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Abstract of the Dissertation

Positive Intermediate Ricci Curvature with Symmetries

by

Lawrence Gerasin Mouillé

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2020

Dr. Frederick Wilhelm, Chairperson

In this dissertation, we study manifolds that have positive kth-intermediate Ricci

curvature, which we abbreviate as Rick > 0. This condition interpolates between having

positive sectional curvature and having positive Ricci curvature. Specifically, we study this

curvature condition in the presence of isometric group actions.

First, we show that if M is a positively curved homogeneous space, then M ×M

admits a metric with Ric2 > 0. We also construct metrics with Ric2 > 0 on several other

products of homogeneous spaces. It follows from these examples that the Hopf Conjectures,

Petersen-Wilhelm Conjecture, Berger Fixed Point Theorem, and Hsiang-Kleiner Theorem

for positive sectional curvature do not hold in the setting of Ric2 > 0.

Second, we establish the following: In a manifold with Rick > 0, if a submanifold

N has a tangential subspace on which the intrinsic kth-intermediate Ricci curvatures are

non-positive, then the dimension of that subspace is bounded above by codim(N) + k. As

a consequence, we obtain a local symmetry rank bound for manifolds with Rick > 0.
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Finally, we establish that if there are k+ 1 commuting Killing fields on a compact

manifold with Rick > 0, then there exists a point at which the Killing fields are linearly

dependent. Using this, we establish a cohomogeneity obstruction and a symmetry rank

bound for compact manifolds with Rick > 0.
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Chapter 1:

Introduction

A famous open problem in Riemannian geometry is to classify manifolds with positive cur-

vature. To address this problem, Grove suggested in the 1990’s that researchers attempt

to classify positively curved manifolds with “large isometry groups”. This initiative, now

referred to as the Grove Symmetry Program, has proven to be incredibly fruitful, sparking

many ground-breaking results in the last few decades. Because of the success of this pro-

gram, we seek to study Riemannian manifolds with positive intermediate Ricci curvature

under the presence of isometric group actions in this work.

Definition. Suppose (M, g) is a Riemannian manifold and k ∈ {1, . . . ,dim(M) − 1}. We

say (M, g) has positive kth-intermediate Ricci curvature if for all sets of orthonormal

vectors {u, e1, . . . , ek}, we have
k∑
i=1

sec(u, ei) > 0.

We abbreviate this by writing Rick(M, g) > 0, omitting M or g when they are understood.

Notice if k = 1, this condition is equivalent to having positive sectional curvature, and if

k = dim(M)−1, it is equivalent to positive Ricci curvature. Furthermore, if Rick(M, g) > 0
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for some k, then Ric`(M, g) > 0 for all ` ≥ k. In this respect, positive intermediate

Ricci curvature is a natural condition that interpolates between positive sectional curvature

and positive Ricci curvature. However, it appears that there have been no attempts to

systematically document examples of manifolds with positive intermediate Ricci curvature.

For a few elementary examples, see Section 2.1.1.

1.1 Statements of results

In Chapter 3, we address this scarcity of examples by establishing the following:

Theorem A. If M is a positively curved homogeneous space, then M ×M admits a metric

g` such that Ric2(M ×M, g`) > 0.

The metric constructed in Theorem A is a Cheeger deformation of the product metric

on M ×M with respect to the diagonal action of any group that acts isometrically and

transitively on M . In fact, the result that we prove is more general than Theorem A; see

Theorem 3.3 in Section 3.1 for more details. In Section 3.2, we show that the projection

to either factor of the product in Theorem 3.3 is a Riemannian submersion. In Section

3.3, we demonstrate how these results indicate that the class of manifolds with Ric2 > 0 is

vastly different from the class of manifolds with positive sectional curvature. Specifically,

we show the Euler characteristics, free group actions, fundamental groups, and Riemannian

submersions that may occur within these classes are surprisingly different.
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In Chapter 4, we present a restriction on the intrinsic curvatures of submanifolds:

Theorem B. LetM be a Riemannian manifold, let k ∈ {1, . . . ,dim(M)−1}, and let N ⊂M

be a submanifold through a point p. Suppose S is a subspace of TpN on which all intrinsic

kth-intermediate Ricci curvatures are non-positive while the extrinsic kth-intermediate Ricci

curvatures are positive. Then

dim(S) ≤ dim(M)− dim(N) + k.

The proof of Theorem B, which can be found in Section 4.1, is local in nature and relies

only on the Gauss equation.

Now recall that the symmetry rank of a Riemannian manifold (M, g), denoted symrank(M, g),

is the rank of its isometry group. In other words, symrank(M, g) is the maximal dimension

of a torus that can act isometrically and effectively on (M, g). The argument for Theorem

B is inspired by Wilking’s argument for his symmetry rank bound for manifolds with quasi-

positive curvature [49], which can be found in [12]. Related to this, we have the following

consequence of Theorem B:

Corollary C. Let M be a Riemannian manifold, and let k ∈ {1, . . . ,dim(M)−2}. Suppose

N ⊂M is a submanifold through a point p such that TpN is spanned by commuting Killing

fields of N . If all extrinsic kth-intermediate Ricci curvatures are positive on TpN , then

dim(N) ≤
⌊

dim(M) + k

2

⌋
.
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We call this a “local symmetry rank” bound because when a torus acts isometrically on a

manifold, the orbits are spanned by commuting Killing fields. We will say that a manifold

M has k-maximal local symmetry rank at a point p if it contains a submanifold N through

p that satisfies the hypotheses of Corollary C and has dim(N) = bdim(M)+k
2 c. Not only is it

possible to construct examples of manifolds with k-maximal local symmetry rank, but we

establish the following:

Theorem D. Let M be a smooth manifold of dimension ≥ 3, let k ∈ {1, . . . ,dim(M)− 2},

and choose p ∈M . Every Riemannian metric g on M is arbitrarily close in the C1-topology

to a metric g̃ such that (M, g̃) has k-maximal local symmetry rank at p.

The proof of Theorem D can be found in Section 4.2.1. The idea is to construct metrics on Rn

that have k-maximal local symmetry rank at the origin, and then glue a small neighborhood

of the origin into the original manifold while only slightly affecting the original metric in the

C1-topology.

Now applying Corollary C to the orbits of a torus action, we obtain the following global

symmetry rank bound:

Corollary E. Suppose (M, g) is a connected Riemannian n-manifold. IfM contains a point

at which all kth-intermediate Ricci curvatures are positive for some k ∈ {1, . . . , n− 2}, then

symrank(M, g) ≤
⌊
n+ k

2

⌋
.
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We prove Corollary E and provide context for it in Section 4.3. In Section 4.3.1, we also

highlight ramifications of this result in the setting on non-negative sectional curvature,

specifically related to the Maximal Symmetry Rank Conjecture.

In Chapter 5, we establish the following symmetry obstruction:

Theorem F. Suppose (M, g) is a closed Riemannian manifold with Rick(M, g) > 0 for

some k ∈ {1, . . . ,dim(M)− 1}. If there are k+ 1 commuting Killing fields on M , then they

must be linearly dependent at some point in M .

In particular, Theorem F implies that if a torus T r acts isometrically on M with r ≥ k+ 1,

then there is a codimension k subtorus T r−k ⊂ T r with non-empty fixed point set inM . This

result generalizes the Isotropy Rank Lemma from the setting of positive sectional curvature.

The proof of Theorem F, found in Section 5.1, is a generalization of the argument for the

Berger Fixed Point Theorem in [5].

Given an isometric action by a Lie group G on a manifold M , the cohomogeneity of the

action, denoted cohom(M,G), is the dimension of the orbit space M/G. Equivalently,

cohom(M,G) is the codimension of the principal orbits in M . Theorem F provides the

following obstruction on the cohomogeneity of isometric group actions:
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Corollary G. Suppose (M, g) is a closed Riemannian manifold with Rick(M, g) > 0 for

some k ∈ {1, . . . ,dim(M) − 1}. If a Lie group G acts isometrically on M with principal

isotropy subgroup H ⊂ G, then

rank(G)− rank(H) ≤ cohom(M,G) + k.

We prove Corollary G in Section 5.2. The last result that we present is the following

symmetry rank bound for compact manifolds:

Theorem H. Suppose (M, g) is a closed, connected, n-dimensional Riemannian manifold.

1. If Ric2(M, g) > 0, then

symrank(M, g) ≤
⌊
n+ 1

2

⌋
.

2. If Rick(M, g) > 0 for k ∈ {3, . . . , n− 1}, then

symrank(M, g) ≤
⌊
n+ k

2

⌋
− 1.

Theorem H generalizes the symmetry rank bound obtained by Grove and Searle in [17].

The argument, presented in Section 5.3, is an adaptation of Grove and Searle’s argument.

However, we incorporate the fact that manifolds with positive Ricci curvature in dimensions

≥ 4 cannot admit isometric torus actions of cohomogeneity-one; See Lemma 5.14.
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Chapter 2:

Background

In this chapter, we provide background information related to positive intermediate Ricci

curvature, Cheeger deformations, and positively curved homogeneous spaces.

2.1 Positive intermediate Ricci curvature

Recall from Chapter 1 that

Rick(M, g) > 0 ⇐⇒
k∑
i=1

sec(u, ei) > 0 for all orthonormal u, e1, . . . , ek.

More generally, we can define the intermediate Ricci curvature of a given flag in the tangent

bundle of M . To that end, let Fl(1, k + 1;TM) denote the partial flag bundle consisting of

signature-(1, k + 1) flags tangent to M . In other words, elements of Fl(1, k + 1;TM) are

pairs of subspaces (`,V) in a given tangent space such that dim(`) = 1, dim(V) = k + 1,

and ` ⊂ V .

Definition 2.1. Suppose (M, g) is a Riemannian manifold and k ∈ {1, . . . ,dim(M) − 1}.

Given a flag (`,V) ∈ Fl(1, k + 1;TM), let RV denote the type-(1, 3) curvature tensor R
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restricted to V and composed with orthogonal projection to V. Then the kth-intermediate

Ricci curvature of the flag (`,V) is defined to be

Rick(`,V) ..= trace
(
x 7→ RV(x, u)u

)
=

k∑
i=1

sec(u, ei),

where u is a unit vector in the line `, and e1, . . . , ek form an orthonormal basis for the

orthogonal complement of ` in V. When convenient, given u, e1, . . . , ek as above, we may

write

Rick(u,V) ..= Rick(span{u},V),

Rick(u; e1 . . . , ek) ..= Rick(span{u}, span{u, e1, . . . , ek}).

Notice that Ric1(u,V) is the sectional curvature of the 2-plane V, and Ricn−1(u, TpM) is

the Ricci curvature Ric(u, u). Also notice that the value of Rick(`,V) = Rick(u; e1, . . . , ek)

is independent of the choice of unit vector u ∈ ` ⊂ V and orthonormal e1, . . . , ek ∈ V ∩ `⊥.

For structure results on manifolds with lower bounds on intermediate Ricci curvature, see

[7], [18], [19], [20], [21], [24, Theorem 6.1], [39], [40], [46], [48, Remark 2.4], or [52].

2.1.1 Elementary sources of examples

In this section, we present elementary methods for generating examples of manifolds with

positive intermediate Ricci curvature. Namely, we discuss positive intermediate Ricci cur-

vature fo compact symmetric spaces, Riemannian products, and Riemannian submersions.
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Compact symmetric spaces

Nash proved in [26] that a compact homogeneous space G/H admits a metric with positive

Ricci curvature if and only if its fundamental group is finite. In addition, if G/H is a

locally symmetric space of rank r, then Ricr−1(G/H) 6> 0. Thus, for any compact locally

symmetric space G/H with finite fundamental group, we have Rick(G/H) > 0 for some

k ∈ {rank(G/H), . . . ,dim(G/H)− 1}.

Product metrics

Next, we have the following for Riemannian products of positively curved manifolds:

Proposition 2.2. Given Riemannian manifolds (Mm, gM ) and (Nn, gN ), consider their

product Mm × Nn equipped with the product metric gprod. If (Mm, gM ) and (Nn, gN ) are

both positively curved, then

Rick(M
m ×Nn, gprod) > 0 for k ≥ max{m,n}+ 1.

Proof. Choose a signature-(1, k + 1) flag (`,V) ∈ Fl(1, k + 1;T (M × N)) for some k ≥

max{m,n}+1, and consider the projections πM : T (M ×N)→ TM and πN : T (M ×N)→

TN . Notice that either πM (`) 6= {0} or πN (`) 6= {0}. Without loss of generality, suppose

πM (`) is non-trivial, and choose a unit vector (uM , uN ) ∈ `.
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Because k ≥ max{m,n}+ 1, we also have

dim(πM (V)) ≥ dim(V)− dim(N) = k + 1− n

≥ (n+ 1) + 1− n

= 2.

