
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Efficient Methods for Analysis of Ultra-Deep Sequencing Data

Permalink
https://escholarship.org/uc/item/4md0c4bz

Author
Mirebrahim, Seyed Hamid

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4md0c4bz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Efficient Methods For Analysis of Ultra-deep Sequencing Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Seyed Hamid Mirebrahim

December 2015

Dissertation Committee:

 Dr. Stefano Lonardi, Chairperson
 Dr. Timothy J Close
	
 Dr. Eamonn Keogh
 Dr. Michalis Faloutsos

Copyright by
Seyed Hamid Mirebrahim

2015

The Dissertation of Seyed Hamid Mirebrahim is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincerest gratitude to my advisor

Dr.Stefano Lonardi for the invaluable guidance and support during my doctoral study. I

joined Dr.Lonardi’s lab in 2011 without much experience in research, academic writing,

and deep knowledge of bioinformatics. I spent 5 years learning from him every single

day. Thank you, Dr.Lonardi, for being such an extraordinary advisor.

My gratitude also goes to Dr. Timothy J. Close and his colleagues in the department

of Botany and Plant Sciences at UC Riverside. This achievement was not possible

without his guidance and advises.

 I would also like to thank Dr.Eamonn Keogh, Dr.Tao Jiang, Dr.Tamar Shinar,

Dr.Gianfranco Ciardo and Dr.Michalis Faloutsos, my oral qualifying exam, proposal and

dissertation defense committee members, for their insightful guidance and valuable

comments.

Foremost, I would like to express my gratitude to my parents, my sister and my

brother who always had faith in me, and their supports helped me focus on my studies.

Finally, I would like to thank my friends, especially Mohammad Shokoohi-yekta,

Mohammad Mehdi Eslamimehr, Ali Basiri, Mehdi Sadri, Masoud Akhoondi, Sara Naseri

and Mohammad Asghari who have helped and encouraged me to move forward.

v

To my parents, Aliakbar and Farzaneh, my brother, Ali and my sister, Sepideh for their

constant love, patience and support. Without them, it was simply impossible.

	

vi

ABSTRACT OF THE DISSERTATION

Efficient Methods for Analysis of Ultra-deep Sequencing Data

by

Seyed Hamid Mirebrahim

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2015

Dr.Stefano Lonardi, Chairperson

Thanks to continuous improvements in sequencing technologies, life scientists can

now easily sequence DNA at depth of sequencing coverage in excess of 1,000x,

especially for smaller genomes like viruses, bacteria or BAC/YAC clones. As “ultra

deep” sequencing becomes more and more common, it is expected to create new

algorithmic challenges in the analysis pipeline.

In this dissertation, I explore the effect of ultra-deep sequencing data in two domains:

(i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones and

(ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing

data, I show that when the depth of sequencing increases over a certain threshold,

sequencing errors make these two problems harder and harder (instead of easier, as one

would expect with error-free data), and as a consequence the quality of the solution

degrades with more and more data.

 For the first problem, I propose an effective solution based on “divide and conquer”:

the method ‘slices’ a large dataset into smaller samples of optimal size, decodes each

vii

slice independently, and then merges the results. For the second problem, I show for the

first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing

data. I then introduce a new divide and conquer approach to deal with the problem of de

novo genome assembly in the presence of ultra-deep sequencing data.

Finally, I report on a novel computational protocol to discover high quality SNPs for

cowpea genome. I show how the knowledge of approximate SNP order can be used to

order and merge BAC clones and WGS contigs.

viii

Table of Contents

Acknowledgements ... iv	

Abstract of the Dissertation ... vi	

Table of Contents .. viii	

List of Figures .. x	

List of Tables ... xiii	

Chapter 1: Introduction .. 1	

Chapter 2: ‘Slicing’ sequencing data to improve read decoding accuracy and de novo

assembly quality ... 7	

2.1 Methods .. 9	

2.1.1. Pooling design .. 9	

2.1.2. Read decoding analysis .. 12	

2.1.3. Improved decoding algorithm .. 16	

2.2 Experimental Results .. 20	

2.3 Discussion ... 38	

Chapter 3: De Novo Meta-Assembly of Ultra-deep Sequencing Data 40	

3.1 Methods .. 44	

3.1.1. “Slicing” the input .. 45	

3.1.2. Assembling the slices ... 46	

3.1.3. Finding frequently occurring substrings ... 46	

3.1.4. Merging frequently occurring sequences ... 48	

3.1.5. SLICEMBLER algorithm ... 49	

ix

3.2 Experimental Results .. 51	

3.2.1. Ultra-deep sequencing of barley BACs .. 52	

3.2.2. Quality of SLICEMBLER assemblies ... 53	

3.2.3. The choice of the base assembler ... 57	

3.2.4. The choice of depth of coverage for each slice .. 59	

3.2.5. Effect of sequencing error rate in the reads .. 60	

3.3 Discussion ... 61	

Chapter 4: Other projects .. 64	

4.1 SNP detection and anchoring on cowpea genome .. 64	

4.1.1. Cowpea reference genome ... 65	

4.1.2. Sequencing, sequence alignment and SNP calling ... 67	

4.1.3. Filtering the candidate SNPs .. 71	

4.1.4. SNP validation .. 75	

4.1.5. Ordering and anchoring the cowpea BAC ... 76	

4.2 Reference-guided assembly of heterogeneous DNA segments to improve the

quality of P.falciparum DD2 genome .. 78	

4.2.1. Related work ... 79	

4.2.2. Methods and Excremental Results ... 83	

4.2.3. Methods and Excremental Results ... 90	

Chapter 5: Conclusions ... 91	

Bibliography ... 93	

x

List of Figures

Figure 1. Average sequencing cost of DNA per base between 2001 and 2014 [2] 2	

Figure 2. An illustration of the strategy to improve read decoding: (i) a large dataset of
reads to be decoded is “sliced” in n smaller datasets of optimal size, (ii) each
slice is decoded independently and (iii) read-to-BAC assignments for each
slice are merged and conflicts are resolved .. 9	

Figure 3. The percentage of reads decoded by HASHFILTER (k=26) on dataset (A)
Hv3, Hv4, Hv5, Hv6 and Hv7 (B) Hv8, Hv9, Hv10, Vu1, and Vu2 as a function
of the number of reads given in input (x: number of million of reads sampled
in each dataset) .. 15	

Figure 4. The percentage of synthetic reads decoded by HASHFILTER on the rice
genome as a function of the number of reads given in input (x: number of
million of reads per pool) .. 16	

Figure 5. The percentage of reads decoded by HASHFILTER on one of the barley
datasets (Hv8) for several choices of the k-mer size (x: number of million of
reads sampled per pool) .. 17	

Figure 6. VELVET assembly statistics as a function of the depth of sequencing
coverage: (A) n50, (B) longest contig, (C) percentage of the target BAC not
covered by the assembly, (D) number of assembly errors; each point is an
average over 20 samples of the reads, errors bars indicate standard deviation
among the samples .. 28	

Figure 7. n50 statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing
(X-axis) ... 30	

Figure 8. Largest contig statistics (Y-axis) for the six ultra-deep coverage BACs,
assembled with VELVET, SPADES and IDBA-UD for various levels of
depth of sequencing (X-axis) .. 31	

Figure 9. Mis-assembly error statistics (Y-axis) for the six ultra-deep coverage BACs,
assembled with VELVET, SPADES and IDBA-UD for various levels of
depth of sequencing (X-axis) .. 32	

Figure 10. Genome percentage missing (Y-axis) for the six ultra-deep coverage BACs,
assembled with VELVET, SPADES and IDBA-UD for various levels of
depth of sequencing (X-axis) .. 33	

xi

Figure 11. Assembly statistics as a function of the depth of sequencing coverage for
BAC 789L09 for three assemblers: VELVET, SPADES and IDBA_UD; (A)
n50, (B) longest contig, (C) percentage of the target BAC not covered by the
assembly, (D) number of assembly errors; each point is an average over 10
subsamples of the reads, errors bars indicate standard deviation among the
samples .. 34	

Figure 12. VELVET assembly statistics (Y-axis) as a function of the depth of
sequencing coverage (X-axis) for synthetic reads generated from BAC
574B01 for several choices of the sequencing error rate: (A) n50, (B) longest
contig, (C) percentage of the target BAC not covered by the assembly, (D)
number of assembly errors; each point is an average over twenty samples of
the reads, errors bars indicate standard deviation among the samples 36	

Figure 13. IDBA-UD assembly statistics (Y-axis) as a function of the depth of
sequencing coverage (X-axis) for synthetic reads generated from BAC
574B01 for several choices of the sequencing error rate: (A) n50, (B) longest
contig, (C) percentage of the target BAC not covered by the assembly, (D)
number of assembly errors; each point is an average over twenty samples of
the reads, errors bars indicate standard deviation among the samples 37	

Figure 14. SPADES assembly statistics (Y-axis) as a function of the depth of
sequencing coverage (X-axis) for synthetic reads generated from BAC
574B01 for several choices of the sequencing error rate: (A) n50, (B) longest
contig, (C) percentage of the target BAC not covered by the assembly, (D)
number of assembly errors; each point is an average over twenty samples of
the reads, errors bars indicate standard deviation among the samples 38	

Figure 15. SLICEMBLER’s pipeline: First, the input reads are partitioned into smaller
slices (1). Each slice is assembled individually (2), and the resulting
assemblies are merged by a “majority voting” process (3,4). Before repeating
these steps any read in the input that maps to the consensus assembly is
removed (6). When no further merging is possible, the final consensus
assembly is produced (7). ... 45	

Figure 16. Examples of frequently occurring substrings (FOS) from five assemblies
(FOS can overlap). .. 47	

Figure 17. Summary of assembly statistics on five barley BACs sequenced at 8,000x.
We compared SLICEMBLER (using VELVET) to three alternative methods:
VELVET on the entire dataset, RACER+VELVET on the entire dataset, and
the average performance of VELVET on the slices of 800x each (see legend).
Ground truth was based on Sanger-based assemblies. Statistics were
collected with QUAST for contigs longer than 500 bps. .. 54	

Figure 18. An illustration of SLICEMBLER’s progressive construction of the
consensus assembly for BACs 1, 2 and 3 (“snapshots” are taken every five
iterations). Each box represents a perfect alignment between that contig and

xii

the reference. Light green boxes indicate a new FOS compared to the
previous snapshot. Circles point to gaps closed or contig extended via the
merging process (picture created with CLC sequence viewer). 56	

Figure 19. The percentage of reads (y-axis) at each iteration of SLICEMBLER (x-axis)
that map exactly (i.e., zero mismatches/indels) to the reference on the five
ultra-deep sequenced BACs. ... 57	

Figure 20. The effect of increasing sequencing error rates on the quality of assemblies
created by VELVET and SLICEMBLER+VELVET. Input paired-end reads
were generated using wgsim with a coverage of 3,000x using BAC 3 as a
reference. For SLICEMBLER, simulated read sets were divided into six
slices. Statistics were collected with QUAST for contigs longer than 500 bps. 61	

Figure 21. Left: an example of a low quality SNP, detected by GenomeStudio
(Illumina). Right: An example of a high quality SNP. Borders are sharp and
the samples fall close to the cluster centers. ... 75	

Figure 22. The reference-guided assembly of heterogeneous DNA segments pipeline 85	

Figure 23. Left: coverage profile of chromosome 2, including a deletion. b) coverage
profile of chromosomes 8. .. 86	

Figure 24. Length distribution of the created segments ... 87	

Figure 25. Left: Comparison of sum of the length of BI contigs and the improved
contigs. Right: Comparison of N50 for BI contigs and the improverd contigs 89	

xiii

List of Tables

Table 1. Basic statistics on the ten sequenced read datasets (seven for barley, two for
cowpeas) analyzed in this manuscript ... 12	

Table 2. Decoding and assembly statistics for the Hv10 barley set for several choices of
k on the full dataset, and for the improved slicing algorithm 21	

Table 3. A subset of 26 BACs in Hv10 have a 454-based assembly available from (Stein
et al., 2012). The table reports the percentage of the reads for those 26 BACs
that can be mapped (with BOWTIE with 0,1,2 and 3 mismatches) to the
corresponding assemblies ... 22	

Table 4. Decoding and assembly statistics for Hv8: comparing no slicing and slicing
with two different slice sizes (2M reads is optimal according to the peak in
Figure 2) .. 23	

Table 5. Decoding and assembly statistics for the ten datasets using k = 26 on the full
dataset (no slicing) .. 24	

Table 6. Decoding and assembly statistics for the ten datasets using k = 32 and optimal
slicing .. 24	

Table 7. Assembly statistics on all barley and cowpea datasets (sliced optimally as in
Table 5 in the main manuscript, and decoded using k = 32 in HASHFILTER)
using VELVET, SPADES and IDBA_UD for several choices of the hash size 25	

Table 8. Basic statistics on the read datasets for the 16 barley BACs sequenced
individually ... 26	

Table 9. A sketch of SLICEMBLER’s algorithm ... 50	

Table 10. Comparing BAC assemblies produced with IDBA_UD, VELVET, SPADES
and Ray to the assemblies produced by SLICEMBLER in conjunction with
the same assembler. Statistics were collected with QUAST for contigs longer
than 500 bps. ... 58	

Table 11. Quality statistics for SLICEMBLER’s assemblies for simulated reads with
different depth of coverage. We used ten slices in all experiments (i.e., the
coverage for each slice was 50x, 100x, 250x, 500x, 750x, and 1,000x).
Statistics were collected with QUAST for contigs longer than 500 bps. 60	

Table 12. Mapping statistics for 36 cowpea accessions .. 69	

Table 13. Statistics for the DD2 Sanger contigs generated by the Broad Inst. 83	

xiv

Table 14. Statistics for the input datasets, before and after trimming ... 85	

Table 15. Mapping statistics .. 86	

Table 16. Comparison of the BI contigs and the contigs produced by our pipeline 88	

Table 17. Aligning the reads not mapped to the 3D7 against the human genome 90	

1

Chapter 1: Introduction

The Human Genome Project started in 1990 and reached a major milestone in 2001

with the publication of [1] and was declared “complete” in 2003. The availability of the

primary DNA sequence of the human genome completely revolutionized the way life

scientists study human health and biological processes in the human body. For instance, it

helped researchers to understand the underlying mechanisms that control gene expression

or shed light on to the causes of several genetic diseases. The quality of the human

genome draft has been improving continuously due to the advances in sequencing

technology and the design of novel algorithms for de novo genome assembly.

The Human Genome Project approached the task of sequencing and assembling the

human genome in a hierarchical manner. The human genome was divided into several

large DNA fragments (e.g., BAC clones), each of which was sequenced and assembled

individually by sequencing centers around the world. Finally, the sequences were ordered

and merged at UC Santa Cruz. The methods developed during the human genome project

revolutionized all the aspects of genome sequencing, assembly and analysis.

The majority of the human genome was sequenced using a technique developed by

Dr. Frederick Sanger and his colleagues in 1977. Sanger sequence was the dominant

sequencing approach for almost three decades: while it is time-consuming and expensive,

the results are very accurate.

2

The cost of sequencing dropped dramatically when the next (second) generation

sequencing (NGS) techniques became popular in mid 2000s (Figure	
 1 reports the average

sequencing cost of DNA since 2001).

	

Figure 1. Average sequencing cost of DNA per base between 2001 and 2014 [2]

	

NGS is a high throughput approach for sequencing DNA that takes advantage of

DNA amplification (PCR) in situ. Besides sequencing genomic DNA, NGS has been

successfully used in gene discovery and in investigation of regulatory elements

associated with diseases. Targeted sequencing, which has applications in identification of

disease-causing mutations for diagnosis pathological conditions, is much easier with

NGS. Also, RNA-Seq (based on NGS) is a powerful alternative to microarray that

provides richer information about the transcriptome of a sample and does not require

prior knowledge of the target genome.

Despite the advances in sequencing technologies, none of the available technologies

is able to sequence a genome from the beginning to the end. Instead, they produce the

sequence of short DNA fragments, called reads. There are two types of reads: single end

3

(SE) and paired end (PE). A paired end read consist of two single end reads with a gap in

the middle, where the approximate length of the gap is known. Sanger reads are relatively

long (800-1000bp) and quite accurate (the quality drops towards the end). NGS reads are

significantly shorter than Sanger reads, but the number of reads is orders of magnitude

higher than Sanger (at the same cost). An important concept in sequencing is the depth of

sequencing or coverage, which is defined as the average number of reads covering any

single base in the genome. For instance, 10x coverage means that we have sufficient

reads to cover each base of the genome with ten reads (on average).

Whether they are long or short, reads need to be assembled based on their

overlapping ends. A collection of mutually overlapping sequences is called a contig

which is represented as the consensus of the collections of reads. Ordered sequences of

contigs interleaved by gaps are generated through a process called scaffolding. The length

of the gaps between the contigs are estimated based on paired end reads.

There are two approaches to assemble genomic reads: de novo assembly and

reference guided assembly. De novo assemblers exclusively work based on detecting

overlaps among the short reads. De novo assembly is a difficult computational task,

especially when the target genome is large and highly repetitive. It becomes harder when

the reads are short because detecting reliable overlaps is more challenging. De novo

assembly is NP-hard [3] and is used when no prior information about the genome is

available. There are different algorithmic approaches for implementing de novo

assembly, namely the greedy approach, the overlap-layout-consensus method and the

eulerian method (based on the de Bruijn graph).

4

Most of the modern assemblers rely on a data structure called the de Bruijn graph that

is built by processing the reads. The advantage of the de Bruijn graph is that it does not

require the assembler to compute all pair-wise overlaps. Each node in the de Bruijn graph

represents a k-mer (i.e., a substring of length k) that appears in at least one read. Two

nodes are connected with an edge if there is an overlap of length k-1 between the two

corresponding k-mers. Eulerian paths in the de Bruijn graph correspond to contigs.

The idea behind reference-guided assembly is to use a closely related genome as a

guide to assemble the reads of the target genome. Typically, this approach starts by first

mapping the sequenced reads to the reference genome. Once the positions are available,

the assembly is carried out locally.

Since the invention of DNA sequencing in the seventies, computational biologists

have had to deal with the problem of genome assembly with limited (or insufficient)

depth of sequencing. In Chapter 2 of this dissertation, we investigate the opposite

problem, that is, the challenge of dealing with excessive depth of sequencing. We explore

the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding

reads to bacterial artificial chromosome (BAC) clones (in the context of the

combinatorial pooling design), and (ii) the problem of de novo assembly of BAC clones.

Using real ultra-deep sequencing data, we show that when the depth of sequencing

increases over a certain threshold, sequencing errors make these two problems harder and

harder (instead of easier, as one would expect with error-free data), and as a consequence

the quality of the solution degrades with more and more data. For the first problem, we

propose an effective solution based on ‘divide and conquer’: we ‘slice’ a large dataset

5

into smaller samples of optimal size, decode each slice independently, and then merge the

results. Experimental results in Chapter 2 demonstrate a significant improvement in the

quality of the decoding and the final assembly. For the second problem, we show for the

first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing

data.

We investigate the problem of de novo genome assembly in the presence of ultra-

deep sequencing data (i.e., coverage of 1,000x or higher) in more details in Chapter 3. In

this chapter, we introduce a new divide and conquer approach to improve the quality of

assemblies created from ultra-deep sequencing data. Our proposed meta-assembler

SLICEMBLER partitions the input data into optimal- sized “slices” and uses a standard

assembly tool to assemble each slice individually. SLICEMBLER uses majority voting

among the individual assemblies to identify long contigs that can be merged to the

consensus assembly. To improve its efficiency, SLICEMBLER uses a generalized suffix

tree to identify these frequent contigs (or fraction thereof). Extensive experimental results

on real ultra-deep sequencing data (8,000x coverage) and simulated data show that

SLICEMBLER significantly improves the quality of the assembly compared to the

performance of the base assembler. In fact, most of the times SLICEMBLER generates

error-free assemblies. We also show that SLICEMBLER is much more resistant against

high sequencing error rate than the base assembler.

As said, several sequencing technologies are now available to approach the problem

of genome sequencing, each of which generates reads with different features like length,

error rate, etc. In Chapter 4, we report on a method to assemble heterogeneous

6

sequencing data. We show that the quality of the assemblies created for a malaria strain

with this protocol is higher than the previously available assembly.

Among the variety of analyses carried out once a genome is available is the detection

of single nucleotide polymorphism (SNP) and genotyping. A SNP is a DNA sequence

variation occurring commonly within a population in which a single nucleotide in the

genome differs between members of a biological species or paired chromosomes. For

instance, in plants genotyping supports higher‐density genetic mapping, pedigree

validation, germplasm characterization and marker‐assisted breeding. In Chapter 5, we

report a novel protocol for detecting high quality single nucleotide polymorphism (SNP)

in complex genomes. Our protocol was applied to the cowpea (Vigna unguiculata),

genome, which is one of the most important legume crops in the semiarid tropics, where

it is a good source of protein, fiber, and certain vitamins and minerals. We have

discovered around 51,000 high quality SNPs that were used for the design of a high-

throughput genotyping platform. In addition, we have ordered and oriented the cowpea

genome-wide contigs and BAC assemblies, using the discovered SNPs.

7

Chapter 2: ‘Slicing’ sequencing data to
improve read decoding accuracy and de
novo assembly quality

Our group introduced in [4] a novel protocol for clone-by-clone de novo genome

sequencing that leverages recent advances in combinatorial pooling design (also known

as group testing). In the proposed sequencing protocol, subsets of non-redundant

genome-tiling bacterial artificial chromosomes (BACs) are chosen to form intersecting

pools, then groups of pools are sequenced on an Illumina sequencing instrument via low-

multiplex (DNA barcoding). Sequenced reads can be assigned/decoded to specific BACs

by relying on the combinatorial structure of the pooling design: since the identity of each

BAC is encoded within the pooling pattern, the identity of each read is similarly encoded

within the pattern of pools in which it occurs. Finally, BACs are assembled individually,

simplifying the problem of resolving genome-wide repetitive sequences.

In [4], the group reported preliminary assembly statistics on the performance of the

protocol in four barley (Hordeum vulgare) BAC sets (Hv3–Hv6). Further analysis on

additional barley BAC sets and two genome-wide BAC sets for cowpea (Vigna

unguiculata) revealed that the raw sequence data for some datasets was of significantly

lower quality (i.e., higher sequencing error rate) than others. We realized that our

decoding strategy, solely based on the software HASHFILTER [4], was insufficient to deal

with the amount of noise in poor quality datasets. We attempted to (i) trim/clean the reads

more aggressively or with different methods, (ii) identify low quality tiles on the flow

8

cell and remove the corresponding reads (e.g. tiles on the ‘bottom middle swath’), (iii)

identify positions in the reads possibly affected by sequencing ‘bubbles’ and (iv) post-

process the reads using available error-correction software tools (e.g. QUAKE, REPTILE).

Unfortunately, none of these steps accomplished a dramatic increase in the percentage of

reads that could be assigned to BACs, indicating that the quality of the dataset did not

improve very much. These attempts to improve the outcome led however, to a

serendipitous discovery: we noticed that when HASHFILTER processed only a portion of

the dataset, the proportion of assigned/decoded reads increased. This observation initially

seemed counterintuitive: we expected that feeding less data into our algorithm meant that

we had less information to work with, thus decrease the decoding performance. Instead,

the explanation is that when data is corrupted, more (noisy) data is not better, but worse.

