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ABSTRACT OF THE DISSERTATION 

 
 

Efficient Methods for Analysis of Ultra-deep Sequencing Data 
 

by 
 
 

Seyed Hamid Mirebrahim 
 
 

Doctor of Philosophy, Graduate Program in Computer Science 
University of California, Riverside, December 2015 

Dr.Stefano Lonardi, Chairperson 
 

Thanks to continuous improvements in sequencing technologies, life scientists can 

now easily sequence DNA at depth of sequencing coverage in excess of 1,000x, 

especially for smaller genomes like viruses, bacteria or BAC/YAC clones. As “ultra 

deep” sequencing becomes more and more common, it is expected to create new 

algorithmic challenges in the analysis pipeline.  

In this dissertation, I explore the effect of ultra-deep sequencing data in two domains: 

(i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones and 

(ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing 

data, I show that when the depth of sequencing increases over a certain threshold, 

sequencing errors make these two problems harder and harder (instead of easier, as one 

would expect with error-free data), and as a consequence the quality of the solution 

degrades with more and more data.  

 For the first problem, I propose an effective solution based on “divide and conquer”: 

the method ‘slices’ a large dataset into smaller samples of optimal size, decodes each 
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slice independently, and then merges the results.  For the second problem, I show for the 

first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing 

data. I then introduce a new divide and conquer approach to deal with the problem of de 

novo genome assembly in the presence of ultra-deep sequencing data. 

Finally, I report on a novel computational protocol to discover high quality SNPs for 

cowpea genome. I show how the knowledge of approximate SNP order can be used to 

order and merge BAC clones and WGS contigs. 
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Chapter 1:  Introduction  

The Human Genome Project started in 1990 and reached a major milestone in 2001 

with the publication of [1] and was declared “complete” in 2003. The availability of the 

primary DNA sequence of the human genome completely revolutionized the way life 

scientists study human health and biological processes in the human body. For instance, it 

helped researchers to understand the underlying mechanisms that control gene expression 

or shed light on to the causes of several genetic diseases. The quality of the human 

genome draft has been improving continuously due to the advances in sequencing 

technology and the design of novel algorithms for de novo genome assembly.   

The Human Genome Project approached the task of sequencing and assembling the 

human genome in a hierarchical manner. The human genome was divided into several 

large DNA fragments (e.g., BAC clones), each of which was sequenced and assembled 

individually by sequencing centers around the world. Finally, the sequences were ordered 

and merged at UC Santa Cruz. The methods developed during the human genome project 

revolutionized all the aspects of genome sequencing, assembly and analysis.  

The majority of the human genome was sequenced using a technique developed by 

Dr. Frederick Sanger and his colleagues in 1977. Sanger sequence was the dominant 

sequencing approach for almost three decades: while it is time-consuming and expensive, 

the results are very accurate.  
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The cost of sequencing dropped dramatically when the next (second) generation 

sequencing (NGS) techniques became popular in mid 2000s (Figure	
  1 reports the average 

sequencing cost of DNA since 2001). 

 

	
  

Figure 1. Average sequencing cost of DNA per base between 2001 and 2014 [2] 

	
  

NGS is a high throughput approach for sequencing DNA that takes advantage of 

DNA amplification (PCR) in situ. Besides sequencing genomic DNA, NGS has been 

successfully used in gene discovery and in investigation of regulatory elements 

associated with diseases. Targeted sequencing, which has applications in identification of 

disease-causing mutations for diagnosis pathological conditions, is much easier with 

NGS. Also, RNA-Seq (based on NGS) is a powerful alternative to microarray that 

provides richer information about the transcriptome of a sample and does not require 

prior knowledge of the target genome.    

Despite the advances in sequencing technologies, none of the available technologies 

is able to sequence a genome from the beginning to the end. Instead, they produce the 

sequence of short DNA fragments, called reads. There are two types of reads: single end 
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(SE) and paired end (PE). A paired end read consist of two single end reads with a gap in 

the middle, where the approximate length of the gap is known. Sanger reads are relatively 

long (800-1000bp) and quite accurate (the quality drops towards the end). NGS reads are 

significantly shorter than Sanger reads, but the number of reads is orders of magnitude 

higher than Sanger (at the same cost). An important concept in sequencing is the depth of 

sequencing or coverage, which is defined as the average number of reads covering any 

single base in the genome. For instance, 10x coverage means that we have sufficient 

reads to cover each base of the genome with ten reads (on average). 

Whether they are long or short, reads need to be assembled based on their 

overlapping ends. A collection of mutually overlapping sequences is called a contig 

which is represented as the consensus of the collections of reads. Ordered sequences of 

contigs interleaved by gaps are generated through a process called scaffolding. The length 

of the gaps between the contigs are estimated based on paired end reads.  

There are two approaches to assemble genomic reads: de novo assembly and 

reference guided assembly. De novo assemblers exclusively work based on detecting 

overlaps among the short reads. De novo assembly is a difficult computational task, 

especially when the target genome is large and highly repetitive. It becomes harder when 

the reads are short because detecting reliable overlaps is more challenging. De novo 

assembly is NP-hard [3] and is used when no prior information about the genome is 

available. There are different algorithmic approaches for implementing de novo 

assembly, namely the greedy approach, the overlap-layout-consensus method and the 

eulerian method (based on the de Bruijn graph).  
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Most of the modern assemblers rely on a data structure called the de Bruijn graph that 

is built by processing the reads. The advantage of the de Bruijn graph is that it does not 

require the assembler to compute all pair-wise overlaps. Each node in the de Bruijn graph 

represents a k-mer (i.e., a substring of length k) that appears in at least one read. Two 

nodes are connected with an edge if there is an overlap of length k-1 between the two 

corresponding k-mers. Eulerian paths in the de Bruijn graph correspond to contigs.   

The idea behind reference-guided assembly is to use a closely related genome as a 

guide to assemble the reads of the target genome. Typically, this approach starts by first 

mapping the sequenced reads to the reference genome. Once the positions are available, 

the assembly is carried out locally.  

Since the invention of DNA sequencing in the seventies, computational biologists 

have had to deal with the problem of genome assembly with limited (or insufficient) 

depth of sequencing. In Chapter 2 of this dissertation, we investigate the opposite 

problem, that is, the challenge of dealing with excessive depth of sequencing. We explore 

the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding 

reads to bacterial artificial chromosome (BAC) clones (in the context of the 

combinatorial pooling design), and (ii) the problem of de novo assembly of BAC clones. 

Using real ultra-deep sequencing data, we show that when the depth of sequencing 

increases over a certain threshold, sequencing errors make these two problems harder and 

harder (instead of easier, as one would expect with error-free data), and as a consequence 

the quality of the solution degrades with more and more data. For the first problem, we 

propose an effective solution based on ‘divide and conquer’: we ‘slice’ a large dataset 
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into smaller samples of optimal size, decode each slice independently, and then merge the 

results. Experimental results in Chapter 2 demonstrate a significant improvement in the 

quality of the decoding and the final assembly. For the second problem, we show for the 

first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing 

data. 

We investigate the problem of de novo genome assembly in the presence of ultra-

deep sequencing data (i.e., coverage of 1,000x or higher) in more details in Chapter 3. In 

this chapter, we introduce a new divide and conquer approach to improve the quality of 

assemblies created from ultra-deep sequencing data. Our proposed meta-assembler 

SLICEMBLER partitions the input data into optimal- sized “slices” and uses a standard 

assembly tool to assemble each slice individually. SLICEMBLER uses majority voting 

among the individual assemblies to identify long contigs that can be merged to the 

consensus assembly. To improve its efficiency, SLICEMBLER uses a generalized suffix 

tree to identify these frequent contigs (or fraction thereof). Extensive experimental results 

on real ultra-deep sequencing data (8,000x coverage) and simulated data show that 

SLICEMBLER significantly improves the quality of the assembly compared to the 

performance of the base assembler. In fact, most of the times SLICEMBLER generates 

error-free assemblies. We also show that SLICEMBLER is much more resistant against 

high sequencing error rate than the base assembler.  

As said, several sequencing technologies are now available to approach the problem 

of genome sequencing, each of which generates reads with different features like length, 

error rate, etc. In Chapter 4, we report on a method to assemble heterogeneous 
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sequencing data. We show that the quality of the assemblies created for a malaria strain 

with this protocol is higher than the previously available assembly. 

Among the variety of analyses carried out once a genome is available is the detection 

of single nucleotide polymorphism (SNP) and genotyping. A SNP is a DNA sequence 

variation occurring commonly within a population in which a single nucleotide in the 

genome differs between members of a biological species or paired chromosomes. For 

instance, in plants genotyping supports higher‐density genetic mapping, pedigree 

validation, germplasm characterization and marker‐assisted breeding.  In Chapter 5, we 

report a novel protocol for detecting high quality single nucleotide polymorphism (SNP) 

in complex genomes. Our protocol was applied to the cowpea (Vigna unguiculata), 

genome, which is one of the most important legume crops in the semiarid tropics, where 

it is a good source of protein, fiber, and certain vitamins and minerals. We have 

discovered around 51,000 high quality SNPs that were used for the design of a high-

throughput genotyping platform. In addition, we have ordered and oriented the cowpea 

genome-wide contigs and BAC assemblies, using the discovered SNPs. 
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Chapter 2:  ‘Slicing’ sequencing data to 
improve read decoding accuracy and de 
novo assembly quality  

Our group introduced in [4] a novel protocol for clone-by-clone de novo genome 

sequencing that leverages recent advances in combinatorial pooling design (also known 

as group testing). In the proposed sequencing protocol, subsets of non-redundant 

genome-tiling bacterial artificial chromosomes (BACs) are chosen to form intersecting 

pools, then groups of pools are sequenced on an Illumina sequencing instrument via low-

multiplex (DNA barcoding). Sequenced reads can be assigned/decoded to specific BACs 

by relying on the combinatorial structure of the pooling design: since the identity of each 

BAC is encoded within the pooling pattern, the identity of each read is similarly encoded 

within the pattern of pools in which it occurs. Finally, BACs are assembled individually, 

simplifying the problem of resolving genome-wide repetitive sequences. 

In [4], the group reported preliminary assembly statistics on the performance of the 

protocol in four barley (Hordeum vulgare) BAC sets (Hv3–Hv6). Further analysis on 

additional barley BAC sets and two genome-wide BAC sets for cowpea (Vigna 

unguiculata) revealed that the raw sequence data for some datasets was of significantly 

lower quality (i.e., higher sequencing error rate) than others. We realized that our 

decoding strategy, solely based on the software HASHFILTER [4], was insufficient to deal 

with the amount of noise in poor quality datasets. We attempted to (i) trim/clean the reads 

more aggressively or with different methods, (ii) identify low quality tiles on the flow 
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cell and remove the corresponding reads (e.g. tiles on the ‘bottom middle swath’), (iii) 

identify positions in the reads possibly affected by sequencing ‘bubbles’ and (iv) post-

process the reads using available error-correction software tools (e.g. QUAKE, REPTILE). 

Unfortunately, none of these steps accomplished a dramatic increase in the percentage of 

reads that could be assigned to BACs, indicating that the quality of the dataset did not 

improve very much. These attempts to improve the outcome led however, to a 

serendipitous discovery: we noticed that when HASHFILTER processed only a portion of 

the dataset, the proportion of assigned/decoded reads increased. This observation initially 

seemed counterintuitive: we expected that feeding less data into our algorithm meant that 

we had less information to work with, thus decrease the decoding performance. Instead, 

the explanation is that when data is corrupted, more (noisy) data is not better, but worse. 

The study reported here directly addresses the observation that when dealing with large 

quantities of imperfect sequencing data, ‘less’ can be ‘more’. More specifically, we 

report (i) an extensive analysis of the trade off between the size of the datasets and the 

ability of decoding reads to individual BACs; (ii) a method based on ‘slicing’ datasets 

that significantly improves the number of decoded reads and the quality of the resulting 

BAC assemblies; (iii) an analysis of BAC assembly quality as a function of the depth of 

sequencing, for both real and synthetic data. Our algorithmic solution relies on a divide-

and-conquer approach, as illustrated in Figure 2. 
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Figure 2. An illustration of the strategy to improve read decoding: (i) a large dataset of reads to be 
decoded is “sliced” in n smaller datasets of optimal size, (ii) each slice is decoded independently and (iii) 
read-to-BAC assignments for each slice are merged and conflicts are resolved 

2.1 Methods 

2.1.1. Pooling design 

We applied the combinatorial pooling scheme described in [4] to BAC clones for (i) a 

gene-enriched portion of the genome of H. vulgare L. (barley), and (ii) the whole genome 

of V. unguiculata (cowpea). Briefly, in our sequencing protocol we (i) obtain a BAC 

library for the target organism; (ii) select gene-enriched BACs from the library (optional); 

(iii) fingerprint BACs and build a physical map; (iv) select a minimum tiling path (MTP) 

from the physical map; (v) pool the MTP BACs according to the shifted transversal 

design; (vi) sequence the DNA in each pool, trim/ clean sequenced reads; (vii) assign 

reads to BACs (deconvolution); (viii) assemble reads BAC-by-BAC using a short-read 

assembler.  

We should first note that a rough draft of the ≈5,300Mb barley genome is now 

available [5]: our BAC sequencing work had contributed to that effort, but is distinct. In 

Large
dataset
(reads)

Small
dataset
(slice 1)

Small
dataset
(slice 2)

Small
dataset
(slice n)

read a: BAC1, BAC2
read c: BAC3
read e: BAC4, BAC5, BAC6
     …    …

read b: BAC7
read c: BAC3, BAC8
read d: BAC4, BAC6
     …    …

read a: BAC2
read b: 
read c: BAC3
     …    …

… …

read a: BAC2
read b: BAC7
read c: BAC3
read d: BAC4
read e: BAC5, BAC6
     …    …

Majority
Voting

Slicing

Decoding
(HashFilter)

Decoding
(HashFilter)Slicing

Decoding
(HashFilter)
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our work, we focused on the gene-enriched portion of the genome [6]. We started with a 

6.3×genome equivalent barley BAC library which contains 313,344 BACs with an 

average insert size of 106 kb [7]. About 84,000 gene-enriched BACs were identified and 

fingerprinted using high-information content fingerprinting [6, 8]. From the 

fingerprinting data a physical map was produced [9, 10] and a MTP of about 15,000 

clones was derived [6, 11]. Seven sets of n=2,197 clones were chosen to be pooled 

according to the shifted transversal design [12], which we called Hv3, Hv4, . . . , Hv9 (Hv1 

and Hv2 were pilot experiments). An additional set of n=1,053 clones (called Hv10) was 

pooled using the shifted transversal design with different pooling parameters (see below). 

A pooling scheme based on the shifted transversal design [12], is defined by (P, L, 𝛤), 

where P is a prime number, L defines the number of layers and 𝛤 is a small integer. A 

layer is one of the classes in the partition of BACs and consists of exactly P pools: the 

larger the number of layers, the higher is the decodability. The decodability of the 

pooling design determines what is the largest number of ‘positive’ objects that can be 

decoded: in our case, a d-decodable pooling design will handle the overlap of at most d 

MTP clones. By construction the total number of pools is P×L. If we set 𝛤 to be the 

smallest integer such that 𝑃  !!! ≥N where N is the number of BACs that need to be 

pooled, then the decodability of the design is (𝐿 − 1)   𝛤 . 

For barley sets Hv3, Hv4, . . . , Hv9, we chose parameters P=13, L=7 and 𝛤=2, so that 

we could handle 𝑃  !!!=2,197 samples and make the scheme (𝐿 − 1)   𝛤 =3-decodable. 

We expected each non-repetitive read to belong to at most two BACs if the MTP had 

been computed perfectly, or rarely three BACs when considering imperfections, so we set 
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d=3. Each of the L=7 layers consisted of P=13 pools, for a total of 91 BAC pools. In this 

pooling design, each BAC is contained in L=7 pools and each pool contains 𝑃  ! =169 

BACs. We call the set of L pools to which a BAC is assigned, the BAC signature. Any 

two BAC signatures can share at most 𝛤=2 pools, and any three BAC signatures can 

share at most 3𝛤 = 6 pools. For sets Hv3–Hv8, Vu1 and Vu2, we manually pooled 2,197 

BACs thus exhausting all the ‘available’ signature for the pooling design. However, for 

set Hv9 we only used 1,717 signatures. Set Hv10 was pooled using a different design: we 

chose pooling parameters P=11, L=7 and 𝛤=2, for a total of 𝑃  !!!=1,331 BAC signatures, 

however, we only used 1,053 signatures. BAC signatures that were available but not used 

in the pooling were called ghosts.  

Cowpea’s genome size is estimated at 620 Mb and it is yet to be fully sequenced. For 

cowpea we started from a 17X depth of coverage BAC library containing about 60,000 

BACs from the African breeding genotype IT97K-499-35 with an average insert size of 

150 kb. Cowpea BACs were fingerprinted using high information content fingerprinting 

[8, 13]. A physical map was produced from 43,717 fingerprinted BACs with a depth of 

11X genome coverage [9, 10], and a MTP comprised of 4,394 clones was derived [11]. 

The set of MTP clones was split in two sets of n=2197 BACs (called hereafter Vu1 and 

Vu2), each of which was pooled according to the shifted transversal design [12], with the 

same pooling parameters used for Hv3–Hv9. 

To take advantage of the high throughput of sequencing of the Illumina HiSeq2000, 

13–20 pools in each set were multiplexed on each lane, using custom multiplexing 

adapters. After the sequenced reads in each lane were demultiplexed, we obtained an 
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average of 1,764 million reads in each set with a read length of about 92 bases and an 

insert size of 275 bases. Reads were quality-trimmed and cleaned of spurious sequencing 

adaptors, and then reads affected by Escherichia coli contamination or BAC vector were 

discarded. The percentage of E.coli contamination averaged around 43%: as a 

consequence, the average number of usable reads after quality trimming and cleaning 

decreased to about 824 million, with an average high quality read length of about 89 

bases. Table 1 reports the number of reads, number of bases, average read length and 

E.coli contamination for each of the 10 sets (Hv3, Hv4, Hv5, Hv6, Hv7, Hv8, Hv9, Hv10, 

Vu1 and Vu2). Raw reads for barley and cowpea BACs have been deposited in NCBI 

SRA accession number SRA051780, SRA051535, SRA051768, SRA073696, 

SRA051739 (barley); SRA052227 and SRA052228 (cowpea). 

Table 1. Basic statistics on the ten sequenced read datasets (seven for barley, two for cowpeas) 
analyzed in this manuscript 

 

2.1.2. Read decoding analysis 

The 91 pools (77 for Hv10) of trimmed reads for barley and cowpea were processed 

using our k-mer based algorithm called HASHFILTER, which is fully described in [4]. 

after demultiplexing after demultiplexing/cleaning/trimming

reads (M) bases (Mbp) read len (bp) % E.coli reads (M) bases (Mbp) read len (bp)

Hv3 2,476 227,773 92.00 41.12% 1,240.2 110,056 88.74

Hv4 1,363 125,273 91.91 39.36% 713.4 63,384 88.85

Hv5 1,142 105,089 92.00 51.11% 505.1 45,088 89.27

Hv6 1,133 104,239 92.00 65.96% 282.4 24,970 88.42

Hv7 2,288 210,535 92.00 46.11% 928.9 82,503 88.82

Hv8 1,802 165,803 92.00 44.04% 730.8 64,651 88.46

Hv9 1,596 146,816 92.00 40.66% 736.2 65,697 89.24

Hv10 971 89,370 92.00 20.95% 748.2 67,600 90.36

Vu1 2,475 227,696 92.00 36.66% 1,208.1 108,666 89.95

Vu2 2,402 221,006 92.00 43.12% 1,144.6 103,026 90.01

Supplemental Table S1: Basic statistics on the ten sequenced read datasets (seven for barley, two for

cowpeas) analyzed in this manuscript

after demultiplexing after demux/cleaning/trimming

BAC approx size (bp) set reads (M) bases (Mbp) % E.coli reads (M) bases (Mbp) coverage (x)

052L22 105,788 Hv4 21.534 1,981 10.94% 16.795 1,488 14,065

152O10 117,543 Hv3, Hv9 18.575 1,709 16.93% 13.101 1,154 9,812

192B13 112,841 Hv4 19.581 1,801 12.20% 13.950 1,225 10,853

574B01 92,859 Hv3 32.952 3,032 15.27% 23.414 2,059 22,172

630P05 110,490 Hv3 16.224 1,493 15.45% 11.102 971 8,792

727J05 131,648 Hv8 22.613 2,080 14.80% 15.801 1,388 10,546

772L04 116,367 Hv3, Hv10 21.837 2,009 17.44% 14.407 1,255 10,784

773A02 185,718 Hv3, Hv10 21.756 2,002 15.86% 14.909 1,309 7,049

773F12 96,385 Hv3, Hv10 20.868 1,920 14.61% 14.661 1,286 13,341

773H21 71,701 Hv3, Hv10 23.679 2,178 16.38% 16.770 1,473 20,540

773L22 92,859 Hv3, Hv10 17.031 1,567 16.16% 12.282 1,081 11,639

774D07 117,543 Hv3, Hv10 13.077 1,203 20.51% 8.880 778 6,621

774G18 90,508 Hv3, Hv10 24.571 2,261 15.89% 16.763 1,469 16,229

774L04 103,437 Hv3, Hv10 22.053 2,029 17.13% 15.219 1,334 12,895

774O01 95,209 Hv3, Hv10 41.579 3,822 14.76% 29.877 2,642 27,754

789L09 84,631 Hv3 37.000 3,404 15.20% 25.730 2,264 26,754

Supplemental Table S2: Basic statistics on the read datasets for the 16 barley BACs sequenced individually
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Briefly, HASHFILTER builds a hash table of all distinct k-mers in the 91 (or 77) pools of 

reads, and records for each k-mer the set of pools where it occurs. Then it processes each 

read individually: (i) a read r is decomposed in its constitutive k-mers; (ii) the set of pools 

of each k-mer is fetched from the hash table, and matched against the BAC signatures 

(allowing for a small number of missing/extra pools); (iii) the union of k-mer signatures 

that match a valid BAC signature determines the BAC assignment for read r. Recall that 

since our pooling is 3-decodable, each read can be assigned to 0–3 BACs. 

For some of the datasets, the percentage of reads decoded using this procedure was 

very low. For instance HASHFILTER could decode only 23.8% of the reads in Hv9. We 

suspected a higher percentage of sequencing errors in Hv9 compared with previous 

datasets, so we conducted many experiments to improve the decoding performance on 

this dataset, including (i) tweaking the parameters and the algorithm HASHFILTER, (ii) 

correcting the reads using QUAKE and REPTILE, (iii) increasing the stringency for quality 

values in the trimming step, (iv) considering only reads that appeared exactly at least 

twice, (v) using on the left or the right read (for paired-end reads). None of these actions 

increased the number of decoded reads in Hv9 > 36.6%, which was still unsatisfactory. 

To our initial surprise, running HASHFILTER on a fraction of the reads yielded higher 

decoding percentages, which suggested the idea to ‘slice’ the data.  

We remind the reader that HASHFILTER has the ability to ignore k-mers affected by 

sequencing errors: if the number t of non-zero counts of a k-mer signature belongs to the 

interval [L+1, 2L-  𝛤 -1], HASHFILTER removes from the k-mer signature the t – L pools 

with the lowest counts [for details, see Case 4 and 6 of step G in [4]]. If one assumes that 
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k-mers with sequencing errors are rarer than error-free k-mers, spurious pools will have a 

low k-mer count and will be removed before the reads are decoded. In addition to this 

feature, HASHFILTER also has the option to disregard entirely a k-mer that appears rarely, 

which is likely to contain sequencing errors. 