So we can choose a unit vector (e1
M , e1

N ) ∈ V ∩ `⊥ such that the vectors e1M and uM are

linearly independent in πM (V). Because (M, gM ) is positively curved, curvM (uM , e1
M ) > 0,

where curvM (v, w) ..= RM (v, w,w, v). Furthermore, because curvN ≥ 0,

secM×N ((uM , uN ), (e1
M , e1

N )) = curvM (uM , e1
M ) + curvN (uN , e1

N ) > 0.

Now choose any vectors {(eiN , eiN )}ki=2 that, together with (uM , uN ) and (e1
M , e1

N ), form

an orthonormal basis of V. Because (M ×N, gprod) is non-negatively curved, we have

Rick(`,V) =

k∑
i=1

secM×N ((uM , uN ), (ei
M , ei

N ))

≥ secM×N ((uM , uN ), (e1
M , e1

N ))

> 0.

�

Riemannian submersions

Finally, we have the following consequence of O’Neill’s Fundamental Equations of Rieman-

nian Submersions [27]:
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Corollary 2.3. If π : M → B is a Riemannian submersion and Rick > 0 on the horizontal

distribution of π in M for 1 ≤ k ≤ dim(B)− 1, then Rick(B) > 0.

Proof. Choose an orthonormal set {u, e1, . . . , ek} on B, and consider their horizontal lifts

{û, ê1, . . . , êk} in M . Then by the O’Neill Horizontal Curvature Equation,

k∑
i=1

secB(u, ei) =

k∑
i=1

secM (û, êi) + 3|Auei|2 > 0.

�

Pro and Wilhelm prove in [33] that Riemannian submersions need not preserve positive

Ricci curvature. Specifically, they construct examples of Riemannian submersions (Mn, ĝ)→

(S2, ǧ) for all dimensions n ≥ 4 such that Ric(Mn, ĝ) > 0 while (S2, ǧ) has planes of negative

curvature. In other words, the base of the submersion does not have positive Ricci curvature.

Because Rick > 0 implies that Ric > 0, their result shows that some restriction on dim(B)

is necessary for a Riemannian submersion M → B to preserve Rick > 0 in general.

2.2 Cheeger deformations

We now review Cheeger deformations, which were introduced by Cheeger in [8]. We will

follow many of the notational conventions used in [36], but we adapt them slightly so that

we can use left-invariant metrics instead of bi-invariant metrics.
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Consider a Riemannian manifold (M, g) on which a compact Lie group G acts isometrically.

Let KM : g → Γ(TM) denote the action field map; i.e. KM (x) is the Killing field on M

generated by x ∈ g via the G-action. Given p ∈M , define the linear map KM,p : g→ TpM

such that KM,p(x) for x ∈ g is the vector field KM (x) evaluated at p.

Now fix a left-invariant metric gleft on G. Given ` > 0, consider the one-parameter family

of metrics ĝ` = `2gleft + g on G×M . Then G acts isometrically and freely on (G×M, ĝ`):

a · (b, p) = (ab, a · p), for all a, b ∈ G and p ∈M.

The orbit space of this action on G × M is diffeomorphic to M , and the quotient map

q : G×M →M is given by

q(a, p) = a−1 · p.

Because this action onG×M is free, the quotientM admits a metric g` such that the quotient

map q : (G ×M, ĝ`) → (M, g`) is a Riemannian submersion. The family of Riemannian

manifolds {(M, g`)}`>0 is called a Cheeger deformation of (M, g) with respect to the G-

action and the left-invariant metric gleft.

Remark 2.4. Typically, Cheeger deformations are defined using a fixed bi-invariant metric

on G. When this is the case, the G-action on (M, g`) is by isometries. However, if instead

a left-invariant metric on G is used, the G-action on (M, g`) may not be by isometries. See

Remark 3.4 for information on how this affects the examples constructed in Theorems 3.1

and 3.2.
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Cheeger reparametrization

To more easily track the behavior of curvatures during Cheeger deformations, we use the

bundle isomorphism C` : TM → TM called the Cheeger reparametrization. To define it,

consider a vector v ∈ TpM . Let v̂` ∈ TG × TM be the vector that is horizontal with

respect to the Riemannian submersion q : (G ×M, ĝ`) → (M, g`) such that v̂` projects to

v ∈ TpM under the differential of the projection to the second factor π2 : G ×M → M .

Then C` : TpM → TpM is defined by

C`(v) = dq(v̂`).

One useful aspect of the Cheeger reparametrization is that one can use it to relate the

Cheeger-deformed metric g` to the original metric g according to the following:

Lemma 2.5 (Proposition 6.3 in [31]). Let g` denote a Cheeger deformation of a metric g

on a manifold M . For all points p ∈M and vectors u, v ∈ TpM ,

g`(C`(u), v) = g(u, v).

In particular, given a distribution D on M , if D⊥g denotes the distribution orthogonal to D

with respect to the original metric g, then the distribution orthogonal to D with respect to

the Cheeger-deformed metric g` is given by

D⊥g` = {C`(x) : x ∈ D⊥g }.

Because every G-orbit in G ×M has a unique point of the form (e, p), when we consider

vectors tangent to G ×M , we assume that the footpoint is of this form. Notice that the

13



kernel of dq(e,p) : T(e,p)(G×M)→ TpM is given by

V(e,p) = {(z,KM,p(z)) : z ∈ g} .

When ` = 1 and v ∈ TpM , denote the G-factor of v̂1 ∈ T(e,p)(G ×M) by κp(v). In other

words, κp(v) is defined so that v̂1 = (κp(v), v). Because v̂1 is required to be perpendicular to

V(e,p) with respect to the metric ĝ1 = gleft + g, we have that κp(v) must satisfy the equation

gleft(κp(v), z) = −g(v,KM,p(z)), (2.1)

for all v ∈ TpM and z ∈ g. For any ` > 0, because v̂` must be perpendicular to V(e,p) with

respect to ĝ` = `2gleft + g, it then follows from Equation 2.1 that

v̂` =
(
1
`2
κp(v), v

)
.

Then by the definition of C` and q, for all v ∈ TpM , we have

C`(v) = dq(v̂`) = − 1
`2
KM,p(κp(v)) + v. (2.2)

Because we will primarily work with homogeneous spaces, we may omit the point p in the

notation above when the dependence on p is insignificant for a given argument. The following

will be useful for working with the maps KM and κ:

Lemma 2.6 (Proposition 2.1 in [36]). Fix p ∈ M , and let Gp ≤ G denote the isotropy

subgroup at p. Consider the associated Lie subalgebra gp ⊆ g, and let g⊥p be the orthogonal

complement of gp with respect to the left-invariant metric gleft on G. Also let G · p denote

the G-orbit containing p in M . Then:

1. KM,p : g → TpM takes values in Tp(G · p), and restricting KM,p to g⊥p gives a linear

isomorphism g⊥p → Tp(G · p).
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2. κp : TpM → g takes values in g⊥p , and restricting κp to Tp(G · p) gives a linear

isomorphism Tp(G · p)→ g⊥p .

Generic plane principle

Using the Cheeger reparametrization, Petersen and Wilhelm established the Generic Plane

Principle, which serves as a means for tracking positively curved planes during Cheeger

deformations; see Propositions 6.1 and 6.2 in [31]. Because the Cheeger deformations they

consider depend on bi-invariant metrics on the group G, we adapt the Generic Plane Prin-

ciple to allow for Cheeger deformations dependent upon left-invariant metrics on G. First,

let curvg denote the un-normalized sectional curvature with respect to a metric g. In other

words, if Rg denotes the Riemann curvature tensor, then curvg(x, y) = Rg(x, y, y, x).

Lemma 2.7 (Generic Plane Principle). Let (M, g`) be a Cheeger deformation of a non-

negatively curved manifold (M, g) with respect to a G-action on M and a left-invariant

metric gleft on G. If curvgleft(κ(P)) ≥ 0 for all planes P tangent to M , then we have the

following:

1. (M, g`) has non-negative sectional curvature.

2. If a plane P is positively curved with respect to g, then C`(P) is positively curved with

respect to g` for all ` > 0.

3. Suppose curvgleft(κ(u), κ(v)) > 0 for some u, v ∈ TpM . If P = span{u, v}, then C`(P)

is positively curved with respect to g` for all ` > 0.
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Proof. Consider the Riemannian submersion q : (G ×M, ĝ`) → (M, g`) which defines the

Cheeger deformed metric g`, where ĝ` = `2gleft + g. Recall that for v ∈ TpM ,

C`(v) = Dq(v̂`) = Dq
(
1
`2
κ(v), v

)
.

So given u, v ∈ TpM , O’Neill’s Horizontal Curvature Equation [27] implies

curvg`(C`(u), C`(v)) ≥ curvĝ`
((

1
`2
κ(u), u

)
,
(
1
`2
κ(v), v

))
= curv`2gleft(

1
`2
κ(u), 1

`2
κ(v)) + curvg(u, v)

= 1
`6

curvgleft(κ(u), κ(v)) + curvg(u, v).

Because secg ≥ 0 and curvgleft(κ(P)) ≥ 0 for all planes P tangent to M , it follows that

curvg` ≥ 0. In addition, if either summand above is positive, then curvg`(C`(u), C`(v)) > 0.

Thus, the result follows. �

2.3 Positively curved homogeneous spaces

We now review general facts about positively curved homogeneous spaces. The classification

of compact, simply connected, positively curved homogeneous spaces was carried out by

Berger [4], Wallach [45], Aloff-Wallach [1], and Bérard Bergery [3], with an omission in [4]

that was corrected by Wilking in [47]. See Tables 2.1 and 2.2 for a complete list of these

homogeneous spaces. For an overview of the classification, see [50].
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G H G/H

SO(n+ 1) SO(n) Sn

SU(n+ 1) U(n) CPn

Sp(n+ 1) Sp(n)× Sp(1) HPn

F4 Spin(9) OP2

Sp(2) Sp(1)max B7

SU(5) Sp(2)× S1 B13

SU(3)× SO(3) U(2) W 7
1,1

SU(n+ 1) SU(n) S2n+1

Sp(n+ 1) Sp(n) S4n+3

Sp(n+ 1) Sp(n)× U(1) CP2n+1

Spin(9) Spin(7) S15

Table 2.1: Simply connected normal homogeneous spaces G/H with positive sectional cur-
vature.

G K H G/H

SU(3) U(2) T 2 W 6

Sp(3) Sp(2)× Sp(1) Sp(1)3 W 12

F4 Spin(9) Spin(8) W 24

SU(3) T 2 S1
p,q W 7

p,q

Table 2.2: Simply connected, positively curved homogeneous spaces G/H that are not
normal, and the subgroups K < G used to obtain the metrics of positive curvature on G/H.

All simply connected, positively curved homogeneous spaces admit a homogeneous metric

of the following form:

Consider closed subgroups H ⊆ K ⊆ G with corresponding Lie algebras h ⊆ k ⊆ g, and fix a

bi-invariant metric gbi on G. First, we Cheeger deform (G, gbi) with respect to the action of

K by right multiplication and the bi-invariant metric gbi|K . Thus, we obtain a new metric

on (gbi)` on G for which K acts isometrically by right multiplication. The metric (gbi)` is

in fact left-invariant, so we will denote it by gleft. Recall from Section 2.2 that we have the
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Riemannian submersion

q : (K ×G, (ĝbi)`)→ (G, gleft).

Here, (ĝbi)` = `2gbi|K + gbi. Now, the quotient for the action of H ⊆ K on G by right

multiplication induces a homogeneous metric ghom on G/H via the projection

π : (G, gleft)→ (G/H, ghom).

Composing these quotient maps, we have that (G/H, ghom) is the base of a Riemannian

submersion from a Lie group with a bi-invariant metric:

π ◦ q : (K ×G, (ĝbi)`)→ (G/H, ghom).

Let h⊥ ⊆ g denote the orthogonal complement of h in g with respect to gleft. Then h⊥ is the

horizontal distribution for π. Let p ⊆ k denote the orthogonal complement of h in k with

respect to gleft. Then the horizontal distribution of π ◦ q is given by

Hπ◦q = {(0, x) : x ∈ k⊥} ⊕
{(
− 1
`2
y, y
)

: y ∈ p
}
.

Remark 2.8. All of the homogeneous spaces G/H in Tables 2.1 and 2.2 admit positively

curved homogeneous metrics ghom that can be described as above. Notice that if (G/H, ghom)

is normal homogeneous, then in the construction outline above, K can be taken to be G, and

the left-invariant metric gleft on G is in fact a rescaling of the original bi-invariant metric

gbi.

To prove Theorem 3.1, we will use the following:

Lemma 2.9 (Tapp [44]). If π : (G, gbi)→ (M, g) is a Riemannian submersion, then every

horizontal zero-curvature plane in G projects to a zero-curvature plane in M .
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Applying Lemma 2.9 to the homogeneous spaces constructed above, we can summarize the

discussion from this section as follows:

Corollary 2.10. Suppose (G/H, ghom) is a homogeneous space with positive sectional cur-

vature. Then with respect to the associated left-invariant metric gleft on G, secgleft(P) > 0

for all planes P ⊆ h⊥.