The study reported here directly addresses the observation that when dealing with large

quantities of imperfect sequencing data, ‘less’ can be ‘more’. More specifically, we

report (i) an extensive analysis of the trade off between the size of the datasets and the

ability of decoding reads to individual BACs; (ii) a method based on ‘slicing’ datasets

that significantly improves the number of decoded reads and the quality of the resulting

BAC assemblies; (iii) an analysis of BAC assembly quality as a function of the depth of

sequencing, for both real and synthetic data. Our algorithmic solution relies on a divide-

and-conquer approach, as illustrated in Figure 2.

9

Figure 2. An illustration of the strategy to improve read decoding: (i) a large dataset of reads to be
decoded is “sliced” in n smaller datasets of optimal size, (ii) each slice is decoded independently and (iii)
read-to-BAC assignments for each slice are merged and conflicts are resolved

2.1 Methods

2.1.1. Pooling design

We applied the combinatorial pooling scheme described in [4] to BAC clones for (i) a

gene-enriched portion of the genome of H. vulgare L. (barley), and (ii) the whole genome

of V. unguiculata (cowpea). Briefly, in our sequencing protocol we (i) obtain a BAC

library for the target organism; (ii) select gene-enriched BACs from the library (optional);

(iii) fingerprint BACs and build a physical map; (iv) select a minimum tiling path (MTP)

from the physical map; (v) pool the MTP BACs according to the shifted transversal

design; (vi) sequence the DNA in each pool, trim/ clean sequenced reads; (vii) assign

reads to BACs (deconvolution); (viii) assemble reads BAC-by-BAC using a short-read

assembler.

We should first note that a rough draft of the ≈5,300Mb barley genome is now

available [5]: our BAC sequencing work had contributed to that effort, but is distinct. In

Large
dataset
(reads)

Small
dataset
(slice 1)

Small
dataset
(slice 2)

Small
dataset
(slice n)

read a: BAC1, BAC2
read c: BAC3
read e: BAC4, BAC5, BAC6
 … …

read b: BAC7
read c: BAC3, BAC8
read d: BAC4, BAC6
 … …

read a: BAC2
read b:
read c: BAC3
 … …

… …

read a: BAC2
read b: BAC7
read c: BAC3
read d: BAC4
read e: BAC5, BAC6
 … …

Majority
Voting

Slicing

Decoding
(HashFilter)

Decoding
(HashFilter)Slicing

Decoding
(HashFilter)

10

our work, we focused on the gene-enriched portion of the genome [6]. We started with a

6.3×genome equivalent barley BAC library which contains 313,344 BACs with an

average insert size of 106 kb [7]. About 84,000 gene-enriched BACs were identified and

fingerprinted using high-information content fingerprinting [6, 8]. From the

fingerprinting data a physical map was produced [9, 10] and a MTP of about 15,000

clones was derived [6, 11]. Seven sets of n=2,197 clones were chosen to be pooled

according to the shifted transversal design [12], which we called Hv3, Hv4, . . . , Hv9 (Hv1

and Hv2 were pilot experiments). An additional set of n=1,053 clones (called Hv10) was

pooled using the shifted transversal design with different pooling parameters (see below).

A pooling scheme based on the shifted transversal design [12], is defined by (P, L, 𝛤),

where P is a prime number, L defines the number of layers and 𝛤 is a small integer. A

layer is one of the classes in the partition of BACs and consists of exactly P pools: the

larger the number of layers, the higher is the decodability. The decodability of the

pooling design determines what is the largest number of ‘positive’ objects that can be

decoded: in our case, a d-decodable pooling design will handle the overlap of at most d

MTP clones. By construction the total number of pools is P×L. If we set 𝛤 to be the

smallest integer such that 𝑃 !!! ≥N where N is the number of BACs that need to be

pooled, then the decodability of the design is (𝐿 − 1) 𝛤 .

For barley sets Hv3, Hv4, . . . , Hv9, we chose parameters P=13, L=7 and 𝛤=2, so that

we could handle 𝑃 !!!=2,197 samples and make the scheme (𝐿 − 1) 𝛤 =3-decodable.

We expected each non-repetitive read to belong to at most two BACs if the MTP had

been computed perfectly, or rarely three BACs when considering imperfections, so we set

11

d=3. Each of the L=7 layers consisted of P=13 pools, for a total of 91 BAC pools. In this

pooling design, each BAC is contained in L=7 pools and each pool contains 𝑃 ! =169

BACs. We call the set of L pools to which a BAC is assigned, the BAC signature. Any

two BAC signatures can share at most 𝛤=2 pools, and any three BAC signatures can

share at most 3𝛤 = 6 pools. For sets Hv3–Hv8, Vu1 and Vu2, we manually pooled 2,197

BACs thus exhausting all the ‘available’ signature for the pooling design. However, for

set Hv9 we only used 1,717 signatures. Set Hv10 was pooled using a different design: we

chose pooling parameters P=11, L=7 and 𝛤=2, for a total of 𝑃 !!!=1,331 BAC signatures,

however, we only used 1,053 signatures. BAC signatures that were available but not used

in the pooling were called ghosts.

Cowpea’s genome size is estimated at 620 Mb and it is yet to be fully sequenced. For

cowpea we started from a 17X depth of coverage BAC library containing about 60,000

BACs from the African breeding genotype IT97K-499-35 with an average insert size of

150 kb. Cowpea BACs were fingerprinted using high information content fingerprinting

[8, 13]. A physical map was produced from 43,717 fingerprinted BACs with a depth of

11X genome coverage [9, 10], and a MTP comprised of 4,394 clones was derived [11].

The set of MTP clones was split in two sets of n=2197 BACs (called hereafter Vu1 and

Vu2), each of which was pooled according to the shifted transversal design [12], with the

same pooling parameters used for Hv3–Hv9.

To take advantage of the high throughput of sequencing of the Illumina HiSeq2000,

13–20 pools in each set were multiplexed on each lane, using custom multiplexing

adapters. After the sequenced reads in each lane were demultiplexed, we obtained an

12

average of 1,764 million reads in each set with a read length of about 92 bases and an

insert size of 275 bases. Reads were quality-trimmed and cleaned of spurious sequencing

adaptors, and then reads affected by Escherichia coli contamination or BAC vector were

discarded. The percentage of E.coli contamination averaged around 43%: as a

consequence, the average number of usable reads after quality trimming and cleaning

decreased to about 824 million, with an average high quality read length of about 89

bases. Table 1 reports the number of reads, number of bases, average read length and

E.coli contamination for each of the 10 sets (Hv3, Hv4, Hv5, Hv6, Hv7, Hv8, Hv9, Hv10,

Vu1 and Vu2). Raw reads for barley and cowpea BACs have been deposited in NCBI

SRA accession number SRA051780, SRA051535, SRA051768, SRA073696,

SRA051739 (barley); SRA052227 and SRA052228 (cowpea).

Table 1. Basic statistics on the ten sequenced read datasets (seven for barley, two for cowpeas)
analyzed in this manuscript

2.1.2. Read decoding analysis

The 91 pools (77 for Hv10) of trimmed reads for barley and cowpea were processed

using our k-mer based algorithm called HASHFILTER, which is fully described in [4].

after demultiplexing after demultiplexing/cleaning/trimming

reads (M) bases (Mbp) read len (bp) % E.coli reads (M) bases (Mbp) read len (bp)

Hv3 2,476 227,773 92.00 41.12% 1,240.2 110,056 88.74

Hv4 1,363 125,273 91.91 39.36% 713.4 63,384 88.85

Hv5 1,142 105,089 92.00 51.11% 505.1 45,088 89.27

Hv6 1,133 104,239 92.00 65.96% 282.4 24,970 88.42

Hv7 2,288 210,535 92.00 46.11% 928.9 82,503 88.82

Hv8 1,802 165,803 92.00 44.04% 730.8 64,651 88.46

Hv9 1,596 146,816 92.00 40.66% 736.2 65,697 89.24

Hv10 971 89,370 92.00 20.95% 748.2 67,600 90.36

Vu1 2,475 227,696 92.00 36.66% 1,208.1 108,666 89.95

Vu2 2,402 221,006 92.00 43.12% 1,144.6 103,026 90.01

Supplemental Table S1: Basic statistics on the ten sequenced read datasets (seven for barley, two for

cowpeas) analyzed in this manuscript

after demultiplexing after demux/cleaning/trimming

BAC approx size (bp) set reads (M) bases (Mbp) % E.coli reads (M) bases (Mbp) coverage (x)

052L22 105,788 Hv4 21.534 1,981 10.94% 16.795 1,488 14,065

152O10 117,543 Hv3, Hv9 18.575 1,709 16.93% 13.101 1,154 9,812

192B13 112,841 Hv4 19.581 1,801 12.20% 13.950 1,225 10,853

574B01 92,859 Hv3 32.952 3,032 15.27% 23.414 2,059 22,172

630P05 110,490 Hv3 16.224 1,493 15.45% 11.102 971 8,792

727J05 131,648 Hv8 22.613 2,080 14.80% 15.801 1,388 10,546

772L04 116,367 Hv3, Hv10 21.837 2,009 17.44% 14.407 1,255 10,784

773A02 185,718 Hv3, Hv10 21.756 2,002 15.86% 14.909 1,309 7,049

773F12 96,385 Hv3, Hv10 20.868 1,920 14.61% 14.661 1,286 13,341

773H21 71,701 Hv3, Hv10 23.679 2,178 16.38% 16.770 1,473 20,540

773L22 92,859 Hv3, Hv10 17.031 1,567 16.16% 12.282 1,081 11,639

774D07 117,543 Hv3, Hv10 13.077 1,203 20.51% 8.880 778 6,621

774G18 90,508 Hv3, Hv10 24.571 2,261 15.89% 16.763 1,469 16,229

774L04 103,437 Hv3, Hv10 22.053 2,029 17.13% 15.219 1,334 12,895

774O01 95,209 Hv3, Hv10 41.579 3,822 14.76% 29.877 2,642 27,754

789L09 84,631 Hv3 37.000 3,404 15.20% 25.730 2,264 26,754

Supplemental Table S2: Basic statistics on the read datasets for the 16 barley BACs sequenced individually

13

Briefly, HASHFILTER builds a hash table of all distinct k-mers in the 91 (or 77) pools of

reads, and records for each k-mer the set of pools where it occurs. Then it processes each

read individually: (i) a read r is decomposed in its constitutive k-mers; (ii) the set of pools

of each k-mer is fetched from the hash table, and matched against the BAC signatures

(allowing for a small number of missing/extra pools); (iii) the union of k-mer signatures

that match a valid BAC signature determines the BAC assignment for read r. Recall that

since our pooling is 3-decodable, each read can be assigned to 0–3 BACs.

For some of the datasets, the percentage of reads decoded using this procedure was

very low. For instance HASHFILTER could decode only 23.8% of the reads in Hv9. We

suspected a higher percentage of sequencing errors in Hv9 compared with previous

datasets, so we conducted many experiments to improve the decoding performance on

this dataset, including (i) tweaking the parameters and the algorithm HASHFILTER, (ii)

correcting the reads using QUAKE and REPTILE, (iii) increasing the stringency for quality

values in the trimming step, (iv) considering only reads that appeared exactly at least

twice, (v) using on the left or the right read (for paired-end reads). None of these actions

increased the number of decoded reads in Hv9 > 36.6%, which was still unsatisfactory.

To our initial surprise, running HASHFILTER on a fraction of the reads yielded higher

decoding percentages, which suggested the idea to ‘slice’ the data.

We remind the reader that HASHFILTER has the ability to ignore k-mers affected by

sequencing errors: if the number t of non-zero counts of a k-mer signature belongs to the

interval [L+1, 2L- 𝛤 -1], HASHFILTER removes from the k-mer signature the t – L pools

with the lowest counts [for details, see Case 4 and 6 of step G in [4]]. If one assumes that

14

k-mers with sequencing errors are rarer than error-free k-mers, spurious pools will have a

low k-mer count and will be removed before the reads are decoded. In addition to this

feature, HASHFILTER also has the option to disregard entirely a k-mer that appears rarely,

which is likely to contain sequencing errors.

The next question was to study the dependency between the size of the dataset and

the performance of the decoding algorithm. To this end, we took samples of the original

91 (or 77) set of reads in sizes of 0.5, 1, 2, 3, 4 and 5M reads (details on the sampling

method can be found in the next section) and computed the percentage of reads decoded

by HASHFILTER on these samples of increasing sizes. Figure	
 3A shows the percentages of

decoded reads for sets Hv3, Hv4, Hv5, Hv6 and Hv7; Figure	
 3B is for Hv8, Hv9, Hv10, Vu1

and Vu2. The x-axis is the number of reads per pool (in millions) given in input to

HASHFILTER (k=26). The rightmost point on these graphs corresponds to the full dataset.

Several observations on Figure	
 3 are in order. First, observe that when the number of

reads per pool is too small (0.5–1M) the percentage of reads decoded by HASHFILTER is

low. Similarly, when the number of reads per pool is large, the percentage of reads

decoded by HASHFILTER can be low for some datasets. We believe that when the input

size is small, there is not enough information in the hash table of k-mers to accurately

decode the reads. However, when the input size is large, sequencing errors in the data

introduce spurious k-mers in the hash table, which has the effect of deteriorating

HASHFILTER‘s decoding performance. Observe that almost all these curves reach a

maximum in the range 1–3M reads.

15

	

Figure 3. The percentage of reads decoded by HASHFILTER (k=26) on dataset (A) Hv3, Hv4, Hv5, Hv6
and Hv7 (B) Hv8, Hv9, Hv10, Vu1, and Vu2 as a function of the number of reads given in input (x: number of
million of reads sampled in each dataset)

For datasets whose ‘optimal number’ of reads is low, we can speculate the amount of

sequencing error to be higher. Also observe the large variability among these 10 datasets.

At one extreme, graphs for Hv3, Hv10 and Hv5 are very ‘flat’ indicating low sequencing

errors; at the other extreme, graphs for Vu1 and Vu2 degrade very quickly after the peak,

indicating poorer data quality. We also carried out a simulation study using synthetic

reads generated from the rice genome (Oryza sativa). For this simulation we started from

an MTP containing 3,827 BACs with an average length of about 150 kb, which spanned

91% of the rice genome (which is about 390 Mb). We pooled in silico a subset of 2,197

BACs from the set above according to the shifted transversal design [see Lonardi et al.,

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10 11 12

Hv3 (barley)

Hv4 (barley)

Hv5 (barley)

Hv6 (barley)

Hv7 (barley)

A

20%

30%

40%

50%

60%

70%

80%

0 1 2 3 4 5 6 7 8 9 10

Hv8 (barley)

Hv9 (barley)

Hv10 (barley)

Vu1 (cowpea)

Vu2 (cowpea)

B

16

(2013) for details]. We generated 2M synthetic reads using WGSim

(github.com/lh3/wgsim) for each of the 91 resulting rice BAC pools. Reads were 104

bases long with 1% sequencing error rate (no insertions and deletions errors were

allowed). A total of 208 Mbp gave an expected 56X coverage for each BAC. We ran

HASHFILTER on the read datasets in slices of 0.25, 0.5, 1, 1.5 and 2M (full dataset). The

percentage of decoded reads (see Figure	
 4) peaks at 1.5M, and mirrors the observations

made on real data. Even for synthetic reads, more data does not necessarily imply

improved decoding performance.

	

Figure 4. The percentage of synthetic reads decoded by HASHFILTER on the rice genome as a function
of the number of reads given in input (x: number of million of reads per pool)

	

2.1.3. Improved decoding algorithm

Our improved decoding algorithm first executes HASHFILTER on progressively larger

samples of the dataset (e.g. 0.5, 1, 2, 3, 4, 5M and full dataset) for a given value of k. Our

sampling algorithm selects reads uniformly at random along the input file: taking a prefix

20%

30%

40%

50%

60%

70%

80%

90%

0.0 0.5 1.0 1.5 2.0

Supplemental Figure S1: The percentage of synthetic reads decoded by HASHFILTER on the rice genome

as a function of the number of reads given in input (x: number of million of reads per pool)

55%

60%

65%

70%

75%

0 1 2 3 4 5

k=32

k=29

k=26

k=23

k=20

Supplemental Figure S2: The percentage of reads decoded by HASHFILTER on one of the barley datasets

(Hv8) for several choices of the k-mer size (x: number of million of reads sampled per pool)

17

of the dataset is not a good idea because reads in the file are organized according to their

spatial organization on the flowcell, possibly introducing biases.

When the sample size is greater than the pool size, the entire pool is used for

decoding. Otherwise, reads in pools larger than the sample size are uniformly sampled in

order to meet the sample size constraint. As a result of this process, the size of each pool

in a ‘slice’ will be at most the sample size, but some of the pools will be smaller. The

objective is to find the sample size that maximizes the number of reads decoded by

HASHFILTER.

We observed that the optimal value of the sample size is somewhat independent from

k as long as it is chosen ‘reasonably large’, say k >20 for large eukaryotic genomes. Figure	

5 illustrates that running HASHFILTER with k = 20; 23; . . . ; 32 gives rise to parallel curves.

One can save time by running HASHFILTER with smaller values of k in order to find the

optimal data size.

	

Figure 5. The percentage of reads decoded by HASHFILTER on one of the barley datasets (Hv8) for
several choices of the k-mer size (x: number of million of reads sampled per pool)

20%

30%

40%

50%

60%

70%

80%

90%

0.0 0.5 1.0 1.5 2.0

Supplemental Figure S1: The percentage of synthetic reads decoded by HASHFILTER on the rice genome

as a function of the number of reads given in input (x: number of million of reads per pool)

55%

60%

65%

70%

75%

0 1 2 3 4 5

k=32

k=29

k=26

k=23

k=20

Supplemental Figure S2: The percentage of reads decoded by HASHFILTER on one of the barley datasets

(Hv8) for several choices of the k-mer size (x: number of million of reads sampled per pool)

18

Once the optimal sample size n is determined, the algorithm finds the size m of the

largest pool to calibrate d datasets (hereafter called slices) each one of which has at most

n reads per pool. For instance, if the optimal slice size is n = 2M reads, and the largest

pool has m = 10M reads, the algorithm will create d = m/n = 5 slices: each one will be

composed of 91 pools, each of which has at most 2M reads. Observe that the number of

reads in each pool can vary significantly. For instance in Hv3, the largest pool has almost

23M reads, and the smallest has about 3M reads. Smaller pools will contribute their reads

to multiple slices. For instance, if there is a pool of size 2M in the same example

described earlier, these reads will appear in all five slices. In general, if a pool size is n,

the entire pool will be used in each slice.

Then, the algorithms run HASHFILTER d times, once on each of the d slices—which

involves creating d individual hash tables. For this step, we recommend using the largest

possible value of k (k=32), because the percentage of decoded reads for a given input size

increases with k (see Figure	
 5). Then, the algorithm merges the d independent HASHFILTER

‘s outputs. If a read is decoded in only one slice, it will be simply copied in the output. If

a read is decoded multiple times in different slices and the independent decodings do not

agree, a conflict resolution step is necessary. In our running example, reads in the small

2M-reads pool will be decoded five times: it is possible that HASHFILTER will assign a

read to five different BAC sets. In order to identify reads decoded multiple times, our

algorithm first concatenates the d text outputs of HASHFILTER, then sorts the reads by

their unique identifier (ID), so that reads with the same ID are consecutive in the file.

Recall that HASHFILTER assigns each read to a set composed of 0-3 BACs. A group is the

19

set of all BAC (assignment) sets for a single-end read. When a read is paired-end, we

have a left group for the left read and a right group for the right read. For instance in

Figure	
 2, single-end read c is decoded by HASHFILTER at least three times: in slice 1 read c

is assigned to BAC3, in slice 2 it is assigned to BAC3 and BAC8, and in slice n it is

assigned to BAC3. The set {{BAC3}; {BAC3,BAC8} ; {BAC3}} is the group for read c. If

a read has been decoded at least twice by HASHFILTER and the sets in its group are not

identical, the following algorithm computes the most likely assignment according to a set

of rules, which are checked in order (i.e. the first one that applies is used, and subsequent

rules are not considered).

i. if a read is single-end and its group contains one or more BACs which have 75%-

majority or higher, then the read is assigned to those majority BAC(s);

ii. if a read is paired-end, and both its left group and its right group are non-empty,

and the union of the left and the right group contains one or more BACs which have

50%-majority or higher, then both the left and the right read are assigned to those

majority BAC(s);

iii. if a read is paired-end, and either its left or its right group are empty, and the non-

empty group contains one or more BACs which have 75%-majority or higher, then both

the left and the right read are assigned to those majority BAC(s);

iv. if a read is paired-end, and its left group is not identical to its right group, then

both the left and the right read are not assigned.

20

In the example on read c, since BAC3 is has 100%-majority (appears in all three

assignments) but BAC8 has only 33%-majority (appears in one of the three assignments),

we assign read c to BAC3 but not to BAC8.

2.2 Experimental Results

Once all the decoded reads are assigned to 1–3 BACs using the procedure above,

VELVET [14] is executed to assemble each BAC individually. As was done in [4], we

generated multiple assembly for several choices of VELVET’s l-mer (hash) size (25–79,

step of 6). The assembly reported is the one that maximizes the n50 (n50 indicates the

length for which the set of all contigs of that length or longer contains at least half of the

total size of all contigs).

We employed several metrics to evaluate the improvement in read decoding and

assembly enabled by the slicing algorithm. For one of the barley sets (Hv10) we executed

HASHFILTER using several choices of k (k = 20; 23; 26; 29; 32) on the full 748M reads

dataset (i.e. with no slicing) as well as with k=32 using the slicing algorithm described

ealrier. The first five rows of Table 2 summarize the decoding results. First, observe that as

we increase k, the number of decoded reads increases monotonically. However, if one

fixes k (in this case k=32, which is the maximum allowed by HASHFILTER), slicing Hv10

in 4 slices of 4M reads increases significantly the number of decoded reads (84.60

compared with 77.19%) available for assembly. Analysis of the number of assignments to

ghost BACs also shows significant improvement in the decoding accuracy when using

slicing: 0.000086% of the reads are assigned to unused BAC signatures compared with

21

0.000305–0.001351% when HASHFILTER is used on the full dataset. We carried out a

similar analysis on Hv9: when the full dataset was processed with HASHFILTER (k=26), the

number of reads assigned to ghost BACs was very high, 1.9M reads out of 196M

(0.9653%). When the optimal slicing is used (k=32), only 19,140 reads out of 516Mare

assigned to ghost BACs (0.0037%). Also, observe in Table 2 how the improved decoding

affects the quality of the assembly for Hv10. When comparing no slicing to slicing-based

decoding, the average n50 jumps from 12,260 to 42,819 bp (both for k=32) and the

number of reads used by VELVET in the assembly increases from 86.7 to 90.7%.

Table 2. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full
dataset, and for the improved slicing algorithm

For Hv10, we also measured the number of decoded reads that map (with 0, 1, 2 and 3

mismatches) to the assembly of a subset of 26 BACs that are available from [15]. Table 3

reports the average percentage of decoded reads (either from the full dataset or from the

optimal slicing) that BOWTIE can map to the 454-based assemblies. Observe how the

slicing step improves by 6–7% the number of reads mapped to the corresponding BAC

assembly, suggesting a similar improvement in decoding accuracy. Similar improvements

in decoding accuracy were observed on the other datasets (data not shown).