The next question was to study the dependency between the size of the dataset and 

the performance of the decoding algorithm. To this end, we took samples of the original 

91 (or 77) set of reads in sizes of 0.5, 1, 2, 3, 4 and 5M reads (details on the sampling 

method can be found in the next section) and computed the percentage of reads decoded 

by HASHFILTER on these samples of increasing sizes. Figure	
  3A shows the percentages of 

decoded reads for sets Hv3, Hv4, Hv5, Hv6 and Hv7; Figure	
  3B is for Hv8, Hv9, Hv10, Vu1 

and Vu2. The x-axis is the number of reads per pool (in millions) given in input to 

HASHFILTER (k=26). The rightmost point on these graphs corresponds to the full dataset.  

Several observations on Figure	
  3 are in order. First, observe that when the number of 

reads per pool is too small (0.5–1M) the percentage of reads decoded by HASHFILTER is 

low. Similarly, when the number of reads per pool is large, the percentage of reads 

decoded by HASHFILTER can be low for some datasets. We believe that when the input 

size is small, there is not enough information in the hash table of k-mers to accurately 

decode the reads. However, when the input size is large, sequencing errors in the data 

introduce spurious k-mers in the hash table, which has the effect of deteriorating 

HASHFILTER‘s decoding performance. Observe that almost all these curves reach a 

maximum in the range 1–3M reads. 
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Figure 3. The percentage of reads decoded by HASHFILTER (k=26) on dataset (A) Hv3, Hv4, Hv5, Hv6 
and Hv7 (B) Hv8, Hv9, Hv10, Vu1, and Vu2 as a function of the number of reads given in input (x: number of 
million of reads sampled in each dataset) 

 

For datasets whose ‘optimal number’ of reads is low, we can speculate the amount of 

sequencing error to be higher. Also observe the large variability among these 10 datasets. 

At one extreme, graphs for Hv3, Hv10 and Hv5 are very ‘flat’ indicating low sequencing 

errors; at the other extreme, graphs for Vu1 and Vu2 degrade very quickly after the peak, 

indicating poorer data quality. We also carried out a simulation study using synthetic 

reads generated from the rice genome (Oryza sativa). For this simulation we started from 

an MTP containing 3,827 BACs with an average length of about 150 kb, which spanned 

91% of the rice genome (which is about 390 Mb). We pooled in silico a subset of 2,197 

BACs from the set above according to the shifted transversal design [see Lonardi et al., 
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(2013) for details]. We generated 2M synthetic reads using WGSim 

(github.com/lh3/wgsim) for each of the 91 resulting rice BAC pools. Reads were 104 

bases long with 1% sequencing error rate (no insertions and deletions errors were 

allowed). A total of 208 Mbp gave an expected 56X coverage for each BAC. We ran 

HASHFILTER on the read datasets in slices of 0.25, 0.5, 1, 1.5 and 2M (full dataset). The 

percentage of decoded reads (see Figure	
  4) peaks at 1.5M, and mirrors the observations 

made on real data. Even for synthetic reads, more data does not necessarily imply 

improved decoding performance. 

	
  

Figure 4.  The percentage of synthetic reads decoded by HASHFILTER on the rice genome as a function 
of the number of reads given in input (x: number of million of reads per pool) 

	
  

2.1.3. Improved decoding algorithm 

Our improved decoding algorithm first executes HASHFILTER on progressively larger 

samples of the dataset (e.g. 0.5, 1, 2, 3, 4, 5M and full dataset) for a given value of k. Our 

sampling algorithm selects reads uniformly at random along the input file: taking a prefix 
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(Hv8) for several choices of the k-mer size (x: number of million of reads sampled per pool)
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of the dataset is not a good idea because reads in the file are organized according to their 

spatial organization on the flowcell, possibly introducing biases.  

When the sample size is greater than the pool size, the entire pool is used for 

decoding. Otherwise, reads in pools larger than the sample size are uniformly sampled in 

order to meet the sample size constraint. As a result of this process, the size of each pool 

in a ‘slice’ will be at most the sample size, but some of the pools will be smaller. The 

objective is to find the sample size that maximizes the number of reads decoded by 

HASHFILTER.  

We observed that the optimal value of the sample size is somewhat independent from 

k as long as it is chosen ‘reasonably large’, say k >20 for large eukaryotic genomes. Figure	
  

5 illustrates that running HASHFILTER with k = 20; 23; . . . ; 32 gives rise to parallel curves. 

One can save time by running HASHFILTER with smaller values of k in order to find the 

optimal data size.  

	
  

Figure 5. The percentage of reads decoded by HASHFILTER on one of the barley datasets (Hv8) for 
several choices of the k-mer size (x: number of million of reads sampled per pool) 
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Once the optimal sample size n is determined, the algorithm finds the size m of the 

largest pool to calibrate d datasets (hereafter called slices) each one of which has at most 

n reads per pool. For instance, if the optimal slice size is n = 2M reads, and the largest 

pool has m = 10M reads, the algorithm will create d = m/n = 5 slices: each one will be 

composed of 91 pools, each of which has at most 2M reads. Observe that the number of 

reads in each pool can vary significantly. For instance in Hv3, the largest pool has almost 

23M reads, and the smallest has about 3M reads. Smaller pools will contribute their reads 

to multiple slices. For instance, if there is a pool of size 2M in the same example 

described earlier, these reads will appear in all five slices. In general, if a pool size is n, 

the entire pool will be used in each slice. 

Then, the algorithms run HASHFILTER d times, once on each of the d slices—which 

involves creating d individual hash tables. For this step, we recommend using the largest 

possible value of k (k=32), because the percentage of decoded reads for a given input size 

increases with k (see Figure	
  5). Then, the algorithm merges the d independent HASHFILTER 

‘s outputs. If a read is decoded in only one slice, it will be simply copied in the output. If 

a read is decoded multiple times in different slices and the independent decodings do not 

agree, a conflict resolution step is necessary. In our running example, reads in the small 

2M-reads pool will be decoded five times: it is possible that HASHFILTER will assign a 

read to five different BAC sets. In order to identify reads decoded multiple times, our 

algorithm first concatenates the d text outputs of HASHFILTER, then sorts the reads by 

their unique identifier (ID), so that reads with the same ID are consecutive in the file. 

Recall that HASHFILTER assigns each read to a set composed of 0-3 BACs. A group is the 
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set of all BAC (assignment) sets for a single-end read. When a read is paired-end, we 

have a left group for the left read and a right group for the right read. For instance in 

Figure	
  2, single-end read c is decoded by HASHFILTER at least three times: in slice 1 read c 

is assigned to BAC3, in slice 2 it is assigned to BAC3 and BAC8, and in slice n it is 

assigned to BAC3. The set {{BAC3}; {BAC3,BAC8} ; {BAC3}} is the group for read c. If 

a read has been decoded at least twice by HASHFILTER and the sets in its group are not 

identical, the following algorithm computes the most likely assignment according to a set 

of rules, which are checked in order (i.e. the first one that applies is used, and subsequent 

rules are not considered). 

i. if a read is single-end and its group contains one or more BACs which have 75%-

majority or higher, then the read is assigned to those majority BAC(s); 

ii. if a read is paired-end, and both its left group and its right group are non-empty, 

and the union of the left and the right group contains one or more BACs which have 

50%-majority or higher, then both the left and the right read are assigned to those 

majority BAC(s); 

iii. if a read is paired-end, and either its left or its right group are empty, and the non-

empty group contains one or more BACs which have 75%-majority or higher, then both 

the left and the right read are assigned to those majority BAC(s); 

iv. if a read is paired-end, and its left group is not identical to its right group, then 

both the left and the right read are not assigned. 
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In the example on read c, since BAC3 is has 100%-majority (appears in all three 

assignments) but BAC8 has only 33%-majority (appears in one of the three assignments), 

we assign read c to BAC3 but not to BAC8. 

2.2 Experimental Results 

Once all the decoded reads are assigned to 1–3 BACs using the procedure above, 

VELVET [14] is executed to assemble each BAC individually. As was done in [4], we 

generated multiple assembly for several choices of VELVET’s l-mer (hash) size (25–79, 

step of 6). The assembly reported is the one that maximizes the n50 (n50 indicates the 

length for which the set of all contigs of that length or longer contains at least half of the 

total size of all contigs).  

We employed several metrics to evaluate the improvement in read decoding and 

assembly enabled by the slicing algorithm. For one of the barley sets (Hv10) we executed 

HASHFILTER using several choices of k (k = 20; 23; 26; 29; 32) on the full 748M reads 

dataset (i.e. with no slicing) as well as with k=32 using the slicing algorithm described 

ealrier. The first five rows of Table 2 summarize the decoding results. First, observe that as 

we increase k, the number of decoded reads increases monotonically. However, if one 

fixes k (in this case k=32, which is the maximum allowed by HASHFILTER), slicing Hv10 

in 4 slices of 4M reads increases significantly the number of decoded reads (84.60 

compared with 77.19%) available for assembly. Analysis of the number of assignments to 

ghost BACs also shows significant improvement in the decoding accuracy when using 

slicing: 0.000086% of the reads are assigned to unused BAC signatures compared with 
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0.000305–0.001351% when HASHFILTER is used on the full dataset. We carried out a 

similar analysis on Hv9: when the full dataset was processed with HASHFILTER (k=26), the 

number of reads assigned to ghost BACs was very high, 1.9M reads out of 196M 

(0.9653%). When the optimal slicing is used (k=32), only 19,140 reads out of 516Mare 

assigned to ghost BACs (0.0037%). Also, observe in Table 2 how the improved decoding 

affects the quality of the assembly for Hv10. When comparing no slicing to slicing-based 

decoding, the average n50 jumps from 12,260 to 42,819 bp (both for k=32) and the 

number of reads used by VELVET in the assembly increases from 86.7 to 90.7%. 

Table 2. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full 
dataset, and for the improved slicing algorithm 

 

For Hv10, we also measured the number of decoded reads that map (with 0, 1, 2 and 3 

mismatches) to the assembly of a subset of 26 BACs that are available from [15]. Table 3 

reports the average percentage of decoded reads (either from the full dataset or from the 

optimal slicing) that BOWTIE can map to the 454-based assemblies. Observe how the 

slicing step improves by 6–7% the number of reads mapped to the corresponding BAC 

assembly, suggesting a similar improvement in decoding accuracy. Similar improvements 

in decoding accuracy were observed on the other datasets (data not shown). 

“Slicing” Data Improves Read Decoding and Assembly

no slicing slicing

k=20 k=23 k=26 k=29 k=32 k=32

reads decoded (%) 67.76% 71.07% 73.57% 75.56% 77.19% 84.60%

reads decoded (M) 511 536 555 570 582 617

reads assigned to ghost BACs (%) 0.000498% 0.000305% 0.000480% 0.000484% 0.001351% 0.000086%

reads to be assembled (M) 704 724 739 748 723 695

coverage (x) 502 502 528 502 517 499

reads used by VELVET (%) 73.6% 77.9% 80.8% 81.8% 86.7% 90.7%

n50 (bp) 3,634 5,143 7,069 8,877 12,260 42,819

sum/size (%) 102.8% 102.8% 100.5% 97.9% 89.5% 121.9%

observed genes (27 expected) 20 20 20 20 20 20

coverage of observed genes (%) 94.0% 94.0% 94.0% 94.0% 94.1% 94.0%

Table 1. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full dataset, and for the improved slicing algorithm

assembly statistics (without slicing-based decoding) are not very

satisfactory: the n50 ranges from 2,630 bp (Hv9) to 8,190 bp (Hv3);

the percentage of reads used by VELVET ranges from 66.0% (Hv9)

to 85.9% (Hv3 and Hv4); the percentage of known genes covered at

least 50% of their length by the assemblies ranged from 66% (Hv4)

to 97% (Hv3).

When we decoded the same ten datasets using the optimal slice

size (using this time k = 32) the assemblies improved drastically.

The decoding and assembly statistics are summarized in Table 5:

note that each set has its optimal size and the corresponding number

of slices. First observe how the number of decoded reads increased

significantly for most datasets (e.g., 330M to 785M for Hv7, 289M

to 669M for Hv8, 209M to 516M for Hv9, 369M to 907M for Vu1

and 448M to 695M for Vu2). Only for two datasets the number

of decoded reads decreased slightly (by 12M reads in Hv5, and

by 44M in Hv10). For all the datasets, the average n50 increased

significantly – from an average of about 5.7 kbp to about 30 kbp

(see Supplemental Dataset 2 for detailed assembly statistics on each

dataset). Even for datasets for which slicing decreased the number

reads (Hv5 and Hv10), the n50 increased significantly. The number

of reads used by VELVET increased from an average of 77% to 92%;

the fraction of known genes that were recovered by the assemblies

increased from 81% to 85%. We recognize that the improvement

from Table 4 to Table 5 is not just due to the slicing, but also to the

increased k (from 26 to 32). We have already addressed this point in

Tables 1–3, where we showed that increasing k from 26 to 32 helps

no slicing slicing

k=26 k=32, 3M k=32, 2M

reads decoded (%) 31.68% 78.98% 82.74%

reads decoded (M) 270 539 600

reads to be assembled (M) 289 591 669

coverage (x) 94 197 223

reads used by VELVET (%) 69.0% 92.6% 91.6%

n50 (bp) 4,126 31,226 34,262

sum/size (%) 55.6% 97.0% 102.0%

observed genes (207 expected) 178 190 187

coverage of observed genes (%) 86.0% 91.1% 91.2%

Table 3. Decoding and assembly statistics for Hv8: comparing no slicing

and slicing with two different slice sizes (2M reads is optimal according to

the peak in Figure 2)

the decoding/assembly but the main boost in accuracy and quality

is due to slicing. Recall that the assemblies in Tables 4–5 were

carried out using VELVET with l = 25, 31, . . . , 79 and choosing

the assembly with the largest n50. On the Hv3 dataset, we have also

tested VELVET with fixed l = 49, SPADES (Bankevich et al., 2012)

with l = 31, 33, . . . , 79, and IDBA-UD (Peng et al., 2012) with

l = 31, 33, . . . , 79 (see Supplemental Table S3). VELVET (best

n50) and SPADES’ performance were comparable, while IDBA-

UD achieved lower n50. We also tested VELVET with l = 49,

and SPADES with l = 31, 33, . . . , 79 on all the other datasets

(Supplemental Table S3). Setting l = 49 for VELVET led to less

“bloated” assemblies, somewhat comparable to SPADES’ output.

As a final step, we investigated how the depth of sequencing

affects BAC assembly quality. To this end, we multiplexed sixteen

barley BACs on one lane of the Illumina HiSeq2000, using custom

multiplexing adapters. The size of these BACs ranged ≈70 kbp

to ≈185 kbp (see Supplemental Table S2). After demultiplexing

the sequenced reads, we obtained 34.4M 92-bases paired-end reads

(insert size of 275 bases). We quality-trimmed the reads, then

cleaned them of spurious sequencing adaptors; finally reads affected

by E. coli contamination or BAC vector were discarded. The final

number of cleaned reads was 23.1M, with an average length of ≈88

bases. The depth of sequencing for the sixteen BACS ranged from

≈6,600x to ≈27,700x (see Supplemental Table S2).

Another set of 52 barley BACs was sequenced by the Department

of Energy Joint Genome Institute (JGI) using Sanger long reads. All

BACs were sequenced and finished using PHRED/PHRAP/CONSED

to a targeted depth of 10x. The primary DNA sequences for each of

these 52 BACs was assembled in one contig, although two of them

were considered partial sequence.

The intersection between the set of 16 BACs sequenced using

the Illumina instrument and the set of 52 BACs sequenced using

Sanger is a set of seven BACs (highlighted in bold in Supplemental

Table S2), but one of these seven BACs is not full-length (052L22).

We used the six full-length Sanger-based BAC assemblies as the

“ground truth” to assess the quality of the assemblies from Illumina

reads at increasing depth of sequencing. To this end, we generated

datasets corresponding to 100x, 250x, 500x, 1,000x, 2,000x,

3,500x, 5,000x, 6,000x, 7,000x and 8,000x depth of sequencing (for

each of the six BACs), by sampling uniformly short reads from the

high-depth datasets. For each choice of the depth of sequencing,

we generated twenty different datasets, for a total of 1,200 datasets.

We assembled the reads on each dataset with VELVET v1.2.09 (with
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Table 3. A subset of 26 BACs in Hv10 have a 454-based assembly available from (Stein et al., 2012). 
The table reports the percentage of the reads for those 26 BACs that can be mapped (with BOWTIE with 
0,1,2 and 3 mismatches) to the corresponding assemblies 

 

On Hv8, we investigated the effect of the slice size on the decoding and assembly 

statistics: earlier we claimed that the optimal size corresponds to the peak of the graphs in 

Table 3. For instance, notice that the peak for Hv8 is 2M reads. We decoded and assembled 

reads using slicing sizes of 2M reads as well as (non-optimal) slice size of 3M reads. The 

experimental results are shown in Table 4. Observe that the decoding with 3M does not 

achieve the same decoding accuracy or assembly quality of the slicing with 2 M, but 

again both are significantly better than without slicing. Again, notice in Table 4 how 

improving the read decoding affects the quality of the assembly. The average n50 

increases from 4126 bp (k=26, no slicing) to 34,262 bp (k=32, optimal slicing) and the 

number of reads used by VELVET in the assembly increases from 55.6 to 91.2%, 

respectively. For Hv8, 207 genes were known to belong to a specific BAC clone [4]: the 

assembly using slicing-based coding recovered at least 50% of the sequence of 187–190 

of them, compared with 178 using no slicing.  

Lonardi et al

to five different BAC sets. In order to identify reads decoded multiple times,

our algorithm first concatenates the d text outputs of HASHFILTER, then

sorts the reads by their unique identifier (ID), so that reads with the same ID

are consecutive in the file. Recall that HASHFILTER assigns each read to a

set composed of 0-3 BACs. A group is the set of all BAC (assignment) sets

for a single-end read. When a read is paired-end, we have a left group for the

left read and a right group for the right read. For instance in Figure 1, single-

end read c is decoded by HashFilter at least three times: in slice 1 read c is

assigned to BAC3, in slice 2 it is assigned to BAC3 and BAC8, and in slice n
it is assigned to BAC3. The set {{BAC3}, {BAC3,BAC8}, {BAC3}} is the

group for read c. If a read has been decoded at least twice by HASHFILTER

and the sets in its group are not identical, the following algorithm computes

the most likely assignment according to a set of rules which are checked in

order (i.e., the first one that applies is used, and subsequent rules are not

considered).

1. if a read is single-end and its group contains one or more BACs which

have 75%-majority or higher, then the read is assigned to those majority

BAC(s);

2. if a read is paired-end, and both its left group and its right group are

non-empty, and the union of the left and the right group contains one or

more BACs which have 50%-majority or higher, then both the left and

the right read are assigned to those majority BAC(s);

3. if a read is paired-end, and either its left or its right group are empty,

and the non-empty group contains one or more BACs which have 75%-

majority or higher, then both the left and the right read are assigned to

those majority BAC(s);

4. if a read is paired-end, and its left group is not identical to its right

group, then both the left and the right read are not assigned.

In the example on read c, since BAC3 is has 100%-majority (appears in all

three assignments) but BAC8 has only 33%-majority (appears in one of the

three assignments), we assign read c to BAC3 but not to BAC8.

3 RESULTS

Once all the decoded reads are assigned to 1–3 BACs using the

procedure above, VELVET (Zerbino and Birney, 2008) is executed

to assemble each BAC individually. As was done in (Lonardi et al.,

2013), we generated multiple assembly for several choices of

VELVET’s l-mer (hash) size (25–79, step of 6). The assembly

reported is the one that maximizes the n50 (n50 indicates the length

for which the set of all contigs of that length or longer contains at

least half of the total size of all contigs).

We employed several metrics to evaluate the improvement in read

decoding and assembly enabled by the slicing algorithm. For one

of the barley sets (Hv10) we executed HASHFILTER using several

choices of k (k = 20, 23, 26, 29, 32) on the full 748M reads dataset

(i.e., with no slicing) as well as with k = 32 using the slicing

algorithm described above. The first five rows of Table 1 summarize

the decoding results. First, observe that as we increase k, the

number of decoded reads increases monotonically. However, if one

fixes k (in this case k = 32, which is the maximum allowed by

HASHFILTER), slicing Hv10 in 4 slices of ≈4M reads increases

significantly the number of decoded reads (84.60% compared

to 77.19%) available for assembly. Analysis of the number of

assignments to ghost BACs also shows significant improvement in

the decoding accuracy when using slicing: 0.000086% of the reads

are assigned to unused BAC signatures compared to 0.000305%–

0.001351% when HASHFILTER is used on the full dataset. We

carried out a similar analysis on Hv9: when the full dataset was

processed with HASHFILTER (k = 26), the number of reads

assigned to ghost BACs was very high, ≈ 1.9M reads out of 196M

(0.9653%). When the optimal slicing is used (k = 32), only 19,140

reads out of 516M are assigned to ghost BACs (0.0037%). Also,

observe in Table 1 how the improved decoding affects the quality

of the assembly for Hv10. When comparing no slicing to slicing-

based decoding, the average n50 jumps from 12,260 bp to 42,819 bp

(both for k = 32) and the number of reads used by VELVET in the

assembly increases from 86.7% to 90.7%.

For Hv10, we also measured the number of decoded reads that

map (with 0,1,2 and 3 mismatches) to the assembly of a subset

of 26 BACs that are available from (Stein et al., 2012). Table 2

reports the average percentage of decoded reads (either from the

full dataset or from the optimal slicing) that BOWTIE can map to

the 454-based assemblies. Observe how the slicing step improves

by 6-7% the number of reads mapped to the corresponding BAC

assembly, suggesting a similar improvement in decoding accuracy.

Similar improvements in decoding accuracy was observed on the

other datasets (data not shown).

On Hv8, we investigated the effect of the slice size on the

decoding and assembly statistics: earlier we claimed that the optimal

size corresponds to the peak of the graphs in Figure 2. For instance,

notice that the peak for Hv8 is ≈2M reads. We decoded and

assembled reads using slicing sizes of 2M reads as well as (non-

optimal) slice size of 3M reads. The experimental results are shown

in Table 3. Observe that the decoding with 3M does not achieve the

same decoding accuracy or assembly quality of the slicing with 2M,

but again both are significantly better than without slicing. Again,

notice in Table 3 how improving the read decoding affects the

quality of the assembly. The average n50 increases from 4,126 bp

(k = 26, no slicing) to 34,262 bp (k = 32, optimal slicing) and the

number of reads used by VELVET in the assembly increases from

55.6% to 91.2%, respectively. For Hv8, 207 genes were known to

belong to a specific BAC clone (Lonardi et al., 2013): the assembly

using slicing-based coding recovered at least 50% of the sequence

of 187-190 of them, compared to 178 using no slicing.

Finally, we compared the performance of our slicing method

against the experimental results in (Lonardi et al., 2013), which

were obtained by running HASHFILTER with no data slicing (k =

26). The basic decoding and assembly statistics when no slicing is

used are reported in Table 4. First, observe the large variability of

results among the ten sets. While the average number of decoded

reads for k = 26 is ≈ 460M, there are sets which have less

than half that amount (Hv6 and Hv9) and sets have more than

twice the average (e.g., Hv3). As a consequence, the average fold-

coverage ranges from 72x (Hv6) to 528x (Hv10). In general, the

no slicing slicing

k=32 k=32

0 mismatches 75.2% 82.4%

1 mismatch 78.7% 85.9%

2 mismatches 80.5% 87.4%

3 mismatches 82.3% 88.7%

Table 2. A subset of 26 BACs in Hv10 have a 454-based assembly available

from (Stein et al., 2012). The table reports the percentage of the reads

for those 26 BACs that can be mapped (with BOWTIE with 0,1,2 and 3

mismatches) to the corresponding assemblies
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Table 4. Decoding and assembly statistics for Hv8: comparing no slicing and slicing with two different 
slice sizes (2M reads is optimal according to the peak in Figure 2) 

 

Finally, we compared the performance of our slicing method against the experimental 

results in [4], which were obtained by running HASHFILTER with no data slicing (k=26). 