Proof. If G/H is a homogeneous space which admits a positively curved metric, then it

admits a homogeneous metric ghom as described above. By the contrapositive of Lemma 2.9,

every horizontal plane with respect to the Riemannian submersion π ◦ q : (K ×G, (ĝbi)`)→

(G/H, ghom) is positively curved. Because dq maps Hπ◦q onto h⊥, we have that all planes

in h⊥ are positively curved with respect to gleft by O’Neill’s Horizontal Curvature Equation

[27]. �
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Chapter 3:

New examples of positive intermediate

Ricci curvature

In this chapter, we use Cheeger deformations to establish that some products of positive

curved homogeneous spaces admit metrics with Ric2 > 0. For example, we establish Theo-

rem A, which we restate here for convenience:

Theorem 3.1. If M is a positively curved homogeneous space, then M×M admits a metric

g` such that Ric2(M ×M, g`) > 0.

For a complete list of simply connected, positively curved homogeneous spaces, see Tables

2.1 and 2.2 in Section 2.3. Given a positively curved homogeneous metric ghom on M , the

metric in Theorem 3.1 is a Cheeger deformation of the product metric on M ×M under

the diagonal action by any group that acts isometrically and transitively on (M, ghom). The

Cheeger deformation of S2×S2 with respect to the diagonal action of SO(3) was considered

by Müter [25]. Bettiol deformed this metric on S2 × S2 further to construct a metric of

positive biorthogonal curvature on S2 × S2 [6].
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Expanding upon Theorem 3.1, we also establish the following:

Theorem 3.2. Given compact Lie subgroups H ≤ K ≤ G, if G/H admits a homogeneous

metric of positive curvature, then G/K ×G/H admits a metric with Ric2 > 0.

If H = K in Theorem 3.2, then the statement is equivalent to Theorem 3.1. Table 3.1 below

shows some examples of product manifolds G/K ×G/H with H 6= K that admit Ric2 > 0

by Theorem 3.2.

G K H G/K×G/H

SU(n+ 1) U(n) SU(n) CPn × S2n+1

Sp(n+ 1) Sp(n)× Sp(1) Sp(n) HPn × S4n+3

Sp(n+ 1) Sp(n)× Sp(1) Sp(n)× U(1) HPn × CP2n+1

SU(3) U(2) S1
p,q CP2 ×W 7

p,q

SU(3) U(2) T 2 CP2 ×W 6

SU(3) T 2 S1
p,q W 6 ×W 7

p,q

Sp(3) Sp(2)× Sp(1) Sp(1)3 HP2 ×W 12

F4 Spin(9) Spin(8) OP2 ×W 24

Table 3.1: Products of simply connected homogeneous spaces G/K × G/H that admit
metrics with Ric2 > 0 by Theorem 3.2.

In fact, Theorem 3.2 holds if we only assume that the identity components H0 and K0 of

the Lie groups H and K satisfy H0 ≤ K0. We incorporate this observation in Theorem 3.3,

which we prove in Section 3.1 below. See Remark 3.5 for a description of which planes may

not be positively curved under the metrics in Theorems 3.1 and 3.2.

Suppose M ×N is a product manifold that admits a metric g` with Ric2 > 0 by Theorems

3.1, 3.1, or 3.3. In Section 3.2, we prove the projections to the factors (M × N, g`) → M

and (M ×N, g`)→ N are Riemannian submersions; see Theorem 3.8.
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In Section 3.3, we explore several consequences of Theorems 3.1, 3.1, and 3.3. Namely, we

highlight several free isometric actions on our new examples in Corollary 3.12, we demon-

strate groups that can be realized as fundamental groups of manifolds with Ric2 > 0 in

Corollary 3.13, and we exhibit quotients by free diagonal actions that admit Ric2 > 0 in

Corollary 3.15. Along the way, we contrast the results of this chapter with structure results

and famous conjectures from the setting of positively curved manifolds.

3.1 Ric2 > 0 on products of homogeneous spaces

In this section, we prove the following generalization of Theorems 3.1 and 3.2:

Theorem 3.3. Suppose H and K are closed subgroups of a compact Lie group G such that

their identity components satisfy H0 ≤ K0. Suppose further that M = G/K and N = G/H

both admit positively curved homogeneous metrics gM and gN induced by a fixed left-invariant

metric gleft on G. Let gprod denote the product metric on M ×N , and consider the Cheeger

deformation, (M ×N, g`), of (M ×N, gprod) with respect to the diagonal G-action and the

left-invariant metric gleft. Then

Ric2(M ×N, g`) > 0 for all ` > 0.

Remark 3.4. When M and N are normal homogeneous (Table 2.1), then the left-invariant

metric gleft in Theorem 3.3 is in fact bi-invariant. It then follows from Remark 2.4 that the

diagonal G-action on M×N is by isometries of the Cheeger-deformed metric g`. Otherwise,

the diagonal G-action on M ×N may not be by isometries of g`.
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Remark 3.5. The Riemannian manifolds (M×N, g`) from Theorem 3.3 are non-negatively

curved. If a plane P has curvature zero with respect to g`, then it can be written as

P = span{(KM (x), 0), (0,KN (x))}

for some x ∈ k⊥ ⊆ g. Notice that this is a necessary condition, but it may not be a sufficient

one. In particular, the collection of planes that may have curvature zero with respect to g`

can be parametrized by the unit sphere in k⊥. Because M = G/K, this sphere has dimension

dim(M)− 1.

Let curvg denote the un-normalized sectional curvature with respect to a metric g. In

other words, if Rg denotes the type-(0, 4) Riemann curvature tensor associated with g, then

curvg(x, y) = Rg(x, y, y, x). First, we start by establishing which planes have curvature zero

in (M ×N, gprod):

Lemma 3.6. Suppose (M, gM ) and (N, gN ) are positively curved manifolds. A plane P

tangent to M ×N has curvature zero with respect to the product metric gprod if and only if

it can be written as P = span{(u, 0), (0, v)} for some u ∈ TM and v ∈ TN .

Proof. Choose vectors (u1, v1), (u2, v2) ∈ T (M × N) that span a plane P. Letting gprod =

gM + gN denote the product metric on M ×N , notice that

curvgprod(P) = curvgprod
(
(u1, v1), (u2, v2))

)
= curvgM (u1, u2) + curvgN (v1, v2).
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Because secgM > 0 and secgN > 0, the expression above is zero if and only if the respective

sets {u1, u2} and {v1, v2} are linearly dependent. This implies that P can be written as

P = span{(u, 0), (0, v)} for some non-zero vectors u, v. �

Now let H, K, and G be as in Theorem 3.3, and let h, k, and g denote the associated Lie

algebras. Since H0 ≤ K0, we have that h ⊆ k. Let gleft be the left-invariant metric on G

corresponding to the positively curved homogeneous metrics gM on M = G/K and gN on

N = G/H. Let κ : T (M × N) → g be the map defined in Section 2.2 associated with

the Cheeger deformation of (M × N, gprod) with respect to the diagonal G-action and the

left-invariant metric gleft on G. Now, we establish which planes in M ×N “correspond” to

zero-curvature planes in (G, gleft):

Lemma 3.7. Choose vectors (KM (x), 0), (0,KN (y)) ∈ T (M × N) for some x ∈ k⊥ and

y ∈ h⊥. Then curvgleft(κ(KM (x), 0), κ(0,KN (y))) = 0 if and only if x and y are linearly

dependent in k⊥.

Proof. First, notice it follows from Equation 2.1 that in this setting, κ : T (M × N) → g

must satisfy the equation

gleft(κ(u, v), z) = −gprod ((u, v),KM×N (z))
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for all (u, v) ∈ T (M ×N) and z ∈ g. So given z ∈ g,

gleft
(
κ(KM (x), 0), z

)
= −gprod

(
(KM (x), 0),KM×N (z)

)
= −gprod

(
(KM (x), 0), (KM (z),KN (z))

)
= −gM (KM (x),KM (z)).

Thus, because M = G/K and x ∈ k⊥, it follows that κ(KM (x), 0) ∈ k⊥. Similarly,

gleft
(
κ(0,KN (y)), z

)
= −gprod

(
(0,KN (y)),KM×N (z))

)
= −gprod

(
(0,KN (y)), (KM (z),KN (z))

)
= −gN (KN (y),KN (z)).

Hence, because N = G/H and y ∈ h⊥, it follows that κ(0,KN (y)) ∈ h⊥. In particular,

because k⊥ ⊆ h⊥,

span{κ(KM (x), 0), κ(0,KN (y))} ⊆ h⊥.

By Corollary 2.10, secgleft(P) > 0 for all planes P ⊆ h⊥. Therefore, we have that

curvgleft(κ(KM (x), 0), κ(0,KN (y))) = 0

m

κ(KM (x), 0) and κ(0,KN (y)) are linearly dependent,

which implies that both κ(KM (x), 0) and κ(0,KN (y)) lie in k⊥ ⊆ h⊥. Now notice for all

x ∈ k⊥ and z ∈ h⊥,

gleft
(
κ(KM (x), 0), z

)
= −gM (KM (x),KM (z))

= −gleft(x, z).
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Also, for all y, z ∈ h⊥,

gleft
(
κ(0,KN (y)), z

)
= −gN (KN (y),KN (z))

= −gleft(y, z).

Thus, it follows that κ(KM (x), 0) and κ(0,KN (y)) are linearly dependent in k⊥ if and only

if x and y are linearly dependent in k⊥. Therefore, the result follows. �

Finally, we use Lemma 2.7 to prove Theorem 3.3, and hence Theorems 3.1 and 3.2:

Proof of Theorem 3.3. Let (M × N, g`) denote the Cheeger deformation of (M × N, gprod)

with respect to the diagonal G-action and the left-invariant metric gleft. Notice that (M ×

N, gprod) is non-negatively curved, and recall from Corollary 2.10 that secgleft > 0 for all

planes in h⊥. Then by Lemma 2.7, secg` ≥ 0, and if secg`(C`(P)) = 0 for a plane P tangent

to M × N , then secgprod(P) = 0 and curvgleft(κ(P)) = 0. By Lemmas 3.6 and 3.7, these

conditions imply that

P = span{(KM (x), 0), (0,KN (x))}

for some x ∈ k⊥. In particular, given any unit vector u tangent toM×N , there is at most one

unit vector e1 such that secg`(u, e1) = 0. Therefore, because (M ×N, g`) is non-negatively

curved, it follows that Ric2(M ×N, g`) > 0 for all ` > 0. �
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3.2 Projections to factors are Riemannian submersions

In this section, we prove the following:

Theorem 3.8. Suppose a closed Lie Group G acts isometrically and transitively on mani-

folds M and N . Assume that the metrics gM , gN are induced by a fixed left-invariant metric

gleft on G. Let g` denote the Cheeger deformation of the product metric gprod on M × N

by the diagonal G-action with respect to gleft. Then M and N admit metrics with respect to

which the projections to the factors (M×N, g`)→M and (M×N, g`)→ N are Riemannian

submersions.

Proof. Without loss of generality, we prove that the projection π : (M × N, g`) → M is a

Riemannian submersion. We will call a vector field on M ×N projectable if it is π-related

to a vector field on M . Note that the condition of being projectable is metric-independent.

Now, given (p, q) ∈ M × N , the kernel of the differential dπ(p,q) : TpM × TqN → TpM is

given by

V(p,q) = {(0, v) : v ∈ TqN}.

To prove Theorem 3.8, we will show that given projectable vector fields that are g`-orthogonal

to the distribution V, their inner product with respect to g` is constant along the fibers of

π : M ×N →M .

With respect to the product metric gprod, the distribution orthogonal to V is given by

{(x, 0) : x ∈ TM}. So by Lemma 2.5, the distribution orthogonal to V with respect to the
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Cheeger-deformed metric g` can be written as

H = span{C`(X, 0) : X is a vector field on M}.

First, we will show that given a vector field (X, 0) on M ×N , the field C`(X, 0) is also pro-

jectable. Given z ∈ g, the mapM×N → R given by (p, q) 7→ gprod ((X, 0), (KM,p(z),KN,q(z)))

is constant along the fibers of π : M × N → M . Furthermore, by Equation 2.1, the map

κ : T (M ×N)→ g satisfies

gleft(κ(p,q)(X, 0), z) = −gprod((X, 0), (KM,p(z),KN,q(z)))

for all z ∈ g. Hence, it follows that the map M × N → g given by (p, q) 7→ κ(p,q)(X, 0) is

also constant along the fibers of π. By Equation 2.2, C`(X, 0) can be expressed as

C`(X, 0)|(p,q) = − 1
`2

(
KM,p(κ(p,q)(X, 0)),KN,q(κ(p,q)(X, 0))

)
+ (X|p, 0).