“Slicing” Data Improves Read Decoding and Assembly

no slicing slicing

k=20 k=23 k=26 k=29 k=32 k=32

reads decoded (%) 67.76% 71.07% 73.57% 75.56% 77.19% 84.60%

reads decoded (M) 511 536 555 570 582 617

reads assigned to ghost BACs (%) 0.000498% 0.000305% 0.000480% 0.000484% 0.001351% 0.000086%

reads to be assembled (M) 704 724 739 748 723 695

coverage (x) 502 502 528 502 517 499

reads used by VELVET (%) 73.6% 77.9% 80.8% 81.8% 86.7% 90.7%

n50 (bp) 3,634 5,143 7,069 8,877 12,260 42,819

sum/size (%) 102.8% 102.8% 100.5% 97.9% 89.5% 121.9%

observed genes (27 expected) 20 20 20 20 20 20

coverage of observed genes (%) 94.0% 94.0% 94.0% 94.0% 94.1% 94.0%

Table 1. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full dataset, and for the improved slicing algorithm

assembly statistics (without slicing-based decoding) are not very

satisfactory: the n50 ranges from 2,630 bp (Hv9) to 8,190 bp (Hv3);

the percentage of reads used by VELVET ranges from 66.0% (Hv9)

to 85.9% (Hv3 and Hv4); the percentage of known genes covered at

least 50% of their length by the assemblies ranged from 66% (Hv4)

to 97% (Hv3).

When we decoded the same ten datasets using the optimal slice

size (using this time k = 32) the assemblies improved drastically.

The decoding and assembly statistics are summarized in Table 5:

note that each set has its optimal size and the corresponding number

of slices. First observe how the number of decoded reads increased

significantly for most datasets (e.g., 330M to 785M for Hv7, 289M

to 669M for Hv8, 209M to 516M for Hv9, 369M to 907M for Vu1

and 448M to 695M for Vu2). Only for two datasets the number

of decoded reads decreased slightly (by 12M reads in Hv5, and

by 44M in Hv10). For all the datasets, the average n50 increased

significantly – from an average of about 5.7 kbp to about 30 kbp

(see Supplemental Dataset 2 for detailed assembly statistics on each

dataset). Even for datasets for which slicing decreased the number

reads (Hv5 and Hv10), the n50 increased significantly. The number

of reads used by VELVET increased from an average of 77% to 92%;

the fraction of known genes that were recovered by the assemblies

increased from 81% to 85%. We recognize that the improvement

from Table 4 to Table 5 is not just due to the slicing, but also to the

increased k (from 26 to 32). We have already addressed this point in

Tables 1–3, where we showed that increasing k from 26 to 32 helps

no slicing slicing

k=26 k=32, 3M k=32, 2M

reads decoded (%) 31.68% 78.98% 82.74%

reads decoded (M) 270 539 600

reads to be assembled (M) 289 591 669

coverage (x) 94 197 223

reads used by VELVET (%) 69.0% 92.6% 91.6%

n50 (bp) 4,126 31,226 34,262

sum/size (%) 55.6% 97.0% 102.0%

observed genes (207 expected) 178 190 187

coverage of observed genes (%) 86.0% 91.1% 91.2%

Table 3. Decoding and assembly statistics for Hv8: comparing no slicing

and slicing with two different slice sizes (2M reads is optimal according to

the peak in Figure 2)

the decoding/assembly but the main boost in accuracy and quality

is due to slicing. Recall that the assemblies in Tables 4–5 were

carried out using VELVET with l = 25, 31, . . . , 79 and choosing

the assembly with the largest n50. On the Hv3 dataset, we have also

tested VELVET with fixed l = 49, SPADES (Bankevich et al., 2012)

with l = 31, 33, . . . , 79, and IDBA-UD (Peng et al., 2012) with

l = 31, 33, . . . , 79 (see Supplemental Table S3). VELVET (best

n50) and SPADES’ performance were comparable, while IDBA-

UD achieved lower n50. We also tested VELVET with l = 49,

and SPADES with l = 31, 33, . . . , 79 on all the other datasets

(Supplemental Table S3). Setting l = 49 for VELVET led to less

“bloated” assemblies, somewhat comparable to SPADES’ output.

As a final step, we investigated how the depth of sequencing

affects BAC assembly quality. To this end, we multiplexed sixteen

barley BACs on one lane of the Illumina HiSeq2000, using custom

multiplexing adapters. The size of these BACs ranged ≈70 kbp

to ≈185 kbp (see Supplemental Table S2). After demultiplexing

the sequenced reads, we obtained 34.4M 92-bases paired-end reads

(insert size of 275 bases). We quality-trimmed the reads, then

cleaned them of spurious sequencing adaptors; finally reads affected

by E. coli contamination or BAC vector were discarded. The final

number of cleaned reads was 23.1M, with an average length of ≈88

bases. The depth of sequencing for the sixteen BACS ranged from

≈6,600x to ≈27,700x (see Supplemental Table S2).

Another set of 52 barley BACs was sequenced by the Department

of Energy Joint Genome Institute (JGI) using Sanger long reads. All

BACs were sequenced and finished using PHRED/PHRAP/CONSED

to a targeted depth of 10x. The primary DNA sequences for each of

these 52 BACs was assembled in one contig, although two of them

were considered partial sequence.

The intersection between the set of 16 BACs sequenced using

the Illumina instrument and the set of 52 BACs sequenced using

Sanger is a set of seven BACs (highlighted in bold in Supplemental

Table S2), but one of these seven BACs is not full-length (052L22).

We used the six full-length Sanger-based BAC assemblies as the

“ground truth” to assess the quality of the assemblies from Illumina

reads at increasing depth of sequencing. To this end, we generated

datasets corresponding to 100x, 250x, 500x, 1,000x, 2,000x,

3,500x, 5,000x, 6,000x, 7,000x and 8,000x depth of sequencing (for

each of the six BACs), by sampling uniformly short reads from the

high-depth datasets. For each choice of the depth of sequencing,

we generated twenty different datasets, for a total of 1,200 datasets.

We assembled the reads on each dataset with VELVET v1.2.09 (with

5

22

Table 3. A subset of 26 BACs in Hv10 have a 454-based assembly available from (Stein et al., 2012).
The table reports the percentage of the reads for those 26 BACs that can be mapped (with BOWTIE with
0,1,2 and 3 mismatches) to the corresponding assemblies

On Hv8, we investigated the effect of the slice size on the decoding and assembly

statistics: earlier we claimed that the optimal size corresponds to the peak of the graphs in

Table 3. For instance, notice that the peak for Hv8 is 2M reads. We decoded and assembled

reads using slicing sizes of 2M reads as well as (non-optimal) slice size of 3M reads. The

experimental results are shown in Table 4. Observe that the decoding with 3M does not

achieve the same decoding accuracy or assembly quality of the slicing with 2 M, but

again both are significantly better than without slicing. Again, notice in Table 4 how

improving the read decoding affects the quality of the assembly. The average n50

increases from 4126 bp (k=26, no slicing) to 34,262 bp (k=32, optimal slicing) and the

number of reads used by VELVET in the assembly increases from 55.6 to 91.2%,

respectively. For Hv8, 207 genes were known to belong to a specific BAC clone [4]: the

assembly using slicing-based coding recovered at least 50% of the sequence of 187–190

of them, compared with 178 using no slicing.

Lonardi et al

to five different BAC sets. In order to identify reads decoded multiple times,

our algorithm first concatenates the d text outputs of HASHFILTER, then

sorts the reads by their unique identifier (ID), so that reads with the same ID

are consecutive in the file. Recall that HASHFILTER assigns each read to a

set composed of 0-3 BACs. A group is the set of all BAC (assignment) sets

for a single-end read. When a read is paired-end, we have a left group for the

left read and a right group for the right read. For instance in Figure 1, single-

end read c is decoded by HashFilter at least three times: in slice 1 read c is

assigned to BAC3, in slice 2 it is assigned to BAC3 and BAC8, and in slice n
it is assigned to BAC3. The set {{BAC3}, {BAC3,BAC8}, {BAC3}} is the

group for read c. If a read has been decoded at least twice by HASHFILTER

and the sets in its group are not identical, the following algorithm computes

the most likely assignment according to a set of rules which are checked in

order (i.e., the first one that applies is used, and subsequent rules are not

considered).

1. if a read is single-end and its group contains one or more BACs which

have 75%-majority or higher, then the read is assigned to those majority

BAC(s);

2. if a read is paired-end, and both its left group and its right group are

non-empty, and the union of the left and the right group contains one or

more BACs which have 50%-majority or higher, then both the left and

the right read are assigned to those majority BAC(s);

3. if a read is paired-end, and either its left or its right group are empty,

and the non-empty group contains one or more BACs which have 75%-

majority or higher, then both the left and the right read are assigned to

those majority BAC(s);

4. if a read is paired-end, and its left group is not identical to its right

group, then both the left and the right read are not assigned.

In the example on read c, since BAC3 is has 100%-majority (appears in all

three assignments) but BAC8 has only 33%-majority (appears in one of the

three assignments), we assign read c to BAC3 but not to BAC8.

3 RESULTS

Once all the decoded reads are assigned to 1–3 BACs using the

procedure above, VELVET (Zerbino and Birney, 2008) is executed

to assemble each BAC individually. As was done in (Lonardi et al.,

2013), we generated multiple assembly for several choices of

VELVET’s l-mer (hash) size (25–79, step of 6). The assembly

reported is the one that maximizes the n50 (n50 indicates the length

for which the set of all contigs of that length or longer contains at

least half of the total size of all contigs).

We employed several metrics to evaluate the improvement in read

decoding and assembly enabled by the slicing algorithm. For one

of the barley sets (Hv10) we executed HASHFILTER using several

choices of k (k = 20, 23, 26, 29, 32) on the full 748M reads dataset

(i.e., with no slicing) as well as with k = 32 using the slicing

algorithm described above. The first five rows of Table 1 summarize

the decoding results. First, observe that as we increase k, the

number of decoded reads increases monotonically. However, if one

fixes k (in this case k = 32, which is the maximum allowed by

HASHFILTER), slicing Hv10 in 4 slices of ≈4M reads increases

significantly the number of decoded reads (84.60% compared

to 77.19%) available for assembly. Analysis of the number of

assignments to ghost BACs also shows significant improvement in

the decoding accuracy when using slicing: 0.000086% of the reads

are assigned to unused BAC signatures compared to 0.000305%–

0.001351% when HASHFILTER is used on the full dataset. We

carried out a similar analysis on Hv9: when the full dataset was

processed with HASHFILTER (k = 26), the number of reads

assigned to ghost BACs was very high, ≈ 1.9M reads out of 196M

(0.9653%). When the optimal slicing is used (k = 32), only 19,140

reads out of 516M are assigned to ghost BACs (0.0037%). Also,

observe in Table 1 how the improved decoding affects the quality

of the assembly for Hv10. When comparing no slicing to slicing-

based decoding, the average n50 jumps from 12,260 bp to 42,819 bp

(both for k = 32) and the number of reads used by VELVET in the

assembly increases from 86.7% to 90.7%.

For Hv10, we also measured the number of decoded reads that

map (with 0,1,2 and 3 mismatches) to the assembly of a subset

of 26 BACs that are available from (Stein et al., 2012). Table 2

reports the average percentage of decoded reads (either from the

full dataset or from the optimal slicing) that BOWTIE can map to

the 454-based assemblies. Observe how the slicing step improves

by 6-7% the number of reads mapped to the corresponding BAC

assembly, suggesting a similar improvement in decoding accuracy.

Similar improvements in decoding accuracy was observed on the

other datasets (data not shown).

On Hv8, we investigated the effect of the slice size on the

decoding and assembly statistics: earlier we claimed that the optimal

size corresponds to the peak of the graphs in Figure 2. For instance,

notice that the peak for Hv8 is ≈2M reads. We decoded and

assembled reads using slicing sizes of 2M reads as well as (non-

optimal) slice size of 3M reads. The experimental results are shown

in Table 3. Observe that the decoding with 3M does not achieve the

same decoding accuracy or assembly quality of the slicing with 2M,

but again both are significantly better than without slicing. Again,

notice in Table 3 how improving the read decoding affects the

quality of the assembly. The average n50 increases from 4,126 bp

(k = 26, no slicing) to 34,262 bp (k = 32, optimal slicing) and the

number of reads used by VELVET in the assembly increases from

55.6% to 91.2%, respectively. For Hv8, 207 genes were known to

belong to a specific BAC clone (Lonardi et al., 2013): the assembly

using slicing-based coding recovered at least 50% of the sequence

of 187-190 of them, compared to 178 using no slicing.

Finally, we compared the performance of our slicing method

against the experimental results in (Lonardi et al., 2013), which

were obtained by running HASHFILTER with no data slicing (k =

26). The basic decoding and assembly statistics when no slicing is

used are reported in Table 4. First, observe the large variability of

results among the ten sets. While the average number of decoded

reads for k = 26 is ≈ 460M, there are sets which have less

than half that amount (Hv6 and Hv9) and sets have more than

twice the average (e.g., Hv3). As a consequence, the average fold-

coverage ranges from 72x (Hv6) to 528x (Hv10). In general, the

no slicing slicing

k=32 k=32

0 mismatches 75.2% 82.4%

1 mismatch 78.7% 85.9%

2 mismatches 80.5% 87.4%

3 mismatches 82.3% 88.7%

Table 2. A subset of 26 BACs in Hv10 have a 454-based assembly available

from (Stein et al., 2012). The table reports the percentage of the reads

for those 26 BACs that can be mapped (with BOWTIE with 0,1,2 and 3

mismatches) to the corresponding assemblies

4

23

Table 4. Decoding and assembly statistics for Hv8: comparing no slicing and slicing with two different
slice sizes (2M reads is optimal according to the peak in Figure 2)

Finally, we compared the performance of our slicing method against the experimental

results in [4], which were obtained by running HASHFILTER with no data slicing (k=26).

The basic decoding and assembly statistics when no slicing is used are reported in Table 5.

First, observe the large variability of results among the 10 sets. Although the average

number of decoded reads for k=26 is 460M, there are sets which have less than half that

amount (Hv6 and Hv9) and sets have more than twice the average (e.g. Hv3). As a

consequence, the average fold-coverage ranges from 72X (Hv6) to 528X (Hv10). In

general, the assembly statistics (without slicing-based decoding) are not very satisfactory:

the n50 ranges from 2630 (Hv9) to 8,190 bp (Hv3); the percentage of reads used by

VELVET ranges from 66.0 (Hv9) to 85.9% (Hv3 and Hv4); the percentage of known genes

covered at least 50% of their length by the assemblies ranged from 66% (Hv4) to 97%

(Hv3).

“Slicing” Data Improves Read Decoding and Assembly

no slicing slicing

k=20 k=23 k=26 k=29 k=32 k=32

reads decoded (%) 67.76% 71.07% 73.57% 75.56% 77.19% 84.60%

reads decoded (M) 511 536 555 570 582 617

reads assigned to ghost BACs (%) 0.000498% 0.000305% 0.000480% 0.000484% 0.001351% 0.000086%

reads to be assembled (M) 704 724 739 748 723 695

coverage (x) 502 502 528 502 517 499

reads used by VELVET (%) 73.6% 77.9% 80.8% 81.8% 86.7% 90.7%

n50 (bp) 3,634 5,143 7,069 8,877 12,260 42,819

sum/size (%) 102.8% 102.8% 100.5% 97.9% 89.5% 121.9%

observed genes (27 expected) 20 20 20 20 20 20

coverage of observed genes (%) 94.0% 94.0% 94.0% 94.0% 94.1% 94.0%

Table 1. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full dataset, and for the improved slicing algorithm

assembly statistics (without slicing-based decoding) are not very

satisfactory: the n50 ranges from 2,630 bp (Hv9) to 8,190 bp (Hv3);

the percentage of reads used by VELVET ranges from 66.0% (Hv9)

to 85.9% (Hv3 and Hv4); the percentage of known genes covered at

least 50% of their length by the assemblies ranged from 66% (Hv4)

to 97% (Hv3).

When we decoded the same ten datasets using the optimal slice

size (using this time k = 32) the assemblies improved drastically.

The decoding and assembly statistics are summarized in Table 5:

note that each set has its optimal size and the corresponding number

of slices. First observe how the number of decoded reads increased

significantly for most datasets (e.g., 330M to 785M for Hv7, 289M

to 669M for Hv8, 209M to 516M for Hv9, 369M to 907M for Vu1

and 448M to 695M for Vu2). Only for two datasets the number

of decoded reads decreased slightly (by 12M reads in Hv5, and

by 44M in Hv10). For all the datasets, the average n50 increased

significantly – from an average of about 5.7 kbp to about 30 kbp

(see Supplemental Dataset 2 for detailed assembly statistics on each

dataset). Even for datasets for which slicing decreased the number

reads (Hv5 and Hv10), the n50 increased significantly. The number

of reads used by VELVET increased from an average of 77% to 92%;

the fraction of known genes that were recovered by the assemblies

increased from 81% to 85%. We recognize that the improvement

from Table 4 to Table 5 is not just due to the slicing, but also to the

increased k (from 26 to 32). We have already addressed this point in

Tables 1–3, where we showed that increasing k from 26 to 32 helps

no slicing slicing

k=26 k=32, 3M k=32, 2M

reads decoded (%) 31.68% 78.98% 82.74%

reads decoded (M) 270 539 600

reads to be assembled (M) 289 591 669

coverage (x) 94 197 223

reads used by VELVET (%) 69.0% 92.6% 91.6%

n50 (bp) 4,126 31,226 34,262

sum/size (%) 55.6% 97.0% 102.0%

observed genes (207 expected) 178 190 187

coverage of observed genes (%) 86.0% 91.1% 91.2%

Table 3. Decoding and assembly statistics for Hv8: comparing no slicing

and slicing with two different slice sizes (2M reads is optimal according to

the peak in Figure 2)

the decoding/assembly but the main boost in accuracy and quality

is due to slicing. Recall that the assemblies in Tables 4–5 were

carried out using VELVET with l = 25, 31, . . . , 79 and choosing

the assembly with the largest n50. On the Hv3 dataset, we have also

tested VELVET with fixed l = 49, SPADES (Bankevich et al., 2012)

with l = 31, 33, . . . , 79, and IDBA-UD (Peng et al., 2012) with

l = 31, 33, . . . , 79 (see Supplemental Table S3). VELVET (best

n50) and SPADES’ performance were comparable, while IDBA-

UD achieved lower n50. We also tested VELVET with l = 49,

and SPADES with l = 31, 33, . . . , 79 on all the other datasets

(Supplemental Table S3). Setting l = 49 for VELVET led to less

“bloated” assemblies, somewhat comparable to SPADES’ output.

As a final step, we investigated how the depth of sequencing

affects BAC assembly quality. To this end, we multiplexed sixteen

barley BACs on one lane of the Illumina HiSeq2000, using custom

multiplexing adapters. The size of these BACs ranged ≈70 kbp

to ≈185 kbp (see Supplemental Table S2). After demultiplexing

the sequenced reads, we obtained 34.4M 92-bases paired-end reads

(insert size of 275 bases). We quality-trimmed the reads, then

cleaned them of spurious sequencing adaptors; finally reads affected

by E. coli contamination or BAC vector were discarded. The final

number of cleaned reads was 23.1M, with an average length of ≈88

bases. The depth of sequencing for the sixteen BACS ranged from

≈6,600x to ≈27,700x (see Supplemental Table S2).

Another set of 52 barley BACs was sequenced by the Department

of Energy Joint Genome Institute (JGI) using Sanger long reads. All

BACs were sequenced and finished using PHRED/PHRAP/CONSED

to a targeted depth of 10x. The primary DNA sequences for each of

these 52 BACs was assembled in one contig, although two of them

were considered partial sequence.

The intersection between the set of 16 BACs sequenced using

the Illumina instrument and the set of 52 BACs sequenced using

Sanger is a set of seven BACs (highlighted in bold in Supplemental

Table S2), but one of these seven BACs is not full-length (052L22).

We used the six full-length Sanger-based BAC assemblies as the

“ground truth” to assess the quality of the assemblies from Illumina

reads at increasing depth of sequencing. To this end, we generated

datasets corresponding to 100x, 250x, 500x, 1,000x, 2,000x,

3,500x, 5,000x, 6,000x, 7,000x and 8,000x depth of sequencing (for

each of the six BACs), by sampling uniformly short reads from the

high-depth datasets. For each choice of the depth of sequencing,

we generated twenty different datasets, for a total of 1,200 datasets.

We assembled the reads on each dataset with VELVET v1.2.09 (with

5

24

Table 5. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no
slicing)

Table 6. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing

When we decoded the same 10 datasets using the optimal slice size (using this time

k=32) the assemblies improved drastically. The decoding and assembly statistics are

summarized in Table 6: note that each set has its optimal size and the corresponding

number of slices. First observe how the number of decoded reads increased significantly

for most datasets (e.g. 330–785M for Hv7, 289–669M for Hv8, 209–516M for Hv9, 369–

907M for Vu1 and 448–695M for Vu2). Only for two datasets the number of decoded

reads decreased slightly (by 12M reads in Hv5, and by 44M in Hv10). For all the datasets,

the average n50 increased significantly from an average of about 5.7 to 30 kbp. Even for

Lonardi et al

decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 1,099.0 431.0 8,190 85.9% 96.7% 1,433/1,471 (97.42%)

Hv4 393.2 135.5 5,718 85.9% 85.9% 312/473 (65.96%)

Hv5 483.0 158.9 8,048 84.5% 93.2% 194/226 (85.84%)

Hv6 218.0 72.0 6,032 83.2% 79.9% 208/244 (85.25%)

Hv7 330.0 110.0 5,352 75.9% 63.7% 201/228 (88.16%)

Hv8 289.0 94.2 4,126 69.0% 55.6% 178/207 (85.99%)

Hv9 208.0 95.8 2,630 66.0% 38.5% 262/361 (72.58%)

Hv10 739.0 528.0 7,069 80.8% 100.5% 20/27 (74.07%)

Vu1 369.0 88.5 4,150 67.6% 49.5% 461/612 (75.33%)

Vu2 448.0 126.0 5,670 75.1% 56.1% 406/503 (80.72%)

Average 457.6 184.0 5,699 77.4% 72.0% (81.13%)

Table 4. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no slicing)

slicing decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

(no. slices×size) reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 (11×2M) 1,156.0 460.0 28,477 90.4% 123.0% 1,437/1,471 (97.69%)

Hv4 (8×2M) 595.6 205.9 28,341 93.9% 114.5% 319/473 (67.44%)

Hv5 (4×4M) 471.0 155.5 31,038 93.6% 101.0% 196/226 (86.73%)

Hv6 (6×1.5M) 243.0 81.1 25,194 92.9% 89.4% 206/244 (84.43%)

Hv7 (15×3M) 785.0 264.0 39,742 91.1% 104.0% 204/228 (89.47%)

Hv8 (12×2M) 669.0 223.0 34,262 91.6% 102.0% 187/207 (90.34%)

Hv9 (14×1.25M) 516.0 246.0 32,634 94.3% 103.2% 309/361 (85.60%)

Hv10 (4×5M) 695.0 499.0 42,819 90.7% 121.9% 20/27 (74.07%)

Vu1 (12×1.5M) 907.0 232.0 16,388 89.7% 89.7% 510/612 (83.33%)

Vu2 (14×1.5M) 970.0 283.0 20,748 91.5% 93.6% 446/503 (88.67%)

Average 700.8 265.0 29,964 92.0% 104.2% (84.78%)

Table 5. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing

hash value k = 79 to minimize the probability of false overlaps) and

collected statistics for the resulting assemblies. Figure 3 shows the

value of n50 (A), the size of the largest contig (B), the percentage

of the target BAC not available in the assembly (C), and number

of assembly errors (D) for increasing depth of sequencing. Each

point in the graph is the average over the twenty datasets, and

error bars indicate the standard deviation. In order to compute

the number of assembly errors we used the tool developed for the

GAGE competition (Salzberg et al., 2011). According to GAGE,

the number of assembly errors is defined as the number of locations

with insertion/deletions of at least six nucleotides, plus the number

of translocations and inversions.