The basic decoding and assembly statistics when no slicing is used are reported in Table 5. 

First, observe the large variability of results among the 10 sets. Although the average 

number of decoded reads for k=26 is 460M, there are sets which have less than half that 

amount (Hv6 and Hv9) and sets have more than twice the average (e.g. Hv3). As a 

consequence, the average fold-coverage ranges from 72X (Hv6) to 528X (Hv10). In 

general, the assembly statistics (without slicing-based decoding) are not very satisfactory: 

the n50 ranges from 2630 (Hv9) to 8,190 bp (Hv3); the percentage of reads used by 

VELVET ranges from 66.0 (Hv9) to 85.9% (Hv3 and Hv4); the percentage of known genes 

covered at least 50% of their length by the assemblies ranged from 66% (Hv4) to 97% 

(Hv3).   

“Slicing” Data Improves Read Decoding and Assembly

no slicing slicing

k=20 k=23 k=26 k=29 k=32 k=32

reads decoded (%) 67.76% 71.07% 73.57% 75.56% 77.19% 84.60%

reads decoded (M) 511 536 555 570 582 617

reads assigned to ghost BACs (%) 0.000498% 0.000305% 0.000480% 0.000484% 0.001351% 0.000086%

reads to be assembled (M) 704 724 739 748 723 695

coverage (x) 502 502 528 502 517 499

reads used by VELVET (%) 73.6% 77.9% 80.8% 81.8% 86.7% 90.7%

n50 (bp) 3,634 5,143 7,069 8,877 12,260 42,819

sum/size (%) 102.8% 102.8% 100.5% 97.9% 89.5% 121.9%

observed genes (27 expected) 20 20 20 20 20 20

coverage of observed genes (%) 94.0% 94.0% 94.0% 94.0% 94.1% 94.0%

Table 1. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full dataset, and for the improved slicing algorithm

assembly statistics (without slicing-based decoding) are not very

satisfactory: the n50 ranges from 2,630 bp (Hv9) to 8,190 bp (Hv3);

the percentage of reads used by VELVET ranges from 66.0% (Hv9)

to 85.9% (Hv3 and Hv4); the percentage of known genes covered at

least 50% of their length by the assemblies ranged from 66% (Hv4)

to 97% (Hv3).

When we decoded the same ten datasets using the optimal slice

size (using this time k = 32) the assemblies improved drastically.

The decoding and assembly statistics are summarized in Table 5:

note that each set has its optimal size and the corresponding number

of slices. First observe how the number of decoded reads increased

significantly for most datasets (e.g., 330M to 785M for Hv7, 289M

to 669M for Hv8, 209M to 516M for Hv9, 369M to 907M for Vu1

and 448M to 695M for Vu2). Only for two datasets the number

of decoded reads decreased slightly (by 12M reads in Hv5, and

by 44M in Hv10). For all the datasets, the average n50 increased

significantly – from an average of about 5.7 kbp to about 30 kbp

(see Supplemental Dataset 2 for detailed assembly statistics on each

dataset). Even for datasets for which slicing decreased the number

reads (Hv5 and Hv10), the n50 increased significantly. The number

of reads used by VELVET increased from an average of 77% to 92%;

the fraction of known genes that were recovered by the assemblies

increased from 81% to 85%. We recognize that the improvement

from Table 4 to Table 5 is not just due to the slicing, but also to the

increased k (from 26 to 32). We have already addressed this point in

Tables 1–3, where we showed that increasing k from 26 to 32 helps

no slicing slicing

k=26 k=32, 3M k=32, 2M

reads decoded (%) 31.68% 78.98% 82.74%

reads decoded (M) 270 539 600

reads to be assembled (M) 289 591 669

coverage (x) 94 197 223

reads used by VELVET (%) 69.0% 92.6% 91.6%

n50 (bp) 4,126 31,226 34,262

sum/size (%) 55.6% 97.0% 102.0%

observed genes (207 expected) 178 190 187

coverage of observed genes (%) 86.0% 91.1% 91.2%

Table 3. Decoding and assembly statistics for Hv8: comparing no slicing

and slicing with two different slice sizes (2M reads is optimal according to

the peak in Figure 2)

the decoding/assembly but the main boost in accuracy and quality

is due to slicing. Recall that the assemblies in Tables 4–5 were

carried out using VELVET with l = 25, 31, . . . , 79 and choosing

the assembly with the largest n50. On the Hv3 dataset, we have also

tested VELVET with fixed l = 49, SPADES (Bankevich et al., 2012)

with l = 31, 33, . . . , 79, and IDBA-UD (Peng et al., 2012) with

l = 31, 33, . . . , 79 (see Supplemental Table S3). VELVET (best

n50) and SPADES’ performance were comparable, while IDBA-

UD achieved lower n50. We also tested VELVET with l = 49,

and SPADES with l = 31, 33, . . . , 79 on all the other datasets

(Supplemental Table S3). Setting l = 49 for VELVET led to less

“bloated” assemblies, somewhat comparable to SPADES’ output.

As a final step, we investigated how the depth of sequencing

affects BAC assembly quality. To this end, we multiplexed sixteen

barley BACs on one lane of the Illumina HiSeq2000, using custom

multiplexing adapters. The size of these BACs ranged ≈70 kbp

to ≈185 kbp (see Supplemental Table S2). After demultiplexing

the sequenced reads, we obtained 34.4M 92-bases paired-end reads

(insert size of 275 bases). We quality-trimmed the reads, then

cleaned them of spurious sequencing adaptors; finally reads affected

by E. coli contamination or BAC vector were discarded. The final

number of cleaned reads was 23.1M, with an average length of ≈88

bases. The depth of sequencing for the sixteen BACS ranged from

≈6,600x to ≈27,700x (see Supplemental Table S2).

Another set of 52 barley BACs was sequenced by the Department

of Energy Joint Genome Institute (JGI) using Sanger long reads. All

BACs were sequenced and finished using PHRED/PHRAP/CONSED

to a targeted depth of 10x. The primary DNA sequences for each of

these 52 BACs was assembled in one contig, although two of them

were considered partial sequence.

The intersection between the set of 16 BACs sequenced using

the Illumina instrument and the set of 52 BACs sequenced using

Sanger is a set of seven BACs (highlighted in bold in Supplemental

Table S2), but one of these seven BACs is not full-length (052L22).

We used the six full-length Sanger-based BAC assemblies as the

“ground truth” to assess the quality of the assemblies from Illumina

reads at increasing depth of sequencing. To this end, we generated

datasets corresponding to 100x, 250x, 500x, 1,000x, 2,000x,

3,500x, 5,000x, 6,000x, 7,000x and 8,000x depth of sequencing (for

each of the six BACs), by sampling uniformly short reads from the

high-depth datasets. For each choice of the depth of sequencing,

we generated twenty different datasets, for a total of 1,200 datasets.

We assembled the reads on each dataset with VELVET v1.2.09 (with
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Table 5. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no 
slicing) 

 

Table 6. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing 

 

When we decoded the same 10 datasets using the optimal slice size (using this time 

k=32) the assemblies improved drastically. The decoding and assembly statistics are 

summarized in Table 6: note that each set has its optimal size and the corresponding 

number of slices. First observe how the number of decoded reads increased significantly 

for most datasets (e.g. 330–785M for Hv7, 289–669M for Hv8, 209–516M for Hv9, 369–

907M for Vu1 and 448–695M for Vu2). Only for two datasets the number of decoded 

reads decreased slightly (by 12M reads in Hv5, and by 44M in Hv10). For all the datasets, 

the average n50 increased significantly from an average of about 5.7 to 30 kbp. Even for 
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decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 1,099.0 431.0 8,190 85.9% 96.7% 1,433/1,471 (97.42%)

Hv4 393.2 135.5 5,718 85.9% 85.9% 312/473 (65.96%)

Hv5 483.0 158.9 8,048 84.5% 93.2% 194/226 (85.84%)

Hv6 218.0 72.0 6,032 83.2% 79.9% 208/244 (85.25%)

Hv7 330.0 110.0 5,352 75.9% 63.7% 201/228 (88.16%)

Hv8 289.0 94.2 4,126 69.0% 55.6% 178/207 (85.99%)

Hv9 208.0 95.8 2,630 66.0% 38.5% 262/361 (72.58%)

Hv10 739.0 528.0 7,069 80.8% 100.5% 20/27 (74.07%)

Vu1 369.0 88.5 4,150 67.6% 49.5% 461/612 (75.33%)

Vu2 448.0 126.0 5,670 75.1% 56.1% 406/503 (80.72%)

Average 457.6 184.0 5,699 77.4% 72.0% (81.13%)

Table 4. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no slicing)

slicing decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

(no. slices×size) reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 (11×2M) 1,156.0 460.0 28,477 90.4% 123.0% 1,437/1,471 (97.69%)

Hv4 (8×2M) 595.6 205.9 28,341 93.9% 114.5% 319/473 (67.44%)

Hv5 (4×4M) 471.0 155.5 31,038 93.6% 101.0% 196/226 (86.73%)

Hv6 (6×1.5M) 243.0 81.1 25,194 92.9% 89.4% 206/244 (84.43%)

Hv7 (15×3M) 785.0 264.0 39,742 91.1% 104.0% 204/228 (89.47%)

Hv8 (12×2M) 669.0 223.0 34,262 91.6% 102.0% 187/207 (90.34%)

Hv9 (14×1.25M) 516.0 246.0 32,634 94.3% 103.2% 309/361 (85.60%)

Hv10 (4×5M) 695.0 499.0 42,819 90.7% 121.9% 20/27 (74.07%)

Vu1 (12×1.5M) 907.0 232.0 16,388 89.7% 89.7% 510/612 (83.33%)

Vu2 (14×1.5M) 970.0 283.0 20,748 91.5% 93.6% 446/503 (88.67%)

Average 700.8 265.0 29,964 92.0% 104.2% (84.78%)

Table 5. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing

hash value k = 79 to minimize the probability of false overlaps) and

collected statistics for the resulting assemblies. Figure 3 shows the

value of n50 (A), the size of the largest contig (B), the percentage

of the target BAC not available in the assembly (C), and number

of assembly errors (D) for increasing depth of sequencing. Each

point in the graph is the average over the twenty datasets, and

error bars indicate the standard deviation. In order to compute

the number of assembly errors we used the tool developed for the

GAGE competition (Salzberg et al., 2011). According to GAGE,

the number of assembly errors is defined as the number of locations

with insertion/deletions of at least six nucleotides, plus the number

of translocations and inversions.

A few observations on Figure 3 are in order. First, note that both

the n50 and the size of the longest contig reach a maximum in the

500x-2000x range, depending on the BAC. Also observe that in

order to minimize the percentage of BAC missed by the assembly

one needs to keep the depth of sequencing below 2,500x (too much

depth decreases the coverage of the target). Finally, it is very clear

from (D) that as the depth of sequencing increases so do the number

of assembly errors (with the exception of one BAC).

We have also investigated whether similar observations could

be drawn for other assemblers. In Figure 4, we report the same

assembly statistics, namely (A) the value of n50, (B) the size of the

largest contig, (C) the percentage of the target BAC not available

in the assembly, and (D) number of assembly errors for increasing

depth of sequencing for one of the BACs. This time we used three

assemblers, namely VELVET, SPADES v3.1.1 (Bankevich et al.,

2012) and IDBA-UD (Peng et al., 2012) (statistics for all BACs

are available in Supplemental Figures S3–S6). While there are

performance differences among the three assemblers, the common

trend is that as the coverage increases, the n50 and the size of the

largest contig decreases, while the percentage of the BAC missing

and the number of assembly errors increases. Among the three

assemblers, SPADES appears to be less affected by high coverage.

SPADES was run with hash values k = 25, 45, 65 and option

--careful (other parameters were default). IDBA-UD was run

with hash values k = 25, 45, 65 (other parameters were default).

The reported assembly is the one chosen by IDBA-UD.

Independently from us, the authors of (Desai et al., 2013) made

similar observations on assembly degratadation. In their study, the

authors assembled E. coli (4.6 MB), S. kudriavzevii (11.18 MB)

and C. elegans (100 MB) using SOAPDENOVO, VELVET, ABYSS,

MERACULOUS and IDBA-UD at increasing sequencing depths up

to 200x. Their analysis showed that the optimum sequencing depth

for assembling these genomes is about 100x, depending on the

specific genome and assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES

and VELVET on simulated reads. We generated 100bp×2 paired-

end reads from the Sanger assembly of BAC 574B01 using the read

simulator WGSIM (github.com/lh3/wgsim) at 100x, 250x,
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decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 1,099.0 431.0 8,190 85.9% 96.7% 1,433/1,471 (97.42%)

Hv4 393.2 135.5 5,718 85.9% 85.9% 312/473 (65.96%)

Hv5 483.0 158.9 8,048 84.5% 93.2% 194/226 (85.84%)

Hv6 218.0 72.0 6,032 83.2% 79.9% 208/244 (85.25%)

Hv7 330.0 110.0 5,352 75.9% 63.7% 201/228 (88.16%)

Hv8 289.0 94.2 4,126 69.0% 55.6% 178/207 (85.99%)

Hv9 208.0 95.8 2,630 66.0% 38.5% 262/361 (72.58%)

Hv10 739.0 528.0 7,069 80.8% 100.5% 20/27 (74.07%)

Vu1 369.0 88.5 4,150 67.6% 49.5% 461/612 (75.33%)

Vu2 448.0 126.0 5,670 75.1% 56.1% 406/503 (80.72%)

Average 457.6 184.0 5,699 77.4% 72.0% (81.13%)

Table 4. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no slicing)

slicing decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

(no. slices×size) reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 (11×2M) 1,156.0 460.0 28,477 90.4% 123.0% 1,437/1,471 (97.69%)

Hv4 (8×2M) 595.6 205.9 28,341 93.9% 114.5% 319/473 (67.44%)

Hv5 (4×4M) 471.0 155.5 31,038 93.6% 101.0% 196/226 (86.73%)

Hv6 (6×1.5M) 243.0 81.1 25,194 92.9% 89.4% 206/244 (84.43%)

Hv7 (15×3M) 785.0 264.0 39,742 91.1% 104.0% 204/228 (89.47%)

Hv8 (12×2M) 669.0 223.0 34,262 91.6% 102.0% 187/207 (90.34%)

Hv9 (14×1.25M) 516.0 246.0 32,634 94.3% 103.2% 309/361 (85.60%)

Hv10 (4×5M) 695.0 499.0 42,819 90.7% 121.9% 20/27 (74.07%)

Vu1 (12×1.5M) 907.0 232.0 16,388 89.7% 89.7% 510/612 (83.33%)

Vu2 (14×1.5M) 970.0 283.0 20,748 91.5% 93.6% 446/503 (88.67%)

Average 700.8 265.0 29,964 92.0% 104.2% (84.78%)

Table 5. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing

hash value k = 79 to minimize the probability of false overlaps) and

collected statistics for the resulting assemblies. Figure 3 shows the

value of n50 (A), the size of the largest contig (B), the percentage

of the target BAC not available in the assembly (C), and number

of assembly errors (D) for increasing depth of sequencing. Each

point in the graph is the average over the twenty datasets, and

error bars indicate the standard deviation. In order to compute

the number of assembly errors we used the tool developed for the

GAGE competition (Salzberg et al., 2011). According to GAGE,

the number of assembly errors is defined as the number of locations

with insertion/deletions of at least six nucleotides, plus the number

of translocations and inversions.

A few observations on Figure 3 are in order. First, note that both

the n50 and the size of the longest contig reach a maximum in the

500x-2000x range, depending on the BAC. Also observe that in

order to minimize the percentage of BAC missed by the assembly

one needs to keep the depth of sequencing below 2,500x (too much

depth decreases the coverage of the target). Finally, it is very clear

from (D) that as the depth of sequencing increases so do the number

of assembly errors (with the exception of one BAC).

We have also investigated whether similar observations could

be drawn for other assemblers. In Figure 4, we report the same

assembly statistics, namely (A) the value of n50, (B) the size of the

largest contig, (C) the percentage of the target BAC not available

in the assembly, and (D) number of assembly errors for increasing

depth of sequencing for one of the BACs. This time we used three

assemblers, namely VELVET, SPADES v3.1.1 (Bankevich et al.,

2012) and IDBA-UD (Peng et al., 2012) (statistics for all BACs

are available in Supplemental Figures S3–S6). While there are

performance differences among the three assemblers, the common

trend is that as the coverage increases, the n50 and the size of the

largest contig decreases, while the percentage of the BAC missing

and the number of assembly errors increases. Among the three

assemblers, SPADES appears to be less affected by high coverage.

SPADES was run with hash values k = 25, 45, 65 and option

--careful (other parameters were default). IDBA-UD was run

with hash values k = 25, 45, 65 (other parameters were default).

The reported assembly is the one chosen by IDBA-UD.

Independently from us, the authors of (Desai et al., 2013) made

similar observations on assembly degratadation. In their study, the

authors assembled E. coli (4.6 MB), S. kudriavzevii (11.18 MB)

and C. elegans (100 MB) using SOAPDENOVO, VELVET, ABYSS,

MERACULOUS and IDBA-UD at increasing sequencing depths up

to 200x. Their analysis showed that the optimum sequencing depth

for assembling these genomes is about 100x, depending on the

specific genome and assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES

and VELVET on simulated reads. We generated 100bp×2 paired-

end reads from the Sanger assembly of BAC 574B01 using the read

simulator WGSIM (github.com/lh3/wgsim) at 100x, 250x,

6
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datasets for which slicing decreased the number reads (Hv5 and Hv10), the n50 increased 

significantly. The number of reads used by VELVET increased from an average of 77–92%; 

the fraction of known genes that were recovered by the assemblies increased from 81 to 

85%. We recognize that the improvement from Table 5 to 6 is not just due to the slicing, 

but also to the increased k (from 26 to 32). We have already addressed this point in 

Tables 1–3, where we showed that increasing k from 26 to 32 helps the 

decoding/assembly but the main boost in accuracy and quality is due to slicing. Recall 

that the assemblies in Table 5 to 6 were carried out using VELVET with l = 25; 31; . . . ; 79 

and choosing the assembly with the largest n50. On the Hv3 dataset, we have also tested 

VELVET with fixed l=49, SPADES [16]with l = 31; 33; . . . ; 79, and IDBA-UD [17] with l 

= 31; 33; . . . ; 79 (see Table 7). VELVET (best n50) and SPADES’ performance were 

comparable, while IDBA-UD achieved lower n50. We also tested VELVET with l=49, and 

SPADES with l = 31; 33; . . . ; 79 on all the other datasets (Table 7). Setting l=49 for 

VELVET led to less ‘bloated’ assemblies, somewhat comparable to SPADES’ output.  

Table 7. Assembly statistics on all barley and cowpea datasets (sliced optimally as in Table 5 in the 
main manuscript, and decoded using k = 32 in HASHFILTER) using VELVET, SPADES and IDBA_UD for 
several choices of the hash size 

 

average number of scaffolds of a given size average number contigs of a given size

≥50 ≥100 ≥200 ≥400 ≥1K ≥10K ≥50 ≥100 ≥200 ≥400 ≥1K ≥10K n50 max sum sum/size expected/observed

Hv3 VELVET (l = 49) 29.94 29.94 18.76 14.38 10.22 3.23 36.16 35.94 23.09 17.76 12.98 3.08 22,120 33,911 103,795 96.90% 1,471/1,435

SPADES (l = 49) 43.50 41.32 37.78 22.81 13.64 2.67 43.74 41.55 38.01 23.04 13.87 2.65 14,350 27,255 102,260 95.60% 1,471/1,435

SPADES (l = 31, 33, . . . , 79) 27.15 26.78 25.71 17.04 10.79 2.96 27.32 26.95 25.89 17.21 10.96 2.97 24,121 35,758 104,721 97.90% 1,471/1,434

IDBA (l = 31, 33, . . . , 79) 54.12 44.39 32.93 24.46 14.35 2.74 54.15 44.41 32.95 24.47 14.36 2.75 13,063 26,168 105,889 99.20% 1,471/1,435

Hv4 VELVET (l = 49) 31.26 31.26 23.63 19.76 13.72 3.67 40.20 40.04 30.78 25.21 17.43 3.40 20,751 34,380 123,644 104.90% 473/319

SPADES (l = 31, 33, . . . , 79) 27.72 27.43 26.48 20.91 13.61 3.48 27.89 27.60 26.65 21.09 13.78 3.48 23,914 37,041 124,614 105.70% 473/320

Hv5 VELVET (l = 49) 26.40 26.40 19.13 16.11 11.34 3.44 34.61 34.46 25.68 21.38 15.24 3.28 24,890 37,365 114,926 92.30% 226/196

SPADES (l = 31, 33, . . . , 79) 23.92 23.70 22.88 17.91 11.68 3.25 24.09 23.86 23.04 18.07 11.84 3.26 26,246 38,463 115,537 92.90% 226/196

Hv6 VELVET (l = 49) 26.33 26.33 19.27 16.37 11.95 3.13 37.79 37.67 28.06 23.01 16.42 2.59 20,038 31,443 104,192 84.91% 244/206

SPADES (l = 31, 33, . . . , 79) 22.32 22.02 21.31 17.64 12.36 2.98 22.47 22.17 21.46 17.79 12.50 2.98 20,287 31,613 104,100 84.91% 244/205

Hv7 VELVET (l = 49) 22.46 22.46 15.31 12.75 9.33 3.16 28.34 28.21 19.85 16.22 11.98 3.17 27,415 38,302 104,602 85.72% 228/204

SPADES (l = 31, 33, . . . , 79) 19.96 19.65 18.70 14.61 9.58 2.85 20.12 19.81 18.86 14.77 9.74 2.86 31,109 41,680 105,170 86.29% 228/203

Hv8 VELVET (l = 49) 27.76 27.76 20.86 17.34 11.62 3.04 33.71 33.59 25.35 20.68 13.92 2.92 22,222 34,148 104,857 85.48% 207/188

SPADES (l = 31, 33, . . . , 79) 24.79 24.59 23.81 18.37 11.56 2.91 24.95 24.74 23.97 18.53 11.72 2.92 24,591 36,298 105,466 86.02% 207/188

Hv9 VELVET (l = 49) 26.94 26.94 20.77 17.18 11.31 3.08 32.69 32.57 25.24 20.37 13.51 3.02 22,419 34,677 105,679 92.44% 361/310

SPADES (l = 31, 33, . . . , 79) 24.59 24.29 23.38 18.35 11.33 2.94 24.76 24.46 23.55 18.53 11.50 2.95 25,293 37,225 106,874 93.52% 361/310

Hv10 VELVET (l = 49) 43.55 43.55 21.91 12.63 8.63 3.21 51.54 51.17 26.00 16.18 11.98 3.33 31,052 42,916 113,098 93.16% 27/20

SPADES (l = 31, 33, . . . , 79) 34.95 34.52 33.22 15.44 9.18 2.81 35.14 34.71 33.41 15.63 9.37 2.83 36,244 47,544 113,904 93.92% 27/20

Vu1 VELVET (l = 49) 45.42 45.42 35.62 27.83 16.73 3.13 50.08 49.93 38.94 29.66 17.64 3.01 12,470 24,417 118,080 69.54% 612/519

SPADES (l = 31, 33, . . . , 79) 44.33 42.73 39.14 27.15 15.07 3.31 44.43 42.83 39.24 27.25 15.17 3.31 16,972 29,771 123,597 73.60% 612/536

Vu2 VELVET (l = 49) 29.97 29.97 22.78 18.75 12.71 2.90 33.75 33.64 25.31 20.21 13.56 2.80 14,894 25,388 99,006 68.15% 503/449

SPADES (l = 31, 33, . . . , 79) 29.99 28.68 25.83 19.07 11.39 2.94 30.07 28.76 25.91 19.15 11.47 2.94 19,686 30,269 102,694 71.19% 503/450

Supplemental Table S3: Assembly statistics on all barley and cowpea datasets (sliced optimally as in Table 5 in the main manuscript, and

decoded using k = 32 in HASHFILTER) using VELVET, SPADES and IDBA for several choices of the hash size
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As a final step, we investigated how the depth of sequencing affects BAC assembly 

quality. To this end, we multiplexed 16 barley BACs on one lane of the Illumina 

HiSeq2000, using custom multiplexing adapters. The size of these BACs ranged 70–185 

kbp. After demultiplexing the sequenced reads, we obtained 34.4M 92-bases paired-end 

reads (insert size of 275 bases). We quality-trimmed the reads, then cleaned them of 

spurious sequencing adaptors; finally reads affected by E.coli contamination or BAC 

vector were discarded. The final number of cleaned reads was 23.1 M, with an average 

length of 88 bases. The depth of sequencing for the 16 BACS ranged from 6,600X to 

27,700X (see Table 7). 