Thus, because (p, q) 7→ κ(p,q)(X, 0) is constant along the fibers of π, the first summand in

the expression above is a projectable field. So because (X, 0) is also projectable, we have

shown that C`(X, 0) is a sum of projectable fields, and hence is projectable. In particular,

the horizontal distribution H for π : (M × N, g`) → M is spanned by projectable vector

fields.

Now notice that for vector fields X and Y on M ,

g`(C`(X, 0), C`(Y, 0))(p,q)

= ĝ`

(
(̂X, 0)`, (̂Y, 0)`

)
(e,p,q)

= 1
`2
gleft(κ(p,q)(X, 0), κ(p,q)(Y, 0)) + gprod((X, 0), (Y, 0))(p,q).
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In particular, for all vector fields X and Y on M , the map M ×N → R given by (p, q) 7→

g`(C`(X, 0), C`(Y, 0))(p,q) is constant along the fibers of π : M × N → M . Thus, we have

shown that with respect to the metric g`, the inner product of horizontal, projectable fields

is constant along the fibers of π. Therefore, M admits a metric with respect to which

π : (M ×N, g`)→M is a Riemannian submersion. �

3.3 Context & Consequences

In the context of positive intermediate Ricci curvature, Ric2 > 0 is a strong condition,

second only to positive sectional curvature. Despite the proximity of Ric2 > 0 and sec > 0

in this hierarchy, we describe below how these conditions have wildly different implications

on the topology of the underlying manifolds as a consequence of the results in this chapter.

In particular, we show the Euler characteristics, free isometric actions, fundamental groups,

and Riemannian submersions that can occur for the class of manifolds with Ric2 > 0 are

vastly different from that of the class of manifolds with sec > 0.

Euler characteristics

Given n ≥ 2, Theorem 3.1 establishes that Sn × Sn admits a metric with Ric2 > 0. This

relates to famous conjectures in the setting of positive sectional curvature that are attributed

to Hopf:
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Conjecture 3.9 (Hopf Conjectures).

1. S2 × S2 cannot admit a metric of strictly positive sectional curvature.

2. Any compact, even-dimensional manifold with positive sectional curvature has positive

Euler characteristic.

Theorem 3.1 applied to S2 × S2 shows that Hopf Conjecture 1 does not hold if “positive

sectional curvature” is replaced with “Ric2 > 0”. Furthermore, because χ(S2n−1×S2n−1) =

0, Theorem 3.1 also shows the conclusion of Hopf Conjecture 2 does not hold for Ric2 > 0

in dimensions ≡ 2 mod 4.

Recall also the following theorem proved by Hsiang and Kleiner in [23]:

Theorem 3.10 (Hsiang-Kleiner Theorem [23]). Suppose M is a compact, orientable, 4-

dimensional manifold with positive sectional curvature. If M admits a non-trivial Killing

field, then χ(M) ≤ 3. In particular, M is homeomorphic to either S4 or CP2.

The metrics on S2 × S2 with Ric2 > 0 from Theorem 3.1 are invariant under the diagonal

S1-action; see Remark 3.4. Thus the action induces a non-trivial Killing field on S2 × S2.

Therefore, because χ(S2 × S2) = 4, Theorem 3.1 shows that the conclusion of the Hsiang-

Kleiner Theorem does not hold for Ric2 > 0.
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Free isometric actions by connected groups

We now highlight free isometric actions by connected groups on some of the Riemannian

manifolds constructed in Theorem 3.1.

Consider a positively curved homogeneous space M = G/H. If M is normal homogeneous

(Table 2.1), then the diagonal action of any subgroup K ≤ G continues to be by isometries

under the metric constructed in Theorem 3.1; see Remark 3.4. In particular, the Ric2 > 0

metrics on S2n−1×S2n−1 from Theorem 3.1 are invariant under the respective free diagonal

S1-actions. This relates to the following fixed point theorem proved by Berger in [5]:

Theorem 3.11 (Berger Fixed Point Theorem [5]). If M is a closed, even-dimensional,

manifold with positive sectional curvature, then any Killing field on M has a zero.

Because free isometric S1-actions induce Killing fields that are nowhere zero, S2n−1×S2n−1

are even-dimensional manifolds that admit Ric2 > 0 with non-vanishing Killing fields. Thus

the conclusion of the Berger Fixed Point Theorem does not hold for Ric2 > 0 in dimensions

≡ 2 mod 4.

Shankar observed in [38] that the positively curved normal homogeneous Aloff-Wallach space

W 7
1,1 from [1, 47] admits a free isometric SO(3)-action. Thus, the free diagonal SO(3)-action

on W 7
1,1 ×W 7

1,1 is by isometries of the metric constructed in Theorem 3.1; see Remark 3.4.
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In addition, the free component-wise actions of S1 × S1 on S2n+1 × S2n+1 ⊂ Cn+1 × Cn+1

and S3 × S3 on S4n+3 × S4n+3 ⊂ Hn+1 ×Hn+1 by right multiplication are by isometries of

the respective metrics constructed Theorem 3.1. Thus, to summarize, we have the following:

Corollary 3.12.

1. W 7
1,1 ×W 7

1,1 admits a metric with Ric2 > 0 that is invariant under the free diagonal

SO(3)-action.

2. S2n+1 × S2n+1 for n ≥ 1 admits a metric with Ric2 > 0 that is invariant under a free

isometric T 2-action.

3. S4n+3 × S4n+3 for n ≥ 0 admits a metric with Ric2 > 0 that is invariant under a free

isometric (S3 × S3)-action.

In contrast with Corollary 3.12, manifolds with positive sectional curvature cannot admit

free isometric T 2-actions [5, 42]. Hence, such manifolds also cannot admit free isometric

(S3 × S3)-actions.

Fundamental groups

In this section, we demonstrate fundamental groups that can be achieved by even-dimensional

manifolds with Ric2 > 0. We show that many of these examples consequently cannot admit

metrics with positive sectional curvature by the Synge Theorem.
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Corollary 3.12 implies that any finite subgroup of SO(3), T 2, or S3 × S3 can be realized as

the fundamental group of a closed, even-dimensional manifold with Ric2 > 0 by considering

the corresponding quotients of W 7
1,1 ×W 7

1,1 or Sn × Sn. The finite subgroups of SO(3) are,

up to conjugacy,

Zn for n ≥ 1, S4, A4, A5, or Dm for m ≥ 2;

see, for example, [51, Theorem 2.6.5]. Here, Sn denotes the permutation group on n letters,

An < Sn is the subgroup of even permutations, and Dm is the dihedral group of order 2m.

The finite subgroups of T 2 are

Zn1 × Zn2 for n1, n2 ≥ 1.

The finite subgroups of S3 × S3 include products of any two of the groups

Zn for n ≥ 1, 2S4, 2A4, 2A5, or 2Dm for m ≥ 2;

see, for example, [51, Theorem 2.6.7]. Here, given a subgroup Γ < SO(3), 2Γ denotes the

lift of Γ to S3 ∼= SU(2) through the double cover SU(2)→ SO(3).

In addition, let M7 and N7 each denote a quotient of W 7
1,1 by one of S4, A4, A5, Zn for

n ≥ 1, or Dm for m ≥ 2. Then M7 and N7 are positively curved homogeneous spaces.

Furthermore, their product M7×N7 admits a metric with Ric2 > 0 by Theorem 3.3, which

generalizes Theorem 3.2. In summary, we have the following:

33



Corollary 3.13. The product of any two of the following groups can be realized as the

fundamental group of a closed, even-dimensional manifold with Ric2 > 0:

Zn for n ≥ 1, S4, A4, A5, or Dm for m ≥ 2.

Furthermore, the same is true for the product of any two of the following:

Zn for n ≥ 1, 2S4, 2A4, 2A5, or 2Dm for m ≥ 2.

In contrast with Corollary 3.13, we have the following fundamental result established by

Synge [43] for positively curved manifolds:

Theorem 3.14 (Synge Theorem [43]). Let M be a compact manifold with positive sectional

curvature.

1. If M is even-dimensional, then:

• π1(M) ∼= 0 if M is orientable, and

• π1(M) ∼= Z2 if M is non-orientable.

2. If M is odd-dimensional, then M is orientable.

In particular, for groups Γ listed in Corollary 3.13 that are not isomorphic to the trivial

group or Z2, the associated manifold with fundamental group Γ admits Ric2 > 0 but cannot

admit a metric of positive sectional curvature by Synge’s Theorem. It is yet to be determined

if there are simply connected manifolds that admit Ric2 > 0 but do not admit sec > 0.
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Wilhelm showed in [46] that the conclusion of the Synge Theorem holds if, instead of positive

sectional curvature, one assumes that Rick(M) ≥ k and the first systole, i.e. the length of

the shortest, closed, non-contractible curve, is strictly greater than π
√

(k − 1)/k. Therefore,

the manifolds referenced in Corollary 3.13 that have π1 6∼= 0 or Z2 must have first systole

≤ π/
√

2 when scaled so that Ric2 ≥ 2.

Riemannian submersions

We now describe odd-dimensional quotients of previous examples which admit Ric2 > 0,

and we relate Theorem 3.8 to the Petersen-Wilhelm fiber dimension conjecture for positively

curved manifolds.

Recall from Corollary 2.3 that if Rick(M) > 0, M → B is a Riemannian submersion, and

dim(B) ≥ k + 1, then Rick(B) > 0. By Corollaries 3.12 and 2.3, given n ≥ 1, the quotient

of S2n+1 × S2n+1 by the free diagonal S1-action and the quotient of S4n−1 × S4n−1 by the

free diagonal S3 action each admit metrics with Ric2 > 0. In addition, the quotients of

W 7
1,1 × W 7

1,1 by either the free diagonal S1-action or the free diagonal SO(3)-action each

admit a metric with Ric2 > 0. In summary, we have the following:
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Corollary 3.15. The following quotient maps are Riemannian submersions and the base

spaces admit metrics with Ric2 > 0:

S2n+1 × S2n+1 → (S2n+1 × S2n+1)/∆S1 (dim = 4n+ 1 with n ≥ 1),

S4n−1 × S4n−1 → (S4n−1 × S4n−1)/∆S3 (dim = 8n− 5 with n ≥ 1),

W 7
1,1 ×W 7

1,1 → (W 7
1,1 ×W 7

1,1)/∆S
1 (dim = 13),

W 7
1,1 ×W 7

1,1 → (W 7
1,1 ×W 7

1,1)/∆SO(3) (dim = 11).

Now recall Theorem 3.8 asserts that the projections M × N → M and M × N → N are

Riemannian submersions for the examples M × N constructed in Theorem 3.2. Theorem

3.8 and Corollary 3.15 relate to the fiber dimension conjecture of Petersen and Wilhelm:

Conjecture 3.16 (Petersen-Wilhelm Conjecture). If M is a compact manifold with positive

sectional curvature and π : M → B is a Riemannian submersion with fiber F , then

dim(F ) < dim(B).

By work of Amann and Kennard [2] and González-Álvaro and Radeschi [16], the Petersen-

Wilhelm Conjecture has been verified for all known examples of closed manifolds with pos-

itive sectional curvature. For progress toward the conjecture in the general case, we refer

the reader to [15, 41].

In contrast, Theorem 3.8 and Corollary 3.15 both provide examples of Riemannian submer-

sions for which the domain has Ric2 > 0 while the dimension of the fiber is larger than the
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dimension of the base. The most striking of these examples is the projection OP2×W 24 →

OP2. By Theorem 3.2, OP2 × W 24 admits a metric g` with Ric2 > 0, and by Theorem

3.8, OP2 admits a metric with respect to which the projection (OP2 × W 24, g`) → OP2

is a Riemannian submersion. Because the dimensions of the fiber F = W 24 and the base

B = OP2 of this submersion satisfy dim(F ) = dim(B)+6, the Petersen-Wilhelm Conjecture

with “positive sectional curvature” replaced by “Ric2 > 0” fails to hold by a large margin.
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Chapter 4:

Intermediate Ricci curvature

restrictions on submanifolds

In this chapter, we establish a relationship between intrinsic and extrinsic intermediate

Ricci curvatures of submanifolds. Our main result is Theorem 4.1 in Section 4.1. In Section

4.2, we apply Theorem 4.1 to locally-defined commuting Killing fields to obtain a local

symmetry rank bound for manifolds with positive intermediate Ricci curvatures. We discuss

consequences of this, including ramifications in the setting of non-negative curvature, and

we show that the local symmetry rank bound is optimal in the sense that any metric is close

in the C1-topology that achieves the local symmetry rank bound.
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4.1 Intrinsic versus extrinsic curvature

In this section, we prove Theorem B, which we restate here with more accuracy:

Theorem 4.1. Let N be a submanifold of M , let k ∈ {1, . . . ,dim(M)− 1}, and let S be a

subspace of TpN with dim(S) ≥ k+1. Assume for all flags (`,V) of signature (1, k+1) in S

that the intrinsic intermediate Ricci curvature RicNk (`,V) is non-positive while the extrinsic

intermediate Ricci curvature Rick(`,V) is positive. Then

dim(S) ≤ dim(M)− dim(N) + k.