A few observations on Figure 3 are in order. First, note that both

the n50 and the size of the longest contig reach a maximum in the

500x-2000x range, depending on the BAC. Also observe that in

order to minimize the percentage of BAC missed by the assembly

one needs to keep the depth of sequencing below 2,500x (too much

depth decreases the coverage of the target). Finally, it is very clear

from (D) that as the depth of sequencing increases so do the number

of assembly errors (with the exception of one BAC).

We have also investigated whether similar observations could

be drawn for other assemblers. In Figure 4, we report the same

assembly statistics, namely (A) the value of n50, (B) the size of the

largest contig, (C) the percentage of the target BAC not available

in the assembly, and (D) number of assembly errors for increasing

depth of sequencing for one of the BACs. This time we used three

assemblers, namely VELVET, SPADES v3.1.1 (Bankevich et al.,

2012) and IDBA-UD (Peng et al., 2012) (statistics for all BACs

are available in Supplemental Figures S3–S6). While there are

performance differences among the three assemblers, the common

trend is that as the coverage increases, the n50 and the size of the

largest contig decreases, while the percentage of the BAC missing

and the number of assembly errors increases. Among the three

assemblers, SPADES appears to be less affected by high coverage.

SPADES was run with hash values k = 25, 45, 65 and option

--careful (other parameters were default). IDBA-UD was run

with hash values k = 25, 45, 65 (other parameters were default).

The reported assembly is the one chosen by IDBA-UD.

Independently from us, the authors of (Desai et al., 2013) made

similar observations on assembly degratadation. In their study, the

authors assembled E. coli (4.6 MB), S. kudriavzevii (11.18 MB)

and C. elegans (100 MB) using SOAPDENOVO, VELVET, ABYSS,

MERACULOUS and IDBA-UD at increasing sequencing depths up

to 200x. Their analysis showed that the optimum sequencing depth

for assembling these genomes is about 100x, depending on the

specific genome and assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES

and VELVET on simulated reads. We generated 100bp×2 paired-

end reads from the Sanger assembly of BAC 574B01 using the read

simulator WGSIM (github.com/lh3/wgsim) at 100x, 250x,

6

Lonardi et al

decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 1,099.0 431.0 8,190 85.9% 96.7% 1,433/1,471 (97.42%)

Hv4 393.2 135.5 5,718 85.9% 85.9% 312/473 (65.96%)

Hv5 483.0 158.9 8,048 84.5% 93.2% 194/226 (85.84%)

Hv6 218.0 72.0 6,032 83.2% 79.9% 208/244 (85.25%)

Hv7 330.0 110.0 5,352 75.9% 63.7% 201/228 (88.16%)

Hv8 289.0 94.2 4,126 69.0% 55.6% 178/207 (85.99%)

Hv9 208.0 95.8 2,630 66.0% 38.5% 262/361 (72.58%)

Hv10 739.0 528.0 7,069 80.8% 100.5% 20/27 (74.07%)

Vu1 369.0 88.5 4,150 67.6% 49.5% 461/612 (75.33%)

Vu2 448.0 126.0 5,670 75.1% 56.1% 406/503 (80.72%)

Average 457.6 184.0 5,699 77.4% 72.0% (81.13%)

Table 4. Decoding and assembly statistics for the ten datasets using k = 26 on the full dataset (no slicing)

slicing decoding Velvet assembly (l = 25, 31, . . . , 79, best n50)

(no. slices×size) reads (M) coverage (x) n50 (bp) reads used (%) sum/size (%) observed/expected genes (%)

Hv3 (11×2M) 1,156.0 460.0 28,477 90.4% 123.0% 1,437/1,471 (97.69%)

Hv4 (8×2M) 595.6 205.9 28,341 93.9% 114.5% 319/473 (67.44%)

Hv5 (4×4M) 471.0 155.5 31,038 93.6% 101.0% 196/226 (86.73%)

Hv6 (6×1.5M) 243.0 81.1 25,194 92.9% 89.4% 206/244 (84.43%)

Hv7 (15×3M) 785.0 264.0 39,742 91.1% 104.0% 204/228 (89.47%)

Hv8 (12×2M) 669.0 223.0 34,262 91.6% 102.0% 187/207 (90.34%)

Hv9 (14×1.25M) 516.0 246.0 32,634 94.3% 103.2% 309/361 (85.60%)

Hv10 (4×5M) 695.0 499.0 42,819 90.7% 121.9% 20/27 (74.07%)

Vu1 (12×1.5M) 907.0 232.0 16,388 89.7% 89.7% 510/612 (83.33%)

Vu2 (14×1.5M) 970.0 283.0 20,748 91.5% 93.6% 446/503 (88.67%)

Average 700.8 265.0 29,964 92.0% 104.2% (84.78%)

Table 5. Decoding and assembly statistics for the ten datasets using k = 32 and optimal slicing

hash value k = 79 to minimize the probability of false overlaps) and

collected statistics for the resulting assemblies. Figure 3 shows the

value of n50 (A), the size of the largest contig (B), the percentage

of the target BAC not available in the assembly (C), and number

of assembly errors (D) for increasing depth of sequencing. Each

point in the graph is the average over the twenty datasets, and

error bars indicate the standard deviation. In order to compute

the number of assembly errors we used the tool developed for the

GAGE competition (Salzberg et al., 2011). According to GAGE,

the number of assembly errors is defined as the number of locations

with insertion/deletions of at least six nucleotides, plus the number

of translocations and inversions.

A few observations on Figure 3 are in order. First, note that both

the n50 and the size of the longest contig reach a maximum in the

500x-2000x range, depending on the BAC. Also observe that in

order to minimize the percentage of BAC missed by the assembly

one needs to keep the depth of sequencing below 2,500x (too much

depth decreases the coverage of the target). Finally, it is very clear

from (D) that as the depth of sequencing increases so do the number

of assembly errors (with the exception of one BAC).

We have also investigated whether similar observations could

be drawn for other assemblers. In Figure 4, we report the same

assembly statistics, namely (A) the value of n50, (B) the size of the

largest contig, (C) the percentage of the target BAC not available

in the assembly, and (D) number of assembly errors for increasing

depth of sequencing for one of the BACs. This time we used three

assemblers, namely VELVET, SPADES v3.1.1 (Bankevich et al.,

2012) and IDBA-UD (Peng et al., 2012) (statistics for all BACs

are available in Supplemental Figures S3–S6). While there are

performance differences among the three assemblers, the common

trend is that as the coverage increases, the n50 and the size of the

largest contig decreases, while the percentage of the BAC missing

and the number of assembly errors increases. Among the three

assemblers, SPADES appears to be less affected by high coverage.

SPADES was run with hash values k = 25, 45, 65 and option

--careful (other parameters were default). IDBA-UD was run

with hash values k = 25, 45, 65 (other parameters were default).

The reported assembly is the one chosen by IDBA-UD.

Independently from us, the authors of (Desai et al., 2013) made

similar observations on assembly degratadation. In their study, the

authors assembled E. coli (4.6 MB), S. kudriavzevii (11.18 MB)

and C. elegans (100 MB) using SOAPDENOVO, VELVET, ABYSS,

MERACULOUS and IDBA-UD at increasing sequencing depths up

to 200x. Their analysis showed that the optimum sequencing depth

for assembling these genomes is about 100x, depending on the

specific genome and assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES

and VELVET on simulated reads. We generated 100bp×2 paired-

end reads from the Sanger assembly of BAC 574B01 using the read

simulator WGSIM (github.com/lh3/wgsim) at 100x, 250x,

6

25

datasets for which slicing decreased the number reads (Hv5 and Hv10), the n50 increased

significantly. The number of reads used by VELVET increased from an average of 77–92%;

the fraction of known genes that were recovered by the assemblies increased from 81 to

85%. We recognize that the improvement from Table 5 to 6 is not just due to the slicing,

but also to the increased k (from 26 to 32). We have already addressed this point in

Tables 1–3, where we showed that increasing k from 26 to 32 helps the

decoding/assembly but the main boost in accuracy and quality is due to slicing. Recall

that the assemblies in Table 5 to 6 were carried out using VELVET with l = 25; 31; . . . ; 79

and choosing the assembly with the largest n50. On the Hv3 dataset, we have also tested

VELVET with fixed l=49, SPADES [16]with l = 31; 33; . . . ; 79, and IDBA-UD [17] with l

= 31; 33; . . . ; 79 (see Table 7). VELVET (best n50) and SPADES’ performance were

comparable, while IDBA-UD achieved lower n50. We also tested VELVET with l=49, and

SPADES with l = 31; 33; . . . ; 79 on all the other datasets (Table 7). Setting l=49 for

VELVET led to less ‘bloated’ assemblies, somewhat comparable to SPADES’ output.

Table 7. Assembly statistics on all barley and cowpea datasets (sliced optimally as in Table 5 in the
main manuscript, and decoded using k = 32 in HASHFILTER) using VELVET, SPADES and IDBA_UD for
several choices of the hash size

average number of scaffolds of a given size average number contigs of a given size

≥50 ≥100 ≥200 ≥400 ≥1K ≥10K ≥50 ≥100 ≥200 ≥400 ≥1K ≥10K n50 max sum sum/size expected/observed

Hv3 VELVET (l = 49) 29.94 29.94 18.76 14.38 10.22 3.23 36.16 35.94 23.09 17.76 12.98 3.08 22,120 33,911 103,795 96.90% 1,471/1,435

SPADES (l = 49) 43.50 41.32 37.78 22.81 13.64 2.67 43.74 41.55 38.01 23.04 13.87 2.65 14,350 27,255 102,260 95.60% 1,471/1,435

SPADES (l = 31, 33, . . . , 79) 27.15 26.78 25.71 17.04 10.79 2.96 27.32 26.95 25.89 17.21 10.96 2.97 24,121 35,758 104,721 97.90% 1,471/1,434

IDBA (l = 31, 33, . . . , 79) 54.12 44.39 32.93 24.46 14.35 2.74 54.15 44.41 32.95 24.47 14.36 2.75 13,063 26,168 105,889 99.20% 1,471/1,435

Hv4 VELVET (l = 49) 31.26 31.26 23.63 19.76 13.72 3.67 40.20 40.04 30.78 25.21 17.43 3.40 20,751 34,380 123,644 104.90% 473/319

SPADES (l = 31, 33, . . . , 79) 27.72 27.43 26.48 20.91 13.61 3.48 27.89 27.60 26.65 21.09 13.78 3.48 23,914 37,041 124,614 105.70% 473/320

Hv5 VELVET (l = 49) 26.40 26.40 19.13 16.11 11.34 3.44 34.61 34.46 25.68 21.38 15.24 3.28 24,890 37,365 114,926 92.30% 226/196

SPADES (l = 31, 33, . . . , 79) 23.92 23.70 22.88 17.91 11.68 3.25 24.09 23.86 23.04 18.07 11.84 3.26 26,246 38,463 115,537 92.90% 226/196

Hv6 VELVET (l = 49) 26.33 26.33 19.27 16.37 11.95 3.13 37.79 37.67 28.06 23.01 16.42 2.59 20,038 31,443 104,192 84.91% 244/206

SPADES (l = 31, 33, . . . , 79) 22.32 22.02 21.31 17.64 12.36 2.98 22.47 22.17 21.46 17.79 12.50 2.98 20,287 31,613 104,100 84.91% 244/205

Hv7 VELVET (l = 49) 22.46 22.46 15.31 12.75 9.33 3.16 28.34 28.21 19.85 16.22 11.98 3.17 27,415 38,302 104,602 85.72% 228/204

SPADES (l = 31, 33, . . . , 79) 19.96 19.65 18.70 14.61 9.58 2.85 20.12 19.81 18.86 14.77 9.74 2.86 31,109 41,680 105,170 86.29% 228/203

Hv8 VELVET (l = 49) 27.76 27.76 20.86 17.34 11.62 3.04 33.71 33.59 25.35 20.68 13.92 2.92 22,222 34,148 104,857 85.48% 207/188

SPADES (l = 31, 33, . . . , 79) 24.79 24.59 23.81 18.37 11.56 2.91 24.95 24.74 23.97 18.53 11.72 2.92 24,591 36,298 105,466 86.02% 207/188

Hv9 VELVET (l = 49) 26.94 26.94 20.77 17.18 11.31 3.08 32.69 32.57 25.24 20.37 13.51 3.02 22,419 34,677 105,679 92.44% 361/310

SPADES (l = 31, 33, . . . , 79) 24.59 24.29 23.38 18.35 11.33 2.94 24.76 24.46 23.55 18.53 11.50 2.95 25,293 37,225 106,874 93.52% 361/310

Hv10 VELVET (l = 49) 43.55 43.55 21.91 12.63 8.63 3.21 51.54 51.17 26.00 16.18 11.98 3.33 31,052 42,916 113,098 93.16% 27/20

SPADES (l = 31, 33, . . . , 79) 34.95 34.52 33.22 15.44 9.18 2.81 35.14 34.71 33.41 15.63 9.37 2.83 36,244 47,544 113,904 93.92% 27/20

Vu1 VELVET (l = 49) 45.42 45.42 35.62 27.83 16.73 3.13 50.08 49.93 38.94 29.66 17.64 3.01 12,470 24,417 118,080 69.54% 612/519

SPADES (l = 31, 33, . . . , 79) 44.33 42.73 39.14 27.15 15.07 3.31 44.43 42.83 39.24 27.25 15.17 3.31 16,972 29,771 123,597 73.60% 612/536

Vu2 VELVET (l = 49) 29.97 29.97 22.78 18.75 12.71 2.90 33.75 33.64 25.31 20.21 13.56 2.80 14,894 25,388 99,006 68.15% 503/449

SPADES (l = 31, 33, . . . , 79) 29.99 28.68 25.83 19.07 11.39 2.94 30.07 28.76 25.91 19.15 11.47 2.94 19,686 30,269 102,694 71.19% 503/450

Supplemental Table S3: Assembly statistics on all barley and cowpea datasets (sliced optimally as in Table 5 in the main manuscript, and

decoded using k = 32 in HASHFILTER) using VELVET, SPADES and IDBA for several choices of the hash size

26

As a final step, we investigated how the depth of sequencing affects BAC assembly

quality. To this end, we multiplexed 16 barley BACs on one lane of the Illumina

HiSeq2000, using custom multiplexing adapters. The size of these BACs ranged 70–185

kbp. After demultiplexing the sequenced reads, we obtained 34.4M 92-bases paired-end

reads (insert size of 275 bases). We quality-trimmed the reads, then cleaned them of

spurious sequencing adaptors; finally reads affected by E.coli contamination or BAC

vector were discarded. The final number of cleaned reads was 23.1 M, with an average

length of 88 bases. The depth of sequencing for the 16 BACS ranged from 6,600X to

27,700X (see Table 7).

Table 8. Basic statistics on the read datasets for the 16 barley BACs sequenced individually

Another set of 52 barley BACs was sequenced by the Department of Energy Joint

Genome Institute using Sanger long reads. All BACs were sequenced and finished using

PHRED/PHRAP/CONSED to a targeted depth of 10X. The primary DNA sequences for

after demultiplexing after demultiplexing/cleaning/trimming

reads (M) bases (Mbp) read len (bp) % E.coli reads (M) bases (Mbp) read len (bp)

Hv3 2,476 227,773 92.00 41.12% 1,240.2 110,056 88.74

Hv4 1,363 125,273 91.91 39.36% 713.4 63,384 88.85

Hv5 1,142 105,089 92.00 51.11% 505.1 45,088 89.27

Hv6 1,133 104,239 92.00 65.96% 282.4 24,970 88.42

Hv7 2,288 210,535 92.00 46.11% 928.9 82,503 88.82

Hv8 1,802 165,803 92.00 44.04% 730.8 64,651 88.46

Hv9 1,596 146,816 92.00 40.66% 736.2 65,697 89.24

Hv10 971 89,370 92.00 20.95% 748.2 67,600 90.36

Vu1 2,475 227,696 92.00 36.66% 1,208.1 108,666 89.95

Vu2 2,402 221,006 92.00 43.12% 1,144.6 103,026 90.01

Supplemental Table S1: Basic statistics on the ten sequenced read datasets (seven for barley, two for

cowpeas) analyzed in this manuscript

after demultiplexing after demux/cleaning/trimming

BAC approx size (bp) set reads (M) bases (Mbp) % E.coli reads (M) bases (Mbp) coverage (x)

052L22 105,788 Hv4 21.534 1,981 10.94% 16.795 1,488 14,065

152O10 117,543 Hv3, Hv9 18.575 1,709 16.93% 13.101 1,154 9,812

192B13 112,841 Hv4 19.581 1,801 12.20% 13.950 1,225 10,853

574B01 92,859 Hv3 32.952 3,032 15.27% 23.414 2,059 22,172

630P05 110,490 Hv3 16.224 1,493 15.45% 11.102 971 8,792

727J05 131,648 Hv8 22.613 2,080 14.80% 15.801 1,388 10,546

772L04 116,367 Hv3, Hv10 21.837 2,009 17.44% 14.407 1,255 10,784

773A02 185,718 Hv3, Hv10 21.756 2,002 15.86% 14.909 1,309 7,049

773F12 96,385 Hv3, Hv10 20.868 1,920 14.61% 14.661 1,286 13,341

773H21 71,701 Hv3, Hv10 23.679 2,178 16.38% 16.770 1,473 20,540

773L22 92,859 Hv3, Hv10 17.031 1,567 16.16% 12.282 1,081 11,639

774D07 117,543 Hv3, Hv10 13.077 1,203 20.51% 8.880 778 6,621

774G18 90,508 Hv3, Hv10 24.571 2,261 15.89% 16.763 1,469 16,229

774L04 103,437 Hv3, Hv10 22.053 2,029 17.13% 15.219 1,334 12,895

774O01 95,209 Hv3, Hv10 41.579 3,822 14.76% 29.877 2,642 27,754

789L09 84,631 Hv3 37.000 3,404 15.20% 25.730 2,264 26,754

Supplemental Table S2: Basic statistics on the read datasets for the 16 barley BACs sequenced individually

27

each of these 52 BACs were assembled in one contig, although two of them were

considered partial sequence.

The intersection between the set of 16 BACs sequenced using the Illumina instrument

and the set of 52 BACs sequenced using Sanger is a set of seven BACs (highlighted in

bold in Table 8), but one of these seven BACs is not full-length (052L22). We used the six

full-length Sanger-based BAC assemblies as the ‘ground truth’ to assess the quality of the

assemblies from Illumina read at increasing depth of sequencing. To this end, we

generated datasets corresponding to 100, 250, 500, 1000, 2000, 3500, 5000, 6000, 7000

and 8000X depth of sequencing (for each of the six BACs), by sampling uniformly short

reads from the high-depth datasets. For each choice of the depth of sequencing, we

generated 20 different datasets, for a total of 1,200 datasets. We assembled the reads on

each dataset with VELVET v1.2.09 (with hash value k=79 to minimize the probability of

false overlaps) and collected statistics for the resulting assemblies. Figure 6 shows the value

of n50 (A), the size of the largest contig (B), the percentage of the target BAC not

available in the assembly (C) and number of assembly errors (D) for increasing depth of

sequencing. Each point in the graph is the average over the 20 datasets, and error bars

indicate the SD. In order to compute the number of assembly errors we used the tool

developed for the GAGE competition [18]. According to GAGE, the number of assembly

errors is defined as the number of locations with insertion/deletions of at least six

nucleotides, plus the number of translocations and inversions.

28

Figure 6. VELVET assembly statistics as a function of the depth of sequencing coverage: (A) n50, (B) longest
contig, (C) percentage of the target BAC not covered by the assembly, (D) number of assembly errors; each point is an
average over 20 samples of the reads, errors bars indicate standard deviation among the samples

A few observations on Figure 3 are in order. First, note that both the n50 and the size

of the longest contig reach a maximum in the 500X – 2,000X range, depending on the

BAC. Also observe that in order to minimize the percentage of BAC missed by the

assembly one needs to keep the depth of sequencing below 2,500X (too much depth

decreases the coverage of the target). Finally, it is very clear from (D) that as the depth of

sequencing increases so do the number of assembly errors (with the exception of one

BAC).

We have also investigated whether similar observations could be drawn for other

assemblers. In Figure 11, we report the same assembly statistics, namely (A) the value of

B

C D

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000 6000 7000 8000

152O10
192B13
574B01
630P05
727J05
789L09

A B 0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1000 2000 3000 4000 5000 6000 7000 8000

152O10
192B13
574B01
630P05
727J05
789L09

C 0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000

152O10
192B13
574B01
630P05
727J05
789L09

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000

152O10
192B13
574B01
630P05
727J05
789L09

29

n50, (B) the size of the largest contig, (C) the percentage of the target BAC not available

in the assembly and (D) number of assembly errors for increasing depth of sequencing for

one of the BACs. This time we used three assemblers, namely VELVET, SPADES v3.1.1

[16] and IDBA-UD [17] (statistics for all BACs are available in Figure 7 to Figure 11).

Although there are performance differences among the three assemblers, the common

trend is that as the coverage increases, the n50 and the size of the largest contig decreases,

while the percentage of the BAC missing and the number of assembly errors increases.

Among the three assemblers, SPADES appears to be less affected by high coverage.

SPADES was run with hash values k=25, 45, 65 and option careful (other parameters were

default). IDBA-UD was run with hash values k=25, 45, 65 (other parameters were default).

The reported assembly is the one chosen by IDBA-UD.

30

Figure 7. n50 statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with VELVET,
SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

	

	

	

	

152O10 192B13

574B01

727J05 789L09

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA-ud

SPAdes

Velvet

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

630P05

Supplemental Figure S3: n50 statistics (Y -axis) for the six ultra-deep coverage BACs, assembled with

VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

31

	

	

	

	

Figure 8. Largest contig statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

152O10 192B13

574B01

727J05 789L09

630P05

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

Supplemental Figure S4: Largest contig statistics (Y -axis) for the six ultra-deep coverage BACs, assem-

bled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

32

Figure 9. Mis-assembly error statistics (Y-axis) for the six ultra-deep coverage BACs, assembled with
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

	

	

	

	

152O10 192B13

574B01

727J05 789L09

630P05

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet
0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1

2

3

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1

2

3

4

5

6

7

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1

2

3

4

5

6

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

Supplemental Figure S5: Mis-assembly error statistics (Y -axis) for the six ultra-deep coverage BACs,

assembled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

33

	

	

	

	

Figure 10. Genome percentage missing (Y-axis) for the six ultra-deep coverage BACs, assembled with
VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

152O10 192B13

574B01

727J05 789L09

630P05

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

Supplemental Figure S6: Genome percentage missing (Y -axis) for the six ultra-deep coverage BACs,

assembled with VELVET, SPADES and IDBA-UD for various levels of depth of sequencing (X-axis)

34

Figure 11. Assembly statistics as a function of the depth of sequencing coverage for BAC 789L09 for
three assemblers: VELVET, SPADES and IDBA_UD; (A) n50, (B) longest contig, (C) percentage of the
target BAC not covered by the assembly, (D) number of assembly errors; each point is an average over 10
subsamples of the reads, errors bars indicate standard deviation among the samples

Independently from us, the authors of (Desai et al., 2013) made similar observations

on assembly degratadation. In their study, the authors assembled E.coli (4.6 MB),

Saccharomyces kudriavzevii (11.18 MB) and Caenorhabditis. elegans (100 MB) using

SOAPDENOVO, VELVET, ABYSS, MERACULOUS and IDBA-UD at increasing sequencing

depths up to 200X. Their analysis showed that the optimum-sequencing depth for

assembling these genomes is about 100X, depending on the specific genome and

assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES and VELVET on

simulated reads. We generated 100 bp×2 paired-end reads from the Sanger assembly of

A B

C D 0

1

2

3

4

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

IDBA_ud

SPAdes

Velvet

35

BAC 574B01 using the read simulator WGSIM (github.com/lh3/wgsim) at 100, 250, 500,

1000, 2000, 3500, 5000, 6000, 7000 and 8000X depth of sequencing. Insert length was

250 bp, with a standard deviation of 10 bp. For each depth of sequencing, we generated

simulated reads at 0, 0.5, 1 and 2% sequencing error rate (substitutions). Insertions and

deletions were not allowed.