Table 8. Basic statistics on the read datasets for the 16 barley BACs sequenced individually 

 

Another set of 52 barley BACs was sequenced by the Department of Energy Joint 

Genome Institute using Sanger long reads. All BACs were sequenced and finished using 

PHRED/PHRAP/CONSED to a targeted depth of 10X. The primary DNA sequences for 

after demultiplexing after demultiplexing/cleaning/trimming

reads (M) bases (Mbp) read len (bp) % E.coli reads (M) bases (Mbp) read len (bp)

Hv3 2,476 227,773 92.00 41.12% 1,240.2 110,056 88.74

Hv4 1,363 125,273 91.91 39.36% 713.4 63,384 88.85

Hv5 1,142 105,089 92.00 51.11% 505.1 45,088 89.27

Hv6 1,133 104,239 92.00 65.96% 282.4 24,970 88.42

Hv7 2,288 210,535 92.00 46.11% 928.9 82,503 88.82

Hv8 1,802 165,803 92.00 44.04% 730.8 64,651 88.46

Hv9 1,596 146,816 92.00 40.66% 736.2 65,697 89.24

Hv10 971 89,370 92.00 20.95% 748.2 67,600 90.36

Vu1 2,475 227,696 92.00 36.66% 1,208.1 108,666 89.95

Vu2 2,402 221,006 92.00 43.12% 1,144.6 103,026 90.01

Supplemental Table S1: Basic statistics on the ten sequenced read datasets (seven for barley, two for

cowpeas) analyzed in this manuscript

after demultiplexing after demux/cleaning/trimming

BAC approx size (bp) set reads (M) bases (Mbp) % E.coli reads (M) bases (Mbp) coverage (x)

052L22 105,788 Hv4 21.534 1,981 10.94% 16.795 1,488 14,065

152O10 117,543 Hv3, Hv9 18.575 1,709 16.93% 13.101 1,154 9,812

192B13 112,841 Hv4 19.581 1,801 12.20% 13.950 1,225 10,853

574B01 92,859 Hv3 32.952 3,032 15.27% 23.414 2,059 22,172

630P05 110,490 Hv3 16.224 1,493 15.45% 11.102 971 8,792

727J05 131,648 Hv8 22.613 2,080 14.80% 15.801 1,388 10,546

772L04 116,367 Hv3, Hv10 21.837 2,009 17.44% 14.407 1,255 10,784

773A02 185,718 Hv3, Hv10 21.756 2,002 15.86% 14.909 1,309 7,049

773F12 96,385 Hv3, Hv10 20.868 1,920 14.61% 14.661 1,286 13,341

773H21 71,701 Hv3, Hv10 23.679 2,178 16.38% 16.770 1,473 20,540

773L22 92,859 Hv3, Hv10 17.031 1,567 16.16% 12.282 1,081 11,639

774D07 117,543 Hv3, Hv10 13.077 1,203 20.51% 8.880 778 6,621

774G18 90,508 Hv3, Hv10 24.571 2,261 15.89% 16.763 1,469 16,229

774L04 103,437 Hv3, Hv10 22.053 2,029 17.13% 15.219 1,334 12,895

774O01 95,209 Hv3, Hv10 41.579 3,822 14.76% 29.877 2,642 27,754

789L09 84,631 Hv3 37.000 3,404 15.20% 25.730 2,264 26,754

Supplemental Table S2: Basic statistics on the read datasets for the 16 barley BACs sequenced individually
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each of these 52 BACs were assembled in one contig, although two of them were 

considered partial sequence. 

The intersection between the set of 16 BACs sequenced using the Illumina instrument 

and the set of 52 BACs sequenced using Sanger is a set of seven BACs (highlighted in 

bold in Table 8), but one of these seven BACs is not full-length (052L22). We used the six 

full-length Sanger-based BAC assemblies as the ‘ground truth’ to assess the quality of the 

assemblies from Illumina read at increasing depth of sequencing. To this end, we 

generated datasets corresponding to 100, 250, 500, 1000, 2000, 3500, 5000, 6000, 7000 

and 8000X depth of sequencing (for each of the six BACs), by sampling uniformly short 

reads from the high-depth datasets. For each choice of the depth of sequencing, we 

generated 20 different datasets, for a total of 1,200 datasets. We assembled the reads on 

each dataset with VELVET v1.2.09 (with hash value k=79 to minimize the probability of 

false overlaps) and collected statistics for the resulting assemblies. Figure 6 shows the value 

of n50 (A), the size of the largest contig (B), the percentage of the target BAC not 

available in the assembly (C) and number of assembly errors (D) for increasing depth of 

sequencing. Each point in the graph is the average over the 20 datasets, and error bars 

indicate the SD. In order to compute the number of assembly errors we used the tool 

developed for the GAGE competition [18]. According to GAGE, the number of assembly 

errors is defined as the number of locations with insertion/deletions of at least six 

nucleotides, plus the number of translocations and inversions. 
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Figure 6. VELVET assembly statistics as a function of the depth of sequencing coverage: (A) n50, (B) longest 
contig, (C) percentage of the target BAC not covered by the assembly, (D) number of assembly errors; each point is an 
average over 20 samples of the reads, errors bars indicate standard deviation among the samples 

 

A few observations on Figure 3 are in order. First, note that both the n50 and the size 

of the longest contig reach a maximum in the 500X – 2,000X range, depending on the 

BAC. Also observe that in order to minimize the percentage of BAC missed by the 

assembly one needs to keep the depth of sequencing below 2,500X (too much depth 

decreases the coverage of the target). Finally, it is very clear from (D) that as the depth of 

sequencing increases so do the number of assembly errors (with the exception of one 

BAC).  

We have also investigated whether similar observations could be drawn for other 

assemblers. In Figure 11, we report the same assembly statistics, namely (A) the value of 
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n50, (B) the size of the largest contig, (C) the percentage of the target BAC not available 

in the assembly and (D) number of assembly errors for increasing depth of sequencing for 

one of the BACs. This time we used three assemblers, namely VELVET, SPADES v3.1.1 

[16] and IDBA-UD [17] (statistics for all BACs are available in Figure 7 to Figure 11). 

Although there are performance differences among the three assemblers, the common 

trend is that as the coverage increases, the n50 and the size of the largest contig decreases, 

while the percentage of the BAC missing and the number of assembly errors increases. 

Among the three assemblers, SPADES appears to be less affected by high coverage. 

SPADES was run with hash values k=25, 45, 65 and option careful (other parameters were 

default). IDBA-UD was run with hash values k=25, 45, 65 (other parameters were default). 

The reported assembly is the one chosen by IDBA-UD. 
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Figure 7.  n50 statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with VELVET, 
SPADES and IDBA-UD for various levels of depth of sequencing (X-axis) 
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Supplemental Figure S3: n50 statistics (Y -axis) for the six ultra-deep coverage BACs, assembled with

VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)
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Figure 8. Largest contig statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with 
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis) 
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Supplemental Figure S4: Largest contig statistics (Y -axis) for the six ultra-deep coverage BACs, assem-

bled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)
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Figure 9. Mis-assembly error statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with 
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis) 
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Supplemental Figure S5: Mis-assembly error statistics (Y -axis) for the six ultra-deep coverage BACs,

assembled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)
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Figure 10. Genome percentage missing (Y-axis) for the six ultra-deep coverage BACs, assembled with 
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis) 
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Supplemental Figure S6: Genome percentage missing (Y -axis) for the six ultra-deep coverage BACs,

assembled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)
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Figure 11. Assembly statistics as a function of the depth of sequencing coverage for BAC 789L09 for 
three assemblers: VELVET, SPADES and IDBA_UD; (A) n50, (B) longest contig, (C) percentage of the 
target BAC not covered by the assembly, (D) number of assembly errors; each point is an average over 10 
subsamples of the reads, errors bars indicate standard deviation among the samples 
 

Independently from us, the authors of (Desai et al., 2013) made similar observations 

on assembly degratadation. In their study, the authors assembled E.coli (4.6 MB), 

Saccharomyces kudriavzevii (11.18 MB) and Caenorhabditis. elegans (100 MB) using 

SOAPDENOVO, VELVET, ABYSS, MERACULOUS and IDBA-UD at increasing sequencing 

depths up to 200X. Their analysis showed that the optimum-sequencing depth for 

assembling these genomes is about 100X, depending on the specific genome and 

assembler.  

Finally, we analyzed the performance of IDBA-UD, SPADES and VELVET on 

simulated reads. We generated 100 bp×2 paired-end reads from the Sanger assembly of 
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BAC 574B01 using the read simulator WGSIM (github.com/lh3/wgsim) at 100, 250, 500, 

1000, 2000, 3500, 5000, 6000, 7000 and 8000X depth of sequencing. Insert length was 

250 bp, with a standard deviation of 10 bp. For each depth of sequencing, we generated 

simulated reads at 0, 0.5, 1 and 2% sequencing error rate (substitutions). Insertions and 

deletions were not allowed.  

IDBA-UD was executed with hash values k=25, 45, 65 (other parameters were 

default). VELVET was run with k=49. We repeated the simulations 20 times for IDBA-UD 

and 10 times for VELVET and SPADES. In Figure 12 to Figure 14, we report the usual 

assembly statistics, namely n50, largest contig, percentage missing, and number of 

assembly errors for VELVET, IDBA-UD and SPADES on these datasets. Observe that with 

‘perfect’ reads (0% error rate), ultra-deep coverage does not affect the performance of 

IDBA-UD and VELVET. With higher and higher sequencing errors, however, similar 

behaviors to the assembly of real data can be observed for IDBA-UD and VELVET: n50 

and longest contig rapidly decrease, and missing portions of the BAC and number of mis-

assemblies increase. Surprisingly, SPADES seems to be immune to higher sequencing 

error rates. 
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Figure 12. VELVET assembly statistics (Y-axis) as a function of the depth of sequencing coverage (X-axis) for 
synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate: (A) n50, (B) longest 
contig, (C) percentage of the target BAC not covered by the assembly, (D) number of assembly errors; each point is an 
average over twenty samples of the reads, errors bars indicate standard deviation among the samples 
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Supplemental Figure S7: VELVET assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate

standard deviation among the samples
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Figure 13. IDBA-UD assembly statistics (Y-axis) as a function of the depth of sequencing coverage 
(X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate: 
(A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D) number of 
assembly errors; each point is an average over twenty samples of the reads, errors bars indicate standard 
deviation among the samples 

 

B

C D

A
0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

0 1000 2000 3000 4000 5000 6000 7000 8000 

0% error rate 

.5% error rate 

1% error rate 

2% error rate 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

0 1000 2000 3000 4000 5000 6000 7000 8000 

0% error rate 

.5% error rate 

1% error rate 

2% error rate 

0 

20 

40 

60 

80 

100 

120 

0 1000 2000 3000 4000 5000 6000 7000 8000 

0%  error rate 

.5% error rate 

1% error rate 

2% error rate 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0 1000 2000 3000 4000 5000 6000 7000 8000 

0% error rate 

.5% error rate 

1% error rate 

2% error rate 

Supplemental Figure S8: IDBA-UD assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate

standard deviation among the samples
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Figure 14. SPADES assembly statistics (Y-axis) as a function of the depth of sequencing coverage (X-
axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate: (A) 
n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D) number of 
assembly errors; each point is an average over twenty samples of the reads, errors bars indicate standard 
deviation among the samples 

	
  

2.3 Discussion 

Because the introduction of DNA sequencing in the 70s, scientists had to come up 

with clever solutions to deal with the problem of de novo genome assembly with limited 

depth of sequencing. As the cost of sequencing keeps decreasing, one can expect that 

computational biologists will have to deal with the opposite problem: excessive amount 

of sequencing data. The Lander-Waterman-Roach theory [19, 20] has been the theoretical 

foundation to estimate gap and contig lengths as a function of the depth of sequencing. 
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Supplemental Figure S9: SPADES assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate
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We do not have a theory that would explain why the quality of the assembly starts 

degrading when the depth is too high. Possible factors include the presence (in real data) 

of chimeric reads, sequencing errors, and read duplications, or their combination thereof. 

In this study, we report on the de novo assembly of BAC clones, which are relatively 

short DNA fragments (100–150 kbp). With current sequencing technology it is very easy 

to reach depth of sequencing in the range of 1000–10,000X and study how the assembly 

quality changes as the amount of sequencing data increases. Our experiments show that 

when the depth of sequencing exceeds a threshold the overall quality of the assembly 

starts degrading (Figure	
   6). This appears to be a common problem for several de novo 

assemblers (Figure	
  11). The same behavior is observed for the problem of We have also 

investigated decoding reads to their source BAC (Figure	
  3), which is the main focus of 

this article. The important question is how to deal with the problem of excessive 

sequencing depth. For the decoding problem we have presented an effective ‘divide and 

conquer’ solution: we ‘slice’ the data in subsamples, decode each slice independently, 

then merge the results. In order to handle conflicts in the BAC assignments (i.e. reads that 

appear in multiple slices that are decoded to different sets of BACs), we devised a simple 

set of voting rules. The question that is still open is what to do for the assembly problem: 

one could assemble slices of the data independently, but it is not clear how to merge the 

resulting assemblies. In general, we believe that the problem of de novo sequence 

assembly must be revisited from the ground up under the assumption of ultra-deep 

coverage. We discuss the assembly problem for ultra-deep sequencing data in detail in 

chapter 3. 
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Chapter 3:  De Novo Meta-Assembly of 
Ultra-deep Sequencing Data 

As mentioned in Chapter 1, since the early days of DNA sequencing, the problem of 

de novo genome assembly has been characterized by insufficient and/or uneven depth of 

sequencing coverage (see, e.g., [21]). Insufficient sequencing coverage, along with other 

shortcomings of sequencing instruments (e.g., short read length and sequencing errors) 

exacerbated the algorithmic challenges in assembling large, complex genome – in 

particular those with high repetitive content. Some of the third generation of sequencing 

technology currently on the market, e.g., Pacific Biosciences [22] and Oxford Nanopore 

[23], offers very long reads at a higher cost per base, but sequencing error rate is much 

higher. As a consequence, long reads are more commonly used for scaffolding contigs 

created from second generation data, rather than for de novo assembly [24].  

Thanks to continuous improvements in sequencing technologies, life scientists can 

now easily sequence DNA at depth of sequencing coverage in excess of 1,000x, 

especially for smaller genomes like viruses, bacteria or BAC/YAC clones. “Ultra-deep” 

sequencing (i.e., 1,000x or higher) has already been used in the literature for detecting 

rare DNA variants including mutations causing cancer [25, 26], to study viruses [27, 28], 

as well as other applications [21]. As it becomes more and more common, ultra-deep 

sequencing data is expected to create new algorithmic challenges in the analysis pipeline. 

In this chapter, we focus on one of these challenges, namely the problem of de novo 

assembly. We showed in chapter 2 that modern de novo assemblers SPADES [16], 
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IDBA_UD [17], and VELVET [14] are unable to take advantage of ultra-deep coverage 

[29]. Even more surprising was the finding that the assembly quality produced by these 

assemblers starts degrading when the sequencing depth exceeds 500x-1,000x (depending 

on the assembler and the sequencing error rate). By means of simulations on synthetic 

reads we also showed in [29] that the likely culprit is the presence of sequencing errors: 

the assembly quality degradation cannot be observed with error-free reads, while higher 

sequencing error rate intensifies the problem. The “message” of our study [29] is that 

when the data is noisy, more data is not necessarily better. Rather, there is an error-rate-

dependent optimum. 

 Independently from us, study [30] reached similar conclusions: the authors 

assembled E. coli (4.6 MB) S. kudriavzevii (11.18 MB) and C. elegans (100 MB) using 

SOAPDENOVO, VELVET, ABySS, MERACOLOUS and IDBA_UD at increasing sequencing 

depths up to 200x (which is not ultra-deep according to our definition). Their analysis 

showed an optimum sequencing depth (around 100x) for assembling these genomes, 

which depends on the specific genome and the assembler.  

In addition to sequencing errors, real sequencing data is also plagued by read 

duplications that contribute to uneven coverage. Read duplication is typically attributed 

to PCR amplification bias [31, 32]. The presence of highly duplicated reads complicates 

the task for assemblers when they contain sequencing errors; if unique it would be easy to 

detect and remove them. As the coverage increases, the probability of an overlap that 

involves duplicated reads agreeing to each other due to sequencing errors becomes higher 

and higher. These new overlaps can induce spurious contigs (typically short) or prevent 
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the creation of longer contigs. In turns, this manifests in a degradation of the assembly 

quality (N50, number of mis-assemblies, portion of the target genome covered, etc.) We 

also suspect that the removal of bubbles/bulges from the de Bruijn graph (for details on 

bubbles/bulges see, e.g[14] or [16]) is significantly harder with ultra-deep sequencing 

data. 

Since sequencing errors are the source of the problem, one could attempt to correct 

them before the assembly. Several stand-alone methods have been proposed in the 

literature (see [33] for a recent survey), and several de novo assemblers (e.g., SPADES 

[16]) employ a preprocessing step for correcting errors. Unfortunately, error correction is 

not very effective for ultra-deep sequencing data. Most error correction tools are based on 

k-mer spectrum analysis: the underlying assumption is that “rare” k-mers are likely to 

contain sequencing errors. As the depth of sequencing of cover-age increases, so does the 

number of occurrences of any k-mer, including the ones that contain sequencing errors. In 

[29] and the current manuscript, we have collected experimental evidence of the 

inefficacy of error-correction methods on the assembly of ultra-deep sequencing data.  

An alternative approach to deal with excessive sequencing data is down-sampling. 

The idea of down-sampling is to disregard a fraction of the input reads, according to 

some predetermined strategy. The simplest approach is to randomly sample the input and 

only assemble a fraction of the reads. Although coverage reduction has been primarily 

used for unbalanced data [34], we have shown in [29] that in the presence of ultra-deep 

sequencing data, the assembly of a random sample of the input reads only marginally 

improves the assembly quality compared to the assembly of entire dataset. DIGINORM 
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[34] and NEATFREQ [35] are two examples of down-sampling methods aimed to produce 

a more uniform cover-age. They both reduce coverage by selecting representative reads 

binned by their median k-mer frequency. In general, downsampling is not a satisfactory 

technique to deal with large datasets, unless it is expected to remove most of the “bad” 

reads and none of the “good” reads. Otherwise, it has the undesirable effect of re-moving 

“critical” reads, i.e., rare but error-free reads that can help bridge or fill assembly gaps. 

In this chapter we address the question of how to create high quality assemblies when 

an ultra-deep dataset is available. We propose a meta-assembly method called 

SLICEMBLER that, unlike down-sampling techniques, takes the advantage of the whole 

input dataset. SLICEMBLER uses a divide-and-conquer approach: it “slices” a large input 

into smaller sets of reads, assembles each set individually (using a standard assembler), 

and then merges the individual assemblies. Our experimental results on real and synthetic 

data shows that SLICEMBLER can produce higher quality assemblies than the regular 

assembly of entire dataset (before or after error correction), as well as better assemblies 

compared to the assembly of random samples of the reads. The assemblies produced by 

SLICEMBLER demonstrate that, when an ultra-deep coverage dataset is available, it is 

possible to create long contigs with no assembly errors. We believe these results can be 

considered the first step toward making “perfect assemblies”. We also show that 

SLICEMBLER is less sensitive to sequencing error rates, which could make it desirable for 

third-generation sequencing data. 
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3.1 Methods 

The availability of ultra-deep sequencing data opens the opportunity to construct 

assemblies from multiple independent samples of the reads and then compare them with 

the objective either to [21] merge them or [22] discover assembly errors and correct 

them. SLICEMBLER is based on majority voting: if a contig (or a fraction thereof) appears 

in the majority of the individual assemblies, we assume that it is safe to add that contig to 

the consensus assembly being built. SLICEMBLER is a meta-assembler for second-

generation paired-end short reads, but its framework can be adapted to other type of 

sequencing data. 

Figure	
  15 illustrates the proposed iterative algorithm. First, SLICEMBLER partitions the 

reads into several smaller sets (slices). In the second step, it assembles each set 

individually using a standard assembler (e.g., VELVET, SPADES, IDBA_UD or RAY). 

Third, SLICEMBLER analyzes the individual assemblies, and identifies long common 

contigs (or fractions thereof) supported by a majority of the assemblies. In the fourth step, 

it merges these common contigs (or fractions thereof) to the partially constructed 

(consensus) assembly being built. Before repeating steps 2, 3 and 4, any read that maps to 

the consensus assembly is removed from the input. 
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Figure 15. SLICEMBLER’s pipeline: First, the input reads are partitioned into smaller slices (1). Each 
slice is assembled individually (2), and the resulting assemblies are merged by a “majority voting” process 
(3,4). Before repeating these steps any read in the input that maps to the consensus assembly is removed 
(6). When no further merging is possible, the final consensus assembly is produced (7). 

	
  

3.1.1. “Slicing” the input 

In the first step, the set of input reads is partitioned into n distinct slices. Each paired-

end read is assigned to exactly one slice, although it is also possible to assign a read to 

multiple slices. For simplicity, each slice contains approximately the same number of 

reads. The number of slices is determined from the desired depth of coverage Ds for each 

slice. As we discussed in [29], the coverage Ds is a critical parameter for the quality of 

assembly. In order to find a good value for Ds, one can run the base assembler (e.g., 

VELVET, SPADES, RAY, or IDBA_UD) on larger and larger samples of the input and find 

the coverage that maximizes the chosen assembly statistics (e.g., N50). Once the value of 

Ds is established, one can determine the number of slices by computing n= ⌈Dt⁄Ds⌉ where 

Dt is the depth of coverage for the whole input read set. Given the set of input reads, the 

slice coverage Ds and the average read length, it is straightforward to partition the reads 

into n slices with the desired coverage. 
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3.1.2. Assembling the slices 

In the second step, each of the n slices is assembled independently with a standard 

assembler (e.g., VELVET, SPADES, RAY, or IDBA_UD), possibly with different choices 

of the k-mer values in each slice. Under the assumption that the number of reads in every 

slice is sufficient for a complete assembly, the ideal outcome is that each of the n 

assemblies covers the entire the target genome. In practice, each assembly is expected to 

contain a mixture of “good” and “bad” contigs due to sequencing errors, repetitive 

regions and imperfections in the assembly algorithms. The objective of the next step is to 

identify the “good portion” of each contig by taking a majority vote among the 

assemblies. 

