (five endmembers).

STV GLNMF QMV GraphL gtvMBO

Fig. 2: Reconstructed abundance maps of the fifth element from the noisy data with SNR 10dB. All images are visualized over the range
[0, 1].

Reference VCA GLNMF QMV GraphL gtvMBO

Fig. 3: Endmember profiles (S) of the Samson dataset.

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.144 − − 0.133 0.031 0.18 0.083

nMSE(S, Ŝ) 0.608 − − 0.598 0.107 0.629 0.288

SAM(S, Ŝ) 16.8 − − 14.9 3.54 14.6 12.8

RMSE(A, Â) 0.148 0.109 0.142 0.111 0.073 0.145 0.136

nMSE(A, Â) 0.472 0.46 0.47 0.437 0.221 0.38 0.353
Graph time (sec) − − − 126 − 0.225 0.225
Alg. time (sec) 4.27 9.52 4.56 10.4 3.89 0.34 3.32

λ − 1 10−1.25 10−0.5 102.25 10−4.5 10−4.25

ρ − 10 − − − 0.1 10−2.75

γ − − − − − 104 103.75

µ − − − 10−2.5 − − −
Iterations − 300 1000 1000 101 100 100

TABLE III: Unmixing results on the Jasper Ridge dataset.

performance.
3) Urban: Lastly, we test a relatively large dataset - the

Urban dataset with 307× 307 pixels and 162 spectral bands,
whose reference has four endmembers. The results for all
methods are presented in Figs. 7-8. In Fig. 8, most methods,
including FCLSU, FRAC, STV, GLNMF, and QMV, yield
abundance maps in low image contrast due to the initial

guess, especially in the abundance maps for the asphalt and
roof. As a by-product, the proposed gtvMBO can greatly
improve the image contrast of the abundance map due to
the graph TV regularization. In addition, all the methods
have a hard time extracting a good roof endmember, but
the graph-based approaches are able to compensate this with
more features preserved. Also note that because QMV does
not enforce non-negativity on S, the resulting spectrum for
Asphalt in QMV goes below zero. In the Roof abundance
maps, only GraphL and gtvMBO can capture those sporadic
roof tops since the approximated graph Laplacian considers
the pairwise similarity across spectral bands in the original
data with dimension w much greater than the dimension k for
the column space of the abundance map A. In Table IV, we
list all quantitative metric comparisons where gtvMBO reaches
the smallest residual error and get comparable reconstruction
errors for the abundance map and endmember with GraphL.
Overall, the proposed method can reconstruct abundance maps
and endmember matrices with high accuracy in a short time.

V. DISCUSSION

In this section, we discuss parameter selection in our
algorithm. Due to heavy computations involved in these tasks,
all the results presented in this section are performed on a
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Fig. 4: Abundance maps (A) of the Samson dataset.

workstation of DELL R7425 Dual Processor AMD Epyc 32
core 2.2 GHz machines with 512GB RAM each.

There are several tuning parameters in our approach: the
filtering parameter σ in computing pairwise weights of the
graph, the regularization parameter λ associated with the graph
TV in the proposed unmixing model, the penalty parameters
ρ and γ in the proposed algorithm based on ADMM, and
time step size dt for the diffusion step in the modified MBO
scheme. The value of σ could be changed proportionally
according to the number of spectral bands w. Since all the
test datasets have 100∼200 spectral bands, we find that σ = 5
typically gives good results, so we fix it throughout the

FCLSU FRAC STV GLNMF QMV GraphL gtvMBO

RMSE(S, Ŝ) 0.109 − − 0.188 0.211 0.099 0.099

nMSE(S, Ŝ) 0.635 − − 1.35 1.2 0.636 0.639

SAM(S, Ŝ) 19.5 − − 17.9 46.4 14.8 14.9

RMSE(A, Â) 0.145 0.153 0.289 0.175 0.245 0.134 0.136

nMSE(A, Â) 0.438 0.45 0.756 0.554 0.655 0.384 0.393
Graph time (sec) − − − 10800 − 9.09 9.09
Alg. time (sec) 34.7 0.85 142 86.1 29 0.353 22.4

λ − 10−0.5 10−2.25 10−1.5 101.75 10−3.25 10−6

ρ − 10 − − − 10−1.25 10−5.5

γ − − − − − 104.75 104.75

µ − − − 10−5.5 − − −
Iterations − 2 1000 1000 101 10 10

TABLE IV: Unmixing results on the Urban dataset.

experimental section. To solve the B-subproblem, we fix the
step size dt = 0.01 and run 5 iterations of (23) in the modified
MBO scheme.