IDBA-UD was executed with hash values k=25, 45, 65 (other parameters were

default). VELVET was run with k=49. We repeated the simulations 20 times for IDBA-UD

and 10 times for VELVET and SPADES. In Figure 12 to Figure 14, we report the usual

assembly statistics, namely n50, largest contig, percentage missing, and number of

assembly errors for VELVET, IDBA-UD and SPADES on these datasets. Observe that with

‘perfect’ reads (0% error rate), ultra-deep coverage does not affect the performance of

IDBA-UD and VELVET. With higher and higher sequencing errors, however, similar

behaviors to the assembly of real data can be observed for IDBA-UD and VELVET: n50

and longest contig rapidly decrease, and missing portions of the BAC and number of mis-

assemblies increase. Surprisingly, SPADES seems to be immune to higher sequencing

error rates.

36

Figure 12. VELVET assembly statistics (Y-axis) as a function of the depth of sequencing coverage (X-axis) for
synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate: (A) n50, (B) longest
contig, (C) percentage of the target BAC not covered by the assembly, (D) number of assembly errors; each point is an
average over twenty samples of the reads, errors bars indicate standard deviation among the samples

	

	

	

	

	

	

	

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

B

C D

A

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

0.2

0.4

0.6

0.8

1

1.2

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

Supplemental Figure S7: VELVET assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate

standard deviation among the samples

37

	

	

	

	

Figure 13. IDBA-UD assembly statistics (Y-axis) as a function of the depth of sequencing coverage
(X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate:
(A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D) number of
assembly errors; each point is an average over twenty samples of the reads, errors bars indicate standard
deviation among the samples

B

C D

A
0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

Supplemental Figure S8: IDBA-UD assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate

standard deviation among the samples

38

Figure 14. SPADES assembly statistics (Y-axis) as a function of the depth of sequencing coverage (X-
axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing error rate: (A)
n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D) number of
assembly errors; each point is an average over twenty samples of the reads, errors bars indicate standard
deviation among the samples

	

2.3 Discussion

Because the introduction of DNA sequencing in the 70s, scientists had to come up

with clever solutions to deal with the problem of de novo genome assembly with limited

depth of sequencing. As the cost of sequencing keeps decreasing, one can expect that

computational biologists will have to deal with the opposite problem: excessive amount

of sequencing data. The Lander-Waterman-Roach theory [19, 20] has been the theoretical

foundation to estimate gap and contig lengths as a function of the depth of sequencing.

B

C D

A
0

5000

10000

15000

20000

25000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

0.005

0.01

0.015

0.02

0.025

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1000 2000 3000 4000 5000 6000 7000 8000

0% error rate

.5% error rate

1% error rate

2% error rate

Supplemental Figure S9: SPADES assembly statistics (Y -axis) as a function of the depth of sequencing

coverage (X-axis) for synthetic reads generated from BAC 574B01 for several choices of the sequencing

error rate: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by the assembly, (D)

number of assembly errors; each point is an average over twenty samples of the reads, errors bars indicate

standard deviation among the samples

39

We do not have a theory that would explain why the quality of the assembly starts

degrading when the depth is too high. Possible factors include the presence (in real data)

of chimeric reads, sequencing errors, and read duplications, or their combination thereof.

In this study, we report on the de novo assembly of BAC clones, which are relatively

short DNA fragments (100–150 kbp). With current sequencing technology it is very easy

to reach depth of sequencing in the range of 1000–10,000X and study how the assembly

quality changes as the amount of sequencing data increases. Our experiments show that

when the depth of sequencing exceeds a threshold the overall quality of the assembly

starts degrading (Figure	
 6). This appears to be a common problem for several de novo

assemblers (Figure	
 11). The same behavior is observed for the problem of We have also

investigated decoding reads to their source BAC (Figure	
 3), which is the main focus of

this article. The important question is how to deal with the problem of excessive

sequencing depth. For the decoding problem we have presented an effective ‘divide and

conquer’ solution: we ‘slice’ the data in subsamples, decode each slice independently,

then merge the results. In order to handle conflicts in the BAC assignments (i.e. reads that

appear in multiple slices that are decoded to different sets of BACs), we devised a simple

set of voting rules. The question that is still open is what to do for the assembly problem:

one could assemble slices of the data independently, but it is not clear how to merge the

resulting assemblies. In general, we believe that the problem of de novo sequence

assembly must be revisited from the ground up under the assumption of ultra-deep

coverage. We discuss the assembly problem for ultra-deep sequencing data in detail in

chapter 3.

40

Chapter 3: De Novo Meta-Assembly of
Ultra-deep Sequencing Data

As mentioned in Chapter 1, since the early days of DNA sequencing, the problem of

de novo genome assembly has been characterized by insufficient and/or uneven depth of

sequencing coverage (see, e.g., [21]). Insufficient sequencing coverage, along with other

shortcomings of sequencing instruments (e.g., short read length and sequencing errors)

exacerbated the algorithmic challenges in assembling large, complex genome – in

particular those with high repetitive content. Some of the third generation of sequencing

technology currently on the market, e.g., Pacific Biosciences [22] and Oxford Nanopore

[23], offers very long reads at a higher cost per base, but sequencing error rate is much

higher. As a consequence, long reads are more commonly used for scaffolding contigs

created from second generation data, rather than for de novo assembly [24].

Thanks to continuous improvements in sequencing technologies, life scientists can

now easily sequence DNA at depth of sequencing coverage in excess of 1,000x,

especially for smaller genomes like viruses, bacteria or BAC/YAC clones. “Ultra-deep”

sequencing (i.e., 1,000x or higher) has already been used in the literature for detecting

rare DNA variants including mutations causing cancer [25, 26], to study viruses [27, 28],

as well as other applications [21]. As it becomes more and more common, ultra-deep

sequencing data is expected to create new algorithmic challenges in the analysis pipeline.

In this chapter, we focus on one of these challenges, namely the problem of de novo

assembly. We showed in chapter 2 that modern de novo assemblers SPADES [16],

41

IDBA_UD [17], and VELVET [14] are unable to take advantage of ultra-deep coverage

[29]. Even more surprising was the finding that the assembly quality produced by these

assemblers starts degrading when the sequencing depth exceeds 500x-1,000x (depending

on the assembler and the sequencing error rate). By means of simulations on synthetic

reads we also showed in [29] that the likely culprit is the presence of sequencing errors:

the assembly quality degradation cannot be observed with error-free reads, while higher

sequencing error rate intensifies the problem. The “message” of our study [29] is that

when the data is noisy, more data is not necessarily better. Rather, there is an error-rate-

dependent optimum.

 Independently from us, study [30] reached similar conclusions: the authors

assembled E. coli (4.6 MB) S. kudriavzevii (11.18 MB) and C. elegans (100 MB) using

SOAPDENOVO, VELVET, ABySS, MERACOLOUS and IDBA_UD at increasing sequencing

depths up to 200x (which is not ultra-deep according to our definition). Their analysis

showed an optimum sequencing depth (around 100x) for assembling these genomes,

which depends on the specific genome and the assembler.

In addition to sequencing errors, real sequencing data is also plagued by read

duplications that contribute to uneven coverage. Read duplication is typically attributed

to PCR amplification bias [31, 32]. The presence of highly duplicated reads complicates

the task for assemblers when they contain sequencing errors; if unique it would be easy to

detect and remove them. As the coverage increases, the probability of an overlap that

involves duplicated reads agreeing to each other due to sequencing errors becomes higher

and higher. These new overlaps can induce spurious contigs (typically short) or prevent

42

the creation of longer contigs. In turns, this manifests in a degradation of the assembly

quality (N50, number of mis-assemblies, portion of the target genome covered, etc.) We

also suspect that the removal of bubbles/bulges from the de Bruijn graph (for details on

bubbles/bulges see, e.g[14] or [16]) is significantly harder with ultra-deep sequencing

data.

Since sequencing errors are the source of the problem, one could attempt to correct

them before the assembly. Several stand-alone methods have been proposed in the

literature (see [33] for a recent survey), and several de novo assemblers (e.g., SPADES

[16]) employ a preprocessing step for correcting errors. Unfortunately, error correction is

not very effective for ultra-deep sequencing data. Most error correction tools are based on

k-mer spectrum analysis: the underlying assumption is that “rare” k-mers are likely to

contain sequencing errors. As the depth of sequencing of cover-age increases, so does the

number of occurrences of any k-mer, including the ones that contain sequencing errors. In

[29] and the current manuscript, we have collected experimental evidence of the

inefficacy of error-correction methods on the assembly of ultra-deep sequencing data.

An alternative approach to deal with excessive sequencing data is down-sampling.

The idea of down-sampling is to disregard a fraction of the input reads, according to

some predetermined strategy. The simplest approach is to randomly sample the input and

only assemble a fraction of the reads. Although coverage reduction has been primarily

used for unbalanced data [34], we have shown in [29] that in the presence of ultra-deep

sequencing data, the assembly of a random sample of the input reads only marginally

improves the assembly quality compared to the assembly of entire dataset. DIGINORM

43

[34] and NEATFREQ [35] are two examples of down-sampling methods aimed to produce

a more uniform cover-age. They both reduce coverage by selecting representative reads

binned by their median k-mer frequency. In general, downsampling is not a satisfactory

technique to deal with large datasets, unless it is expected to remove most of the “bad”

reads and none of the “good” reads. Otherwise, it has the undesirable effect of re-moving

“critical” reads, i.e., rare but error-free reads that can help bridge or fill assembly gaps.

In this chapter we address the question of how to create high quality assemblies when

an ultra-deep dataset is available. We propose a meta-assembly method called

SLICEMBLER that, unlike down-sampling techniques, takes the advantage of the whole

input dataset. SLICEMBLER uses a divide-and-conquer approach: it “slices” a large input

into smaller sets of reads, assembles each set individually (using a standard assembler),

and then merges the individual assemblies. Our experimental results on real and synthetic

data shows that SLICEMBLER can produce higher quality assemblies than the regular

assembly of entire dataset (before or after error correction), as well as better assemblies

compared to the assembly of random samples of the reads. The assemblies produced by

SLICEMBLER demonstrate that, when an ultra-deep coverage dataset is available, it is

possible to create long contigs with no assembly errors. We believe these results can be

considered the first step toward making “perfect assemblies”. We also show that

SLICEMBLER is less sensitive to sequencing error rates, which could make it desirable for

third-generation sequencing data.

44

3.1 Methods

The availability of ultra-deep sequencing data opens the opportunity to construct

assemblies from multiple independent samples of the reads and then compare them with

the objective either to [21] merge them or [22] discover assembly errors and correct

them. SLICEMBLER is based on majority voting: if a contig (or a fraction thereof) appears

in the majority of the individual assemblies, we assume that it is safe to add that contig to

the consensus assembly being built. SLICEMBLER is a meta-assembler for second-

generation paired-end short reads, but its framework can be adapted to other type of

sequencing data.

Figure	
 15 illustrates the proposed iterative algorithm. First, SLICEMBLER partitions the

reads into several smaller sets (slices). In the second step, it assembles each set

individually using a standard assembler (e.g., VELVET, SPADES, IDBA_UD or RAY).

Third, SLICEMBLER analyzes the individual assemblies, and identifies long common

contigs (or fractions thereof) supported by a majority of the assemblies. In the fourth step,

it merges these common contigs (or fractions thereof) to the partially constructed

(consensus) assembly being built. Before repeating steps 2, 3 and 4, any read that maps to

the consensus assembly is removed from the input.

45

	

Figure 15. SLICEMBLER’s pipeline: First, the input reads are partitioned into smaller slices (1). Each
slice is assembled individually (2), and the resulting assemblies are merged by a “majority voting” process
(3,4). Before repeating these steps any read in the input that maps to the consensus assembly is removed
(6). When no further merging is possible, the final consensus assembly is produced (7).

	

3.1.1. “Slicing” the input

In the first step, the set of input reads is partitioned into n distinct slices. Each paired-

end read is assigned to exactly one slice, although it is also possible to assign a read to

multiple slices. For simplicity, each slice contains approximately the same number of

reads. The number of slices is determined from the desired depth of coverage Ds for each

slice. As we discussed in [29], the coverage Ds is a critical parameter for the quality of

assembly. In order to find a good value for Ds, one can run the base assembler (e.g.,

VELVET, SPADES, RAY, or IDBA_UD) on larger and larger samples of the input and find

the coverage that maximizes the chosen assembly statistics (e.g., N50). Once the value of

Ds is established, one can determine the number of slices by computing n= ⌈Dt⁄Ds⌉ where

Dt is the depth of coverage for the whole input read set. Given the set of input reads, the

slice coverage Ds and the average read length, it is straightforward to partition the reads

into n slices with the desired coverage.

46

3.1.2. Assembling the slices

In the second step, each of the n slices is assembled independently with a standard

assembler (e.g., VELVET, SPADES, RAY, or IDBA_UD), possibly with different choices

of the k-mer values in each slice. Under the assumption that the number of reads in every

slice is sufficient for a complete assembly, the ideal outcome is that each of the n

assemblies covers the entire the target genome. In practice, each assembly is expected to

contain a mixture of “good” and “bad” contigs due to sequencing errors, repetitive

regions and imperfections in the assembly algorithms. The objective of the next step is to

identify the “good portion” of each contig by taking a majority vote among the

assemblies.

3.1.3. Finding frequently occurring substrings

In the third step, SLICEMBLER searches for long substrings that occur exactly in the

majority of individual assemblies. The input to this step is a set of n assemblies

S={A1,A2,…,An} where each assembly Ai is represented as a set of contigs. Given a

string s, we define c(s) as a subset T ⊆	
 S of assemblies in which s appears exactly in at

least one contig of each assembly in T. Given a minimum support k and minimum length

l, SLICEMBLER identifies all maximal substrings r such that |r| > l and |c(r)| > k, that is, r

is longer than l nucleotides and it appears in at least k assemblies. By maximal we mean

that if string r was extended by one extra symbol to the left or to the right, then |c(r)|

would decrease below threshold k+1. We call such substrings r, frequently occurring

substrings (FOS). Figure	
 16 illustrates four FOS detected from a set of five assemblies.

47

FOS1 occurs in four assemblies, while FOS2 appears in three of them. FOS3 and FOS4 is

a pair of overlapping substrings occurring in three assemblies.

	

Figure 16. Examples of frequently occurring substrings (FOS) from five assemblies (FOS can
overlap).

In order to find FOS, we build a generalized suffix tree on the contigs of n assemblies

(and their reverse complement), then use a variant of the algorithm proposed in [36]. In

this algorithm, each input string is assigned a distinct “color”. The algorithm uses the

generalized suffix tree to compute for each tree node u the number of distinct colors in

the subtree rooted at node u. The algorithm computes the number of colors for each node

in linear time in the length of the input strings. Algorithm [36], however, does not

produce maximal substrings. Once the internal nodes have the color information, to

ensure right-maximality our algorithm finds the deepest internal node u (spelling out

string r, |r|>l) such that |c(r)| > k. To guarantee left-maximality we take advantage of

suffix links: if node u has a suffix link to node v, and subtrees rooted at u and v have the

same number of leaves and colors then the string corresponding to v is not left-maximal

and should not be reported.

FOS 2

Assembly 1

Assembly 2

Assembly 3

Assembly 4

Assembly 5

FOS 1 FOS 3

FOS 4

48

As we mentioned above, repetitive regions in the genome represent a major challenge

for assemblers. Often a FOS includes a repetitive pattern at the end due to disagreements

among assemblies on how many times that pattern should be repeated. The ends of each

FOS are critical for merging, which requires a prefix-suffix overlap. Any error in these

sections may prevent the algorithm from merging overlapping FOS (discussed next in

Section 2.4). To avoid errors at the ends of a FOS, if a repetitive pattern is found at any of

the ends, all copies (except one) of the repeated pattern are eliminated.

3.1.4. Merging frequently occurring sequences

When detected FOS are overlapping (e.g., FOS3 and FOS4 in Figure	
 16) they can be

merged to obtain longer FOS (FOS will also be merged to the contigs in the consensus

assembly being built). SLICEMBLER identifies any FOS that has an exact suffix-prefix

overlap (i.e., no mismatches/indels) with another FOS (or its reverse complement), and

determines the number of paired-end reads that connect each pair of such overlapping

FOS. A pair of FOS is merged if either (1) the exact overlap is at least 100bp or (2) the

exact overlap is 50-99bp and the number of paired end reads connecting them is at least

Dt/1000 or (3) the exact overlap is 20-49bp and the number of paired end reads

connecting them is at least Dt/100. This idea of using paired-end read to increase the

confidence of an overlap is similar to the scaffolding step used to order and orient contigs

in de novo assemblers or specialized scaffolding tools like [37].

49

3.1.5. SLICEMBLER algorithm

As said, SLICEMBLER is an iterative meta-assembler. The main steps of

slicing/assembling/merging are executed iteratively until a predetermined condition is

met. Table	
 9 shows a sketch of our algorithm. As described in Section 2.1, the number of

slices is calculated from the chosen slice coverage (DS). The input read set is partitioned

into n slices (line 2). The rest of the algorithm is performed iteratively (line 3-19) until

the total length of the consensus assembly F meets or exceeds the target genome size no

sufficiently long FOS can be found. At the beginning of a new iteration, SLICEMBLER

assembles the reads in each slice individually (lines 4-6). Next, a generalized suffix tree T

is created from the contigs in the individual assemblies (both forward and reverse

complement) (line 7). Using the suffix tree, SLICEMBLER produces the set of maximal

substrings longer than l bases that occur in at least k assemblies (out of n, line 11). The

FOS set could contain any number of strings (including none). Then, SLICEMBLER

checks whether FOS overlapping with the current consensus assembly meet the

conditions described in Section 2.4 and merges them (line 12). The parameter k is set to n

initially, so SLICEMBLER first tries to determine if there is any FOS that appears in all the

assemblies. If no new FOS is found, the support k is decreased (by one) and the loop is

repeated. The parameter k is decreased until at least one FOS is detected or k becomes

smaller than n/2. If k becomes smaller than n/2, the minimum length l is halved and k is

initialized again to n. We selected n/2 as the “turning point” because we would not trust

any common substring that appears in the minority of the assemblies. The initial value for

l is one fifth of the size of the target; based on our observations using a larger value for

50

the initial value of l is unlikely to improve the results, but makes SLICEMBLER slower.

The iterative process stops when l drops be-low lmin, which is desired minimum contig

length in the final assembly (lmin is user-defined, typically 200-500 base pairs). If l is

below lmin and no new FOS have been identified in the current iteration (line 17),

SLICEMBLER’s iterative process is terminated and the consensus assembly is reported.

Table 9. A sketch of SLICEMBLER’s algorithm

H.Mirebrahim et al.

4

loop is repeated. The parameter k is decreased until at least one
FOS is detected or k becomes smaller than n/2. If k becomes
smaller than n/2, the minimum length l is halved and k is initialized
again to n. We selected n/2 as the “turning point” because we
would not trust any common substring that appears in the minority
of the assemblies. The initial value for l is one fifth of the size of
the target; based on our observations using a larger value for the
initial value of l is unlikely to improve the results, but makes
SLICEMBLER slower. The iterative process stops when l drops be-
low lmin, which is desired minimum contig length in the final as-
sembly (lmin is user-defined, typically 200-500 base pairs). If l is
below lmin and no new FOS have been identified in the current
iteration (line 17), SLICEMBLER’s iterative process is terminated
and the consensus assembly is reported.

Table 1. A sketch of SLICEMBLER’s algorithm

 Inputs

Output

Input reads (S), slice coverage (DS), min contig length (lmin), size of the

target genome (ltarget)

Set of contigs (F)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

F ← ∅

Partition S into n slices S1,S2, …, Sn each of which has coverage DS

while (|F| < ltarget) do

A ← ∅

for i ←1 to n do

A ← A U Assemble(Si)

T ← GeneralizedSuffixTree(A, ReverseComplement(A))

k ← n

l ← ltarget / 5

while (l>lmin)

FOS ← FindFOS(T, k, l)

if (FOS ≠ ∅) then F ← MergeFOS(FOS, F)

break

else if (k > n/2) then k ← k – 1

else l ← l/2

k ← n

 if (l <= lmin) and (FOS=∅) then break

for i ← 1 to n do

Si ← FindUnmappedReads(F, Si)

return F

Before starting a new iteration, all the reads in each slice are

mapped to all detected FOS in the current consensus assembly.
Each paired end read that maps exactly to any contig in the current
assembly is removed (line 18-19) and only the remaining reads are
assembled in the next iteration. Note that we do not repartition the
read sets after this step, because although the number of reads de-
creases, so does the size of the target we are supposed to recon-
struct. In other words, the desired slice coverage Ds is maintained
at every iteration. There is one exception to this strategy of read
elimination. Recall that in order to be able to merge the FOS set
with the current assembly, the strings have to overlap a minimum

number of bases. To make sure that this will be possible in future
iterations, reads that are mapped close to the ends of contigs of the
current assembly are not eliminated.

Like any other assembly pipeline, gap filling and scaffolding
can be applied at the end of the process to improve the quality of
final assembly. In this case, gap filling is easier than usual because
of the high quality of contigs produced by SLICEMBLER and the
very large number of reads available for filling the gaps. Also, the
number of gaps to be filled at the end is relatively small since
SLICEMBLER fills some of the gaps during the merging process (see
Figure 4 for an example). The merging step uses small FOS identi-
fied in the later iterations to “glue” adjacent contigs.

3 EXPERIMENTAL RESULTS
We implemented SLICEMBLER in Python. Our tool can be accessed
at http://slicembler.cs.ucr.edu/. As said, SLICEMBLER is a
meta-assembler; its performance directly depends on the base as-
sembler. In the following experiments we used Velvet as the base
assembler, unless stated otherwise. The performance of
SLICEMBLER using other base assemblers (IDBA, Ray and SPAdes)
is presented in Section 3.3. The number of slices and the sequenc-
ing error rate for the input reads are other factors that critically
influence the quality of the final assembly. We study these issues
in Section 3.4 and Section 3.5.