3.1.3. Finding frequently occurring substrings 

In the third step, SLICEMBLER searches for long substrings that occur exactly in the 

majority of individual assemblies. The input to this step is a set of n assemblies 

S={A1,A2,…,An} where each assembly Ai is represented as a set of contigs. Given a 

string s, we define c(s) as a subset T ⊆	
  S of assemblies in which s appears exactly in at 

least one contig of each assembly in T.  Given a minimum support k and minimum length 

l, SLICEMBLER identifies all maximal substrings r such that |r| > l and |c(r)| > k, that is, r 

is longer than l nucleotides and it appears in at least k assemblies. By maximal we mean 

that if string r was extended by one extra symbol to the left or to the right, then |c(r)| 

would decrease below threshold k+1. We call such substrings r, frequently occurring 

substrings (FOS). Figure	
  16 illustrates four FOS detected from a set of five assemblies. 
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FOS1 occurs in four assemblies, while FOS2 appears in three of them. FOS3 and FOS4 is 

a pair of overlapping substrings occurring in three assemblies.  

	
  

Figure 16. Examples of frequently occurring substrings (FOS) from five assemblies (FOS can 
overlap). 

 

In order to find FOS, we build a generalized suffix tree on the contigs of n assemblies 

(and their reverse complement), then use a variant of the algorithm proposed in [36]. In 

this algorithm, each input string is assigned a distinct “color”. The algorithm uses the 

generalized suffix tree to compute for each tree node u the number of distinct colors in 

the subtree rooted at node u. The algorithm computes the number of colors for each node 

in linear time in the length of the input strings.  Algorithm [36], however, does not 

produce maximal substrings. Once the internal nodes have the color information, to 

ensure right-maximality our algorithm finds the deepest internal node u (spelling out 

string r, |r|>l) such that |c(r)| > k. To guarantee left-maximality we take advantage of 

suffix links: if node u has a suffix link to node v, and subtrees rooted at u and v have the 

same number of leaves and colors then the string corresponding to v is not left-maximal 

and should not be reported. 
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As we mentioned above, repetitive regions in the genome represent a major challenge 

for assemblers. Often a FOS includes a repetitive pattern at the end due to disagreements 

among assemblies on how many times that pattern should be repeated. The ends of each 

FOS are critical for merging, which requires a prefix-suffix overlap.  Any error in these 

sections may prevent the algorithm from merging overlapping FOS (discussed next in 

Section 2.4). To avoid errors at the ends of a FOS, if a repetitive pattern is found at any of 

the ends, all copies (except one) of the repeated pattern are eliminated. 

3.1.4. Merging frequently occurring sequences 

When detected FOS are overlapping (e.g., FOS3 and FOS4 in Figure	
  16) they can be 

merged to obtain longer FOS (FOS will also be merged to the contigs in the consensus 

assembly being built). SLICEMBLER identifies any FOS that has an exact suffix-prefix 

overlap (i.e., no mismatches/indels) with another FOS (or its reverse complement), and 

determines the number of paired-end reads that connect each pair of such overlapping 

FOS. A pair of FOS is merged if either (1) the exact overlap is at least 100bp or (2) the 

exact overlap is 50-99bp and the number of paired end reads connecting them is at least 

Dt/1000 or (3) the exact overlap is 20-49bp and the number of paired end reads 

connecting them is at least Dt/100. This idea of using paired-end read to increase the 

confidence of an overlap is similar to the scaffolding step used to order and orient contigs 

in de novo assemblers or specialized scaffolding tools like [37].  
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3.1.5. SLICEMBLER algorithm 

As said, SLICEMBLER is an iterative meta-assembler. The main steps of 

slicing/assembling/merging are executed iteratively until a predetermined condition is 

met. Table	
  9 shows a sketch of our algorithm. As described in Section 2.1, the number of 

slices is calculated from the chosen slice coverage (DS). The input read set is partitioned 

into n slices (line 2). The rest of the algorithm is performed iteratively (line 3-19) until 

the total length of the consensus assembly F meets or exceeds the target genome size no 

sufficiently long FOS can be found. At the beginning of a new iteration, SLICEMBLER 

assembles the reads in each slice individually (lines 4-6). Next, a generalized suffix tree T 

is created from the contigs in the individual assemblies (both forward and reverse 

complement) (line 7).  Using the suffix tree, SLICEMBLER produces the set of maximal 

substrings longer than l bases that occur in at least k assemblies (out of n, line 11). The 

FOS set could contain any number of strings (including none). Then, SLICEMBLER 

checks whether FOS overlapping with the current consensus assembly meet the 

conditions described in Section 2.4 and merges them (line 12). The parameter k is set to n 

initially, so SLICEMBLER first tries to determine if there is any FOS that appears in all the 

assemblies. If no new FOS is found, the support k is decreased (by one) and the loop is 

repeated. The parameter k is decreased until at least one FOS is detected or k becomes 

smaller than n/2. If k becomes smaller than n/2, the minimum length l is halved and k is 

initialized again to n. We selected n/2 as the “turning point” because we would not trust 

any common substring that appears in the minority of the assemblies. The initial value for 

l is one fifth of the size of the target; based on our observations using a larger value for 
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the initial value of l is unlikely to improve the results, but makes SLICEMBLER slower. 

The iterative process stops when l drops be-low lmin, which is desired minimum contig 

length in the final assembly (lmin is user-defined, typically 200-500 base pairs). If l is 

below lmin and no new FOS have been identified in the current iteration (line 17), 

SLICEMBLER’s iterative process is terminated and the consensus assembly is reported. 

Table 9.  A sketch of SLICEMBLER’s algorithm 

 

H.Mirebrahim et al. 

4 

loop is repeated. The parameter k is decreased until at least one 
FOS is detected or k becomes smaller than n/2. If k becomes 
smaller than n/2, the minimum length l is halved and k is initialized 
again to n. We selected n/2 as the “turning point” because we 
would not trust any common substring that appears in the minority 
of the assemblies. The initial value for l is one fifth of the size of 
the target; based on our observations using a larger value for the 
initial value of l is unlikely to improve the results, but makes 
SLICEMBLER slower. The iterative process stops when l drops be-
low lmin, which is desired minimum contig length in the final as-
sembly (lmin is user-defined, typically 200-500 base pairs). If l is 
below lmin and no new FOS have been identified in the current 
iteration (line 17), SLICEMBLER’s iterative process is terminated 
and the consensus assembly is reported. 

Table 1. A sketch of SLICEMBLER’s algorithm 

   Inputs 

 

Output 
 

Input reads (S), slice coverage (DS), min contig length (lmin), size of the 

target genome (ltarget) 

Set of contigs (F) 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

 

F  ← ∅ 

Partition S into n slices S1,S2, …, Sn each of which has coverage DS 

while ( |F| < ltarget ) do 

A ← ∅ 

for i ←1 to n do 

A ← A U Assemble(Si)  

T ← GeneralizedSuffixTree(A, ReverseComplement(A)) 

k ← n  

l ←  ltarget / 5 

while (l>lmin) 

FOS ← FindFOS(T, k, l)  

if (FOS ≠ ∅)  then  F ← MergeFOS(FOS, F) 

break 

else if (k > n/2)   then k  ←  k – 1 

else  l ← l/2 

k ← n 

          if (l <= lmin) and (FOS=∅) then break 

for i ← 1 to n do 

Si ← FindUnmappedReads(F, Si)  

return F  

 
Before starting a new iteration, all the reads in each slice are 

mapped to all detected FOS in the current consensus assembly. 
Each paired end read that maps exactly to any contig in the current 
assembly is removed (line 18-19) and only the remaining reads are 
assembled in the next iteration. Note that we do not repartition the 
read sets after this step, because although the number of reads de-
creases, so does the size of the target we are supposed to recon-
struct. In other words, the desired slice coverage Ds is maintained 
at every iteration. There is one exception to this strategy of read 
elimination. Recall that in order to be able to merge the FOS set 
with the current assembly, the strings have to overlap a minimum 

number of bases. To make sure that this will be possible in future 
iterations, reads that are mapped close to the ends of contigs of the 
current assembly are not eliminated.  

Like any other assembly pipeline, gap filling and scaffolding 
can be applied at the end of the process to improve the quality of 
final assembly. In this case, gap filling is easier than usual because 
of the high quality of contigs produced by SLICEMBLER and the 
very large number of reads available for filling the gaps. Also, the 
number of gaps to be filled at the end is relatively small since 
SLICEMBLER fills some of the gaps during the merging process (see 
Figure 4 for an example). The merging step uses small FOS identi-
fied in the later iterations to “glue” adjacent contigs. 

3 EXPERIMENTAL RESULTS 
We implemented SLICEMBLER in Python. Our tool can be accessed 
at http://slicembler.cs.ucr.edu/. As said, SLICEMBLER is a 
meta-assembler; its performance directly depends on the base as-
sembler. In the following experiments we used Velvet as the base 
assembler, unless stated otherwise. The performance of 
SLICEMBLER using other base assemblers (IDBA, Ray and SPAdes) 
is presented in Section 3.3.  The number of slices and the sequenc-
ing error rate for the input reads are other factors that critically 
influence the quality of the final assembly. We study these issues 
in Section 3.4 and Section 3.5. 

Recall that at the end of every iteration, all reads are mapped to 
the partially constructed assembly in order to detect bridge reads 
(to be used later in the merging step) and to eliminate reads that are 
already represented in the assembly. SLICEMBLER uses BWA (21) 
to find perfect alignments (no mismatches, no gaps) for this pur-
pose. We used a minimum contig length lmin = 200 (which is the 
default parameter for SLICEMBLER). We did not use any gap filling 
or scaffolding tool on the final assemblies. All experiments were 
carried on a Linux server with twenty computing cores and 194 
GB of RAM.  

3.1 Ultra-deep sequencing of barley BACs 
In order to carry out experiments on real ultra-deep data, we 

sequenced a set of 16 bacterial artificial chromosome (BAC) ge-
nomic clones of barley (Hordeum vulgare L.) on an Illumina HiS-
eq2000 at UC Riverside at a depth of coverage 8,000x-15,000x. 
The average read length was about 88 bases after quality trimming; 
reads were paired-end with an average insert size of 275 bases. 
Another set of 52 barley BACs was sequenced by the Department 
of Energy Joint Genome Institute (JGI) using Sanger sequencing. 
Since the primary DNA sequences for each of these 52 BACs were 
assembled in one solid contig (details in (12)), we assumed these 
Sanger-based assemblies to be the “ground truth” or “reference”. 
Five ultra-deep sequenced BACs had such a reference, so we used 
them to objectively evaluate the performance of SLICEMBLER. In 
order to have an equal-sized input dataset for all BACs, we used 
only 8,000x worth of coverage. These five barley BAC clones, 
hereafter referred as BAC 1-5 have the following lengths: 
131,747bp, 108,261bp, 110,772bp, 111,748bp, and 102,968bp, 
respectively. We should remind the reader that the barley genome 
is highly repetitive. Approximately 84% of the genome consists of 
mobile elements or other repeat structures (22).  
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Before starting a new iteration, all the reads in each slice are mapped to all detected 

FOS in the current consensus assembly. Each paired end read that maps exactly to any 

contig in the current assembly is removed (line 18-19) and only the remaining reads are 

assembled in the next iteration. Note that we do not repartition the read sets after this 

step, because although the number of reads de-creases, so does the size of the target we 

are supposed to reconstruct. In other words, the desired slice coverage Ds is maintained at 

every iteration. There is one exception to this strategy of read elimination. Recall that in 

order to be able to merge the FOS set with the current assembly, the strings have to 

overlap a minimum number of bases. To make sure that this will be possible in future 

iterations, reads that are mapped close to the ends of contigs of the current assembly are 

not eliminated.  

Like any other assembly pipeline, gap filling and scaffolding can be applied at the 

end of the process to improve the quality of final assembly. In this case, gap filling is 

easier than usual because of the high quality of contigs produced by SLICEMBLER and the 

very large number of reads available for filling the gaps. Also, the number of gaps to be 

filled at the end is relatively small since SLICEMBLER fills some of the gaps during the 

merging process (see Figure	
   18 for an example). The merging step uses small FOS 

identified in the later iterations to “glue” adjacent contigs. 

3.2 Experimental Results 

We implemented SLICEMBLER in Python. Our tool can be accessed at http:// 

SLICEMBLER.cs.ucr.edu/. As said, SLICEMBLER is a meta-assembler; its performance 
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directly depends on the base assembler. In the following experiments we used VELVET as 

the base assembler, unless stated otherwise. The performance of SLICEMBLER using other 

base assemblers (IDBA_UD, RAY and SPADES) is presented in Section 3.3.  The number 

of slices and the sequencing error rate for the input reads are other factors that critically 

influence the quality of the final assembly. We study these issues in Section 3.4 and 

Section 3.5. 

Recall that at the end of every iteration, all reads are mapped to the partially 

constructed assembly in order to detect bridge reads (to be used later in the merging step) 

and to eliminate reads that are already represented in the assembly. SLICEMBLER uses 

BWA [38] to find perfect alignments (no mismatches, no gaps) for this purpose. We used 

a minimum contig length lmin = 200 (which is the default parameter for SLICEMBLER). We 

did not use any gap filling or scaffolding tool on the final assemblies. All experiments 

were carried on a Linux server with twenty computing cores and 194 GB of RAM. 

3.2.1. Ultra-deep sequencing of barley BACs 

In order to carry out experiments on real ultra-deep data, we sequenced a set of 16 

bacterial artificial chromosome (BAC) genomic clones of barley (Hordeum vulgare L.) 

on an Illumina HiS-eq2000 at UC Riverside at a depth of coverage 8,000x-15,000x. The 

average read length was about 88 bases after quality trimming; reads were paired-end 

with an average insert size of 275 bases. Another set of 52 barley BACs was sequenced 

by the Department of Energy Joint Genome Institute (JGI) using Sanger sequencing. 

Since the primary DNA sequences for each of these 52 BACs were assembled in one 

solid contig (details in [29]), we assumed these Sanger-based assemblies to be the 



 

53 
 

“ground truth” or “reference”. Five ultra-deep sequenced BACs had such a reference, so 

we used them to objectively evaluate the performance of SLICEMBLER. In order to have 

an equal-sized input dataset for all BACs, we used only 8,000x worth of coverage. These 

five barley BAC clones, hereafter referred as BAC 1-5 have the following lengths: 

131,747bp, 108,261bp, 110,772bp, 111,748bp, and 102,968bp, respectively. We should 

remind the reader that the barley genome is highly repetitive. Approximately 84% of the 

genome consists of mobile elements or other repeat structures [15]. 

3.2.2. Quality of SLICEMBLER assemblies 

SLICEMBLER divided each of the five ultra-deep BAC inputs in-to ten slices (Ds = 

800x coverage). We showed in [29], that such coverage is expected to provide a “good” 

assembly in terms of N50, longest contig, number of mis-assemblies, and percentage of 

the target genome covered. We compared the performance of SLICEMBLER to three 

alternative methods, namely A) assemble all reads (8,000x coverage) with the same 

assembler used in SLICEMBLER, B) run error-correction (using RACER [39]) on all reads 

(8,000x coverage) then assemble the corrected reads with the same assembler used in 

SLICEMBLER, C) assemble each of the slices (800x coverage) individually and consider 

the average statistics over the ten slices (down-sampling). 

Figure	
   17 summarizes the assembly statistics collected with QUAST [40] for 

SLICEMBLER compared to methods A, B, C described above. The base assembler was 

VELVET (hash value 69). Several observations on Figure	
  17 are in order. First, note that 

for most of the BACs, down-sampling at 800x leads to better quality assemblies than the 

assembly of all the reads at 8,000x. This is consistent with our previous results [29]. 
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Second, error correction increases the quality of assemblies for most of the BACs. 

However, this step can also introduce additional assembly errors probably due to newly 

introduced errors in the error-correction phase (see last panel of Figure	
  17). We suspect 

that ultra-deep coverage in the input dataset prevents RACER from detecting and 

correcting sequencing errors effectively. 

	
  

Figure 17. Summary of assembly statistics on five barley BACs sequenced at 8,000x. We compared 
SLICEMBLER (using VELVET) to three alternative methods: VELVET on the entire dataset, RACER+VELVET 
on the entire dataset, and the average performance of VELVET on the slices of 800x each (see legend). 
Ground truth was based on Sanger-based assemblies. Statistics were collected with QUAST for contigs 
longer than 500 bps. 

 

Finally and more importantly, observe that in the majority of cases, SLICEMBLER 

generates the highest quality assemblies. Its assemblies are less fragmented, which is 

reflected by a smaller number of contigs, longer longest contigs, and higher N50. Also, 

SLICEMBLER’s assemblies cover a higher fraction of the target genome and they have a 

much smaller number of mis-assembly errors compared to the other approaches. In fact 

SLICEMBLER’s assemblies are almost error-free. BAC 4 is the only exception: although 

SLICEMBLER’s assembly of BAC 4 has fewer mis-assemblies than the assembly of all the 

De Novo Meta-Assembly of Ultra-deep Sequencing Data 

5 

 
3.2 Quality of SLICEMBLER’s assemblies 

SLICEMBLER divided each of the five ultra-deep BAC inputs in-
to ten slices (Ds = 800x coverage). We showed in (12), that such 
coverage is expected to provide a “good” assembly in terms of 
N50, longest contig, number of mis-assemblies, and percentage of 
the target genome covered. We compared the performance of 
SLICEMBLER to three alternative methods, namely A) assemble all 
reads (8,000x coverage) with the same assembler used in 
SLICEMBLER, B) run error-correction (using Racer (23)) on all 
reads (8,000x coverage) then assemble the corrected reads with the 
same assembler used in SLICEMBLER, C) assemble each of the slic-
es (800x coverage) individually and consider the average statistics 
over the ten slices (down-sampling). 

Figure 3 summarizes the assembly statistics collected with 
QUAST (24) for SLICEMBLER compared to methods A, B, C de-
scribed above. The base assembler was Velvet (hash value 69). 
Several observations on Figure 3 are in order. First, note that for 
most of the BACs, down-sampling at 800x leads to better quality 
assemblies than the assembly of all the reads at 8,000x. This is 
consistent with our previous results (12). Second, error correction 
increases the quality of assemblies for most of the BACs. Howev-
er, this step can also introduce additional assembly errors probably 
due to newly introduced errors in the error-correction phase (see 
last panel of Figure 3). We suspect that ultra-deep coverage in the 
input dataset prevents Racer from detecting and correcting se-
quencing errors effectively. 

Finally and more importantly, observe that in the majority of 
cases, SLICEMBLER generates the highest quality assemblies. Its 
assemblies are less fragmented, which is reflected by a smaller 
number of contigs, longer longest contigs, and higher N50. Also, 
SLICEMBLER’s assemblies cover a higher fraction of the target ge-
nome and they have a much smaller number of mis-assembly er-
rors compared to the other approaches. In fact SLICEMBLER’s as-
semblies are almost error-free. BAC 4 is the only exception: alt-

hough SLICEMBLER’s assembly of BAC 4 has fewer mis-assemblies 
than the assembly of all the reads before or after error correction, it 
contains more errors than the average downsampling-based assem-
bly. The slightly higher number of assembly errors for SLICEMBLER 
is due to the merging step, which could be made more conserva-
tive. Finally, note that SLICEMBLER’s assemblies are less inflated 
than the other approaches. The assembly of all the reads, with or 
without error correction, has quite large duplication ratio. 

To illustrate the progress during SLICEMBLER’s iterative re-
finements, Figure 4 shows the status of the consensus assembly 
created for BACs 1, 2 and 3 every five iterations. Each box repre-
sents a perfect alignment of a SLICEMBLER’s contig to the reference 
genome (no insertion/deletion/mismatches allowed). Observe that 
in the last iteration 85%-95% of the target genome is covered by 
the error-free contigs. In the first iterations, most of the target ge-
nome is covered by large FOS. In later iterations, FOS are smaller 
but they can connect adjacent contigs or extend them (see red cir-
cles). Most of the small gaps between the contigs are composed by 
repetitive patterns. These gaps are induced by the “trimming” step 
of the algorithm, which eliminates repetitive patterns from the ends 
of FOS to avoid false overlaps. A gap-filling tool can easily close 
these small gaps during the finishing step.  

As mentioned above, at the end of each iteration SLICEMBLER 
maps the current set of input reads to the consensus assembly: any 
read that is mapped exactly is discarded. This allows SLICEMBLER 
(and its base assembler) to “focus” on the parts of the ge-
nome/BAC that are still missing from the consensus assembly. 
Because FOS in early iterations are “safer” to be added to the con-
sensus assembly, the set of reads discarded in early iterations are 
expected to be of higher quality. To this end, we determined the 
percentage of reads at each iteration of SLICEMBLER that could 
mapped exactly (i.e., no mismatches/indels) to the reference ge-
nome. Figure 5 shows these percentages for the first fifteen itera-
tions in the assembly of the five BACs. Observe that the percent-
age of high quality reads is about 85% in early iteration.  
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Fig. 3. Summary of assembly statistics on five barley BACs sequenced at 8,000x. We compared SLICEMBLER (using Velvet) to three alternative methods: 
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truth was based on Sanger-based assemblies. Statistics were collected with QUAST for contigs longer than 500 bps. 
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reads before or after error correction, it contains more errors than the average 

downsampling-based assembly. The slightly higher number of assembly errors for 

SLICEMBLER is due to the merging step, which could be made more conservative. 

Finally, note that SLICEMBLER’s assemblies are less inflated than the other approaches. 

The assembly of all the reads, with or without error correction, has quite large duplication 

ratio. 

To illustrate the progress during SLICEMBLER’s iterative refinements, Figure	
  18 shows 

the status of the consensus assembly created for BACs 1, 2 and 3 every five iterations. 

Each box represents a perfect alignment of a SLICEMBLER’s contig to the reference 

genome (no insertion/deletion/mismatches allowed). Observe that in the last iteration 

85%-95% of the target genome is covered by the error-free contigs. In the first iterations, 

most of the target ge-nome is covered by large FOS. In later iterations, FOS are smaller 

but they can connect adjacent contigs or extend them (see red circles). Most of the small 

gaps between the contigs are composed by repetitive patterns. These gaps are induced by 

the “trimming” step of the algorithm, which eliminates repetitive patterns from the ends 

of FOS to avoid false overlaps. A gap-filling tool can easily close these small gaps during 

the finishing step.  
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Figure 18. An illustration of SLICEMBLER’s progressive construction of the consensus assembly for 
BACs 1, 2 and 3 (“snapshots” are taken every five iterations). Each box represents a perfect alignment 
between that contig and the reference. Light green boxes indicate a new FOS compared to the previous 
snapshot. Circles point to gaps closed or contig extended via the merging process (picture created with 
CLC sequence viewer). 

	
  

As mentioned above, at the end of each iteration SLICEMBLER maps the current set of 

input reads to the consensus assembly: any read that is mapped exactly is discarded. This 

allows SLICEMBLER (and its base assembler) to “focus” on the parts of the genome/BAC 

that are still missing from the consensus assembly. Because FOS in early iterations are 

“safer” to be added to the consensus assembly, the set of reads discarded in early 

iterations are expected to be of higher quality. To this end, we determined the percentage 

of reads at each iteration of SLICEMBLER that could mapped exactly (i.e., no 

mismatches/indels) to the reference genome. Figure	
   19 shows these percentages for the 

first fifteen iterations in the assembly of the five BACs. Observe that the percent-age of 

high quality reads is about 85% in early iteration.  
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Figure 19. The percentage of reads (y-axis) at each iteration of SLICEMBLER (x-axis) that map exactly 
(i.e., zero mismatches/indels) to the reference on the five ultra-deep sequenced BACs. 

 

As the number of iterations increases, the percentage of high quality reads in the input 

monotonically decreases. In the last few iterations the percentage stays somewhat flat 

because later FOS are shorter, so the additional number of high quality reads mapped to 

these FOS is also small. 

3.2.3. The choice of the base assembler 

As said, SLICEMBLER is a meta-assembler, and its performance depends on the 

performance on the base assembler. To evaluate the influence of base assembler on the 

assembly quality, we compared several assemblers, namely VELVET [14], SPADES [16], 

RAY [41] and IDBA_UD [17]. 