Assume thatM , N , and S are as in Theorem 4.1. Let II denote the second fundamental form

for N ⊂ M , i.e. for u, v ∈ TpN , II(u, v) = (∇uV )⊥ ∈ TpN⊥, where V is any extension of v

to a vector field. Given a unit vector u ∈ TpN , let Ou denote the orthogonal complement of

span{u} in S. Now considering II(u, ·) as a linear map Ou → TpN
⊥, we have the following:

Lemma 4.2. If dim(S) > dim(M)− dim(N) + k, then dim(ker II(u, ·)) ≥ k.

Proof. If dim(S) > dim(M)− dim(N) + k, then

dim(ker II(u, ·)) = dim(Ou)− dim(Im II(u, ·))

≥ (dim(S)− 1)− (dim(M)− dim(N))

> (dim(M)− dim(N) + k − 1)− (dim(M)− dim(N)) .

Therefore, dim(ker II(u, ·)) > k − 1. �
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We now prove the main theorem of this chapter using Lemma 4.2 and the Gauss equation:

Proof of Theorem 4.1. Suppose dim(S) > dim(M) − dim(N) + k, and fix a unit vector

u ∈ S such that | II(u, u)| ≥ 0 is minimal. By Lemma 4.2, we can choose orthonormal

vectors e1, . . . , ek ∈ Ou such that II(u, ei) = 0. For i = 1, . . . , k, define fi : R→ R by

fi(θ) = |II (cos(θ)u+ sin(θ) ei, cos(θ)u+ sin(θ) ei)|2

= cos4(θ)| II(u, u)|2 + 2 cos2(θ) sin2(θ)〈II(u, u), II(ei, ei)〉+ sin4(θ)| II(ei, ei)|2.

Then because fi(0) = | II(u, u)|2 is minimal,

f ′′i (0) = 4
(
〈II(u, u), II(ei, ei)〉 − | II(u, u)|2

)
≥ 0,

and so we must have 〈II(u, u), II(ei, ei)〉 ≥ 0. Now let V ..= span{u, e1, . . . , ek} ⊆ S and

` ..= span{u} ⊂ V. Because II(u, ei) = 0 and 〈II(u, u), II(ei, ei)〉 ≥ 0 for all i, we have by the

Gauss equation that

Rick(`,V) =
k∑
i=1

secM (u, ei)

=
k∑
i=1

[
secN (u, ei) + | II(u, ei)|2 − 〈II(u, u), II(ei, ei)〉

]
≤

k∑
i=1

secN (u, ei)

= RicNk (`,V).

By assumption, RicNk (`,V) ≤ 0. Therefore we have shown that if dim(S) > dim(M) −

dim(N) + k, then there exists a flag (`,V) such that Rick(u,V) ≤ 0, thus proving Theorem

4.1 by contraposition. �
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4.2 Local symmetry rank bound

Definition 4.3. The symmetry rank of a Riemannian manifold (M, g), which we denote

symrank(M, g), is the rank of its isometry group, i.e. the maximal dimension of a torus that

can act isometrically and effectively on (M, g).

Grove and Searle established the following symmetry rank bound for manifolds with positive

sectional curvature:

Theorem 4.4 (Maximal Symmetry Rank Theorem [17]). Any closed, connected Riemannian

n-manifold (M, g) with positive sectional curvature has

symrank(M, g) ≤
⌊
n+ 1

2

⌋
,

and in the case of equality, M is diffeomorphic to Sn, RPn, CPn/2, or a lens space.

The symmetry rank bound from the Grove-Searle Maximal Symmetry Rank Theorem [17]

is proven using global arguments. It relies on globally defined torus actions and a theorem

of Berger stating that any Killing field on an even dimensional positively curved manifold

has a zero. Wilking obtained the same bound for quasi-positive curvature using only the

Gauss equation:
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Theorem 4.5 (Symmetry Rank Bound for Quasi-positive Curvature [49]). Suppose (M, g) is

a connected Riemannian n-manifold. If M contains a point at which all sectional curvatures

are positive, then

symrank(M, g) ≤
⌊
n+ 1

2

⌋
.

Galaz-García included Wilking’s argument for Theorem 4.5 in [12]. Searle and Wilhelm

noticed that Wilking’s argument only requires commuting Killing fields and positive sectional

curvature for planes spanned by the Killing fields [37]. This observation inspired the results

of this chapter.

Now, if a tangent space of a submanifold is spanned by commuting Killing fields, then intrin-

sic curvature of that submanifold at that point is identically zero. In particular, applying

Theorem 4.1 in this setting, we obtain Corollary C, which we restate here for convenience:

Corollary 4.6. Suppose that M is a Riemannian n-manifold, N ⊂ M is a submanifold

through a point p, the tangent space TpN is spanned by commuting Killing fields of N , and

k ∈ {1, . . . , n− 2}. If Rick(`,V) > 0 for all flags (`,V) of signature (1, k + 1) in TpN , then

dim(N) ≤
⌊
n+ k

2

⌋
.
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Proof. Because TpN is spanned by commuting Killing fields of N , the intrinsic curvature

for TpN are zero. In particular, applying Theorem 4.1 with S ..= TpN , we have that

dim(N) = dim(TpN)

≤ dim(M)− dim(N) + k

= n− dim(N) + k.

Therefore, it follows that dim(N) ≤ n+k
2 . �

Note that the submanifold N in Corollary 4.6 is not assumed to be complete; it is only

required to be defined in a neighborhood of the point p. Also notice the utility of Corollary

4.6 is that it is local in nature, and thus can be applied in many scenarios.

4.2.1 k-maximal symmetry rank

Now we introduce terminology for a manifold that achieves the upper bound in Corollary

4.6:

Definition 4.7. Suppose M has a submanifold N such that for some point p ∈ N , TpN

is spanned by commuting Killing fields of N , and Rick(`,V) > 0 for all signature-(1, k + 1)

flags (`,V) in TpN . If dim(N) = bn+k2 c, then we say M has k-maximal local symmetry

rank at p.
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Notice that no manifold admits (n − 1)-maximal local symmetry rank: If k = n − 1, then⌊
n+k
2

⌋
= n − 1 < n = k + 1. So when k = n − 1, there can be no (k + 1)-dimensional

subspaces V of TpN while dim(N) = bn+k2 c.

Recall from the Maximal Symmetry Rank Theorem that the list of manifolds which admit

positive sectional curvature and maximal global symmetry rank is restrictive, only consisting

of Sn, RPn, CPn/2, or lens spaces. In stark contrast, we have Theorem D, which we restate

here for convenience:

Theorem 4.8. Let M be an n-manifold, n ≥ 3, k ∈ {1, . . . , n − 2}, and p ∈ M . Every

Riemannian metric g on M is arbitrarily close in the C1-topology to a metric g̃ such that

(M, g̃) has k-maximal local symmetry rank at p.

Theorem 4.8 shows that the upper bound in Corollary 4.6 can be realized on any manifold.

We prove Theorem 4.8 by sewing in a model metric on a small ball around the point p and

showing that the resulting metric can be made arbitrarily close in the C1-distance to the

original. These model metrics are constructed on Rn and have k-maximal local symmetry

rank at the origin.
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Construction of k-maximal local symmetry rank

In this section, we prove the following:

Proposition 4.9. There exist metrics gmodel on Rn that have k-maximal local symmetry

rank at the origin for all n ≥ 3 and k ∈ {1, . . . , n− 2}.

Throughout this section, let n ≥ 3, k ∈ {1, . . . , n−2}, and d = bn+k2 c. To prove Proposition

4.9, we will construct metrics on Rn−d × Rd such that the coordinate vector fields for the

Rd factor are Killing fields and Rick(`,V) > 0 for all signature-(1, k+ 1) flags (`,V) in T0Rd.

We do not claim that these metrics are complete as this will not be necessary for proving

Theorem 4.8 in Section 4.2.1. First, we establish the following computational simplification:

Lemma 4.10. Given any Riemannian manifold M and a natural number d ≤ dim(M)− 1,

suppose that {Ki}di=1 is an orthonormal basis of a subspace K ⊆ TpM , k ∈ {1, . . . , d − 1},

and there exist µ, ν ∈ [0,∞) such that the following hold:

1. R(Ki,Kj)K` = 0 when the indices i, j, ` are mutually distinct.

2. sec(Ki,Kj) ∈ {−ν, µ} for all i 6= j.

3. For each i, there exist at most k − 1 indices j 6= i such that

sec(Ki,Kj) = −ν.

4. µ− (k − 1)ν > 0.

Then Rick(`,V) > 0 for all signature-(1, k + 1) flags (`,V) in K.
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Proof. Let RicK : K → K denote the Ricci (1, 1)-tensor restricted to K and composed with

projection onto K. Then by definition, 〈RicK(u), u〉 = Ricd−1(u,K) for any unit vector

u ∈ K. By Property 1, we get that RicK is diagonalized by {Ki}di=1; see, for example, [30,

Proposition 4.1.3]. Then by Properties 2 and 3, we have that

Ricd−1(u,K) ≥ min
i=1,...,d

{Ricd−1(Ki,K)} ≥ (d− k)µ− (k − 1)ν,

for all u ∈ K. Applying Property 4, we get

Ricd−1(u,K) > (d− k − 1)µ. (4.1)

Now, define an operator RK : Λ2K → Λ2K by

〈
RK (

∑
iXi ∧ Yi) ,

∑
j Vj ∧Wj

〉
=
∑
i,j

R(Xi, Yi,Wj , Vj),

which is the curvature operator restricted to the subspace K. Then by Property 1, RK

is diagonalized by {Ki ∧ Kj}i,j ; see, for example, [30, Proposition 4.1.2]. Recall that by

Property 2, on K we have

sec ≤ µ. (4.2)

Thus, given a (k + 1)-dimensional subspace V ⊆ K and unit vector u ∈ V, choose or-

thonormal vectors {ei}d−1i=1 such that {u, e1, . . . , ek} is an orthonormal basis for V and

{u, e1, . . . , ek, ek+1, . . . , ed−1} is an orthonormal basis for K.
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Then by Inequalities 4.1 and 4.2, we have

Rick(u,V) =
k∑
i=1

sec(u, ei)

= Ricd−1(u,K)−
d−1∑
i=k+1

sec(u, ei)

> [(d− k − 1)µ]− [(d− k − 1)µ] = 0.

�

Now we use Lemma 4.10 to construct metrics with k-maximal local symmetry rank:

Proof of Proposition 4.9. Consider Rn−d × Rd with coordinates (x1, . . . , xn−d, y1, . . . , yd).

Given positive smooth functions φi : Rn−d → R, define the metric gmodel on Rn−d × Rd by

gmodel = dx1
2 + · · ·+ dxn−d

2 + φ1
2dy1

2 + · · ·+ φd
2dyd

2.

Setting Ki = 1
φi(0)

∂
∂yi

, the fields {Ki}di=1 are the desired commuting Killing fields under this

metric, and they are orthonormal at the origin. We will choose the φi such that
(
Rn, gmodel

)
and Ki together satisfy the hypotheses of Lemma 4.10.

Let K = span{Ki|0}di=1 = T0Rd, and denote the orthogonal complement by K⊥ = T0Rn−d.

Let II : K×K → K⊥ denote the second fundamental form for the submanifold {(0, . . . , 0)}×

Rd. Then II(Ki,Kj) = 0 for i 6= j, and combining this with the fact that Ki are commuting

Killing fields, we get that Property 1 of Lemma 4.10 is satisfied. We will show that the

φi can be chosen such that Properties 2, 3, and 4 are satisfied at the origin. Notice that
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at the origin, II(Ki,Ki) = −gradφi
φi(0)

. Thus by the Gauss equation, because the submanifold

{(0, . . . , 0)} × Rd has zero intrinsic curvature, we have that the extrinsic curvatures are

sec(Ki,Kj) = −〈gradφi, gradφj〉
φi(0)φj(0)

when i 6= j. We now break the construction into two cases: k = n− 2 and k ≤ n− 3.

Case k = n− 2: If k = n−2, then d = bn+k2 c = n−1, and so K⊥ is 1-dimensional. Choose

a unit vector U in K⊥. We will define the φi such that for some constants a, b ∈ (0,∞),

1. gradφ1 = · · · = gradφk = U ,

2. φ1(0) = · · · = φk(0) = a,

3. gradφd = −U , and

4. φd(0) = b

Then by construction, Properties 2 and 3 of Lemma 4.10 are satisfied with

µ =
|U |2

ab
=

1

ab
,

−ν = −|U |
2

a2
= − 1

a2
.

Thus, to satisfy Property 4, we need

1

ab
− k − 1

a2
> 0.