To find optimal or sub-optimal values of λ, ρ, and γ,
we consider a skillful strategy which alleviates the time-
consuming parameter tuning. If the value of λ increases,
the recovered abundance map A has a graph structure more
similar to that of the given data X but with larger residual
error and vice versa. The penalty parameters ρ and γ both
control the convergence of the proposed algorithm according
to the ADMM framework. In other words, λ is a model
parameter that affects the performance and ρ, γ are algorithmic
parameters that affect the convergence. Therefore, we suggest
a set of default parameters by fixing the ratios as ρ/λ = 1,
γ/λ = 107 and only tuning the regularization parameter λ.
In fact, the B-subproblem is determined by the ratio ρ/λ.
Table V shows that using these default algorithmic parameters
still ensures comparable unmixing performance on the datasets
to when we tune all the three parameters together. Note that
the optimal parameters indeed yield better results than the
default parameters in terms of SAM(S, Ŝ), which is due to
the fact that our regularization is formulated on A and the
optimal parameters are determined according to nMSE(A, Â),
resulting in more deviations in S. In future work, we might
consider choosing optimal parameters based on a combination
of evaluation metrics on S and A.

In addition, learning a graph Laplacian or its low-rank ap-
proximation is an important preprocessing step in our proposed
method. In the Nyström method, the sampling rate is fixed
as 0.1% in all our experiments. Our empirical results show
that this is sufficient for preserving the graph structure of
the original hyperspectral data. In fact, there is a trade-off
between the number of samples corresponding to the rank of
the approximated Laplacian and the orthogonality of columns
in the approximated eigenvectors: more samples can improve
accuracy in approximating the graph Laplacian but may result
in loss of orthogonality of the resulting eigenvectors, which is
also desired in our modified MBO scheme (23). Other adaptive
sampling schemes for the Nyström extension [56] will be
explored in our future work. For high performance computing



10

Reference VCA GLNMF QMV GraphL gtvMBO

Fig. 5: Endmember profiles (S) of the Jasper Ridge dataset.
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Fig. 6: Abundance maps (A) of the Jasper Ridge dataset.

Samson Jasper Urban

RMSE(S, Ŝ) 0.07 / 0.062 0.083 / 0.13 0.099 / 0.10

nMSE(S, Ŝ) 0.3 / 0.23 0.29 / 0.44 0.64 / 0.67

SAM(S, Ŝ) 9.84 / 16.1 12.8 / 17.8 14.9 / 15.8

RMSE(A, Â) 0.096 / 0.12 0.14 / 0.13 0.14 / 0.2

nMSE(A, Â) 0.24 / 0.27 0.35 / 0.35 0.39 / 0.41

λ 10−3.5 10−8 10−2.5

TABLE V: Unmixing results of gtvMBO in A/B format, where A is
the previous result using optimally tuned λ, ρ, γ, and B is the result
of using default ratios ρ/λ, γ/λ and only tuning the λ value (given
in the last row.)

applications, the Nyström loop can be optimized for specific
architectures as in [57].

VI. CONCLUSIONS

We propose a graph TV regularized approach for blind hy-
perspectral unmixing to estimate both the abundance map and
the mixing matrix under the assumption that the underlying
abundance map and the given hyperspectral data share the
same graph structure. In particular, we applied the Nyström
method to approximate the eigenvalues and eigenvectors of a
normalized graph Laplacian. To solve the proposed gTV regu-
larized unmixing problem with probability simplex constraints,
we derived an efficient algorithm based on ADMM. One of the
subproblems is decomposed into bits and then solved by the
fast MBO scheme at each bit channel. Extensive experiments
were conducted to demonstrate that the proposed framework is
effective and efficient, especially when the hyperspectral data
have similarities across spectral bands. In the future, one could
integrate robust graph learning methods and nonlocal spatial
regularizations into the hyperspectral unmixing.
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