Experimental results for BAC 3 are shown below in Table	
   10. We compared the 

assembly produced by VELVET, SPADES, RAY and IDBA_UD all the reads (8,000x) 

against the assemblies created by SLICEMBLER in conjunction with the corresponding 
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As the number of iterations increases, the percentage of high 
quality reads in the input monotonically decreases. In the last few 
iterations the percentage stays somewhat flat because later FOS are 
shorter, so the additional number of high quality reads mapped to 
these FOS is also small. 

3.3 The choice of the base assembler 
As said, SLICEMBLER is a meta-assembler, and its performance 

depends on the performance on the base assembler. To evaluate the 
influence of base assembler on the assembly quality, we compared 
several assemblers, namely Velvet (11), SPAdes (9), Ray (25) and 
IDBA_UD (10). 

Experimental results for BAC 3 are shown below in Table 3. 
We compared the assembly produced by Velvet, SPAdes, Ray and 
IDBA all the reads (8,000x) against the assemblies created by 
SLICEMBLER in conjunction with the corresponding base assembler. 
SLICEMBLER was run on ten slices (800x each). The k-mer used 
was 69 for Velvet and Ray. For IDBA_UD and SPAdes the report-
ed assembly was based on three different k-mers (29, 49 and 69).  

Observe that among the stand-alone assemblers, IDBA_UD and 
SPAdes created higher quality assemblies compared to Velvet and 

Ray. However, regardless of the choice of the base assembler, 
SLICEMBLER improved the quality of the assemblies.  

The only “negative” statistics for SLICEMBLER is that it intro-
duced a few more errors in the assemblies created using IDBA_UD 
and SPAdes. We determined that these additional errors were due 
to incorrect merging in later iterations. Also, SLICEMBLER had 
slightly higher duplication ratio than SPAdes. Other than these, 
SLICEMBLER significantly improved all other statistics. In fact, 
similar results were observed on the other four BACs (data not 
shown). In general, SLICEMBLER created higher quality assemblies 
when used in conjunction with IDBA_UD and SPAdes.  

Table 3. Comparing BAC assemblies produced with IDBA, Velvet, 
SPAdes and Ray to the assemblies produced by SLICEMBLER in conjunction 
with the same assembler. Statistics were collected with QUAST for contigs 
longer than 500 bps. 

Method 
Number 

of contigs 

% ref 

covered 

Duplication 

ratio 

Mismatches 

per 100Kbp 
N50 

Longest 

contig 

 IDBA (8,000x) 34 97.0% 1.010 0.93 7,335 13,889 
 SLICEMBLER + IDBA 
 (10 slices of 800x) 

13 97.0% 1.010 1.1 16,121 31,161 

 Velvet (8,000x) 39 94.7% 1.027 20.0 3,649 16,048 
 SLICEMBLER + Velvet  
 (10 slices of 800x) 

14 95.1% 1.001 0 12,178 16,128 

 SPAdes (8,000x) 49 95.7% 1.006 0.94 9,129 21,872 
 SLICEMBLER + SPAdes  
 (10 slices of 800x) 

11 96.9% 1.024 1.2 27,685 31,158 

 Ray (8,000x) 35 80.0% 1.003 0 3,996 7,186 
 SLICEMBLER + Ray 

  (10 slices of 800x) 
24 88.0% 1.000 0 7,192 12,842 

 

3.4 The choice of depth of coverage for each slice 
As said, the depth of coverage in each slice is critical to opti-

mize on the quality of the assemblies.  If the depth of coverage is 
too low, the assembly of each slice will be fragmented, which will 
be reflected in shorter FOS. On the other hand, more slices can 
increase the confidence in choosing FOS due to more “votes” 
available. For this reason, we decided to use simulations to study 
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Figure 5. The percentage of reads (y-axis) at each iteration of 
SLICEMBLER (x-axis) that map exactly (i.e., zero mismatches/indels) to the 
reference on the five ultra-deep sequenced BACs. 
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Fig. 4. An illustration of SLICEMBLER’s progressive construction of the consensus assembly for BACs 1, 2 and 3 (“snapshots” are taken every five itera-
tions). Each box represents a perfect alignment between that contig and the reference. Light green boxes indicate a new FOS compared to the previous snap-
shot. Circles point to gaps closed or contig extended via the merging process (picture created with CLC sequence viewer).  
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base assembler. SLICEMBLER was run on ten slices (800x each). The k-mer used was 69 

for VELVET and RAY. For IDBA_UD and SPADES the reported assembly was based on 

three different k-mers (29, 49 and 69).  

 

Table 10. Comparing BAC assemblies produced with IDBA_UD, VELVET, SPADES and Ray to the assemblies 
produced by SLICEMBLER in conjunction with the same assembler. Statistics were collected with QUAST for contigs 
longer than 500 bps. 

 

Observe that among the stand-alone assemblers, IDBA_UD and SPADES created 

higher quality assemblies compared to VELVET and RAY. However, regardless of the 

choice of the base assembler, SLICEMBLER improved the quality of the assemblies. 

The only “negative” statistics for SLICEMBLER is that it introduced a few more errors 

in the assemblies created using IDBA_UD and SPADES. We determined that these 

additional errors were due to incorrect merging in later iterations. Also, SLICEMBLER had 

slightly higher duplication ratio than SPADES. Other than these, SLICEMBLER 

significantly improved all other statistics. In fact, similar results were observed on the 
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As the number of iterations increases, the percentage of high 
quality reads in the input monotonically decreases. In the last few 
iterations the percentage stays somewhat flat because later FOS are 
shorter, so the additional number of high quality reads mapped to 
these FOS is also small. 

3.3 The choice of the base assembler 
As said, SLICEMBLER is a meta-assembler, and its performance 

depends on the performance on the base assembler. To evaluate the 
influence of base assembler on the assembly quality, we compared 
several assemblers, namely Velvet (11), SPAdes (9), Ray (25) and 
IDBA_UD (10). 

Experimental results for BAC 3 are shown below in Table 3. 
We compared the assembly produced by Velvet, SPAdes, Ray and 
IDBA all the reads (8,000x) against the assemblies created by 
SLICEMBLER in conjunction with the corresponding base assembler. 
SLICEMBLER was run on ten slices (800x each). The k-mer used 
was 69 for Velvet and Ray. For IDBA_UD and SPAdes the report-
ed assembly was based on three different k-mers (29, 49 and 69).  

Observe that among the stand-alone assemblers, IDBA_UD and 
SPAdes created higher quality assemblies compared to Velvet and 

Ray. However, regardless of the choice of the base assembler, 
SLICEMBLER improved the quality of the assemblies.  

The only “negative” statistics for SLICEMBLER is that it intro-
duced a few more errors in the assemblies created using IDBA_UD 
and SPAdes. We determined that these additional errors were due 
to incorrect merging in later iterations. Also, SLICEMBLER had 
slightly higher duplication ratio than SPAdes. Other than these, 
SLICEMBLER significantly improved all other statistics. In fact, 
similar results were observed on the other four BACs (data not 
shown). In general, SLICEMBLER created higher quality assemblies 
when used in conjunction with IDBA_UD and SPAdes.  

Table 3. Comparing BAC assemblies produced with IDBA, Velvet, 
SPAdes and Ray to the assemblies produced by SLICEMBLER in conjunction 
with the same assembler. Statistics were collected with QUAST for contigs 
longer than 500 bps. 

Method 
Number 

of contigs 

% ref 

covered 

Duplication 

ratio 

Mismatches 

per 100Kbp 
N50 

Longest 

contig 

 IDBA (8,000x) 34 97.0% 1.010 0.93 7,335 13,889 
 SLICEMBLER + IDBA 
 (10 slices of 800x) 

13 97.0% 1.010 1.1 16,121 31,161 

 Velvet (8,000x) 39 94.7% 1.027 20.0 3,649 16,048 
 SLICEMBLER + Velvet  
 (10 slices of 800x) 

14 95.1% 1.001 0 12,178 16,128 

 SPAdes (8,000x) 49 95.7% 1.006 0.94 9,129 21,872 
 SLICEMBLER + SPAdes  
 (10 slices of 800x) 

11 96.9% 1.024 1.2 27,685 31,158 

 Ray (8,000x) 35 80.0% 1.003 0 3,996 7,186 
 SLICEMBLER + Ray 

  (10 slices of 800x) 
24 88.0% 1.000 0 7,192 12,842 

 

3.4 The choice of depth of coverage for each slice 
As said, the depth of coverage in each slice is critical to opti-

mize on the quality of the assemblies.  If the depth of coverage is 
too low, the assembly of each slice will be fragmented, which will 
be reflected in shorter FOS. On the other hand, more slices can 
increase the confidence in choosing FOS due to more “votes” 
available. For this reason, we decided to use simulations to study 
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tions). Each box represents a perfect alignment between that contig and the reference. Light green boxes indicate a new FOS compared to the previous snap-
shot. Circles point to gaps closed or contig extended via the merging process (picture created with CLC sequence viewer).  
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other four BACs (data not shown). In general, SLICEMBLER created higher quality 

assemblies when used in conjunction with IDBA_UD and SPADES. 

3.2.4. The choice of depth of coverage for each slice 

As said, the depth of coverage in each slice is critical to optimize on the quality of the 

assemblies. If the depth of coverage is too low, the assembly of each slice will be 

fragmented, which will be reflected in shorter FOS. On the other hand, more slices can 

increase the confidence in choosing FOS due to more “votes” available. For this reason, 

we decided to use simulations to study the tradeoffs of the depth of coverage in each 

slice. To this end, we used wgsim to generate synthetic datasets with 500x, 1,000x, 

2,500x, 5,000x, 7,500x and 10,000x reads at 1% sequencing error rate (no indels) based 

on the reference sequence of BAC 3. Each dataset was assembled with SLICEMBLER 

using VELVET as the base assembler by dividing the input into ten slices, so that the 

coverage in each slide was 50x, 100x, 250x, 500x, 750x and 1,000x. 

Table	
   11 shows the usual quality statistics for the assemblies on simulated reads. 

Observe that SLICEMBLER’s best performance is observed when slices are in the 100x-

500x coverage range. When the slice coverage is lower than 100x, assemblies are more 

fragmented due to insufficient coverage. When the slice coverage is higher than 500x, we 

experience the negative effects of ultra-deep sequencing data on the quality of the 

individual assemblies: FOS become smaller and the final assembly is more fragmented. 

Note that despite the 1% sequencing error rate, SLICEMBLER was able to create error free 

contigs for all cases. 



 

60 
 

Table 11. Quality statistics for SLICEMBLER’s assemblies for simulated reads with different depth of 
coverage. We used ten slices in all experiments (i.e., the coverage for each slice was 50x, 100x, 250x, 
500x, 750x, and 1,000x). Statistics were collected with QUAST for contigs longer than 500 bps. 

 

3.2.5. Effect of sequencing error rate in the reads 

De novo assemblers are quite sensitive to sequencing error rate in the input reads. 

Even assemblers that have a preprocessing step for error correction (e.g., SPADES), has 

difficulties handling errors when the depth of coverage is very high [29]. Since 

SLICEMBLER relies on majority voting for common contigs in the slice assemblies, we 

wondered whether it would be more resilient compared to its base assembler. To this end, 

we used wgsim to generate data sets at 3,000x coverage with increasing sequencing error 

rate, namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC 3. We assembled 

each set with SLICEMBLER + VELVET using six slices of 500x coverage each. Results are 

reported in Figure	
  20.  

First, note that SLICEMBLER was not able to improve the quality of assembly when 

the reads are error-free. This is consistent with the results in [29] for error-free reads. 

VELVET and other de novo assemblers are capable of producing high quality assemblies 

when reads are error-free since there are no imperfections in the de Bruijn graph. More 

importantly, observe that as the sequencing error rate increases, the performance of 
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the tradeoffs of the depth of coverage in each slice. To this end, we 
used wgsim (26) to generate synthetic datasets with 500x, 1,000x, 
2,500x, 5,000x, 7,500x and 10,000x reads at 1% sequencing error 
rate (no indels) based on the reference sequence of BAC 3. Each 
dataset was assembled with SLICEMBLER using Velvet as the base 
assembler by dividing the input into ten slices, so that the coverage 
in each slide was 50x, 100x, 250x, 500x, 750x and 1,000x.  

 
Table 4. Quality statistics for SLICEMBLER’s assemblies for simulated reads 
with different depth of coverage. We used ten slices in all experiments (i.e., 
the coverage for each slice was 50x, 100x, 250x, 500x, 750x, and 1,000x). 
Statistics were collected with QUAST for contigs longer than 500 bps. 

 

 500x 1,000x 2,500x 5,000x 7,500x 10,000x 

 Number of contigs 20 12 11 10 18 38 

 Longest contig 27,364 31,823 31,946 31,950 21,865 9,425 

 N50 6,707 26,275 26,288 26,267 12,428 3,643 

  Percent Refer. Covered 90.6% 88.7% 94% 93.9% 92.9% 84.7% 

  Duplication ratio 1 1 1 1 1 1 

  Mismatches per 100kbp 0 0 0 0 0 0 

Table 4 shows the usual quality statistics for the assemblies on 
simulated reads. Observe that SLICEMBLER’s best performance is 
observed when slices are in the 100x-500x coverage range. When 
the slice coverage is lower than 100x, assemblies are more frag-
mented due to insufficient coverage. When the slice coverage is 
higher than 500x, we experience the negative effects of ultra-deep 
sequencing data on the quality of the individual assemblies: FOS 
become smaller and the final assembly is more fragmented. Note 
that despite the 1% sequencing error rate, SLICEMBLER was able to 
create error free contigs for all cases. 

3.5 Effect of sequencing error rate in the reads 
De novo assemblers are quite sensitive to sequencing error rate 

in the input reads. Even assemblers that have a preprocessing step 
for error correction (e.g., SPAdes), has difficulties handling errors 
when the depth of coverage is very high (12). Since SLICEMBLER 
relies on majority voting for common contigs in the slice assem-
blies, we wondered whether it would be more resilient compared to 
its base assembler. To this end, we used wgsim (26) to generate 
data sets at 3,000x coverage with increasing sequencing error rate, 
namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC 
3. We assembled each set with SLICEMBLER+Velvet using six slices 
of 500x coverage each. Results are reported in Figure 6.  

First, note that SLICEMBLER was not able to improve the quality 
of assembly when the reads are error-free. This is consistent with 
the results in (12) for error-free reads. Velvet and other de novo 
assemblers are capable of producing high quality assemblies when 
reads are error-free since there are no imperfections in the de 
Bruijn graph. More importantly, observe that as the sequencing 
error rate increases, the performance of Velvet quickly degrades, 
while the performance of SLICEMBLER is unaffected (despite using 
Velvet as the base assembler). Particularly impressive is the num-
ber of mismatches per 100Kbp, which stays at zero for 
SLICEMBLER for any error rate. 

4 DISCUSSION AND CONCLUSION 
Advancement in sequencing technologies has been reducing se-
quencing costs exponentially fast. Ultra-deep sequencing is now 
feasible, especially for smaller genomes and clones. We expect 
that in the near future life scientists will sequence “as much as they 
want” because the sequencing cost will be a minor component of 
total project costs. This explosion of data will create new algorith-
mic challenges. We have shown previously that popular modern de 
novo assemblers are unable to take advantage of ultra-deep cover-
age, and the quality of assemblies starts degrading after a certain 
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Fig. 6. The effect of increasing sequencing error rates on the quality of assemblies created by Velvet and SLICEMBLER+Velvet. Input paired-end reads 
were generated using wgsim with a coverage of 3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices. 
Statistics were collected with QUAST for contigs longer than 500 bps.  
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VELVET quickly degrades, while the performance of SLICEMBLER is unaffected (despite 

using VELVET as the base assembler). Particularly impressive is the number of 

mismatches per 100Kbp, which stays at zero for SLICEMBLER for any error rate. 

 

	
  

Figure 20. The effect of increasing sequencing error rates on the quality of assemblies created by 
VELVET and SLICEMBLER+VELVET. Input paired-end reads were generated using wgsim with a coverage of 
3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices. 
Statistics were collected with QUAST for contigs longer than 500 bps. 

	
  

3.3 Discussion  

Advancement in sequencing technologies has been reducing sequencing costs 

exponentially fast. Ultra-deep sequencing is now feasible, especially for smaller genomes 

and clones. We expect that in the near future life scientists will sequence “as much as 
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relies on majority voting for common contigs in the slice assem-
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its base assembler. To this end, we used wgsim (26) to generate 
data sets at 3,000x coverage with increasing sequencing error rate, 
namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC 
3. We assembled each set with SLICEMBLER+Velvet using six slices 
of 500x coverage each. Results are reported in Figure 6.  

First, note that SLICEMBLER was not able to improve the quality 
of assembly when the reads are error-free. This is consistent with 
the results in (12) for error-free reads. Velvet and other de novo 
assemblers are capable of producing high quality assemblies when 
reads are error-free since there are no imperfections in the de 
Bruijn graph. More importantly, observe that as the sequencing 
error rate increases, the performance of Velvet quickly degrades, 
while the performance of SLICEMBLER is unaffected (despite using 
Velvet as the base assembler). Particularly impressive is the num-
ber of mismatches per 100Kbp, which stays at zero for 
SLICEMBLER for any error rate. 

4 DISCUSSION AND CONCLUSION 
Advancement in sequencing technologies has been reducing se-
quencing costs exponentially fast. Ultra-deep sequencing is now 
feasible, especially for smaller genomes and clones. We expect 
that in the near future life scientists will sequence “as much as they 
want” because the sequencing cost will be a minor component of 
total project costs. This explosion of data will create new algorith-
mic challenges. We have shown previously that popular modern de 
novo assemblers are unable to take advantage of ultra-deep cover-
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Fig. 6. The effect of increasing sequencing error rates on the quality of assemblies created by Velvet and SLICEMBLER+Velvet. Input paired-end reads 
were generated using wgsim with a coverage of 3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices. 
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age, and the quality of assemblies starts degrading after a certain depth of coverage. 

SLICEMBLER is an iterative meta-assembler that solves this problem: it takes advantage of 

the whole dataset, and significantly improves the final quality of the assembly. The 

strength of SLICEMBLER is based on the majority voting scheme: frequently occurring 

substrings identified by SLICEMBLER in the slice assemblies never contain errors, with 

the exception of FOS belonging to the very ends of the target genome which are not as 

reliable because coverage tends to be lower. SLICEMBLER extracts high-quality contigs 

from the slice assemblies, and it prevents contigs containing mis-joins and calling errors 

to be included in the final assembly.  

Experiments on a set of ultra-deep barley BACs and simulated data shows that our 

proposed method leads to higher quality assemblies than the corresponding base 

assembler. We also demonstrated that SLICEMBLER is more resilient to high sequencing 

error rates than its base assembler.  

This iterative assembly approach can be adapted to solve other problems in this area, 

like assembly of single cell sequencing data. The quality of single cell assemblies usually 

suffers from biased coverage. It has been shown that the coverage in single-cell 

sequencing is distributed randomly [42]. To reduce the effect of uneven coverage, one 

can sequence multiple copy of a cell and assemble the merged sequencing data. In this 

case, regions with lower coverage in one sample can be covered sufficiently by the other 

samples. SLICEMBLER can be adapted to create high quality assemblies for multi-cell 

sequencing data. In this case, each of the sequenced cells can be considered as a “slice” 

for the SLICEMBLER algorithm.  
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Our proposed algorithm is expected to work for genomes of any length, but the 

current implementation of SLICEMBLER has been tested only on relatively small genomic 

target sequences for which real ultra-deep coverage is now available. In order for 

SLICEMBLER to scale to larger genomes its efficiency must be improved. Most of the 

computational effort in SLICEMBLER is spent in finding FOS (this required construction 

of the generalized suffix tree), merging FOS (this requires computing exact prefix-suffix 

overlaps) and mapping the reads (this requires running BWA) at every iteration. One way 

to increase the algorithm speed would to process the slices in parallel. Another possible 

improvement would be to map the reads to each slice assembly only once and process the 

alignment file to determine which reads should be passed to the following iteration, 

instead of mapping the reads to the slice assembly from scratch in every iteration. We are 

also working on improving the merging step, in order to prevent mis-joins. More 

advanced approaches for merging contigs, like methods proposed for merging draft 

assemblies [43-45], may improve the quality of SLICEMBLER results. We plan to release 

soon an improved version of SLICEMBLER implemented in C++. 

To conclude, the results presented in this chapter indicate the possibility of having 

(almost) perfect assemblies when the depth of coverage is very high. Although there is 

more work to be done to achieve a perfect assembly, we believe that SLICEMBLER 

represents a significant step forward in this direction. 
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Chapter 4:  Other projects  

4.1 SNP detection and anchoring on cowpea genome 

Cowpea (Vigna unguiculata) is the main source of protein for people living in Sub-

Saharan Africa (SSA). This legume is native to Africa, but is grown in Asia, Latin 

America, and in the southern United States. There is a high collinearity between cowpea 

genome and its close relatives, soybean and common bean [46]. However, cowpea is 

more drought and heat tolerant than them. More countries around the word are facing 

drought due to the global warming, therefore this legume is extremely important for the 

future of human food, especially in developing countries. Although cowpea is an 

important source of food, researchers still suffer from the lack of a high quality published 

reference genome for this plant.  

Cowpea has a diploid genome with size ~620 MB. It has 2×11 = 22 chromosomes. 

We maintain a rich and diverse germplasm at the UC Riverside campus, provided by 

three major germplasm collections in Africa [International Institute of Tropical 

Agriculture (IITA), Nigeria], the USDA repository in Griffin, Georgia, and the 

University of California (UC) cowpea germplasm collection.  

Different cowpea cultivars show different levels of ability to survive drought 

stress[47], so the breeders can incorporate drought tolerance into improved varieties. Our 

cowpea team, including UC Riverside and a network of breeders in Burkina Faso, Ghana, 

Mozambique, Nigeria (IITA) and Senegal, has developed new resources for cowpea in 
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recent years. Finding new markers for the cowpea genome to assist breeding efforts has 

been a main goal for the team. 

Quantitative trait locus (QTL) analysis is a statistical method that allows researchers 

to link certain complex phenotypes to specific regions of chromosomes. Many of the 

cowpea drought and heat resistance traits have been genetically mapped using QTL 

approaches [48]. A consensus genetic map positions of the more important QTLs for 

cowpea is available based on the 1536-SNP GoldenGate assay for genotyping. Our team 

has started introgressing some of these traits into breeding lines in the African partner 

countries. The relatively low SNP resolution of the trait determinant haplotypes is a 

challenge for the progress of the project.  

To address this issue, we designed a pipeline to find around 60k high quality SNPs 

for cowpea genome at UC Riverside. Illumina designed an Infinium iSelect custom 

genotyping platform based on the discovered SNPs. The designed genotyping chip is 

available in the market for all researchers. The provided higher resolution SNP map for 

this genome can be used for several proposes including pedigree validation, germplasm 

characterization and marker-assisted breeding of cowpea. Also, our team is currently 

working on the problem of ordering and merging the sequenced cowpea BACs, using the 

discovered SNPs.    

4.1.1. Cowpea reference genome 

The African cowpea cultivar IT97K-499-35 has been attracted the most attention 

among the other cowpea accessions, mainly because it is resilient against the parasitic 

weed Striga gesnerioides (cowpea witchweed). There are multiple genome resources 
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available for this accession, mainly provided by the International Institute on Tropical 

Agriculture (IITA): gene-rich sequences accounting for ~160 Mb of the 620 Mb genome 

[49]; ~29,000 EST-derived “unigene” consensus sequences available at harvest-blast.org 

and in the HarvEST:Cowpea (harvest.ucr.edu) software that our cowpea team developed; 

a BAC-based physical map (http://phymap.ucdavis.edu/cowpea/; see “Prior Results”) 

from which we have sequenced about 4,000 BACs; and an initial whole-genome shotgun 

assembly that contains sequences for about 97% of all known cowpea genes but has very 

limited contiguity.  