Therefore, choosing any values for a and b such that a > (k − 1)b, the k = n − 2 case of

Proposition 4.9 follows from Lemma 4.10.
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Case k ≤ n− 3: If k ≤ n − 3, then K⊥ has dimension n − d ≥ 2. In the unit sphere

Sn−d−1 ⊂ K⊥, choose a vector U . Letting U⊥ denote the orthogonal complement of span{U}

in K⊥, consider the equatorial sphere Sn−d−2 = U⊥ ∩ Sn−d−1. Now inscribe a regular

(n − d − 1)-simplex in Sn−d−2, and define vectors V1(0), . . . , Vn−d(0) ∈ Sn−d−2 to be the

vertices of this simplex. Hence

〈Vi(0), Vj(0)〉 = − 1

n− d− 1

for all distinct i, j ∈ {1, . . . , n− d}. Now for θ ∈ [0, π2 ] define

Vi(θ) = cos(θ)Vi(0)− sin(θ)U.

Notice that

〈Vi(θ), Vj(θ)〉 = − cos2 θ

n− d− 1
+ sin2 θ

is strictly increasing on [0, π2 ] and takes the value 0 at θ = ξ ∈ (0, π2 ) given by

ξ = arctan

(√
1

n− d− 1

)
.

Hence, 〈Vi(θ), Vj(θ)〉 is negative for θ ∈ [0, ξ). We will now choose the φi such that

1. gradφ1 = · · · = gradφk = U ,

2. φ1(0) = · · · = φk(0) = a,

3. gradφk+j = Vj(θ) for j = 1, . . . , n− d, and

4. φk+1(0) = · · · = φd(0) = b

for some values of a, b ∈ (0,∞) and θ ∈ (0, ξ). See Figure 4.1 for an illustration of how the

gradφi may be arranged in Sn−d−1.
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Figure 4.1: gradφi in Sn−d−1

Then because θ < ξ, the negative curvatures among {sec(Ki,Kj)}di,j=1 correspond to distinct

values of i, j ∈ {1, . . . , k}, and these curvatures all have the same value

−ν ..= −|U |
2

a2
= − 1

a2
.

So for each i, there exist at most k − 1 indices j 6= i such that sec(Ki,Kj) = −ν, and thus

Property 3 of Lemma 4.10 is satisfied. To satisfy Property 2, we need to choose a, b, θ so

that for all ` ∈ {1, . . . , k} and for all distinct i, j ∈ {1, . . . , n− d},

sec(K`,Kk+i) = sec(Kk+i,Kk+j).

This common value is given by

µ ..= −〈U, Vi(θ)〉
ab

= −〈Vi(θ), Vj(θ)〉
b2

. (4.3)

Furthermore, to satisfy Property 4, we need

µ− k − 1

a2
> 0. (4.4)
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Now choose any value for a > 0. Then, once θ ∈ (0, ξ) is chosen, we will define b by

b =
a〈Vi(θ), Vj(θ)〉
〈U, Vi(θ)〉

.

Thus Equation 4.3 will be satisfied with µ taking the value

µ = − 〈U, Vi(θ)〉2

a2〈Vi(θ), Vj(θ)〉
.

Finally, Inequality 4.4 holds if θ is chosen such that

〈U, Vi(θ)〉2 > −(k − 1)〈Vi(θ), Vj(θ)〉.

Notice that 〈U, Vi(θ)〉2 approaches a positive constant dependent on n and k as θ approaches

ξ, while−〈Vi(θ), Vj(θ)〉 approaches 0 as θ approaches ξ. Therefore, there exists a value θ such

that Inequality 4.4 holds. Therefore, applying Lemma 4.10, Proposition 4.9 is proven. �

Sewing and the C1-topology

In this section, we establish a general Sewing Theorem for changing a Riemannian metric

within metric ball around a point while remaining close to the original metric in the C1-

topology. We then use the Sewing Theorem to Prove Theorem 4.8. First, we discuss the

C`-norm for tensors.

Recall that two smooth maps F1, F2 : M → N are ε-close in the weak C`-topology if their

values and partial derivatives up to order ` are ε-close with respect to fixed atlases on M

and N ; see Chapter 2 of [22]. If the atlases are finite, this leads to a notion of C`-distance.
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Now, given vector bundles E1 and E2, Euclidean metrics on E1 and E2, and a bundle map

φ : E1 → E2, the C`-norm of φ is defined as follows: If E1
1 denotes the unit sphere bundle

under the Euclidean metric on E1, then |φ|C` is the C`-distance from φ|E1
1
to the zero bundle

map E1 → E2. The C`-norm of a tensor ω is the C`-distance from ω to the zero-section.

Notice that these definitions depend on the choice of Euclidean metrics.

Throughout this section, let M be a fixed manifold, and let g be a fixed Riemannian metric

on M . All C`-norms will be defined in terms of the fixed metric g on TM .

We now establish the following:

Theorem 4.11 (Sewing Theorem). Let (M, g) be a Riemannian manifold, let p be a point

in M , and let g∗ be a Riemannian metric defined on a neighborhood of p such that g(γ′, ·) =

g∗(γ′, ·) for all geodesic rays γ emanating from p. For every ε > 0, there exists a Riemannian

metric g̃ onM that is ε-close to g in the C1-distance such that g̃ ≡ g∗ on an open ball centered

at p.

The author has been informed that Searle, Solórzano, andWilhelm have proven if sec(M, g) ≥

K, then g̃ in Theorem 4.11 can be made to satisfy sec(M, g̃) ≥ K̃ for any K̃ < K [35].

Now define t to be the value of distg(p, ·), and let ∂t denote grad(distg(p, ·)). We begin by

proving the following:
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Lemma 4.12 (Converse Gauss Lemma). Let (M, g) be a Riemannian manifold, let p ∈M ,

and let g∗ be as in Theorem 4.11.

1. distg(p, ·) = distg∗(p, ·), and the integral curves of ∂t are geodesics emanating from p

with respect to both metrics g and g∗.

2. Along geodesic rays emanating from p, the family of Jacobi fields that vanish at p are

the same for both metrics g and g∗.

For a more general version of Lemma 4.12, see [31, Proposition 2.2].

Proof. Because g∗(∂t, ∂t) = g(∂t, ∂t) = 1, the integral curves of ∂t are also geodesics under

g∗, and hence Part (1) follows. Now notice that along a geodesic ray emanating from p, a

Jacobi field J that vanishes at p under g is realized as the variation field of a variation by

g-geodesics emanating from p. Because these curves are also geodesics under g∗, J is also a

Jacobi field under g∗. �

Now letting inj radp denote the injectivity radius of (M, g) at p, choose δ ∈

(0, 12 inj radp) small enough such that g∗ is defined on the closed ball B(p, 2δ) ⊂M .

Lemma 4.13. There is a symmetric (0, 2)-tensor r defined on B(p, 2δ) such that

g − g∗ = t2r.

Furthermore, for any ` ∈ N, there exists a constant C such that |r|C` < C with respect to

the metric g.
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Proof. Choose normal coordinates (x1, . . . , xn) around p, and let ∂1, . . . , ∂n denote the cor-

responding coordinate vector fields. Consider the rotational fields J = xj∂i − xi∂j . These

fields are normal to ∂t = grad(dist(p, ·)), and they vanish at p. Now consider any geodesic

γ : [0, 2δ] → M emanating from p. Then J are also Jacobi fields along γ because the

Lie derivative L∂tJ = [∂t, J ] = 0. Notice that for every point γ(t0) with t0 > 0, there is

a neighborhood around γ(t0) such that every tangent space is spanned by ∂t and n − 1

of the rotational fields J . We choose n − 1 such rotational fields and denote them by

J1, . . . , Jn−1. We will construct the tensor r in this neighborhood of γ(t0) by defining its

values on
{
J1
|J1| , . . . ,

Jn−1

|Jn−1| , ∂t
}
. By the Gauss Lemma, (g − g∗)(∂t, ·) ≡ 0, and so we set

r(∂t, ·) ≡ 0. Informed by [10, Chapter 5 Proposition 2.7], we now compute the Taylor ex-

pansion of (g − g∗)(Ji, Jj)γ(t) centered at t = 0, where γ is a geodesic emanating from p.

First notice that because the Ji are Jacobi and Ji(0) = 0, we have

J ′′i (0) = − (Rg(Ji, ∂t)∂t) (0) = 0.

Second, for any vector field V along γ, we have at t = 0

g (∇∂t(Rg(Ji, ∂t)∂t), V ) = ∂tg (Rg(Ji, ∂t)∂t, V )− g
(
Rg(Ji, ∂t)∂t, V

′)
= ∂tg (Rg(V, ∂t)∂t, Ji)

= g (∇∂t(Rg(V, ∂t)∂t), Ji) + g
(
Rg(V, ∂t)∂t, J

′
i

)
= g

(
Rg(J

′
i , ∂t)∂t, V

)
.
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Using these facts and that Ji(0) = 0 = Jj(0), we have the following at t = 0:

g(Ji, Jj) = 0,

g(Ji, Jj)
′ = g(J ′i , Jj) + g(Ji, J

′
j) = 0,

g(Ji, Jj)
′′ = g(J ′′i , Jj) + 2g(J ′i , J

′
j) + g(Ji, J

′′
j ) = 2g(J ′i , J

′
j),

g(Ji, Jj)
′′′ = g(J ′′′i , Jj) + 3g(J ′′i , J

′
j) + 3g(J ′i , J

′′
j ) + g(Ji, J

′′′
j ) = 0,

g(Ji, Jj)
′′′′ = g(J ′′′′i , Jj) + 4g(J ′′′i , J

′
j) + 6g(J ′′i , J

′′
j ) + 4g(J ′i , J

′′′
j ) + g(Ji, J

′′′′
j )

= −8Rg(J
′
i , ∂t, ∂t, J

′
j).

By Lemma 4.12, γ is a geodesic for both g and g∗, and Ji, Jj are Jacobi fields along γ

for either metric. Hence, we have that the equations above also hold with g∗ substituted

for g. Thus, by applying these calculations to the Taylor expansions of g(Ji, Jj)γ(t) and

g∗(Ji, Jj)γ(t) centered at t = 0, and using the fact that the inner products induced by g and

g∗ on TpM agree, we have

(g − g∗)(Ji, Jj)γ(t) = − t
4

3
(Rg −Rg∗)(J ′i , ∂t, ∂t, J

′
j)p +O(t5) as t→ 0

By normalizing this equation, we get

(g − g∗)
(
Ji
|Ji|

,
Jj
|Jj |

)
γ(t)

=
t4

3|Ji(t)||Jj(t)|
(Rg∗ −Rg)(J ′i , ∂t, ∂t, J ′j)p +O(t3),

where |Ji| is measured using g. It follows from the computations of derivatives g(Ji, Jj)

above that |Ji(t)| = t+O(t2) = |Jj(t)| as t→ 0. Thus, we have

lim
t→0

d

dt

[
(g − g∗)

(
Ji
|Ji|

,
Jj
|Jj |

)
γ(t)

]
= 0. (4.5)
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Now, recall that if a smooth function f : R → R satisfies f(0) = 0 = f ′(0), then there is a

smooth function h : R→ R such that f(t) = t2h(t). Thus

(g − g∗)
(
Ji
|Ji|

,
Jj
|Jj |

)
γ(t)

= t2ri,j(t)

for some smooth function ri,j . Thus we define r
(
Ji
|Ji| ,

Jj
|Jj |
)

..= ri,j so that g − g∗ = t2r.

Because the inner products induced by g and g∗ on TpM agree, it follows from Equation 4.5

and Taylor’s theorem that r can be smoothly extended to B(p, 2δ). Finally, the inequality

|r|C` < C follows from the fact that r is smooth on the compact set B(p, 2δ). �

We are now prepared to prove the Sewing Theorem.

Proof of Theorem 4.11. Choose δ ∈ (0, 12 inj radp) such that g∗ is defined on the closed ball

B(p, 2δ) ⊂ M . By Lemma 7.3 in [32], there exists a smooth function φ : M → [0, 1] such

that

φ ≡ 1 where dist(p, ·) ≤ δ,

φ ≡ 0 where dist(p, ·) ≥ 2δ,

|φ|C1 ≤
2

δ
.
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On M , define the Riemannian metric g̃ = (1− φ)g + φg∗. Because g̃ ≡ g for dist(p, ·) ≥ 2δ,

assume t = dist(p, ·) < 2δ. Given unit vector fields U and V ,

(g − g̃)(U, V ) = g(U, V )− (1− φ)g(U, V )− φg∗(U, V )

= φ(g − g∗)(U, V )

= φt2r(U, V ),

where r is the tensor from Lemma 4.13. Furthermore, for a unit vector X, we have

X(g − g̃)(U, V ) = (Xφ)t2r(U, V ) + φX(t2)r(U, V ) + φt2Xr(U, V )

= (Xφ)t2r(U, V ) + φ(2t)(Xt)r(U, V ) + φt2Xr(U, V ).