Recall that at the end of every iteration, all reads are mapped to
the partially constructed assembly in order to detect bridge reads
(to be used later in the merging step) and to eliminate reads that are
already represented in the assembly. SLICEMBLER uses BWA (21)
to find perfect alignments (no mismatches, no gaps) for this pur-
pose. We used a minimum contig length lmin = 200 (which is the
default parameter for SLICEMBLER). We did not use any gap filling
or scaffolding tool on the final assemblies. All experiments were
carried on a Linux server with twenty computing cores and 194
GB of RAM.

3.1 Ultra-deep sequencing of barley BACs
In order to carry out experiments on real ultra-deep data, we

sequenced a set of 16 bacterial artificial chromosome (BAC) ge-
nomic clones of barley (Hordeum vulgare L.) on an Illumina HiS-
eq2000 at UC Riverside at a depth of coverage 8,000x-15,000x.
The average read length was about 88 bases after quality trimming;
reads were paired-end with an average insert size of 275 bases.
Another set of 52 barley BACs was sequenced by the Department
of Energy Joint Genome Institute (JGI) using Sanger sequencing.
Since the primary DNA sequences for each of these 52 BACs were
assembled in one solid contig (details in (12)), we assumed these
Sanger-based assemblies to be the “ground truth” or “reference”.
Five ultra-deep sequenced BACs had such a reference, so we used
them to objectively evaluate the performance of SLICEMBLER. In
order to have an equal-sized input dataset for all BACs, we used
only 8,000x worth of coverage. These five barley BAC clones,
hereafter referred as BAC 1-5 have the following lengths:
131,747bp, 108,261bp, 110,772bp, 111,748bp, and 102,968bp,
respectively. We should remind the reader that the barley genome
is highly repetitive. Approximately 84% of the genome consists of
mobile elements or other repeat structures (22).

51

Before starting a new iteration, all the reads in each slice are mapped to all detected

FOS in the current consensus assembly. Each paired end read that maps exactly to any

contig in the current assembly is removed (line 18-19) and only the remaining reads are

assembled in the next iteration. Note that we do not repartition the read sets after this

step, because although the number of reads de-creases, so does the size of the target we

are supposed to reconstruct. In other words, the desired slice coverage Ds is maintained at

every iteration. There is one exception to this strategy of read elimination. Recall that in

order to be able to merge the FOS set with the current assembly, the strings have to

overlap a minimum number of bases. To make sure that this will be possible in future

iterations, reads that are mapped close to the ends of contigs of the current assembly are

not eliminated.

Like any other assembly pipeline, gap filling and scaffolding can be applied at the

end of the process to improve the quality of final assembly. In this case, gap filling is

easier than usual because of the high quality of contigs produced by SLICEMBLER and the

very large number of reads available for filling the gaps. Also, the number of gaps to be

filled at the end is relatively small since SLICEMBLER fills some of the gaps during the

merging process (see Figure	
 18 for an example). The merging step uses small FOS

identified in the later iterations to “glue” adjacent contigs.

3.2 Experimental Results

We implemented SLICEMBLER in Python. Our tool can be accessed at http://

SLICEMBLER.cs.ucr.edu/. As said, SLICEMBLER is a meta-assembler; its performance

52

directly depends on the base assembler. In the following experiments we used VELVET as

the base assembler, unless stated otherwise. The performance of SLICEMBLER using other

base assemblers (IDBA_UD, RAY and SPADES) is presented in Section 3.3. The number

of slices and the sequencing error rate for the input reads are other factors that critically

influence the quality of the final assembly. We study these issues in Section 3.4 and

Section 3.5.

Recall that at the end of every iteration, all reads are mapped to the partially

constructed assembly in order to detect bridge reads (to be used later in the merging step)

and to eliminate reads that are already represented in the assembly. SLICEMBLER uses

BWA [38] to find perfect alignments (no mismatches, no gaps) for this purpose. We used

a minimum contig length lmin = 200 (which is the default parameter for SLICEMBLER). We

did not use any gap filling or scaffolding tool on the final assemblies. All experiments

were carried on a Linux server with twenty computing cores and 194 GB of RAM.

3.2.1. Ultra-deep sequencing of barley BACs

In order to carry out experiments on real ultra-deep data, we sequenced a set of 16

bacterial artificial chromosome (BAC) genomic clones of barley (Hordeum vulgare L.)

on an Illumina HiS-eq2000 at UC Riverside at a depth of coverage 8,000x-15,000x. The

average read length was about 88 bases after quality trimming; reads were paired-end

with an average insert size of 275 bases. Another set of 52 barley BACs was sequenced

by the Department of Energy Joint Genome Institute (JGI) using Sanger sequencing.

Since the primary DNA sequences for each of these 52 BACs were assembled in one

solid contig (details in [29]), we assumed these Sanger-based assemblies to be the

53

“ground truth” or “reference”. Five ultra-deep sequenced BACs had such a reference, so

we used them to objectively evaluate the performance of SLICEMBLER. In order to have

an equal-sized input dataset for all BACs, we used only 8,000x worth of coverage. These

five barley BAC clones, hereafter referred as BAC 1-5 have the following lengths:

131,747bp, 108,261bp, 110,772bp, 111,748bp, and 102,968bp, respectively. We should

remind the reader that the barley genome is highly repetitive. Approximately 84% of the

genome consists of mobile elements or other repeat structures [15].

3.2.2. Quality of SLICEMBLER assemblies

SLICEMBLER divided each of the five ultra-deep BAC inputs in-to ten slices (Ds =

800x coverage). We showed in [29], that such coverage is expected to provide a “good”

assembly in terms of N50, longest contig, number of mis-assemblies, and percentage of

the target genome covered. We compared the performance of SLICEMBLER to three

alternative methods, namely A) assemble all reads (8,000x coverage) with the same

assembler used in SLICEMBLER, B) run error-correction (using RACER [39]) on all reads

(8,000x coverage) then assemble the corrected reads with the same assembler used in

SLICEMBLER, C) assemble each of the slices (800x coverage) individually and consider

the average statistics over the ten slices (down-sampling).

Figure	
 17 summarizes the assembly statistics collected with QUAST [40] for

SLICEMBLER compared to methods A, B, C described above. The base assembler was

VELVET (hash value 69). Several observations on Figure	
 17 are in order. First, note that

for most of the BACs, down-sampling at 800x leads to better quality assemblies than the

assembly of all the reads at 8,000x. This is consistent with our previous results [29].

54

Second, error correction increases the quality of assemblies for most of the BACs.

However, this step can also introduce additional assembly errors probably due to newly

introduced errors in the error-correction phase (see last panel of Figure	
 17). We suspect

that ultra-deep coverage in the input dataset prevents RACER from detecting and

correcting sequencing errors effectively.

	

Figure 17. Summary of assembly statistics on five barley BACs sequenced at 8,000x. We compared
SLICEMBLER (using VELVET) to three alternative methods: VELVET on the entire dataset, RACER+VELVET
on the entire dataset, and the average performance of VELVET on the slices of 800x each (see legend).
Ground truth was based on Sanger-based assemblies. Statistics were collected with QUAST for contigs
longer than 500 bps.

Finally and more importantly, observe that in the majority of cases, SLICEMBLER

generates the highest quality assemblies. Its assemblies are less fragmented, which is

reflected by a smaller number of contigs, longer longest contigs, and higher N50. Also,

SLICEMBLER’s assemblies cover a higher fraction of the target genome and they have a

much smaller number of mis-assembly errors compared to the other approaches. In fact

SLICEMBLER’s assemblies are almost error-free. BAC 4 is the only exception: although

SLICEMBLER’s assembly of BAC 4 has fewer mis-assemblies than the assembly of all the

De Novo Meta-Assembly of Ultra-deep Sequencing Data

5

3.2 Quality of SLICEMBLER’s assemblies

SLICEMBLER divided each of the five ultra-deep BAC inputs in-
to ten slices (Ds = 800x coverage). We showed in (12), that such
coverage is expected to provide a “good” assembly in terms of
N50, longest contig, number of mis-assemblies, and percentage of
the target genome covered. We compared the performance of
SLICEMBLER to three alternative methods, namely A) assemble all
reads (8,000x coverage) with the same assembler used in
SLICEMBLER, B) run error-correction (using Racer (23)) on all
reads (8,000x coverage) then assemble the corrected reads with the
same assembler used in SLICEMBLER, C) assemble each of the slic-
es (800x coverage) individually and consider the average statistics
over the ten slices (down-sampling).

Figure 3 summarizes the assembly statistics collected with
QUAST (24) for SLICEMBLER compared to methods A, B, C de-
scribed above. The base assembler was Velvet (hash value 69).
Several observations on Figure 3 are in order. First, note that for
most of the BACs, down-sampling at 800x leads to better quality
assemblies than the assembly of all the reads at 8,000x. This is
consistent with our previous results (12). Second, error correction
increases the quality of assemblies for most of the BACs. Howev-
er, this step can also introduce additional assembly errors probably
due to newly introduced errors in the error-correction phase (see
last panel of Figure 3). We suspect that ultra-deep coverage in the
input dataset prevents Racer from detecting and correcting se-
quencing errors effectively.

Finally and more importantly, observe that in the majority of
cases, SLICEMBLER generates the highest quality assemblies. Its
assemblies are less fragmented, which is reflected by a smaller
number of contigs, longer longest contigs, and higher N50. Also,
SLICEMBLER’s assemblies cover a higher fraction of the target ge-
nome and they have a much smaller number of mis-assembly er-
rors compared to the other approaches. In fact SLICEMBLER’s as-
semblies are almost error-free. BAC 4 is the only exception: alt-

hough SLICEMBLER’s assembly of BAC 4 has fewer mis-assemblies
than the assembly of all the reads before or after error correction, it
contains more errors than the average downsampling-based assem-
bly. The slightly higher number of assembly errors for SLICEMBLER
is due to the merging step, which could be made more conserva-
tive. Finally, note that SLICEMBLER’s assemblies are less inflated
than the other approaches. The assembly of all the reads, with or
without error correction, has quite large duplication ratio.

To illustrate the progress during SLICEMBLER’s iterative re-
finements, Figure 4 shows the status of the consensus assembly
created for BACs 1, 2 and 3 every five iterations. Each box repre-
sents a perfect alignment of a SLICEMBLER’s contig to the reference
genome (no insertion/deletion/mismatches allowed). Observe that
in the last iteration 85%-95% of the target genome is covered by
the error-free contigs. In the first iterations, most of the target ge-
nome is covered by large FOS. In later iterations, FOS are smaller
but they can connect adjacent contigs or extend them (see red cir-
cles). Most of the small gaps between the contigs are composed by
repetitive patterns. These gaps are induced by the “trimming” step
of the algorithm, which eliminates repetitive patterns from the ends
of FOS to avoid false overlaps. A gap-filling tool can easily close
these small gaps during the finishing step.

As mentioned above, at the end of each iteration SLICEMBLER
maps the current set of input reads to the consensus assembly: any
read that is mapped exactly is discarded. This allows SLICEMBLER
(and its base assembler) to “focus” on the parts of the ge-
nome/BAC that are still missing from the consensus assembly.
Because FOS in early iterations are “safer” to be added to the con-
sensus assembly, the set of reads discarded in early iterations are
expected to be of higher quality. To this end, we determined the
percentage of reads at each iteration of SLICEMBLER that could
mapped exactly (i.e., no mismatches/indels) to the reference ge-
nome. Figure 5 shows these percentages for the first fifteen itera-
tions in the assembly of the five BACs. Observe that the percent-
age of high quality reads is about 85% in early iteration.

0

10

20

30

40

50

60

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Number of contigs

0
5

10
15
20
25
30
35
40

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Size of longest contig (Kbps)

0

5

10

15

20

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

N50 (Kbps)

70%

75%

80%

85%

90%

95%

100%

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Percentage of reference covered

98%

99%

100%

101%

102%

103%

104%

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Duplication ratio (%)

0

25

50

75

100

125

BAC 1 BAC 2 BAC 3 BAC 4 BAC 5

Number of mismatches per 100kb

Velvet(8000x)

Racer+Velvet(8000x)

Velvet(800x)

Slicembler+Velvet(8000x)

Fig. 3. Summary of assembly statistics on five barley BACs sequenced at 8,000x. We compared SLICEMBLER (using Velvet) to three alternative methods:
Velvet on the entire dataset, Racer+Velvet on the entire dataset, and the average performance of Velvet on the slices of 800x each (see legend). Ground
truth was based on Sanger-based assemblies. Statistics were collected with QUAST for contigs longer than 500 bps.

55

reads before or after error correction, it contains more errors than the average

downsampling-based assembly. The slightly higher number of assembly errors for

SLICEMBLER is due to the merging step, which could be made more conservative.

Finally, note that SLICEMBLER’s assemblies are less inflated than the other approaches.

The assembly of all the reads, with or without error correction, has quite large duplication

ratio.

To illustrate the progress during SLICEMBLER’s iterative refinements, Figure	
 18 shows

the status of the consensus assembly created for BACs 1, 2 and 3 every five iterations.

Each box represents a perfect alignment of a SLICEMBLER’s contig to the reference

genome (no insertion/deletion/mismatches allowed). Observe that in the last iteration

85%-95% of the target genome is covered by the error-free contigs. In the first iterations,

most of the target ge-nome is covered by large FOS. In later iterations, FOS are smaller

but they can connect adjacent contigs or extend them (see red circles). Most of the small

gaps between the contigs are composed by repetitive patterns. These gaps are induced by

the “trimming” step of the algorithm, which eliminates repetitive patterns from the ends

of FOS to avoid false overlaps. A gap-filling tool can easily close these small gaps during

the finishing step.

56

	

Figure 18. An illustration of SLICEMBLER’s progressive construction of the consensus assembly for
BACs 1, 2 and 3 (“snapshots” are taken every five iterations). Each box represents a perfect alignment
between that contig and the reference. Light green boxes indicate a new FOS compared to the previous
snapshot. Circles point to gaps closed or contig extended via the merging process (picture created with
CLC sequence viewer).

	

As mentioned above, at the end of each iteration SLICEMBLER maps the current set of

input reads to the consensus assembly: any read that is mapped exactly is discarded. This

allows SLICEMBLER (and its base assembler) to “focus” on the parts of the genome/BAC

that are still missing from the consensus assembly. Because FOS in early iterations are

“safer” to be added to the consensus assembly, the set of reads discarded in early

iterations are expected to be of higher quality. To this end, we determined the percentage

of reads at each iteration of SLICEMBLER that could mapped exactly (i.e., no

mismatches/indels) to the reference genome. Figure	
 19 shows these percentages for the

first fifteen iterations in the assembly of the five BACs. Observe that the percent-age of

high quality reads is about 85% in early iteration.

BAC 1

BAC 2

BAC 3

57

	

Figure 19. The percentage of reads (y-axis) at each iteration of SLICEMBLER (x-axis) that map exactly
(i.e., zero mismatches/indels) to the reference on the five ultra-deep sequenced BACs.

As the number of iterations increases, the percentage of high quality reads in the input

monotonically decreases. In the last few iterations the percentage stays somewhat flat

because later FOS are shorter, so the additional number of high quality reads mapped to

these FOS is also small.

3.2.3. The choice of the base assembler

As said, SLICEMBLER is a meta-assembler, and its performance depends on the

performance on the base assembler. To evaluate the influence of base assembler on the

assembly quality, we compared several assemblers, namely VELVET [14], SPADES [16],

RAY [41] and IDBA_UD [17].

Experimental results for BAC 3 are shown below in Table	
 10. We compared the

assembly produced by VELVET, SPADES, RAY and IDBA_UD all the reads (8,000x)

against the assemblies created by SLICEMBLER in conjunction with the corresponding

H.Mirebrahim et al.

6

As the number of iterations increases, the percentage of high
quality reads in the input monotonically decreases. In the last few
iterations the percentage stays somewhat flat because later FOS are
shorter, so the additional number of high quality reads mapped to
these FOS is also small.

3.3 The choice of the base assembler
As said, SLICEMBLER is a meta-assembler, and its performance

depends on the performance on the base assembler. To evaluate the
influence of base assembler on the assembly quality, we compared
several assemblers, namely Velvet (11), SPAdes (9), Ray (25) and
IDBA_UD (10).

Experimental results for BAC 3 are shown below in Table 3.
We compared the assembly produced by Velvet, SPAdes, Ray and
IDBA all the reads (8,000x) against the assemblies created by
SLICEMBLER in conjunction with the corresponding base assembler.
SLICEMBLER was run on ten slices (800x each). The k-mer used
was 69 for Velvet and Ray. For IDBA_UD and SPAdes the report-
ed assembly was based on three different k-mers (29, 49 and 69).

Observe that among the stand-alone assemblers, IDBA_UD and
SPAdes created higher quality assemblies compared to Velvet and

Ray. However, regardless of the choice of the base assembler,
SLICEMBLER improved the quality of the assemblies.

The only “negative” statistics for SLICEMBLER is that it intro-
duced a few more errors in the assemblies created using IDBA_UD
and SPAdes. We determined that these additional errors were due
to incorrect merging in later iterations. Also, SLICEMBLER had
slightly higher duplication ratio than SPAdes. Other than these,
SLICEMBLER significantly improved all other statistics. In fact,
similar results were observed on the other four BACs (data not
shown). In general, SLICEMBLER created higher quality assemblies
when used in conjunction with IDBA_UD and SPAdes.

Table 3. Comparing BAC assemblies produced with IDBA, Velvet,
SPAdes and Ray to the assemblies produced by SLICEMBLER in conjunction
with the same assembler. Statistics were collected with QUAST for contigs
longer than 500 bps.

Method
Number

of contigs

% ref

covered

Duplication

ratio

Mismatches

per 100Kbp
N50

Longest

contig

 IDBA (8,000x) 34 97.0% 1.010 0.93 7,335 13,889
 SLICEMBLER + IDBA
 (10 slices of 800x)

13 97.0% 1.010 1.1 16,121 31,161

 Velvet (8,000x) 39 94.7% 1.027 20.0 3,649 16,048
 SLICEMBLER + Velvet
 (10 slices of 800x)

14 95.1% 1.001 0 12,178 16,128

 SPAdes (8,000x) 49 95.7% 1.006 0.94 9,129 21,872
 SLICEMBLER + SPAdes
 (10 slices of 800x)

11 96.9% 1.024 1.2 27,685 31,158

 Ray (8,000x) 35 80.0% 1.003 0 3,996 7,186
 SLICEMBLER + Ray

 (10 slices of 800x)
24 88.0% 1.000 0 7,192 12,842

3.4 The choice of depth of coverage for each slice
As said, the depth of coverage in each slice is critical to opti-

mize on the quality of the assemblies. If the depth of coverage is
too low, the assembly of each slice will be fragmented, which will
be reflected in shorter FOS. On the other hand, more slices can
increase the confidence in choosing FOS due to more “votes”
available. For this reason, we decided to use simulations to study

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BAC1
BAC2
BAC3
BAC4
BAC5

Figure 5. The percentage of reads (y-axis) at each iteration of
SLICEMBLER (x-axis) that map exactly (i.e., zero mismatches/indels) to the
reference on the five ultra-deep sequenced BACs.

BAC 1

BAC 2

BAC 3

Fig. 4. An illustration of SLICEMBLER’s progressive construction of the consensus assembly for BACs 1, 2 and 3 (“snapshots” are taken every five itera-
tions). Each box represents a perfect alignment between that contig and the reference. Light green boxes indicate a new FOS compared to the previous snap-
shot. Circles point to gaps closed or contig extended via the merging process (picture created with CLC sequence viewer).

58

base assembler. SLICEMBLER was run on ten slices (800x each). The k-mer used was 69

for VELVET and RAY. For IDBA_UD and SPADES the reported assembly was based on

three different k-mers (29, 49 and 69).

Table 10. Comparing BAC assemblies produced with IDBA_UD, VELVET, SPADES and Ray to the assemblies
produced by SLICEMBLER in conjunction with the same assembler. Statistics were collected with QUAST for contigs
longer than 500 bps.

Observe that among the stand-alone assemblers, IDBA_UD and SPADES created

higher quality assemblies compared to VELVET and RAY. However, regardless of the

choice of the base assembler, SLICEMBLER improved the quality of the assemblies.

The only “negative” statistics for SLICEMBLER is that it introduced a few more errors

in the assemblies created using IDBA_UD and SPADES. We determined that these

additional errors were due to incorrect merging in later iterations. Also, SLICEMBLER had

slightly higher duplication ratio than SPADES. Other than these, SLICEMBLER

significantly improved all other statistics. In fact, similar results were observed on the

H.Mirebrahim et al.

6

As the number of iterations increases, the percentage of high
quality reads in the input monotonically decreases. In the last few
iterations the percentage stays somewhat flat because later FOS are
shorter, so the additional number of high quality reads mapped to
these FOS is also small.

3.3 The choice of the base assembler
As said, SLICEMBLER is a meta-assembler, and its performance

depends on the performance on the base assembler. To evaluate the
influence of base assembler on the assembly quality, we compared
several assemblers, namely Velvet (11), SPAdes (9), Ray (25) and
IDBA_UD (10).

Experimental results for BAC 3 are shown below in Table 3.
We compared the assembly produced by Velvet, SPAdes, Ray and
IDBA all the reads (8,000x) against the assemblies created by
SLICEMBLER in conjunction with the corresponding base assembler.
SLICEMBLER was run on ten slices (800x each). The k-mer used
was 69 for Velvet and Ray. For IDBA_UD and SPAdes the report-
ed assembly was based on three different k-mers (29, 49 and 69).

Observe that among the stand-alone assemblers, IDBA_UD and
SPAdes created higher quality assemblies compared to Velvet and

Ray. However, regardless of the choice of the base assembler,
SLICEMBLER improved the quality of the assemblies.

The only “negative” statistics for SLICEMBLER is that it intro-
duced a few more errors in the assemblies created using IDBA_UD
and SPAdes. We determined that these additional errors were due
to incorrect merging in later iterations. Also, SLICEMBLER had
slightly higher duplication ratio than SPAdes. Other than these,
SLICEMBLER significantly improved all other statistics. In fact,
similar results were observed on the other four BACs (data not
shown). In general, SLICEMBLER created higher quality assemblies
when used in conjunction with IDBA_UD and SPAdes.

Table 3. Comparing BAC assemblies produced with IDBA, Velvet,
SPAdes and Ray to the assemblies produced by SLICEMBLER in conjunction
with the same assembler. Statistics were collected with QUAST for contigs
longer than 500 bps.

Method
Number

of contigs

% ref

covered

Duplication

ratio

Mismatches

per 100Kbp
N50

Longest

contig

 IDBA (8,000x) 34 97.0% 1.010 0.93 7,335 13,889
 SLICEMBLER + IDBA
 (10 slices of 800x)

13 97.0% 1.010 1.1 16,121 31,161

 Velvet (8,000x) 39 94.7% 1.027 20.0 3,649 16,048
 SLICEMBLER + Velvet
 (10 slices of 800x)

14 95.1% 1.001 0 12,178 16,128

 SPAdes (8,000x) 49 95.7% 1.006 0.94 9,129 21,872
 SLICEMBLER + SPAdes
 (10 slices of 800x)

11 96.9% 1.024 1.2 27,685 31,158

 Ray (8,000x) 35 80.0% 1.003 0 3,996 7,186
 SLICEMBLER + Ray

 (10 slices of 800x)
24 88.0% 1.000 0 7,192 12,842

3.4 The choice of depth of coverage for each slice
As said, the depth of coverage in each slice is critical to opti-

mize on the quality of the assemblies. If the depth of coverage is
too low, the assembly of each slice will be fragmented, which will
be reflected in shorter FOS. On the other hand, more slices can
increase the confidence in choosing FOS due to more “votes”
available. For this reason, we decided to use simulations to study

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BAC1
BAC2
BAC3
BAC4
BAC5

Figure 5. The percentage of reads (y-axis) at each iteration of
SLICEMBLER (x-axis) that map exactly (i.e., zero mismatches/indels) to the
reference on the five ultra-deep sequenced BACs.