We assembled a set of sequencing data available for IT97K-499-35 with 

SOAPdenovo. The input set for the assembly consisted of on ~60x Illumina GAII short 

reads, one 5 kb library, about 30,000 Sanger BAC-end sequences and about 250,000 

Sanger “gene space” sequences. Due to the fact that a large portion of the cowpea 

genome is highly repetitive, the assembly covered just ~40% of the genome and is very 

fragmented. It consists of from over 600 thousand scaffolds, with an n50 of ~6.3 kb.  

We mapped the EST-derived consensus sequences (unigenes) from assembly P12 of 

HarvEST:Cowpea (harvest.ucr.edu) to the created assembly with BLAST. More than 97% 

of the unigenes were mapped to the assembly with a high mapping score.  

We also produced an assemblies from ~4,000 minimal tiling path BACs using our 

sequencing protocol based on combinatorial pooling [4]. Briefly, in our sequencing 

protocol (i) we pool the MTP BACs according to the shifted transversal pooling design, 

(ii) sequence the DNA in each pool, trim/clean sequenced reads, (iii) assign reads to 

BACs using our tool HashFilter, (iv) assemble reads BAC-by-BAC using a standard 
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assembler (e.g., Velvet or SPAdes). Each BAC assembly contained on average 29 

scaffolds, with an average n50 of ~14 kb, so in general, the quality of BAC assemblies 

are better than the whole-genome draft sequence. We believe that the BACs cover ~60% 

of the cowpea genome because around 60% of the unigenes were mapped to the BAC 

assemblies. 

Although the quality of the draft cowpea genome assembly can be improved, we 

designed a "60k" iSelect SNP assay (Illumina, Inc., San Diego, CA) based on that. We 

have used this assay to genotype several cowpea accessions to support high-density map 

production.  

A set of SNPs, discovered by Genotyping-by-sequencing (GBS) method [50] at 

Cornell University Institute of Genomic Diversity (IGD) was provided by UCR Plant 

Biology department. GBS is a SNP detection pipeline designed for efficient genotyping 

of large numbers of samples using next generation sequencing platforms. In this 

technique, genome complexity is reduced with methylation-sensitive restriction enzyme 

digestion. The ends of small restriction fragments are sequenced at 96- to 384-plex levels 

per flow channel on the Illumina HiSeq instrument. The GBS SNPs were discovered 

from 119 cowpea samples.  

4.1.2. Sequencing, sequence alignment and SNP calling 

In order to detect SNPs in cowpea we sequenced thirty-six cowpea breeding 

accessions from Africa, China and the United States, using the Illumina HiSeq 2500 

hosted at UC Riverside. The thirty-six libraries composed of 2x100bp paired end reads 



 

68 
 

had an average coverage of 12.5X. We trimmed the reads based on quality scores and 

discarded reads shorter than 70bp.  

As reported in the previous section, the SOAPdenovo assembly for the cowpea 

reference genome (cultivar ITK97-499-35) was highly fragmented. Due to the low 

quality of the reference genome, it was crucial to be very conservative in the analysis of 

candidate SNPs because of possible assembly errors in the reference sequence. For this 

purpose, we selected the two highest quality set of reads from ITK97-499-35 and 

included them in our analysis as the 37th genotype (referred as the ITK genotype 

hereafter).  

Each of the thirty-seven sets of reads was individually mapped to the reference 

genome using BWA [51] (BWA mem with –M option to mark shorter split hits as 

secondary). On average about 87% of the reads were mapped uniquely to the reference 

genome. We excluded reads mapped to multiple locations from further analysis. Table	
  12 

summarizes the mapping statistics for each cowpea accession.  

The alignment files were merged with the software tool Picard to a single “sam” file. 

Reads that “hanged off” the end of the contigs in the reference sequence were clipped 

with Picard. Also, in order to avoid skewed variant calling result, duplicated reads were 

marked with Picard. Duplicated reads are mostly originated from DNA prep methods and 

may misguide the SNP calling tools in case they contain sequencing errors. 
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Table 12. Mapping statistics for 36 cowpea accessions 

Accession 

code 

Total 

number of 

reads 

% reads 

aligned 

Aligned 

bases 

 HQ aligned 

reads 

HQ aligned 

Q20 bases 

Mismatch 

rate 
INDEL rate 

Mean read 

length 

%reads 

aligned in 

pairs 

002 5722440 0.882552 4431379635 36695865 3220070361 0.019155 0.001092 96.829325 0.949452 

003 63681647 0.877309 4912910063 40571742 3580088877 0.019149 0.001157 96.789498 0.939521 

005 62384014 0.881382 4837829484 39780184 3505927785 0.019575 0.00114 96.930588 0.946913 

006 68329599 0.891252 5386070218 44040654 3901724888 0.019104 0.001094 96.91561 0.946836 

007 92780607 0.883712 7257596016 59704339 5311313645 0.018828 0.001109 97.084049 0.945719 

008 58150744 0.877237 4484945854 36914412 3256918292 0.019234 0.001161 96.794883 0.938929 

009 55878161 0.882818 4350292145 35597484 3153138800 0.019457 0.001177 96.900026 0.94112 

010 42065728 0.891384 3303200232 27036688 2384043625 0.019332 0.001078 96.91001 0.948549 

012 56378738 0.903137 4508400774 36646799 3247645178 0.019403 0.001047 97.008748 0.957359 

013 53803268 0.883558 4192817538 34207684 3029982306 0.019516 0.00117 96.849769 0.939185 

014 52945896 0.876356 4069671078 33359190 2935888072 0.020178 0.001218 96.752236 0.938388 

015 54143339 0.880889 4193642216 34304871 3027344732 0.019864 0.001207 96.861697 0.940369 

016 54378736 0.876953 4195085842 34803931 3072812157 0.018955 0.001146 96.785913 0.938043 

017 54583876 0.915922 4405359380 37153576 3285870030 0.018454 0.000949 97.082056 0.964511 

019 56842645 0.885576 4444608799 36609141 3244201895 0.018498 0.001061 96.817979 0.942064 

020 59929340 0.879379 4633249502 38259034 3374668962 0.018558 0.001069 96.897608 0.94441 

023 63186499 0.896783 5009675872 40464675 3581240448 0.019965 0.001098 97.008681 0.954434 

024 92157135 0.875559 7119942628 58457770 5183217542 0.019142 0.001102 97.113443 0.948456 

026 66690032 0.885053 5208769588 42925235 3792415772 0.018826 0.001052 96.992409 0.953134 

027 56231255 0.896665 4468215430 36267215 3218952959 0.019012 0.001064 96.80786 0.946925 

028 64553920 0.893551 5098723586 41774187 3697824190 0.019126 0.001078 96.817063 0.948776 

029 13210443 0.88422 8101042014 66938600 597723310 0.018594 0.001098 97.225865 0.947943 

030 6100513 0.875042 4611898277 38192040 3358742076 0.019758 0.001204 96.889533 0.941244 

032 68917003 0.887372 5407879336 44835048 3977824887 0.018973 0.001119 96.802867 0.944729 

033 56101445 0.887647 4396098259 36373452 3222902222 0.018745 0.001102 96.791847 0.94781 

034 63589528 0.873437 4872484494 40182975 3538298920 0.019846 0.001195 96.830765 0.94047 

035 97555059 0.883285 7633482805 62630838 5578157461 0.019404 0.001163 97.017319 0.946807 

036 47343832 0.872003 3611255630 29863594 2616979355 0.020105 0.001221 96.807774 0.940391 

038 46396066 0.8721 3540992506 29306022 2571249033 0.019583 0.001185 96.858473 0.938897 

039 64295666 0.895606 5049367424 41967673 3688207259 0.020284 0.00113 96.918372 0.957847 

040 51907594 0.884407 4028312450 33215155 2916082777 0.019264 0.001089 96.836851 0.948393 

G32 57387758 0.87325 4443821204 37397022 3342623035 0.019778 0.00125 98.262768 0.949047 

ZJ60 61607426 0.866673 4751798648 39764617 3570054619 0.019605 0.001246 98.278719 0.946589 

ZJ282 45115430 0.879375 3541767172 29955497 2694998620 0.019354 0.001177 98.471749 0.95421 

ZN016 44195979 0.885919 3506744303 29432724 2659166923 0.019687 0.001171 98.457848 0.957204 
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In order to call the SNPs genome-wide, we employed three software packages, 

namely Samtools [52], SGSautoSNP [53] and FreeBayes [54]. We could not use GATK 

[55] because this tool needs a set of confirmed training SNPs for the base quality score 

recalibration phase which we did not have for cowpea. We had 1,536 SNPs previously 

discovered with the Ilumina GoldenGate assay [56], but this number of SNPs was 

insufficient for training GATK. 

Samtools has been widely used for calling SNPs for different organisms due to its 

simplicity and accuracy [57-59]. Several studies showed that Samtools is almost as 

reliable as GATK in terms of the quality of discovered SNPs, especially when there is no 

verified set of SNPs available in advance [60]. In total,	
  Samtools discovered a total of 

5,108,787 SNPs (using mpileup with default parameters). 

We tried to filter the set of primary discovered SNPs with vcfutils [61] with default 

parameters, which led to around three million SNPs. We compared the ratio between the 

number of verified SNPs deleted because of the filtering, and the number of verified 

SNPs remained in the set. The results did not convinced us that the filtered set was more 

accurate than the original set, so we moved forward with the original set. 

We also independently called the SNPs with SGSautoSNP. This tool has been mainly 

designed for complex crop genomes (e.g., on the wheat genome[53]). SGSautoSNP does 

not need a reference sequence for detecting the SNPs. The reference is only used to 

assemble the reads, then SNPs are then called between the assembled reads. This was a 

desirable feature for our cowpea project because of the very fragmented reference 

genome. SGSautoSNPs detected a total of 2,488,797 SNPs.   
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Finally, we used FreeBayes to independently call the cowpea SNPs. Contrary to tools 

like samtools and GATK, which discover variants based on the precise alignment of the 

reads, FreeBayes is a haplotype-based variant detection tool. A haplotype is a set of DNA 

variations, or polymorphisms, that tend to be inherited together. FreeBayes considers this 

type of relationship between the SNPs during the calling process. FreeBayes has been 

used to call SNPs for potato [62], Corvina [63], Adriatic sturgeon [64] and others. 

FreeBayes called a total of 8,269,140 SNPs on the cowpea genome. 

4.1.3. Filtering the candidate SNPs 

We designed several filters to determine the most reliable subset of SNPs in cowpea. 

The first step was to compute the intersection between the SNPs called by Samtools, 

SGSautoSNP and FreeBayes. About 1.5 million SNPs were called by all the three tools.  

We further filtered down the set of 1.5M SNPs based on several additional criteria, 

namely a) allele frequency, b) existence or absence of repeated patterns (i.e., repeated a 

certain number of times in the WGS assembly) in the SNP sequence, c) the size of WGS 

contig containing the SNPs, and d) calling scores generated by each of the tools, and 

other criteria. Finally, we took advantage of available gene models for evolutionary-

related genomes to refine the set further. 

We expected that SNPs located inside the gene bodies (or close to them) would be 

more useful for the downstream applications. Specifically, we took advantage of high 

quality genes models available for common bean (P. vulgaris), which is a close relative 

of cowpea in the Fabaceae family. Due to their relatively close evolutionary distance, a 
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high level of conservation between the genes models is expected. Over 20 thousand gene 

models are available for common bean.   

In order to find the synthetic blocks between cowpea and common bean, we aligned 

the two genomes with Mummer [65]. We first removed scaffolds smaller than 100,000 bp 

in the P. vulgaris assembly and then divided the remaining scaffold into two sets based 

on the chromosome of each scaffolds (chromosomes 1-5 in one set and chromosomes 6-

11 in the other). The reason for splitting the files was that Mummer is unable to align 

genomes larger than a particular size. We then aligned the cowpea genome assembly to 

the two files separately and merged the results. Mummer reported synthetic blocks 

between the two genomes. Some of these blocks included common bean gene models. 

The list of putative gene models in the cowpea assembly was used below in the final 

selection criteria. 

Illumina provides a web-based service which evaluates the candidate SNP sequences 

based on certain constraints for designing the iSelect chip and informs the user if a 

particular SNP can be included to the final design or not. A score is assigned to each of 

the accepted candidate sequences that reflects the probably of the sequence to identify 

uniquely to the desired SNP (the higher, the better). In some cases, a SNP sequence is 

acceptable, but requires two assays on the chip (e.g., when the sequence contains a 

certain number of ambiguous nucleotides). We selected two subsets from the remaining 

candidate SNPs and focused on these subsets for the rest of the filtering process:  
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1) The primary list of SNPs consists of the SNPs that required one assay on the chip. 

The SNPs in this list had a design score between 0.500 to 1 and found either by Samtools, 

SGSautoSNP and Freebayes or were included in GBS, SGSautoSNP and Freebayes sets.  

2) The secondary list of SNPs consists of the SNPs needed two assays on the chip 

with design score 0.500 to 1 or required one assay on the chip with design score 0.270 to 

0.499. Again, These SNPs were found either by samtools, SGSautoSNP and Freebayes or 

were included in GBS, SGSautoSNP and Freebayes sets. 

The final list of SNPs was selected according to the following rules, aimed at 

selecting the most reliable set of SNPs from the primary and secondary lists: 

1. We selected a SNP from the primary list if it was inside the WGS contig 

boundaries matching a common bean gene model. 

2. We selected a SNP from the primary list if it was located on the same WGS contig 

region (synthetic block) matching a common bean gene model.  

3. We selected a SNP from the primary list if it was located within 3000bp of either 

end of the aligned region (synthetic block) on the same WGS contig as (1). 

4. We selected a SNP from the primary list if it was located on any WGS contig (not 

necessarily the synthetic block with the highest similarity) having SNP within 3000 bp of 

region matching a common bean gene model. 

5. We selected a second SNP from the primary list if it was from the same WGS 

contig as (4). 
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6. We selected a SNP from the secondary list for a WGS contig if rules 1-5 resulted 

in only one SNP for that contig. The additional SNP was selected from the region 

matching the gene model, and at least 246 bp from the first selected SNP. 

7. We selected a SNP from the secondary list if only one SNP was chosen in (6) for a 

particular WGS contig. Again, the second SNP was chosen from the same WGS contig as 

the first SNP chosen. In this case, a SNP was selected near the region matching the gene 

model, at least 246 bp from the first SNP chosen. 

8. We selected a SNP from the secondary list, for any common bean gene model that 

has not as yet had any SNP chosen and any WGS contig having SNP within 3000 bp of 

region matching a common bean gene model. 

9. We selected a second SNP from same WGS contig as (8), from the secondary list. 

10. For any common bean gene model that has one SNP selected, we chose a second 

SNP from the primary list, if it was at least 130 bp away from the first SNP in the same 

WGS gene model. 

11. We selected from the GBS set, the SNPs in or near regions of a common bean 

gene models (only the SNPs which needed one assay with design score at least 0.5, minor 

allele frequency at least 0.25). 

12. We selected a SNP from the whole list of SNPs, when only one of the 37 

individuals had minor allele (only the SNPs requiring one assay with design score at least 

0.5). 

In addition, 1163 GoldenGate assay SNPs had a good technical score when submitted 

to the Illumina website and passed the other filters. These SNPs were also included to the 
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final set. The final set provided to Illumina for the chip design contained 56,719 SNPs 

(instead of 60K), due to the fact that two assays were required by some of the SNPs on 

the chip.  

4.1.4. SNP validation 

Once the iSelect chip was available, we genotyped several cowpea tissues and 

investigated the quality of the final list of SNPs with GenomeStudio software. 

GenomeStudio clusters the input samples based on the detected SNPs and visualizes the 

clusters. A high quality SNP generates clear clusters with sharp borders. Also, this tool 

helps to realize if the call rate of a specific SNP is within the expected range (Figure	
  21).  

  

Figure 21. Left: an example of a low quality SNP, detected by GenomeStudio (Illumina). Right: An example of a 
high quality SNP. Borders are sharp and the samples fall close to the cluster centers. 

Based on this analysis, more than 49,000 SNPs (96%) were led to “clean” clusters 

indicating that these SNPs are likely to be real. These SNPs can be used for allele mining 

and high-density mapping, and can adapted to other genotyping platforms for a range of 

breeding applications.	
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4.1.5. Ordering and anchoring the cowpea BAC 

As mentioned earlier, we sequenced the cowpea cultivar IT97K-499-35 based on two 

different approaches: 

1) BAC by BAC: We sequenced 4,353 minimal tiling path BACs, which are expected 

to cover around 60% of all the cowpea genome. We assembled the reads for each of the 

BACs separately with SPAdes [16]. Each BAC assembly contained on average 29 

scaffolds, with an average n50 of  about 14 kb.  

2) Whole Genome Shotgun (WGS): We sequenced the entire cowpea genome with 

Illumina GAII at ~60x coverage. In addition, a 5 kb mate pair library, about 30,000 

Sanger BAC-end sequences and about 250,000 Sanger “gene space” were assembled with 

SOAPdenovo. The result was a set of 644,126 scaffolds, with an n50 of  about 6.3 kb. 

In order to take advantage of both assemblies, we had to order and orient BAC and 

WGS contigs along the cowpea chromosomes. Observe that the order and orientation of 

the contigs created by SPAdes for each BAC are unknown. Similarly, the order and 

orientation for the WGS contigs and scaffolds created by SOAPdenovo are unknown.  

We took advantage of the genotyping data obtained from the iSelect to create a high-

density genetic map on which we could order and orient BAC contig and WGS 

contigs/scaffolds. We used MSTmap [66] to generate a cowpea genetic map for 14,868 

markers (SNPs). We then selected 121bp around each of the 50,747b SNPs with known 

coordinates from the WGS contigs (60bp from the right side and 60bp from the left side 

of the SNP). Out of 50,747b SNP “design sequences”, 49,645  didn't contain any 

ambiguous nucleotide. Among the 1,102 SNP sequences with ambiguous 
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nucleotide, 1,060 had Ns at the ends, which were trimmed. We excluded 48 SNPs with 

ambiguous nucleotides in the middle from further analysis.  Because of the trimming 

process some of the SNP sequences were shorter than 121bp.  By comparing the genetic 

map with the unambiguous SNP list, we obtained the coordinates for 37,161 SNPs 

(iSelect SNPs), located on 25,244 WGS scaffolds. In some cases, we observed a conflict 

between the genetic map and the prior knowledge about certain SNPs. For example, 

SNPs that were located on a particular WGS contigs according to the iSelect design but 

mapped to two distinct chromosomes based on the genetic map. We marked those SNPs 

for further investigations. 	
  

We then mapped the SNP design sequences against the BAC assemblies with 

BWA[38]. The result was filtered to find only perfect (exact) mappings. As a result, 

12,210 SNPs were mapped uniquely to the BAC assemblies (to 2,040 unique BACs). 

Among them, the coordinates for 8,853 SNPs were available, which revealed the location 

of 1,786 BACs. According to the mapping result, 10,935 SNP sequences were mapped to 

two BACs. We assumed that these SNPs were located on the overlapping portion of the 

adjacent BACs. The coordinates for 8,058 of these SNPs were determined. Also, 2,799 

SNP sequences were mapped to three BACs. Although it is possible for three MTP BACs 

to be overlapping, we decided to exclude them from further analysis.  

We then mapped the WGS scaffolds to the BAC assemblies. After filtering and 

analysis, 116,378 WGS scaffolds were mapped to a single BAC and 114,032 to two 

BACs (overlapping section). After integrating the BACs with known position and the 

contigs mapped to the BACs, we found the approximate location for 46,347 more contigs.  
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4.2 Reference-guided assembly of heterogeneous DNA 
segments to improve the quality of P.falciparum DD2 genome 

In this section, we present a method to assemble a mixture of reads and DNA 

segments based on a reference genome. We applied this method to improve the quality of 

assembly for P. falciparum strain DD2 based on the genome of P. falciparum strain 3D7.	
  

Plasmodium falciparum, the parasite that causes malaria in human is a major cause of 

mortality worldwide, infecting approximately 500 million individuals each year. It is 

estimated that 3,000 children under the age of five years fall victim to malaria each day. 

Around 40% of the worlds population is at risk. In spite of the vast investments, there is 

still no effective vaccine for malaria. The number of infected individuals is increasing 

due to increasing drug resistance and globalization. Plasmodia infect many organisms 

including birds, rodents, monkeys and human.  

Four species of Plasmodia cause malaria in human; among them Plasmodium 

falciparum is the deadliest. P.falciparum has fourteen chromosomes, a mitochondria and 

a apicoplasts. The sequence of its mitochondrion was reported in 1995 [67] and its 

complete genome was published in 2002 [68]. The genome size is almost 24 million 

bases and very AT rich. The complete sequence of P. falciparum genome has enabled 

researchers to identify many of the genes involved in drug resistance and to understand 

the underlying mechanisms that control the biology of this parasite. What makes this 

organism especially interesting for researchers is the fact that the mechanism controlling 

gene regulation in Plasmodia appears to be different from known mechanisms of 
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transcriptional regulation in other organisms. Strong evidences suggest that epigenetic 

mechanisms play an important role in malaria parasite gene expression. 

P. falciparum appears in the wild in many different variants, or strains: 3D7 is the 

most widely studied strain. DD2 is another strain known to be resilient against an anti-

malaria drug called artimisin. The Broad Institute reported a Sanger-based draft genome 

sequence of P.falciparum DD2 strain in 2007 [69]. 

4.2.1. Related work 

Our goal in this project is to improve the quality of DD2 Sanger-based assembly with 

the 2nd generation sequencing data (NGS). For this purpose, we used P. falciparum strain 

3D7 as a reference sequence to help with the assembly of NGS reads. 

 We review some of the approaches proposed in the literature to improve the quality 

of draft contigs and advance a genome from a draft assembly to an improved or finished 

state. CloG [70] is a technique to close gaps in a draft assembly. It has two main steps: 1) 

generate a hybrid de novo assembly from NGS short reads and the original draft 

assembly. 2) close the gaps between adjacent contigs by reconciling the two assemblies. 

The basic idea behind reconciliation is to generate a consensus sequence by finding 

overlapping regions of the two assemblies. For this purpose, a hybrid assembly contig 

that shares common seeds with two different draft assembly contigs is detected. Seeds are 

specific length sequences located at a specific distance away from contig ends. 

Consensus sequences are constructed by stitching together appropriate fragments from 

the two assemblies.  
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Tsai et al. have developed an approach [71] to improve the quality of a draft assembly 

with local assembly of gap regions. Reads that are belong to gap sections or questionable 

regions are identified and reassembled locally before being incorporated back into the 

final assembly. In order to do this, reads are aligned against the initial assembly. The 

reads aligned to the contig ends, with their mates, are assembled into new contigs, which 

are subsequently mapped back to the initial assembly. Then, reads are aligned against the 

updated assembly and the whole process is repeated iteratively until the gap is closed or 

no new useful read is found. 

It is also possible to improve the quality of their assembly by closing the gaps 

manually. In order to do that, they produce additional sequence referred to as finishing 

reads. Finishing reads derive from PCR, primer walking, transposon bombing, shotgun of 

individual clones and other techniques. Reads are extended and manually aligned to close 

the gaps and improve questionable regions. This manual process is labor intensive and 

time consuming. Furthermore, the increases in data volumes and the small contig sizes 

which is the consequence of using NGS reads, have increased the time and costs needed 

to advance a genome from a draft assembly to an improved or finished state. For 

example, Koren et al. proposed a method [72] that generates a de novo assembly which 

integrates the whole genome shotgun sequencing technique and finishing reads. The 

algorithm uses the sets of finishing reads and placement bounds for each set to 

incorporate finishing reads during the assembly process.  

Another approach for finishing draft assemblies is to assemble different types of reads 

independently and combine the result subsequently. Casagrande et al. [73] proposed a 
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method to improve the overall quality of the genome assembly sequences by merging the 

sequences produced with different assembly techniques. In each step, two assemblies are 

combined. The user chooses one of the assemblies as the master assembly by the user. 