Thus, because φ ≤ 1, |φ|C1 ≤ 2
δ , t < 2δ, and |r|C1 < C, we have

|(g − g̃)(U, V )| < 4δ2C,

|X(g − g̃)(U, V )| < 12δC + 4δ2C.

Therefore, for any ε > 0, δ can be chosen so that |g − g̃|C1 < ε. �

We now prove Theorem 4.8 using Theorem 4.11 and the metrics established in Proposition

4.9.

Proof of Theorem 4.8. Choose any Riemannian n-manifold (M, g) with n ≥ 3. Let p ∈ M

and define g∗ on a neighborhood of p to be the pull-back metric

g∗ =
(
exp−1p

)∗ (
gmodel

)
,
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where gmodel is one of the metrics from Proposition 4.9 in Section 4.2.1. Then by the Gauss

Lemma, g(γ′, ·) = g∗(γ′, ·) for all geodesic rays γ emanating from p, and thus Theorem 4.11

can be applied to obtain a metric g̃ on M that has k-maximal local symmetry rank at p.

Therefore, the space of metrics on M which have k-maximal local symmetry rank is dense

under the C1-topology. �

4.3 Global symmetry rank bound

When a torus acts isometrically and effectively on a manifold, the principal orbits have the

same dimension as the torus, and their tangent spaces are spanned by commuting Killing

fields. Thus from Corollary 4.6, we obtain Corollary E, which we restate here for convenience:

Corollary 4.14. Suppose (M, g) is a connected Riemannian n-manifold. If M contains a

point at which all kth-intermediate Ricci curvatures are positive for some k ∈ {1, . . . , n−2},

then

symrank(M, g) ≤
⌊
n+ k

2

⌋
.

Proof. Supposed that a torus T r with r > n+k
2 acts isometrically an effectively on a con-

nected manifold M . Then, applying Corollary 4.6 at every point of each principal orbit, it

follows that there is a flag (`,V) at each of these points such that Rick(`,V) ≤ 0. Because

the set of principal orbits is a dense subset of M , it follows that every point in M has a flag

(`,V) such that Rick(`,V) ≤ 0, thus proving Corollary 4.14 by contraposition. �
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Because Ric1 > 0 is equivalent to sec > 0, this result generalizes the Grove-Searle symmetry

rank bound for sec > 0, Theorem 4.4, and the Wilking symmetry rank bound for quasi-

positive curvature, Theorem 4.5.

If k = n − 2, then Corollary 4.14 states that symrank(M, g) ≤
⌊n+(n−2)

2

⌋
= n − 1.

Cohomogeneity-one torus actions actions may occur on Ricci-positive manifolds in dimen-

sions 2 and 3; e.g. the T 1-action on S2 and the T 2-action on S3. However, it is known that

in dimensions ≥ 4, closed manifolds that admit cohomogeneity-one torus actions must have

infinite fundamental group [28, 29]. Thus by the Bonnet-Myers theorem, such manifolds

cannot admit invariant metrics of globally positive Ricci curvature, and hence cannot admit

Ricn−2 > 0 globally. Therefore, we have the following:

Remark 4.15. If (M, g) is a closed, connected n-manifold for n ≥ 4 and Rick(M, g) > 0

for k ≥ n− 2, then

symrank(M, g) ≤ n− 2.

Corro and Galaz-García show in [9] that for each dimension n ≥ 6, there exist examples of

n-manifolds which admit a metric of positive Ricci curvature with symrank(M, g) = n− 4.

It remains to be shown if this can be improved to give examples of positive Ricci curvature

with symrank(M, g) = n− 2.
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4.3.1 Ramifications in non-negative curvature

In this section, we discuss a consequence of Corollary 4.14 in the context of non-negative

curvature. Specifically, Galaz-García and Searle state the Maximal Symmetry Rank Conjec-

ture for non-negatively curved manifolds in [14], which has since been sharpened by Escher

and Searle in [11]:

Conjecture 4.16 (Maximal Symmetry Rank Conjecture). Let (M, g) be a closed, simply

connected, n-dimensional Riemannian manifold with non-negative sectional curvature. Then

1. symrank(M, g) ≤
⌊

2n

3

⌋
, and

2. in the case of equality, M is equivariantly diffeomorphic to a product of spheres or a

quotient thereof by a free linear action of a torus of rank less than or equal to 2n mod 3.

It was shown that the Conjecture 4.16 holds for 4 ≤ n ≤ 6 by Galaz-García and Searle

in [14], it holds for 7 ≤ n ≤ 9 by Escher and Searle in [11], and also Part (1) holds for

10 ≤ n ≤ 12 in [11]. Furthermore, the Conjecture 4.16 has been confirmed in all dimensions

for torus actions that are isotropy-maximal in [11]. With the assumption of non-negative

curvature replaced with rational ellipticity, Part (1) has been established in all dimensions

along with a rational homotopy theoretic version of Part (2) by Galaz-García, Kerin, and

Radeschi in [13]. This result is relevant to the conjecture above because the Bott Conjecture

claims that any non-negatively curved manifold is rationally elliptic.
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Notice that a non-negatively curved manifold can have positive kth-intermediate Ricci cur-

vature for k ≥ 2 without being positively curved. If Rick > 0 at a point for k ≤ n
3 , then by

Corollary 4.14, symrank(M, g) ≤ b2n3 c. In particular, we have the following:

Corollary 4.17. Let (M, g) be a closed, simply connected Riemannian manifold with non-

negative section curvature and dimension n ≥ 13. If M contains a point at which Ricbn/3c >

0, then the conclusion of Part (1) of the Maximal Symmetry Rank Conjecture holds.
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Chapter 5:

Torus actions on manifolds with

positive intermediate Ricci curvature

In this chapter, we study isometric torus actions on closed manifolds with Rick > 0. In

Section 5.1, we establish the existence of fixed point sets for such actions, in Section 5.2, we

establish a cohomogeneity restriction for general isometric actions, and in Section 5.3, we

improve upon the symmetry rank bound established in Corollary 4.14.

5.1 Fixed point sets of torus actions

For studying isometric group actions on positively curved manifolds, the following has been

an essential tool:
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Lemma 5.1. Suppose M is a closed manifold with positive sectional curvature on which a

torus T r acts isometrically.

1. If M is even-dimensional and r ≥ 1, then the T r-action on M has a fixed point.

2. If M is odd-dimensional and r ≥ 2, then there exists a codimension-1 torus subgroup

T r−1 ⊂ T r such that the T r−1-action on M has a fixed point.

The even-dimensional case in Lemma 5.1 is a consequence of Berger’s Fixed Point Theorem

from [5]. The odd-dimensional case was established by Sugahara in [42]. By adapting

Berger’s argument in [5], Lemma 5.1 can be reformulated in terms of commuting Killing

fields:

Lemma 5.2 (Theorem 8.3.5 in [30]). Suppose M is a closed n-manifold with positive sec-

tional curvature. If there are two commuting Killing fields on M , then they must be linearly

dependent at some point in M . Furthermore, if M is even-dimensional, then there is a point

at which both Killing fields are zero.

Adapting the argument further, we establish Theorem F, which we restate here for conve-

nience:

Theorem 5.3. Suppose M is a closed n-manifold and Rick(M, g) > 0 for some k ∈

{1, . . . , n− 1}. If there are k+ 1 commuting Killing fields on M , then they must be linearly

dependent at some point in M .
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Applying Theorem 5.3 to torus actions, we have the following:

Corollary 5.4. Suppose M is a closed n-manifold and Rick(M, g) > 0 for some k ∈

{1, . . . , n − 1}. If a torus T r acts isometrically on M with r ≥ k + 1, then there is a

codimension-k torus subgroup T r−k ⊂ T r such that the T r−k-action on M has a fixed point.

Example 5.5. By Theorem 3.1, products of spheres Sn×Sn for n ≥ 2 admit metrics g` with

Ric2 > 0. So by Corollary 5.4, if a torus T 3 acts isometrically on (Sn × Sn, g`), then there

exists a circle subgroup S1 ⊂ T 3 with non-empty fixed point set in Sn × Sn. By Corollary

3.12, when n is odd, (Sn,×Sn, g`) admits a free isometric T 2-action. Therefore, for n ≡ 2

mod 4 and k = 2, Corollary 5.4 is optimal.

We will now prove Theorem 5.3. Given vector fields X,Y1, . . . , Yj , set

Yj ..= span{Y1, . . . , Yj},

and let X⊥j denote the projection of X onto Y⊥j . Then define

fj ..=
1

2

∣∣∣X⊥j ∣∣∣2 .
Lemma 5.6. Let X,Y1, . . . , Yk be linearly independent commuting Killing fields on M . Sup-

pose there is a point p ∈ M at which Y1|p, . . . , Yk|p are orthonormal and X|p is orthogonal

to the subspace Yk|p ⊆ TpM . Then for all v ∈ TpM ,

Hess fk(v, v) = |∇vX|2 − curv(X, v)− 4
k∑
j=1

〈∇vX,Yj〉2.
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Proof. Set Ȳ1 ..= Y1, and for j = 2, . . . , k define

Ȳj ..= Yj −
j−1∑
i=1

〈Yj , Ȳi〉
|Ȳi|2

Ȳi. (5.1)

Then

fk =
1

2

∣∣∣∣∣∣X −
k∑
j=1

〈X, Ȳj〉
|Ȳj |2

Ȳj

∣∣∣∣∣∣
2

=
1

2

|X|2 − k∑
j=1

〈X, Ȳj〉2

|Ȳj |2

 .

Thus, defining

hk ..= −〈X, Ȳk〉
2

2|Ȳk|2
,

we have that fk = fk−1 + hk. Consequently, we will prove Lemma 5.6 by induction on k.

The base case, k = 1, is established in the proof of Theorem 8.3.5 in [30]. For the induction

hypothesis, suppose that at p, for some k ≥ 2,

Hess fk−1(v, v) = |∇vX|2 − curv(X, v)− 4
k−1∑
j=1

〈∇vX,Yj〉2.

We must show that Hess fk = Hess fk−1 + Hesshk satisfies the conclusion of Lemma 5.6.

Thus, it suffices to show that Hesshk(v, v) = −4〈∇vX,Yk〉2 at p. Now, applying Equation

5.1, we have

hk = −〈X, Ȳk〉
2

2|Ȳk|2

= − 1

2|Ȳk|2

〈
X , Yk −

k−1∑
j=1

〈Yk, Ȳj〉
|Ȳj |2

Ȳj

〉2

= − 1

2|Ȳk|2

〈X,Yk〉 − k−1∑
j=1

〈Yk, Ȳj〉〈X, Ȳj〉
|Ȳj |2

2

= − 1

2|Ȳk|2

〈X,Yk〉2 − 2

k−1∑
j=1

〈X,Yk〉〈Yk, Ȳj〉〈X, Ȳj〉
|Ȳj |2

+

k−1∑
j=1

〈Yk, Ȳj〉〈X, Ȳj〉
|Ȳj |2

2 .
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Notice that the inner products 〈X,Yk〉, 〈Yk, Ȳj〉, and 〈X, Ȳj〉 all vanish at p, and the Hessian

of a product of three or more functions that vanish at p will itself vanish at p. Thus defining

h̃k ..= −〈X,Yk〉
2

2|Ȳk|2
,

we have that at p,

Hesshk = Hess h̃k.

Now given v ∈ TpM , because X and Yk are commuting Killing fields, we have

v〈X,Yk〉 = 2〈∇vX,Yk〉 = −2〈∇YkX, v〉. (5.2)

Hence, the gradient of h̃k satisfies

〈∇h̃k, v〉 = v

(
−〈X,Yk〉

2

2|Ȳk|2

)
=

2〈X,Yk〉〈∇YkX, v〉
|Ȳk|2

−
2〈X,Yk〉2v

(
|Ȳk|

)
|Ȳk|3

.

Again, because 〈X,Yk〉 vanishes at p, terms in ∇h̃k that have two or more factors of 〈X,Yk〉

will vanish in the covariant derivative of ∇h̃k at p. So applying Equation 5.2 again, we have

that at p,

Hesshk(v, v) = Hess h̃k(v, v)

= 〈∇v∇h̃k, v〉

=

〈
∇v
(

2〈X,Yk〉
|Ȳk|2

∇YkX
)

+ 0, v

〉
= v

(
2〈X,Yk〉
|Ȳk|2

)
〈∇YkX, v〉

=

(
4〈∇vX,Yk〉
|Ȳk|2

− 4〈X,Yk〉v(|Ȳk|)
|Ȳk|3

)
(−〈∇vX,Yk〉) .
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Thus, because 〈X,Yk〉 = 0 and |Ȳk| = 1 at p, we have

Hesshk(v, v) = −4〈∇vX,Yk〉2.

Therefore, by induction, the result follows. �

We can now use Lemma 5.6 to prove Theorem 5.3:

Proof of Theorem 5.3. Suppose there are k+1 linearly independent commuting Killing fields

X,Y1, . . . , Yk on M . We will show that M must have a Rick that is non-positive.