BAC 1

BAC 2

BAC 3

Fig. 4. An illustration of SLICEMBLER’s progressive construction of the consensus assembly for BACs 1, 2 and 3 (“snapshots” are taken every five itera-
tions). Each box represents a perfect alignment between that contig and the reference. Light green boxes indicate a new FOS compared to the previous snap-
shot. Circles point to gaps closed or contig extended via the merging process (picture created with CLC sequence viewer).

59

other four BACs (data not shown). In general, SLICEMBLER created higher quality

assemblies when used in conjunction with IDBA_UD and SPADES.

3.2.4. The choice of depth of coverage for each slice

As said, the depth of coverage in each slice is critical to optimize on the quality of the

assemblies. If the depth of coverage is too low, the assembly of each slice will be

fragmented, which will be reflected in shorter FOS. On the other hand, more slices can

increase the confidence in choosing FOS due to more “votes” available. For this reason,

we decided to use simulations to study the tradeoffs of the depth of coverage in each

slice. To this end, we used wgsim to generate synthetic datasets with 500x, 1,000x,

2,500x, 5,000x, 7,500x and 10,000x reads at 1% sequencing error rate (no indels) based

on the reference sequence of BAC 3. Each dataset was assembled with SLICEMBLER

using VELVET as the base assembler by dividing the input into ten slices, so that the

coverage in each slide was 50x, 100x, 250x, 500x, 750x and 1,000x.

Table	
 11 shows the usual quality statistics for the assemblies on simulated reads.

Observe that SLICEMBLER’s best performance is observed when slices are in the 100x-

500x coverage range. When the slice coverage is lower than 100x, assemblies are more

fragmented due to insufficient coverage. When the slice coverage is higher than 500x, we

experience the negative effects of ultra-deep sequencing data on the quality of the

individual assemblies: FOS become smaller and the final assembly is more fragmented.

Note that despite the 1% sequencing error rate, SLICEMBLER was able to create error free

contigs for all cases.

60

Table 11. Quality statistics for SLICEMBLER’s assemblies for simulated reads with different depth of
coverage. We used ten slices in all experiments (i.e., the coverage for each slice was 50x, 100x, 250x,
500x, 750x, and 1,000x). Statistics were collected with QUAST for contigs longer than 500 bps.

3.2.5. Effect of sequencing error rate in the reads

De novo assemblers are quite sensitive to sequencing error rate in the input reads.

Even assemblers that have a preprocessing step for error correction (e.g., SPADES), has

difficulties handling errors when the depth of coverage is very high [29]. Since

SLICEMBLER relies on majority voting for common contigs in the slice assemblies, we

wondered whether it would be more resilient compared to its base assembler. To this end,

we used wgsim to generate data sets at 3,000x coverage with increasing sequencing error

rate, namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC 3. We assembled

each set with SLICEMBLER + VELVET using six slices of 500x coverage each. Results are

reported in Figure	
 20.

First, note that SLICEMBLER was not able to improve the quality of assembly when

the reads are error-free. This is consistent with the results in [29] for error-free reads.

VELVET and other de novo assemblers are capable of producing high quality assemblies

when reads are error-free since there are no imperfections in the de Bruijn graph. More

importantly, observe that as the sequencing error rate increases, the performance of

De Novo Meta-Assembly of Ultra-deep Sequencing Data

7

the tradeoffs of the depth of coverage in each slice. To this end, we
used wgsim (26) to generate synthetic datasets with 500x, 1,000x,
2,500x, 5,000x, 7,500x and 10,000x reads at 1% sequencing error
rate (no indels) based on the reference sequence of BAC 3. Each
dataset was assembled with SLICEMBLER using Velvet as the base
assembler by dividing the input into ten slices, so that the coverage
in each slide was 50x, 100x, 250x, 500x, 750x and 1,000x.

Table 4. Quality statistics for SLICEMBLER’s assemblies for simulated reads
with different depth of coverage. We used ten slices in all experiments (i.e.,
the coverage for each slice was 50x, 100x, 250x, 500x, 750x, and 1,000x).
Statistics were collected with QUAST for contigs longer than 500 bps.

 500x 1,000x 2,500x 5,000x 7,500x 10,000x

 Number of contigs 20 12 11 10 18 38

 Longest contig 27,364 31,823 31,946 31,950 21,865 9,425

 N50 6,707 26,275 26,288 26,267 12,428 3,643

 Percent Refer. Covered 90.6% 88.7% 94% 93.9% 92.9% 84.7%

 Duplication ratio 1 1 1 1 1 1

 Mismatches per 100kbp 0 0 0 0 0 0

Table 4 shows the usual quality statistics for the assemblies on
simulated reads. Observe that SLICEMBLER’s best performance is
observed when slices are in the 100x-500x coverage range. When
the slice coverage is lower than 100x, assemblies are more frag-
mented due to insufficient coverage. When the slice coverage is
higher than 500x, we experience the negative effects of ultra-deep
sequencing data on the quality of the individual assemblies: FOS
become smaller and the final assembly is more fragmented. Note
that despite the 1% sequencing error rate, SLICEMBLER was able to
create error free contigs for all cases.

3.5 Effect of sequencing error rate in the reads
De novo assemblers are quite sensitive to sequencing error rate

in the input reads. Even assemblers that have a preprocessing step
for error correction (e.g., SPAdes), has difficulties handling errors
when the depth of coverage is very high (12). Since SLICEMBLER
relies on majority voting for common contigs in the slice assem-
blies, we wondered whether it would be more resilient compared to
its base assembler. To this end, we used wgsim (26) to generate
data sets at 3,000x coverage with increasing sequencing error rate,
namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC
3. We assembled each set with SLICEMBLER+Velvet using six slices
of 500x coverage each. Results are reported in Figure 6.

First, note that SLICEMBLER was not able to improve the quality
of assembly when the reads are error-free. This is consistent with
the results in (12) for error-free reads. Velvet and other de novo
assemblers are capable of producing high quality assemblies when
reads are error-free since there are no imperfections in the de
Bruijn graph. More importantly, observe that as the sequencing
error rate increases, the performance of Velvet quickly degrades,
while the performance of SLICEMBLER is unaffected (despite using
Velvet as the base assembler). Particularly impressive is the num-
ber of mismatches per 100Kbp, which stays at zero for
SLICEMBLER for any error rate.

4 DISCUSSION AND CONCLUSION
Advancement in sequencing technologies has been reducing se-
quencing costs exponentially fast. Ultra-deep sequencing is now
feasible, especially for smaller genomes and clones. We expect
that in the near future life scientists will sequence “as much as they
want” because the sequencing cost will be a minor component of
total project costs. This explosion of data will create new algorith-
mic challenges. We have shown previously that popular modern de
novo assemblers are unable to take advantage of ultra-deep cover-
age, and the quality of assemblies starts degrading after a certain

0
10
20
30
40
50
60
70
80
90

100

0% 0.50% 1% 2%

Number of contigs

Slicembler

Velvet

0
5

10
15
20
25
30
35

0% 0.50% 1% 2%

Size of longest contig (Kbp)

0

5

10

15

20

25

30

0% 0.50% 1% 2%

N50 (Kbp)

75

80

85

90

95

100

0% 0.50% 1% 2%

Percentage reference covered

97.0%

99.0%

101.0%

103.0%

105.0%

0% 0.50% 1% 2%

Duplication ratio (%)

0

100

200

300

400

0% 0.50% 1% 2%

Number of mismatches per 100Kb

Fig. 6. The effect of increasing sequencing error rates on the quality of assemblies created by Velvet and SLICEMBLER+Velvet. Input paired-end reads
were generated using wgsim with a coverage of 3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices.
Statistics were collected with QUAST for contigs longer than 500 bps.

61

VELVET quickly degrades, while the performance of SLICEMBLER is unaffected (despite

using VELVET as the base assembler). Particularly impressive is the number of

mismatches per 100Kbp, which stays at zero for SLICEMBLER for any error rate.

	

Figure 20. The effect of increasing sequencing error rates on the quality of assemblies created by
VELVET and SLICEMBLER+VELVET. Input paired-end reads were generated using wgsim with a coverage of
3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices.
Statistics were collected with QUAST for contigs longer than 500 bps.

	

3.3 Discussion

Advancement in sequencing technologies has been reducing sequencing costs

exponentially fast. Ultra-deep sequencing is now feasible, especially for smaller genomes

and clones. We expect that in the near future life scientists will sequence “as much as

they want” because the sequencing cost will be a minor component of total project costs.

This explosion of data will create new algorithmic challenges. We have shown previously

that popular modern de novo assemblers are unable to take advantage of ultra-deep cover-

De Novo Meta-Assembly of Ultra-deep Sequencing Data

7

the tradeoffs of the depth of coverage in each slice. To this end, we
used wgsim (26) to generate synthetic datasets with 500x, 1,000x,
2,500x, 5,000x, 7,500x and 10,000x reads at 1% sequencing error
rate (no indels) based on the reference sequence of BAC 3. Each
dataset was assembled with SLICEMBLER using Velvet as the base
assembler by dividing the input into ten slices, so that the coverage
in each slide was 50x, 100x, 250x, 500x, 750x and 1,000x.

Table 4. Quality statistics for SLICEMBLER’s assemblies for simulated reads
with different depth of coverage. We used ten slices in all experiments (i.e.,
the coverage for each slice was 50x, 100x, 250x, 500x, 750x, and 1,000x).
Statistics were collected with QUAST for contigs longer than 500 bps.

 500x 1,000x 2,500x 5,000x 7,500x 10,000x

 Number of contigs 20 12 11 10 18 38

 Longest contig 27,364 31,823 31,946 31,950 21,865 9,425

 N50 6,707 26,275 26,288 26,267 12,428 3,643

 Percent Refer. Covered 90.6% 88.7% 94% 93.9% 92.9% 84.7%

 Duplication ratio 1 1 1 1 1 1

 Mismatches per 100kbp 0 0 0 0 0 0

Table 4 shows the usual quality statistics for the assemblies on
simulated reads. Observe that SLICEMBLER’s best performance is
observed when slices are in the 100x-500x coverage range. When
the slice coverage is lower than 100x, assemblies are more frag-
mented due to insufficient coverage. When the slice coverage is
higher than 500x, we experience the negative effects of ultra-deep
sequencing data on the quality of the individual assemblies: FOS
become smaller and the final assembly is more fragmented. Note
that despite the 1% sequencing error rate, SLICEMBLER was able to
create error free contigs for all cases.

3.5 Effect of sequencing error rate in the reads
De novo assemblers are quite sensitive to sequencing error rate

in the input reads. Even assemblers that have a preprocessing step
for error correction (e.g., SPAdes), has difficulties handling errors
when the depth of coverage is very high (12). Since SLICEMBLER
relies on majority voting for common contigs in the slice assem-
blies, we wondered whether it would be more resilient compared to
its base assembler. To this end, we used wgsim (26) to generate
data sets at 3,000x coverage with increasing sequencing error rate,
namely 0% (errorless), 0.5%, 1% and 2% error rate based on BAC
3. We assembled each set with SLICEMBLER+Velvet using six slices
of 500x coverage each. Results are reported in Figure 6.

First, note that SLICEMBLER was not able to improve the quality
of assembly when the reads are error-free. This is consistent with
the results in (12) for error-free reads. Velvet and other de novo
assemblers are capable of producing high quality assemblies when
reads are error-free since there are no imperfections in the de
Bruijn graph. More importantly, observe that as the sequencing
error rate increases, the performance of Velvet quickly degrades,
while the performance of SLICEMBLER is unaffected (despite using
Velvet as the base assembler). Particularly impressive is the num-
ber of mismatches per 100Kbp, which stays at zero for
SLICEMBLER for any error rate.

4 DISCUSSION AND CONCLUSION
Advancement in sequencing technologies has been reducing se-
quencing costs exponentially fast. Ultra-deep sequencing is now
feasible, especially for smaller genomes and clones. We expect
that in the near future life scientists will sequence “as much as they
want” because the sequencing cost will be a minor component of
total project costs. This explosion of data will create new algorith-
mic challenges. We have shown previously that popular modern de
novo assemblers are unable to take advantage of ultra-deep cover-
age, and the quality of assemblies starts degrading after a certain

0
10
20
30
40
50
60
70
80
90

100

0% 0.50% 1% 2%

Number of contigs

Slicembler

Velvet

0
5

10
15
20
25
30
35

0% 0.50% 1% 2%

Size of longest contig (Kbp)

0

5

10

15

20

25

30

0% 0.50% 1% 2%

N50 (Kbp)

75

80

85

90

95

100

0% 0.50% 1% 2%

Percentage reference covered

97.0%

99.0%

101.0%

103.0%

105.0%

0% 0.50% 1% 2%

Duplication ratio (%)

0

100

200

300

400

0% 0.50% 1% 2%

Number of mismatches per 100Kb

Fig. 6. The effect of increasing sequencing error rates on the quality of assemblies created by Velvet and SLICEMBLER+Velvet. Input paired-end reads
were generated using wgsim with a coverage of 3,000x using BAC 3 as a reference. For SLICEMBLER, simulated read sets were divided into six slices.
Statistics were collected with QUAST for contigs longer than 500 bps.

62

age, and the quality of assemblies starts degrading after a certain depth of coverage.

SLICEMBLER is an iterative meta-assembler that solves this problem: it takes advantage of

the whole dataset, and significantly improves the final quality of the assembly. The

strength of SLICEMBLER is based on the majority voting scheme: frequently occurring

substrings identified by SLICEMBLER in the slice assemblies never contain errors, with

the exception of FOS belonging to the very ends of the target genome which are not as

reliable because coverage tends to be lower. SLICEMBLER extracts high-quality contigs

from the slice assemblies, and it prevents contigs containing mis-joins and calling errors

to be included in the final assembly.

Experiments on a set of ultra-deep barley BACs and simulated data shows that our

proposed method leads to higher quality assemblies than the corresponding base

assembler. We also demonstrated that SLICEMBLER is more resilient to high sequencing

error rates than its base assembler.

This iterative assembly approach can be adapted to solve other problems in this area,

like assembly of single cell sequencing data. The quality of single cell assemblies usually

suffers from biased coverage. It has been shown that the coverage in single-cell

sequencing is distributed randomly [42]. To reduce the effect of uneven coverage, one

can sequence multiple copy of a cell and assemble the merged sequencing data. In this

case, regions with lower coverage in one sample can be covered sufficiently by the other

samples. SLICEMBLER can be adapted to create high quality assemblies for multi-cell

sequencing data. In this case, each of the sequenced cells can be considered as a “slice”

for the SLICEMBLER algorithm.

63

Our proposed algorithm is expected to work for genomes of any length, but the

current implementation of SLICEMBLER has been tested only on relatively small genomic

target sequences for which real ultra-deep coverage is now available. In order for

SLICEMBLER to scale to larger genomes its efficiency must be improved. Most of the

computational effort in SLICEMBLER is spent in finding FOS (this required construction

of the generalized suffix tree), merging FOS (this requires computing exact prefix-suffix

overlaps) and mapping the reads (this requires running BWA) at every iteration. One way

to increase the algorithm speed would to process the slices in parallel. Another possible

improvement would be to map the reads to each slice assembly only once and process the

alignment file to determine which reads should be passed to the following iteration,

instead of mapping the reads to the slice assembly from scratch in every iteration. We are

also working on improving the merging step, in order to prevent mis-joins. More

advanced approaches for merging contigs, like methods proposed for merging draft

assemblies [43-45], may improve the quality of SLICEMBLER results. We plan to release

soon an improved version of SLICEMBLER implemented in C++.

To conclude, the results presented in this chapter indicate the possibility of having

(almost) perfect assemblies when the depth of coverage is very high. Although there is

more work to be done to achieve a perfect assembly, we believe that SLICEMBLER

represents a significant step forward in this direction.

	
 	

64

Chapter 4: Other projects

4.1 SNP detection and anchoring on cowpea genome

Cowpea (Vigna unguiculata) is the main source of protein for people living in Sub-

Saharan Africa (SSA). This legume is native to Africa, but is grown in Asia, Latin

America, and in the southern United States. There is a high collinearity between cowpea

genome and its close relatives, soybean and common bean [46]. However, cowpea is

more drought and heat tolerant than them. More countries around the word are facing

drought due to the global warming, therefore this legume is extremely important for the

future of human food, especially in developing countries. Although cowpea is an

important source of food, researchers still suffer from the lack of a high quality published

reference genome for this plant.

Cowpea has a diploid genome with size ~620 MB. It has 2×11 = 22 chromosomes.

We maintain a rich and diverse germplasm at the UC Riverside campus, provided by

three major germplasm collections in Africa [International Institute of Tropical

Agriculture (IITA), Nigeria], the USDA repository in Griffin, Georgia, and the

University of California (UC) cowpea germplasm collection.

Different cowpea cultivars show different levels of ability to survive drought

stress[47], so the breeders can incorporate drought tolerance into improved varieties. Our

cowpea team, including UC Riverside and a network of breeders in Burkina Faso, Ghana,

Mozambique, Nigeria (IITA) and Senegal, has developed new resources for cowpea in

65

recent years. Finding new markers for the cowpea genome to assist breeding efforts has

been a main goal for the team.

Quantitative trait locus (QTL) analysis is a statistical method that allows researchers

to link certain complex phenotypes to specific regions of chromosomes. Many of the

cowpea drought and heat resistance traits have been genetically mapped using QTL

approaches [48]. A consensus genetic map positions of the more important QTLs for

cowpea is available based on the 1536-SNP GoldenGate assay for genotyping. Our team

has started introgressing some of these traits into breeding lines in the African partner

countries. The relatively low SNP resolution of the trait determinant haplotypes is a

challenge for the progress of the project.

To address this issue, we designed a pipeline to find around 60k high quality SNPs

for cowpea genome at UC Riverside. Illumina designed an Infinium iSelect custom

genotyping platform based on the discovered SNPs. The designed genotyping chip is

available in the market for all researchers. The provided higher resolution SNP map for

this genome can be used for several proposes including pedigree validation, germplasm

characterization and marker-assisted breeding of cowpea. Also, our team is currently

working on the problem of ordering and merging the sequenced cowpea BACs, using the

discovered SNPs.

4.1.1. Cowpea reference genome

The African cowpea cultivar IT97K-499-35 has been attracted the most attention

among the other cowpea accessions, mainly because it is resilient against the parasitic

weed Striga gesnerioides (cowpea witchweed). There are multiple genome resources

66

available for this accession, mainly provided by the International Institute on Tropical

Agriculture (IITA): gene-rich sequences accounting for ~160 Mb of the 620 Mb genome

[49]; ~29,000 EST-derived “unigene” consensus sequences available at harvest-blast.org

and in the HarvEST:Cowpea (harvest.ucr.edu) software that our cowpea team developed;

a BAC-based physical map (http://phymap.ucdavis.edu/cowpea/; see “Prior Results”)

from which we have sequenced about 4,000 BACs; and an initial whole-genome shotgun

assembly that contains sequences for about 97% of all known cowpea genes but has very

limited contiguity.

We assembled a set of sequencing data available for IT97K-499-35 with

SOAPdenovo. The input set for the assembly consisted of on ~60x Illumina GAII short

reads, one 5 kb library, about 30,000 Sanger BAC-end sequences and about 250,000

Sanger “gene space” sequences. Due to the fact that a large portion of the cowpea

genome is highly repetitive, the assembly covered just ~40% of the genome and is very

fragmented. It consists of from over 600 thousand scaffolds, with an n50 of ~6.3 kb.

We mapped the EST-derived consensus sequences (unigenes) from assembly P12 of

HarvEST:Cowpea (harvest.ucr.edu) to the created assembly with BLAST. More than 97%

of the unigenes were mapped to the assembly with a high mapping score.

We also produced an assemblies from ~4,000 minimal tiling path BACs using our

sequencing protocol based on combinatorial pooling [4]. Briefly, in our sequencing

protocol (i) we pool the MTP BACs according to the shifted transversal pooling design,

(ii) sequence the DNA in each pool, trim/clean sequenced reads, (iii) assign reads to

BACs using our tool HashFilter, (iv) assemble reads BAC-by-BAC using a standard

67

assembler (e.g., Velvet or SPAdes). Each BAC assembly contained on average 29

scaffolds, with an average n50 of ~14 kb, so in general, the quality of BAC assemblies

are better than the whole-genome draft sequence. We believe that the BACs cover ~60%

of the cowpea genome because around 60% of the unigenes were mapped to the BAC

assemblies.

Although the quality of the draft cowpea genome assembly can be improved, we

designed a "60k" iSelect SNP assay (Illumina, Inc., San Diego, CA) based on that. We

have used this assay to genotype several cowpea accessions to support high-density map

production.

A set of SNPs, discovered by Genotyping-by-sequencing (GBS) method [50] at

Cornell University Institute of Genomic Diversity (IGD) was provided by UCR Plant

Biology department. GBS is a SNP detection pipeline designed for efficient genotyping

of large numbers of samples using next generation sequencing platforms. In this

technique, genome complexity is reduced with methylation-sensitive restriction enzyme

digestion. The ends of small restriction fragments are sequenced at 96- to 384-plex levels

per flow channel on the Illumina HiSeq instrument. The GBS SNPs were discovered

from 119 cowpea samples.

4.1.2. Sequencing, sequence alignment and SNP calling

In order to detect SNPs in cowpea we sequenced thirty-six cowpea breeding

accessions from Africa, China and the United States, using the Illumina HiSeq 2500

hosted at UC Riverside. The thirty-six libraries composed of 2x100bp paired end reads

68

had an average coverage of 12.5X. We trimmed the reads based on quality scores and

discarded reads shorter than 70bp.

As reported in the previous section, the SOAPdenovo assembly for the cowpea

reference genome (cultivar ITK97-499-35) was highly fragmented. Due to the low

quality of the reference genome, it was crucial to be very conservative in the analysis of

candidate SNPs because of possible assembly errors in the reference sequence. For this

purpose, we selected the two highest quality set of reads from ITK97-499-35 and

included them in our analysis as the 37th genotype (referred as the ITK genotype

hereafter).

Each of the thirty-seven sets of reads was individually mapped to the reference

genome using BWA [51] (BWA mem with –M option to mark shorter split hits as

secondary). On average about 87% of the reads were mapped uniquely to the reference

genome. We excluded reads mapped to multiple locations from further analysis. Table	
 12

summarizes the mapping statistics for each cowpea accession.

The alignment files were merged with the software tool Picard to a single “sam” file.

Reads that “hanged off” the end of the contigs in the reference sequence were clipped

with Picard. Also, in order to avoid skewed variant calling result, duplicated reads were

marked with Picard. Duplicated reads are mostly originated from DNA prep methods and

may misguide the SNP calling tools in case they contain sequencing errors.