The algorithm tries to improve the quality of the master assembly using the information 

obtained from the other. For this purpose, the two contig sets are mapped and 

corresponding contigs are detected. The longer contig is reported as the final result for 

each contig pair. If significant differences are observed between contigs, the master 

assembly is chosen. 

Assembly reconciliation is a method to integrate different assemblies proposed by 

Zimin et al. [74]. Again, the main goal is to extend the contigs by merging sequences 

coming from different assemblies. Incorrect assembled fragments are detected by 

exploiting mean insert size. In particular, if the distance between paired reads in a 

particular section diverges from the expected value, it is marked as a potential breakpoint.  

A couple of methods have been suggested to incorporate mixtures of reads based on a 

reference-guided assembly. These methods usually combine de novo and reference 

guided assembly techniques to take advantage from both approaches. 

Cattonaro et al. extend their idea to improve the assembly result when a reference 

genome is available [74]. This method first builds a de novo master assembly. Also, a 

reference guided assembly is generated. These two assemblies are combined using the 

technique proposed in [75]. To detect possible breakpoints and break assemblies to 

smaller sections, assembly reconciliation technique [14] is used.  
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Gnerre et al. [76] have proposed a method to improve low-coverage de novo 

assemblies by exploiting the genome sequence of a related organism. The method begins 

with de novo assembly of the reads, followed by mapping the reads to the reference 

genome. Mapped reads are grouped based on their position. Each group is assigned to a 

de novo contig (or contigs) based on the similarity between the reads in the group and the 

contig. Grouped reads are used to improve the quality of the contig. Scaffolding is carried 

out using paired-end reads. The authors applied this method to obtain whole genome 

sequence of four divergent Arabidopsis thaliana in 2010 [77]. 

TASR [78] is a reference guided assembly algorithm for very large NGS data sets. 

Sequence targets are read first. From each target, every possible 15-character word from 

the plus and minus strand are extracted and stored in a hash table. Next, reads from the 

NGS data set are processed: any read with an exact match of its first 15 bases to any of 

the 15-mer words from the target sequence, is retained. The identity and coverage of 

every base, within and beyond the user-provided target sequence, is stored in a hash 

table. The sequence within the bounds of the user-supplied target sequence will exactly 

match the target itself, but recruited sequence reads will typically extend beyond the 

boundaries of the target sequence, and this flanking sequence may also be included in the 

assembly. A consensus sequence is derived, taking exactly matching bases at each 

position within the target region, and extended outward, bi-directionally, to include the 

most represented base at positions outside the target sequence. Extension is terminated 

when a position is encountered that does not meet the user-specified criteria. 
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LOCAS [79] is another method designed for assembling short to medium sized reads 

either de novo or in a homology-guided fashion using an overlap-layout-consensus 

approach.  

4.2.2. Methods and Excremental Results 

Sequence comparison between P. falciparum DD2 strain and other Plasmodia can 

provide critical information about the underlying mechanisms of drug resistance in the 

DD2 strain. In addition, it enables researchers to carry out several other genome-wide 

studies, e.g., gene expression analysis via RNA-seq, epigenetic studies, etc. As said, the 

goal is to derive an efficient and accurate method to combine heterogeneous reads to 

build an improved version of DD2 genome, based on the reference 3D7 genome.  

We started with a heterogeneous set of input data, including single and paired end 

reads of P. falciparum DD2 strain, Sanger contigs of DD2 strain from the Broad Institute 

of MIT and Harvard and a high quality assembly of P. falciparum 3D7. The Broad 

Institute (BI) generated the assemblies as a part of a project for comparing different 

strains of P. falciparum. These assemblies were built from Sanger reads, which are 

usually longer and cleaner than NGS reads in terms of sequencing errors.  In this case, we 

quickly realized that the DD2 Sanger-based contigs were not very accurate. Table	
   13 

summarizes the statistics collected for the BI contigs. 

Table 13. Statistics for the DD2 Sanger contigs generated by the Broad Inst. 

 

Num of contigs Min contig len Mean contig len N50 Max contig len Total length 

4,511 201 4,311 11,610 79,198 19.5 M 



 

84 
 

P. falciparum has a very AT-rich and repetitive genome; this make de novo assembly 

of the genome very challenging. We decided not to rely on de novo assembly of the 

sequencing data because (1) the genome of P. falciparum is very repetitive genome, (2) 

we had to deal with a diverse set of the input data, and (3) the quality of the NGS reads 

was relatively low. We decided to use a reference genome as a guide to assemble the 

reads. Figure	
  22 shows the pipeline we designed to assemble the genome of P.falciparum  

DD2 from the set of heterogeneous sequencing data. This pipeline, partially based on a 

method proposed in [77], contains the following steps: 

a) Trimming the short reads: The process began with the trimming of single and 

paired end reads. The quality of both end of the NGS reads tend to be lower. Also, NGS 

reads contain at the beginning a DNA barcode and an adapter which has applications in 

the sequencing process. NGS instruments have internal software modules for removing 

adapters and low quality bases, but sometimes it is necessary to re-trim the reads before 

assembling them. 

Trimming started with removing the low quality nucleotides (with score lower than 

25 for the paired end and 10 for the single end reads) from the both ends. Removing the 

reads with several low quality nucleotides in the middle was the second step. Reads with 

more than 20% low quality bases or “N”s were removed in this step. To help the mapper 

to align the reads more accurately, base pairs with quality score lower than 15 were 

replaced with “N”. Finally, six base pairs at the beginning of all the reads were removed 

based on the quality profile of the reads. We eliminated all the reads shorter than 15 bases 
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(18 bases for single end reads). Table	
  14 contains the statistics collected about the three 

input sets, before and after trimming. 

	
  

Figure 22. The reference-guided assembly of heterogeneous DNA segments pipeline 

	
  

b) Mapping and clustering the reads: because of the similarity between the reference 

and the target genome, we expected the reads to cover most of the reference genome. As 

expected, some parts of the reference genome remained uncovered (or poorly covered) 

due to mutations and structural variations.  

Table 14. Statistics for the input datasets, before and after trimming 

 
Reads before 

trimming 

Reads after 

trimming 

Unmatched reads 

after trimming 

CG% (before | 

after trimming) 

Max length before 

trimming 

Min length 

after trimming 

Single end 37,376,378 29,926,656 - 30% | 28% 76 18 

Paired 1 (C) 41,735,228 pairs 29,233,333 pairs 15,789,230 (total) 18% | 17% 51 (each pair) 15 

Paired 2 (G) 36,592,078 pairs 29,741,545 pairs 15,789,230 (total) 37% | 36% 51 (each pair) 15 
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We mapped a set of single end reads, two sets of paired end reads against the 3D7 

genome separately with BWA. For each read, the maximum edit distance was set to 5% 

of the read length, including at most 3% of gap opens. We prevented BWA from 

mapping the reads with long gaps. Table	
  15 shows the result of mapping DD2 reads to the 

3D7 genome. 

Table 15. Mapping statistics 

Name Alignment percentage Unique mapped Multiple mapped 

SE reads 76% 68% 8% 

Unmated reads 68% 62% 6% 

PE read set 1 59% 55% 4% 

PE read set 2 30% 26% 4% 

 

We expected a significant deletion near the beginning of chromosome 2 in the DD2 

genome. We observed the deletion by visualizing the mapping result, as shown in the left 

panel of Figure	
  23. 

  

Figure 23. Left: coverage profile of chromosome 2, including a deletion. b) coverage profile of 
chromosomes 8. 

We then separated the mapped reads into several group based on the depth of 

coverage. We defined a segment as a section on the reference genome between two 

adjacent not covered by reads. Segments and their corresponding reads were detected 

Table 3. Mapping statistics

Name
Alignment
 percentage

Uniquely mapped 
(of all reads)

Multiple location 
mapped 

(of all reads)

SE reads 76.00% 68.00% 8.00%

Unmated reads 68.00% 62.00% 6.00%

PE read set 1 59.00% 55.00% 4.00%

PE read set 2 30.00% 26.00% 4.00%

After mapping the reads, the software tool SHORE [22] was used to find segments described in 
Section 3  based on the coverage profile.  The 3D7 genome was partitioned to  3056 segments.  We 
excluded segments shorter than 200 bps: the longest segments has 170,941 bps. Mitochondrion and 
apicoplast were considered as a single segment each. These segments cover roughly 93% of the 3D7 
genome. Figure 6 shows the length distribution of the segments genome-wide. 

De novo assembly and combining the contigs

Reads corresponding to each segment were assembled separately using VELVET [23]. Velvet was run 
twelve times on each  read set using twelve different k-mer sizes. For each choice of k, Velvet produces 
a set of contigs for each segment. Reads can contribute to different local assemblies because  the the 
same read can be used in distinct contigs obtained by choosing different values of k.  As a result, there 
is redundancy among local contigs. That manifests as potential overlap among assembled contigs. We 
merged these contigs using the assembler AMOScmp [24] which generates a set of non-redundant 
supercontigs. The BI contigs mapped to the target chromosome were added to the local assemblies in 
this step.  

To separate BI  contigs,  we aligned them to 3D7 genome using BLAST.  4,216 of  BI  contigs  were 
aligned to 3D7 genome, including 3829 uniquely mapped contigs. The total length of these contigs 
(including the repeated contigs) is 20,280,254 bps.

Table 4 summarizes statistics about the BI contigs and the result of combining contigs generated in 
this step and BI contigs.  N:50 and total length of contigs are two main statistical measures to compare 
two draft assembly sets. Given a set of contigs of varying lengths, the N50  is defined as the length N  
for which 50% of all bases in the contigs are in a contig of length L < N.  Figure 8 and 9 show the total  
length of the two contig sets and N:50 for each chromosome separately. Observe that our contigs have 
larger N:50 and total length than BI contigs for most of the chromosomes. 

a) coverage profile of chromosome 2, containing a deletion b) coverage profile of chromosomes 8

Figure 5. Coverage profiles of chromosome 2 and 8

10

Table 3. Mapping statistics

Name
Alignment
 percentage

Uniquely mapped 
(of all reads)

Multiple location 
mapped 

(of all reads)

SE reads 76.00% 68.00% 8.00%

Unmated reads 68.00% 62.00% 6.00%

PE read set 1 59.00% 55.00% 4.00%

PE read set 2 30.00% 26.00% 4.00%

After mapping the reads, the software tool SHORE [22] was used to find segments described in 
Section 3  based on the coverage profile.  The 3D7 genome was partitioned to  3056 segments.  We 
excluded segments shorter than 200 bps: the longest segments has 170,941 bps. Mitochondrion and 
apicoplast were considered as a single segment each. These segments cover roughly 93% of the 3D7 
genome. Figure 6 shows the length distribution of the segments genome-wide. 

De novo assembly and combining the contigs

Reads corresponding to each segment were assembled separately using VELVET [23]. Velvet was run 
twelve times on each  read set using twelve different k-mer sizes. For each choice of k, Velvet produces 
a set of contigs for each segment. Reads can contribute to different local assemblies because  the the 
same read can be used in distinct contigs obtained by choosing different values of k.  As a result, there 
is redundancy among local contigs. That manifests as potential overlap among assembled contigs. We 
merged these contigs using the assembler AMOScmp [24] which generates a set of non-redundant 
supercontigs. The BI contigs mapped to the target chromosome were added to the local assemblies in 
this step.  

To separate BI  contigs,  we aligned them to 3D7 genome using BLAST.  4,216 of  BI  contigs  were 
aligned to 3D7 genome, including 3829 uniquely mapped contigs. The total length of these contigs 
(including the repeated contigs) is 20,280,254 bps.

Table 4 summarizes statistics about the BI contigs and the result of combining contigs generated in 
this step and BI contigs.  N:50 and total length of contigs are two main statistical measures to compare 
two draft assembly sets. Given a set of contigs of varying lengths, the N50  is defined as the length N  
for which 50% of all bases in the contigs are in a contig of length L < N.  Figure 8 and 9 show the total  
length of the two contig sets and N:50 for each chromosome separately. Observe that our contigs have 
larger N:50 and total length than BI contigs for most of the chromosomes. 

a) coverage profile of chromosome 2, containing a deletion b) coverage profile of chromosomes 8

Figure 5. Coverage profiles of chromosome 2 and 8

10



 

87 
 

with software HORE [80]. We excluded from the analysis segments shorter than 200 bps. 

Mitochondrion and apicoplast were considered as a single segment each. These segments 

covered roughly 93% of the 3D7 genome. Figure	
  24 shows the length distribution of the 

created segments, genome-wid. 

	
  

Figure 24. Length distribution of the created segments 

c) Assembly of the reads in each segment: After partitioning the mapped reads, we 

carried out a local de novo assembly in each segment. In this case, the assembler handled 

fewer reads and smaller targets, thus simplifying the assembly process.  

De novo assembly is highly sensitive to parameters like the k-mer size. Choosing an 

appropriate k-mer is not trivial as it is a trade off between specificity and sensitivity. 

Longer k-mers decrease mis-assembly errors because the detected overlaps are more 

reliable. Shorter k-mers increase contiguity in the assembly. We used VELVET [14]to 

assemble the reads assigned to each segment. VELVET was run twelve times for each read 

set using twelve different k-mer sizes. We called these local assemblies primary contigs.  

d) Merging the contigs: We mapped the primary contigs to the reference genome 

again in order to detect overlaps and merge them. We obtained several sets of connected 

contigs, called supercontigs.	
   We merged the created contigs using the assembler 

Figure 6. Length distribution of segments

Table 4.  Comparison of BI contigs and the contigs produced by our method 

Our contigs BI contigs 

n min median mean N:50 max sum n min median mean N:50 max sum

Chr 1 290 200 1,377 2,467 4,342 23,629 533,030 346 233 1,249 1,996 2,203 23,600 690,853

Chr 2 348 201 1,435 3,014 6,612 66,171 816,945 366 204 1,251 2,571 5,422 59,641 941,118

Chr 3 368 204 1,480 3,309 8,390 50,081 976,393 376 203 1,246 2,656 7,019 31,357 998,850

Chr 4 498 201 1,256 2,699 5,608 40,788 996,199 429 203 1,242 2,603 7,440 43,280 1,116,813

Chr 5 559 202 1,040 2,685 7,390 53,549 1,272,902 409 218 1,270 2,813 7,320 38,536 1,150,919

Chr 6 487 200 1,289 3,154 7,340 63,633 1,252,322 531 204 1,239 2,681 7,916 57,538 1,423,991

Chr 7 490 200 1,254 3,212 10,283 43,095 1,262,415 446 229 1,265 2,900 8,957 40,513 1,293,403

Chr 8 578 200 1,302 2,815 5,963 30,606 1,300,960 466 211 1,239 2,642 7,069 42,645 1,231,384

Chr 9 568 202 1,262 3,218 9,636 65,466 1,416,117 454 221 1,300 2,844 7,817 33,203 1,291,368

Chr 10 658 200 1,257 2,929 7,569 42,100 1,552,881 567 209 1,289 2,719 7,938 39,372 1,542,120

Chr 11 623 200 1,534 3,602 10,550 39,247 1,920,340 657 180 1,295 2,891 8,272 34,994 1,899,808

Chr 12 758 200 1,392 3,310 8,358 52,954 2,069,271 599 222 1,344 2,915 7,684 27,118 1,746,543

Chr 13 873 200 1,468 3,669 10,504 50,108 2,759,147 733 210 1,300 3,317 9,170 33,326 2,431,576

Chr 14 800 202 1,770 4,581 12,839 88,013 3,156,696 650 206 1,512 3,744 9,252 36,634 2,433,612
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AMOScmp [81] which generated a set of non-redundant supercontigs. The BI contigs 

mapped to the target chromosome were added to the local assemblies in this step. 

We then mapped the draft contigs against the reference genome using BLAST [82] , 

which enabled us to find the corresponding chromosome for each draft contig. Mapping 

the draft contig with the primary contigs to their corresponding chromosome (and not the 

entire genome) produced more accurate results. 4,216 of the BI contigs were aligned to 

3D7 genome, including 3,829 uniquely mapped contigs. The total length of the mapped 

contigs (including the repeated contigs) was 20,280,254 bps. 

Table	
   16 summarizes the main statistics about the BI contigs and the result of 

combining the contigs generated in this step and the BI contigs. Figure	
  25 shows the total 

length of the two contig sets and N50 for each chromosome. Observe that our contigs 

have larger N50 and they significantly longer than BI contigs for most of the 

chromosomes. 

Table 16. Comparison of the BI contigs and the contigs produced by our pipeline 

 

Figure 6. Length distribution of segments

Table 4.  Comparison of BI contigs and the contigs produced by our method 

Our contigs BI contigs 

n min median mean N:50 max sum n min median mean N:50 max sum

Chr 1 290 200 1,377 2,467 4,342 23,629 533,030 346 233 1,249 1,996 2,203 23,600 690,853

Chr 2 348 201 1,435 3,014 6,612 66,171 816,945 366 204 1,251 2,571 5,422 59,641 941,118

Chr 3 368 204 1,480 3,309 8,390 50,081 976,393 376 203 1,246 2,656 7,019 31,357 998,850

Chr 4 498 201 1,256 2,699 5,608 40,788 996,199 429 203 1,242 2,603 7,440 43,280 1,116,813

Chr 5 559 202 1,040 2,685 7,390 53,549 1,272,902 409 218 1,270 2,813 7,320 38,536 1,150,919

Chr 6 487 200 1,289 3,154 7,340 63,633 1,252,322 531 204 1,239 2,681 7,916 57,538 1,423,991

Chr 7 490 200 1,254 3,212 10,283 43,095 1,262,415 446 229 1,265 2,900 8,957 40,513 1,293,403

Chr 8 578 200 1,302 2,815 5,963 30,606 1,300,960 466 211 1,239 2,642 7,069 42,645 1,231,384

Chr 9 568 202 1,262 3,218 9,636 65,466 1,416,117 454 221 1,300 2,844 7,817 33,203 1,291,368

Chr 10 658 200 1,257 2,929 7,569 42,100 1,552,881 567 209 1,289 2,719 7,938 39,372 1,542,120

Chr 11 623 200 1,534 3,602 10,550 39,247 1,920,340 657 180 1,295 2,891 8,272 34,994 1,899,808

Chr 12 758 200 1,392 3,310 8,358 52,954 2,069,271 599 222 1,344 2,915 7,684 27,118 1,746,543

Chr 13 873 200 1,468 3,669 10,504 50,108 2,759,147 733 210 1,300 3,317 9,170 33,326 2,431,576

Chr 14 800 202 1,770 4,581 12,839 88,013 3,156,696 650 206 1,512 3,744 9,252 36,634 2,433,612
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e) Quality check and validation of the contigs: Because of the repeats in the target 

genome and sequencing errors in the reads, invalid contigs could be generated. Therefore, 

a validation process was necessary. In order to do this, we mapped the single and paired 

end reads to the supercontigs. We then eliminated supercontigs with insufficient 

coverage. 

f) Scaffolding: The order of supercontigs was still undetermined at the beginning of 

this step. Neighbor supercontigs were determined with the paired reads aligned to the two 

separate supercontigs. 

  

Figure 25. Left: Comparison of sum of the length of BI contigs and the improved contigs. Right: 
Comparison of N50 for BI contigs and the improverd contigs 

g) Building new contigs and patching them: After mapping single and paired end 

reads against the reference genome, some reads were still remained unmapped. The 

unmapped and the orphan reads (paired end reads with one mate mapped and the other 

unmapped) could be distinctive parts of the DD2 genome that are not present in the 3D7 

genome, or they could be due to contamination. Since  P. faciparum parasites are grown 

in human blood, we expected that a fraction of the short reads was from the human 

genome. To identify these reads, we aligned all reads not mapped to the 3D7 genome 

Figure 7. Comparison of sum of the length of BI contigs and contigs  produced by our method 

Figure 8. Comparison of N:50 of BI contigs and contigs  produced by our method 
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Figure 7. Comparison of sum of the length of BI contigs and contigs  produced by our method 

Figure 8. Comparison of N:50 of BI contigs and contigs  produced by our method 
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against the human genome and removed the mapped reads. We mapped the leftover reads 

to the genome of every known organism with BOWTIE [83] (no mismatch and gap). Table	
  

17 summarizes statistics of aligning the reads not mapped to the 3D7 genome to the 

human genome. 

To build unique (distinctive) blocks of the target genome, the remaining unmapped 

reads were assembled de novo with VELVET. We repeated the assembly with 12 different 

k-mers. As we assembled short reads without any reference in this step, the quality of the 

created contigs were not as high as BI contigs which were not mapped to the 

chromosomes. 

Table 17. Aligning the reads not mapped to the 3D7 against the human genome 

 Unmapped SE reads Orphan reads Unmapped PE reads 

Number of reads 12,341,533 929,012 21,217,665 

Unmapped to the HG 7,956,583 (64%) 670,081 (72%) 12,095,895 (57%) 

4.2.3. Methods and Excremental Results 

We presented a method that enabled the assembling of heterogeneous DNA segments 

of P. falciparum strain DD2 based on a reference genome (3D7). We followed a pipeline 

consist of trimming, mapping, partitioning, de-novo assembly, combining contigs, 

validating and scaffolding. Contigs obtained with our pipeline were longer on average 

than the BI original contigs. However, the BI contigs not mapped to the 3D7 genome 

were longer in average than the contigs we generated with unmapped reads 
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Chapter 5:  Conclusions 

Advancement in sequencing technologies has been reducing sequencing costs at an 

astonishing rate. The estimated cost of the human genome project was about 3 billion 

dollars. At the time of writing the cost of sequencing one human genome is below 

$1,000. For the same reason, ultra-deep sequencing is also now feasible, especially for 

smaller genomes and clones. As it becomes more and more common, ultra-deep 

sequencing data is expected to create new algorithmic challenges in the analysis pipeline. 

In this dissertation, we focused on two of these challenges: the accuracy of decoding 

reads and quality of de novo assemblies created from the ultra deep sequencing data.  

In hierarchical genome sequencing approach, a genome is sequenced into long DNA 

fragments (i.e., BAC clones). To take advantage of the throughput of modern sequencing 

instruments, BACs are usually pooled before sequencing. Each reads then has be 

assigned to its original BAC after the sequencing process. Our experiments showed that 

decoding “slices” of the input reads instead of the whole dataset may increase the 

accuracy of the decoding process. We presented an effective ‘divide and conquer’ 

solution: we ‘slice’ the data in subsamples, decode each slice independently, then merge 

the results. In order to handle conflicts in the BAC assignments (i.e., reads that appear in 

multiple slices that are decoded to different sets of BACs), we devised a simple set of 

voting rules. 

We also showed that popular modern de novo assemblers are unable to take advantage 

of ultra-deep coverage, and the quality of assemblies starts degrading after a certain depth 
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of coverage. We proposed an iterative approach to solves this problem, which 

significantly improves the final quality of the assembly. Experiments on a set of ultra-

deep barley BACs and simulated data shows that our proposed method leads to high 

quality assemblies. We also demonstrated that this approach is more resilient to high 

sequencing error rates than the other methods.  

Additionally, we reported on a protocol to discover high quality SNPs for complex and 

repetitive genomes like plant genome. The SNPs discovered for the cowpea genome 

using the protocol were used to design an Illumina “60k” iSelect genotyping chip. The 

pipeline for ordering and orienting the previously sequenced cowpea BACs and WGS 

contigs, using the discovered SNPs, was reported in this dissertation as well.  

Finally, a computational pipeline for assembly of heterogeneous sequencing data was 

described and the quality of assemblies created for a drug-resistant malaria strain based 

on the pipeline was investigated. 

To conclude, new algorithms and methods will be required to handle deeper and more 

heterogeneous sequencing data as we witness advances in sequencing technology. This 

dissertation is a step toward this goal.  
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