BecauseX,Y1, . . . , Yk are linearly independent, fk = 1
2 |X

⊥
k |2 must attain a positive minimum

at some point p. Replacing Y1, . . . , Yk with commuting Killing fields that span the same

distribution Yk and are orthonormal at p does not change the values of fk. Furthermore, we

can replace X with the Killing field that commutes with Y1, . . . , Yk such that X|p ∈ (Yk|p)⊥,

and this too will not change the values of fk.

Now, with these new choices of X,Y1, . . . , Yk, by Lemma 5.6, we know for v ∈ TpM ,

Hess fk(v, v) = |∇vX|2 − curv(X, v)− 4
k∑
j=1

〈∇vX,Yj〉2.

Because fk attains a minimum at p, we have Hess fk(v, v) ≥ 0 for all v ∈ TpM , and hence

curv(X, v) ≤ |∇vX|2 − 4

k∑
j=1

〈∇vX,Yj〉2, (5.3)

for all v ∈ TpM . With these choices of X,Y1, . . . , Yk, we also have that

fk ≤
1

2
|X|2,
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with equality at p. So defining

f0 ..=
1

2
|X|2,

we know that f0 also attains a minimum at p, and hence ∇f0 = −∇XX = 0 at p. Thus

∇X : TpM → TpM is a skew-symmetric linear map with dim(ker∇X) ≥ 1.

Suppose dim(ker∇X) ≥ k + 1. Then we may choose orthonormal v1, . . . , vk ∈ ker∇X that

are orthogonal to X. Therefore, applying Inequality 5.3, we have

Rick(X; v1, . . . , vk) =
k∑
i=1

sec(X, vi)

=
1

|X|2
k∑
i=1

curv(X, vi)

≤ 1

|X|2
k∑
i=1

|∇viX|2 − 4
k∑
j=1

〈∇viX,Yj〉2


= 0.

Hence, if dim(ker∇X) ≥ k + 1, then M has a Rick that is non-positive.

Suppose now that dim(ker∇X) = `+ 1 ≤ k. Choose orthonormal v1, . . . , v` ∈ ker∇X that

are orthogonal to X, and let V denote (ker∇X)⊥. Given u ∈ ker∇X and v ∈ V, because

X is a Killing field,

〈∇vX,u〉 = −〈∇uX, v〉 = 0.

Thus Im(∇X|V) = V, and ∇X|V : V → V is an isomorphism. Now because X is orthogonal
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to Yk = span{Y1, . . . , Yk} and V at p, dim(Yk + V) ≤ n− 1, and hence

dim(Yk ∩ Im(∇X|V)) = dim(Yk ∩ V)

= dim(Yk) + dim(V)− dim(Yk + V)

≥ k + (n− `− 1)− (n− 1)

= k − `.

Thus, we can choose orthonormal v`+1, . . . , vk ∈ V such that∇v`+i
X ∈ Yk for i = 1, . . . , k−`.

So for = 1, . . . , k − ` and j = i . . . , k, define scalars αji so that

∇v`+i
X =

k∑
j=1

αjiYj

Then applying Inequality 5.3, we have

k∑
i=1

sec(X, vi) =
1

|X|2
k∑
i=1

curv(X, vi)

≤ 1

|X|2
k∑
i=1

|∇viX|2 − 4
k∑
j=1

〈∇viX,Yj〉2


=
1

|X|2
k−∑̀
i=1

 k∑
j=1

(
αji

)2
− 4

k∑
j=1

(
αji

)2
= − 3

|X|2
k−∑̀
i=1

k∑
j=1

(
αji

)2
< 0.

Thus, we have shown that if M has k + 1 linearly independent commuting Killing fields,

then M must have a Rick that is non-positive. Therefore, we have proven Theorem 5.3 by

contraposition. �
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5.2 Rank difference and cohomogeneity

Given a smooth action by a Lie group G on a manifold M and a point p ∈ M , let Gp ⊂ G

denote the isotropy subgroup associated to p. By applying Corollary 5.4 to a maximal torus

in G, the following is an immediate consequence:

Corollary 5.7 (Isotropy Rank Lemma for Rick > 0). Suppose a Lie group G acts iso-

metrically on a closed manifold M . If Rick(M) > 0, then there exists a point p ∈ M for

which

rank(G)− rank(Gp) ≤ k.

In particular, applying Corollary 5.7 to compact homogeneous spaces, we have the following:

Corollary 5.8. If a compact homogeneous space G/H has Rick(G/H) > 0, then

rank(G)− rank(H) ∈ { k , k − 2, k − 4, . . . } ⊂ Z≥0 if k ≡ dim(G/H) mod 2,

rank(G)− rank(H) ∈ {k − 1, k − 3, k − 5, . . . } ⊂ Z≥0 if k 6≡ dim(G/H) mod 2.

Proof. By Corollary 5.7, rank(G)− rank(H) ≤ k. Recall that dim(K)− rank(K) is even for

all compact Lie groups K. Thus,

rank(G)− rank(H) ≡ rank(G)− dim(G) + dim(G)− dim(H) + dim(H)− rank(H) mod 2

≡ dim(G)− dim(H) mod 2.

Therefore, the result follows. �
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Definition 5.9. Suppose a Lie group G acts smoothly on a manifold M . The cohomo-

geneity of the action is defined to be

cohom(M,G) ..= dim(M/G).

Equivalently, cohom(M,G) is given by the codimension of the principal orbits in M .

Using Lemma 5.1, Püttmann established the following:

Theorem 5.10 (Theorem C in [34]). Suppose M is a closed, positively curved manifold. If

G acts isometrically on M with principal isotropy subgroup H, then

rank(G)− rank(H) ≤ cohom(M,G) + 1,

To prove this, Püttmann used the following:

Lemma 5.11 (Lemma 1.1 in [34]). If a compact Lie group G acts isometrically on a manifold

M with principal isotropy H ⊂ G, then for all points p ∈M ,

rank(Gp)− rank(H) ≤ cohom(M,G).

Now, combining Lemma 5.11 with Corollary 5.7, we establish Corollary G, which we restate

here for convenience:

Corollary 5.12. Suppose (M, g) is a closed Riemannian manifold with Rick(M, g) > 0 for

some k ∈ {1, . . . ,dim(M) − 1}. If a Lie group G acts isometrically on M with principal

isotropy subgroup H ⊂ G, then

rank(G)− rank(H) ≤ cohom(M,G) + k.
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5.3 Symmetry rank bound for compact manifolds with

Rick > 0

Recall from the Grove-Searle Maximal Symmetry Rank Theorem, Theorem 4.4, that closed,

connected, positively curved manifolds have symmetry rank ≤ bn+1
2 c. In Corollary 4.14, we

established that connected manifolds with Rick > 0 at a point have symmetry rank ≤ bn+k2 c.

If we now assume that the manifolds are closed and have Rick > 0 globally, then we can

apply Corollary 5.4 to improve the symmetry rank bound in Corollary 4.14:

Theorem 5.13. Suppose Mn is a closed, connected, n-dimensional manifold.

1. If Ric1(M
n) > 0, i.e. sec(Mn) > 0, then

symrank(M, g) ≤
⌊
n+ 1

2

⌋
.

2. If Ric2(M
n) > 0 and n is odd, then

symrank(M, g) ≤
⌊
n+ 1

2

⌋
.

3. If Rick(M
n) > 0 for k ∈ {3, . . . , n− 1} and n odd, then

symrank(M, g) ≤
⌊
n+ k

2

⌋
− 1.

4. If Rick(M
n) > 0 for k ∈ {2, . . . , n− 1} and n even, then

symrank(M, g) ≤
⌊
n+ k

2

⌋
− 1.
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Notice Theorem 5.13 is equivalent to Theorem H. We choose to state it differently here in

order to assist with the formulation of our argument below. To prove Theorem 5.13, we will

use the following:

Lemma 5.14. Manifolds of dimension ≥ 4 cannot support metrics of positive Ricci curva-

ture that are invariant under a cohomogeneity-one torus action.

Lemma 5.14 follows from the work of Pak [28] and Parker [29], who showed that in di-

mensions ≥ 4, closed manifolds which admit cohomogeneity-one torus actions must have

infinite fundamental group. Thus by the Bonnet-Myers theorem, such manifolds cannot

admit invariant metrics of positive Ricci curvature. We will also use the following:

Lemma 5.15 (Proposition 8.3.8 in [30]). Let M be compact and let X,Y be commuting

Killing fields on M . If X and Y both vanish on a connected, totally geodesic submanifold

N ⊂ M , then some linear combination of them vanishes on a larger submanifold in M . In

particular, if N is fixed pointwise by an isometric T 2-action on M , then there is a circle

subgroup S1 ⊂ T 2 such that the component of its fixed point set which contains N has

codimension < codim(N).

We are now ready to establish our symmetry rank bound:

Proof of Theorem 5.13. Notice that Part 1 was established by Grove and Searle in Theorem

4.4. Also, Part 2 follows from Corollary 4.14, because if n is odd and k = 2, then⌊
n+ k

2

⌋
=

⌊
n+ 2

2

⌋
=

⌊
n+ 1

2

⌋
.

73



We will prove Parts 3 and 4 of Theorem 5.13 using induction on the dimension of M . First,

we establish the base cases, dim(M) = 4 and dim(M) = 5. If a 4-dimensional manifold M

has Ric2(M) > 0 or Ric3(M) > 0 and T 3 acts isometrically on M , then the action must

be at least S1-ineffective by Lemma 5.14. Similarly, if a 5-dimensional manifold M has

Ric3(M) > 0 or Ric4(M) > 0 and T 4 acts isometrically on M , then the action must be at

least S1-ineffective by Lemma 5.14.

Now, for the sake of induction, suppose that for some n ≥ 6, Theorem 5.13 holds for all

dimensions dim(M) ∈ {4, 5, . . . , n− 1}. We wish to show that it holds for dim(M) = n. So

suppose M satisfies the hypothesis of Parts 3 or 4, and defining

r ..=

⌊
n+ k

2

⌋
,

suppose that a torus T r acts isometrically on M . We must show that this T r-action on M

is at least S1-ineffective.

Case k ≥ n− 2: If k ≥ n− 2, then

r =

⌊
n+ k

2

⌋
≥
⌊
n+ (n− 2)

2

⌋
= n− 1.

Thus, the T r-action must be at least S1-ineffective by Lemma 5.14.

Case k ≤ n− 3: If k ≤ n− 3, then

r =

⌊
n+ k

2

⌋
≥
⌊

(k + 3) + k

2

⌋
= k + 1. (5.4)

Hence, by Corollary 5.4, there are circle subgroups of T r which have non-empty fixed point

sets. Among the collection of all components of fixed point sets for circle subgroups in T r,
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choose an element N that has minimal codimension in M , and let S1 denote the circle

subgroup that fixes N . Notice that N is totally geodesic, N has even codimension in M ,

and T r/S1 ∼= T r−1 acts on N . We will prove that N = M .

Subcase dim(N) ≤ k: Assuming dim(N) ≤ k, we will show that N is in fact fixed by a

torus T 2 ⊂ T r. If dim(N) = k, then because N has even codimension in M and because

k ≤ n− 3, we get that k ≤ n− 4. In particular,

dim(N) = k

= (r − r) + k

= r −
⌊
n+ k

2

⌋
+ k

≤ r −
⌊

(k + 4) + k

2

⌋
+ k

= r − (k + 2) + k

= r − 2.

If dim(N) ≤ k − 1, then by Inequality 5.4, we have

dim(N) ≤ k − 1

= (r − r) + k − 1

≤ r − (k + 1) + k − 1

= r − 2.

Thus if dim(N) ≤ k, then dim(N) ≤ r − 2. Hence the T r−1-action on N must be at

least S1-ineffective. In particular, there is a torus subgroup T 2 ⊂ T r that fixes N . There-
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fore, it follows from Lemma 5.15 that N does not have minimal codimension, which is a

contradiction.

Subcase dim(N) ≥ k + 1: Now assuming that k+ 1 ≤ dim(N) ≤ n− 2, we will show that

N is fixed by a torus T 2 ⊂ T r, again reaching a contradiction. Because dim(N) ≥ k + 1

and N is totally geodesic, Rick(N) > 0. Thus if dim(N) ≤ n− 2, the induction hypothesis

implies that

symrank(N) ≤
⌊

dim(N) + k

2

⌋
− 1

≤
⌊

(n− 2) + k

2

⌋
− 1

=

⌊
n+ k

2
− 1

⌋
− 1

= r − 2.

Thus the T r−1-action on N must be S1-ineffective. Hence if dim(N) ≤ n − 2, there is a

torus subgroup T 2 ⊂ T r that fixes N . Therefore, it follows again from Lemma 5.15 that N

does not have minimal codimension in M , which is a contradiction.

Therefore, we must have dim(N) = n = dim(M). This implies that the circle subgroup

S1 ⊂ T r that fixes N must fix all of M . This proves Theorem 5.13 by induction. �
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