69

Table 12. Mapping statistics for 36 cowpea accessions

Accession

code

Total

number of

reads

% reads

aligned

Aligned

bases

 HQ aligned

reads

HQ aligned

Q20 bases

Mismatch

rate
INDEL rate

Mean read

length

%reads

aligned in

pairs

002 5722440 0.882552 4431379635 36695865 3220070361 0.019155 0.001092 96.829325 0.949452

003 63681647 0.877309 4912910063 40571742 3580088877 0.019149 0.001157 96.789498 0.939521

005 62384014 0.881382 4837829484 39780184 3505927785 0.019575 0.00114 96.930588 0.946913

006 68329599 0.891252 5386070218 44040654 3901724888 0.019104 0.001094 96.91561 0.946836

007 92780607 0.883712 7257596016 59704339 5311313645 0.018828 0.001109 97.084049 0.945719

008 58150744 0.877237 4484945854 36914412 3256918292 0.019234 0.001161 96.794883 0.938929

009 55878161 0.882818 4350292145 35597484 3153138800 0.019457 0.001177 96.900026 0.94112

010 42065728 0.891384 3303200232 27036688 2384043625 0.019332 0.001078 96.91001 0.948549

012 56378738 0.903137 4508400774 36646799 3247645178 0.019403 0.001047 97.008748 0.957359

013 53803268 0.883558 4192817538 34207684 3029982306 0.019516 0.00117 96.849769 0.939185

014 52945896 0.876356 4069671078 33359190 2935888072 0.020178 0.001218 96.752236 0.938388

015 54143339 0.880889 4193642216 34304871 3027344732 0.019864 0.001207 96.861697 0.940369

016 54378736 0.876953 4195085842 34803931 3072812157 0.018955 0.001146 96.785913 0.938043

017 54583876 0.915922 4405359380 37153576 3285870030 0.018454 0.000949 97.082056 0.964511

019 56842645 0.885576 4444608799 36609141 3244201895 0.018498 0.001061 96.817979 0.942064

020 59929340 0.879379 4633249502 38259034 3374668962 0.018558 0.001069 96.897608 0.94441

023 63186499 0.896783 5009675872 40464675 3581240448 0.019965 0.001098 97.008681 0.954434

024 92157135 0.875559 7119942628 58457770 5183217542 0.019142 0.001102 97.113443 0.948456

026 66690032 0.885053 5208769588 42925235 3792415772 0.018826 0.001052 96.992409 0.953134

027 56231255 0.896665 4468215430 36267215 3218952959 0.019012 0.001064 96.80786 0.946925

028 64553920 0.893551 5098723586 41774187 3697824190 0.019126 0.001078 96.817063 0.948776

029 13210443 0.88422 8101042014 66938600 597723310 0.018594 0.001098 97.225865 0.947943

030 6100513 0.875042 4611898277 38192040 3358742076 0.019758 0.001204 96.889533 0.941244

032 68917003 0.887372 5407879336 44835048 3977824887 0.018973 0.001119 96.802867 0.944729

033 56101445 0.887647 4396098259 36373452 3222902222 0.018745 0.001102 96.791847 0.94781

034 63589528 0.873437 4872484494 40182975 3538298920 0.019846 0.001195 96.830765 0.94047

035 97555059 0.883285 7633482805 62630838 5578157461 0.019404 0.001163 97.017319 0.946807

036 47343832 0.872003 3611255630 29863594 2616979355 0.020105 0.001221 96.807774 0.940391

038 46396066 0.8721 3540992506 29306022 2571249033 0.019583 0.001185 96.858473 0.938897

039 64295666 0.895606 5049367424 41967673 3688207259 0.020284 0.00113 96.918372 0.957847

040 51907594 0.884407 4028312450 33215155 2916082777 0.019264 0.001089 96.836851 0.948393

G32 57387758 0.87325 4443821204 37397022 3342623035 0.019778 0.00125 98.262768 0.949047

ZJ60 61607426 0.866673 4751798648 39764617 3570054619 0.019605 0.001246 98.278719 0.946589

ZJ282 45115430 0.879375 3541767172 29955497 2694998620 0.019354 0.001177 98.471749 0.95421

ZN016 44195979 0.885919 3506744303 29432724 2659166923 0.019687 0.001171 98.457848 0.957204

70

In order to call the SNPs genome-wide, we employed three software packages,

namely Samtools [52], SGSautoSNP [53] and FreeBayes [54]. We could not use GATK

[55] because this tool needs a set of confirmed training SNPs for the base quality score

recalibration phase which we did not have for cowpea. We had 1,536 SNPs previously

discovered with the Ilumina GoldenGate assay [56], but this number of SNPs was

insufficient for training GATK.

Samtools has been widely used for calling SNPs for different organisms due to its

simplicity and accuracy [57-59]. Several studies showed that Samtools is almost as

reliable as GATK in terms of the quality of discovered SNPs, especially when there is no

verified set of SNPs available in advance [60]. In total,	
 Samtools discovered a total of

5,108,787 SNPs (using mpileup with default parameters).

We tried to filter the set of primary discovered SNPs with vcfutils [61] with default

parameters, which led to around three million SNPs. We compared the ratio between the

number of verified SNPs deleted because of the filtering, and the number of verified

SNPs remained in the set. The results did not convinced us that the filtered set was more

accurate than the original set, so we moved forward with the original set.

We also independently called the SNPs with SGSautoSNP. This tool has been mainly

designed for complex crop genomes (e.g., on the wheat genome[53]). SGSautoSNP does

not need a reference sequence for detecting the SNPs. The reference is only used to

assemble the reads, then SNPs are then called between the assembled reads. This was a

desirable feature for our cowpea project because of the very fragmented reference

genome. SGSautoSNPs detected a total of 2,488,797 SNPs.

71

Finally, we used FreeBayes to independently call the cowpea SNPs. Contrary to tools

like samtools and GATK, which discover variants based on the precise alignment of the

reads, FreeBayes is a haplotype-based variant detection tool. A haplotype is a set of DNA

variations, or polymorphisms, that tend to be inherited together. FreeBayes considers this

type of relationship between the SNPs during the calling process. FreeBayes has been

used to call SNPs for potato [62], Corvina [63], Adriatic sturgeon [64] and others.

FreeBayes called a total of 8,269,140 SNPs on the cowpea genome.

4.1.3. Filtering the candidate SNPs

We designed several filters to determine the most reliable subset of SNPs in cowpea.

The first step was to compute the intersection between the SNPs called by Samtools,

SGSautoSNP and FreeBayes. About 1.5 million SNPs were called by all the three tools.

We further filtered down the set of 1.5M SNPs based on several additional criteria,

namely a) allele frequency, b) existence or absence of repeated patterns (i.e., repeated a

certain number of times in the WGS assembly) in the SNP sequence, c) the size of WGS

contig containing the SNPs, and d) calling scores generated by each of the tools, and

other criteria. Finally, we took advantage of available gene models for evolutionary-

related genomes to refine the set further.

We expected that SNPs located inside the gene bodies (or close to them) would be

more useful for the downstream applications. Specifically, we took advantage of high

quality genes models available for common bean (P. vulgaris), which is a close relative

of cowpea in the Fabaceae family. Due to their relatively close evolutionary distance, a

72

high level of conservation between the genes models is expected. Over 20 thousand gene

models are available for common bean.

In order to find the synthetic blocks between cowpea and common bean, we aligned

the two genomes with Mummer [65]. We first removed scaffolds smaller than 100,000 bp

in the P. vulgaris assembly and then divided the remaining scaffold into two sets based

on the chromosome of each scaffolds (chromosomes 1-5 in one set and chromosomes 6-

11 in the other). The reason for splitting the files was that Mummer is unable to align

genomes larger than a particular size. We then aligned the cowpea genome assembly to

the two files separately and merged the results. Mummer reported synthetic blocks

between the two genomes. Some of these blocks included common bean gene models.

The list of putative gene models in the cowpea assembly was used below in the final

selection criteria.

Illumina provides a web-based service which evaluates the candidate SNP sequences

based on certain constraints for designing the iSelect chip and informs the user if a

particular SNP can be included to the final design or not. A score is assigned to each of

the accepted candidate sequences that reflects the probably of the sequence to identify

uniquely to the desired SNP (the higher, the better). In some cases, a SNP sequence is

acceptable, but requires two assays on the chip (e.g., when the sequence contains a

certain number of ambiguous nucleotides). We selected two subsets from the remaining

candidate SNPs and focused on these subsets for the rest of the filtering process:

73

1) The primary list of SNPs consists of the SNPs that required one assay on the chip.

The SNPs in this list had a design score between 0.500 to 1 and found either by Samtools,

SGSautoSNP and Freebayes or were included in GBS, SGSautoSNP and Freebayes sets.

2) The secondary list of SNPs consists of the SNPs needed two assays on the chip

with design score 0.500 to 1 or required one assay on the chip with design score 0.270 to

0.499. Again, These SNPs were found either by samtools, SGSautoSNP and Freebayes or

were included in GBS, SGSautoSNP and Freebayes sets.

The final list of SNPs was selected according to the following rules, aimed at

selecting the most reliable set of SNPs from the primary and secondary lists:

1. We selected a SNP from the primary list if it was inside the WGS contig

boundaries matching a common bean gene model.

2. We selected a SNP from the primary list if it was located on the same WGS contig

region (synthetic block) matching a common bean gene model.

3. We selected a SNP from the primary list if it was located within 3000bp of either

end of the aligned region (synthetic block) on the same WGS contig as (1).

4. We selected a SNP from the primary list if it was located on any WGS contig (not

necessarily the synthetic block with the highest similarity) having SNP within 3000 bp of

region matching a common bean gene model.

5. We selected a second SNP from the primary list if it was from the same WGS

contig as (4).

74

6. We selected a SNP from the secondary list for a WGS contig if rules 1-5 resulted

in only one SNP for that contig. The additional SNP was selected from the region

matching the gene model, and at least 246 bp from the first selected SNP.

7. We selected a SNP from the secondary list if only one SNP was chosen in (6) for a

particular WGS contig. Again, the second SNP was chosen from the same WGS contig as

the first SNP chosen. In this case, a SNP was selected near the region matching the gene

model, at least 246 bp from the first SNP chosen.

8. We selected a SNP from the secondary list, for any common bean gene model that

has not as yet had any SNP chosen and any WGS contig having SNP within 3000 bp of

region matching a common bean gene model.

9. We selected a second SNP from same WGS contig as (8), from the secondary list.

10. For any common bean gene model that has one SNP selected, we chose a second

SNP from the primary list, if it was at least 130 bp away from the first SNP in the same

WGS gene model.

11. We selected from the GBS set, the SNPs in or near regions of a common bean

gene models (only the SNPs which needed one assay with design score at least 0.5, minor

allele frequency at least 0.25).

12. We selected a SNP from the whole list of SNPs, when only one of the 37

individuals had minor allele (only the SNPs requiring one assay with design score at least

0.5).

In addition, 1163 GoldenGate assay SNPs had a good technical score when submitted

to the Illumina website and passed the other filters. These SNPs were also included to the

75

final set. The final set provided to Illumina for the chip design contained 56,719 SNPs

(instead of 60K), due to the fact that two assays were required by some of the SNPs on

the chip.

4.1.4. SNP validation

Once the iSelect chip was available, we genotyped several cowpea tissues and

investigated the quality of the final list of SNPs with GenomeStudio software.

GenomeStudio clusters the input samples based on the detected SNPs and visualizes the

clusters. A high quality SNP generates clear clusters with sharp borders. Also, this tool

helps to realize if the call rate of a specific SNP is within the expected range (Figure	
 21).

Figure 21. Left: an example of a low quality SNP, detected by GenomeStudio (Illumina). Right: An example of a
high quality SNP. Borders are sharp and the samples fall close to the cluster centers.

Based on this analysis, more than 49,000 SNPs (96%) were led to “clean” clusters

indicating that these SNPs are likely to be real. These SNPs can be used for allele mining

and high-density mapping, and can adapted to other genotyping platforms for a range of

breeding applications.	

76

4.1.5. Ordering and anchoring the cowpea BAC

As mentioned earlier, we sequenced the cowpea cultivar IT97K-499-35 based on two

different approaches:

1) BAC by BAC: We sequenced 4,353 minimal tiling path BACs, which are expected

to cover around 60% of all the cowpea genome. We assembled the reads for each of the

BACs separately with SPAdes [16]. Each BAC assembly contained on average 29

scaffolds, with an average n50 of about 14 kb.

2) Whole Genome Shotgun (WGS): We sequenced the entire cowpea genome with

Illumina GAII at ~60x coverage. In addition, a 5 kb mate pair library, about 30,000

Sanger BAC-end sequences and about 250,000 Sanger “gene space” were assembled with

SOAPdenovo. The result was a set of 644,126 scaffolds, with an n50 of about 6.3 kb.

In order to take advantage of both assemblies, we had to order and orient BAC and

WGS contigs along the cowpea chromosomes. Observe that the order and orientation of

the contigs created by SPAdes for each BAC are unknown. Similarly, the order and

orientation for the WGS contigs and scaffolds created by SOAPdenovo are unknown.

We took advantage of the genotyping data obtained from the iSelect to create a high-

density genetic map on which we could order and orient BAC contig and WGS

contigs/scaffolds. We used MSTmap [66] to generate a cowpea genetic map for 14,868

markers (SNPs). We then selected 121bp around each of the 50,747b SNPs with known

coordinates from the WGS contigs (60bp from the right side and 60bp from the left side

of the SNP). Out of 50,747b SNP “design sequences”, 49,645 didn't contain any

ambiguous nucleotide. Among the 1,102 SNP sequences with ambiguous

77

nucleotide, 1,060 had Ns at the ends, which were trimmed. We excluded 48 SNPs with

ambiguous nucleotides in the middle from further analysis. Because of the trimming

process some of the SNP sequences were shorter than 121bp. By comparing the genetic

map with the unambiguous SNP list, we obtained the coordinates for 37,161 SNPs

(iSelect SNPs), located on 25,244 WGS scaffolds. In some cases, we observed a conflict

between the genetic map and the prior knowledge about certain SNPs. For example,

SNPs that were located on a particular WGS contigs according to the iSelect design but

mapped to two distinct chromosomes based on the genetic map. We marked those SNPs

for further investigations. 	

We then mapped the SNP design sequences against the BAC assemblies with

BWA[38]. The result was filtered to find only perfect (exact) mappings. As a result,

12,210 SNPs were mapped uniquely to the BAC assemblies (to 2,040 unique BACs).

Among them, the coordinates for 8,853 SNPs were available, which revealed the location

of 1,786 BACs. According to the mapping result, 10,935 SNP sequences were mapped to

two BACs. We assumed that these SNPs were located on the overlapping portion of the

adjacent BACs. The coordinates for 8,058 of these SNPs were determined. Also, 2,799

SNP sequences were mapped to three BACs. Although it is possible for three MTP BACs

to be overlapping, we decided to exclude them from further analysis.

We then mapped the WGS scaffolds to the BAC assemblies. After filtering and

analysis, 116,378 WGS scaffolds were mapped to a single BAC and 114,032 to two

BACs (overlapping section). After integrating the BACs with known position and the

contigs mapped to the BACs, we found the approximate location for 46,347 more contigs.

78

4.2 Reference-guided assembly of heterogeneous DNA
segments to improve the quality of P.falciparum DD2 genome

In this section, we present a method to assemble a mixture of reads and DNA

segments based on a reference genome. We applied this method to improve the quality of

assembly for P. falciparum strain DD2 based on the genome of P. falciparum strain 3D7.	

Plasmodium falciparum, the parasite that causes malaria in human is a major cause of

mortality worldwide, infecting approximately 500 million individuals each year. It is

estimated that 3,000 children under the age of five years fall victim to malaria each day.

Around 40% of the worlds population is at risk. In spite of the vast investments, there is

still no effective vaccine for malaria. The number of infected individuals is increasing

due to increasing drug resistance and globalization. Plasmodia infect many organisms

including birds, rodents, monkeys and human.

Four species of Plasmodia cause malaria in human; among them Plasmodium

falciparum is the deadliest. P.falciparum has fourteen chromosomes, a mitochondria and

a apicoplasts. The sequence of its mitochondrion was reported in 1995 [67] and its

complete genome was published in 2002 [68]. The genome size is almost 24 million

bases and very AT rich. The complete sequence of P. falciparum genome has enabled

researchers to identify many of the genes involved in drug resistance and to understand

the underlying mechanisms that control the biology of this parasite. What makes this

organism especially interesting for researchers is the fact that the mechanism controlling

gene regulation in Plasmodia appears to be different from known mechanisms of

79

transcriptional regulation in other organisms. Strong evidences suggest that epigenetic

mechanisms play an important role in malaria parasite gene expression.

P. falciparum appears in the wild in many different variants, or strains: 3D7 is the

most widely studied strain. DD2 is another strain known to be resilient against an anti-

malaria drug called artimisin. The Broad Institute reported a Sanger-based draft genome

sequence of P.falciparum DD2 strain in 2007 [69].

4.2.1. Related work

Our goal in this project is to improve the quality of DD2 Sanger-based assembly with

the 2nd generation sequencing data (NGS). For this purpose, we used P. falciparum strain

3D7 as a reference sequence to help with the assembly of NGS reads.

 We review some of the approaches proposed in the literature to improve the quality

of draft contigs and advance a genome from a draft assembly to an improved or finished

state. CloG [70] is a technique to close gaps in a draft assembly. It has two main steps: 1)

generate a hybrid de novo assembly from NGS short reads and the original draft

assembly. 2) close the gaps between adjacent contigs by reconciling the two assemblies.

The basic idea behind reconciliation is to generate a consensus sequence by finding

overlapping regions of the two assemblies. For this purpose, a hybrid assembly contig

that shares common seeds with two different draft assembly contigs is detected. Seeds are

specific length sequences located at a specific distance away from contig ends.

Consensus sequences are constructed by stitching together appropriate fragments from

the two assemblies.

80

Tsai et al. have developed an approach [71] to improve the quality of a draft assembly

with local assembly of gap regions. Reads that are belong to gap sections or questionable

regions are identified and reassembled locally before being incorporated back into the

final assembly. In order to do this, reads are aligned against the initial assembly. The

reads aligned to the contig ends, with their mates, are assembled into new contigs, which

are subsequently mapped back to the initial assembly. Then, reads are aligned against the

updated assembly and the whole process is repeated iteratively until the gap is closed or

no new useful read is found.

It is also possible to improve the quality of their assembly by closing the gaps

manually. In order to do that, they produce additional sequence referred to as finishing

reads. Finishing reads derive from PCR, primer walking, transposon bombing, shotgun of

individual clones and other techniques. Reads are extended and manually aligned to close

the gaps and improve questionable regions. This manual process is labor intensive and

time consuming. Furthermore, the increases in data volumes and the small contig sizes

which is the consequence of using NGS reads, have increased the time and costs needed

to advance a genome from a draft assembly to an improved or finished state. For

example, Koren et al. proposed a method [72] that generates a de novo assembly which

integrates the whole genome shotgun sequencing technique and finishing reads. The

algorithm uses the sets of finishing reads and placement bounds for each set to

incorporate finishing reads during the assembly process.

Another approach for finishing draft assemblies is to assemble different types of reads

independently and combine the result subsequently. Casagrande et al. [73] proposed a

81

method to improve the overall quality of the genome assembly sequences by merging the

sequences produced with different assembly techniques. In each step, two assemblies are

combined. The user chooses one of the assemblies as the master assembly by the user.

The algorithm tries to improve the quality of the master assembly using the information

obtained from the other. For this purpose, the two contig sets are mapped and

corresponding contigs are detected. The longer contig is reported as the final result for

each contig pair. If significant differences are observed between contigs, the master

assembly is chosen.

Assembly reconciliation is a method to integrate different assemblies proposed by

Zimin et al. [74]. Again, the main goal is to extend the contigs by merging sequences

coming from different assemblies. Incorrect assembled fragments are detected by

exploiting mean insert size. In particular, if the distance between paired reads in a

particular section diverges from the expected value, it is marked as a potential breakpoint.

A couple of methods have been suggested to incorporate mixtures of reads based on a

reference-guided assembly. These methods usually combine de novo and reference

guided assembly techniques to take advantage from both approaches.

Cattonaro et al. extend their idea to improve the assembly result when a reference

genome is available [74]. This method first builds a de novo master assembly. Also, a

reference guided assembly is generated. These two assemblies are combined using the

technique proposed in [75]. To detect possible breakpoints and break assemblies to

smaller sections, assembly reconciliation technique [14] is used.

82

Gnerre et al. [76] have proposed a method to improve low-coverage de novo

assemblies by exploiting the genome sequence of a related organism. The method begins

with de novo assembly of the reads, followed by mapping the reads to the reference

genome. Mapped reads are grouped based on their position. Each group is assigned to a

de novo contig (or contigs) based on the similarity between the reads in the group and the

contig. Grouped reads are used to improve the quality of the contig. Scaffolding is carried

out using paired-end reads. The authors applied this method to obtain whole genome

sequence of four divergent Arabidopsis thaliana in 2010 [77].

TASR [78] is a reference guided assembly algorithm for very large NGS data sets.

Sequence targets are read first. From each target, every possible 15-character word from

the plus and minus strand are extracted and stored in a hash table. Next, reads from the

NGS data set are processed: any read with an exact match of its first 15 bases to any of

the 15-mer words from the target sequence, is retained. The identity and coverage of

every base, within and beyond the user-provided target sequence, is stored in a hash

table. The sequence within the bounds of the user-supplied target sequence will exactly

match the target itself, but recruited sequence reads will typically extend beyond the

boundaries of the target sequence, and this flanking sequence may also be included in the

assembly. A consensus sequence is derived, taking exactly matching bases at each

position within the target region, and extended outward, bi-directionally, to include the

most represented base at positions outside the target sequence. Extension is terminated

when a position is encountered that does not meet the user-specified criteria.

83

LOCAS [79] is another method designed for assembling short to medium sized reads

either de novo or in a homology-guided fashion using an overlap-layout-consensus

approach.

4.2.2. Methods and Excremental Results

Sequence comparison between P. falciparum DD2 strain and other Plasmodia can

provide critical information about the underlying mechanisms of drug resistance in the

DD2 strain. In addition, it enables researchers to carry out several other genome-wide

studies, e.g., gene expression analysis via RNA-seq, epigenetic studies, etc. As said, the

goal is to derive an efficient and accurate method to combine heterogeneous reads to

build an improved version of DD2 genome, based on the reference 3D7 genome.

We started with a heterogeneous set of input data, including single and paired end

reads of P. falciparum DD2 strain, Sanger contigs of DD2 strain from the Broad Institute

of MIT and Harvard and a high quality assembly of P. falciparum 3D7. The Broad

Institute (BI) generated the assemblies as a part of a project for comparing different

strains of P. falciparum. These assemblies were built from Sanger reads, which are

usually longer and cleaner than NGS reads in terms of sequencing errors. In this case, we

quickly realized that the DD2 Sanger-based contigs were not very accurate. Table	
 13

summarizes the statistics collected for the BI contigs.

Table 13. Statistics for the DD2 Sanger contigs generated by the Broad Inst.

Num of contigs Min contig len Mean contig len N50 Max contig len Total length

4,511 201 4,311 11,610 79,198 19.5 M

84

P. falciparum has a very AT-rich and repetitive genome; this make de novo assembly

of the genome very challenging. We decided not to rely on de novo assembly of the

sequencing data because (1) the genome of P. falciparum is very repetitive genome, (2)

we had to deal with a diverse set of the input data, and (3) the quality of the NGS reads

was relatively low. We decided to use a reference genome as a guide to assemble the

reads. Figure	
 22 shows the pipeline we designed to assemble the genome of P.falciparum

DD2 from the set of heterogeneous sequencing data. This pipeline, partially based on a

method proposed in [77], contains the following steps:

a) Trimming the short reads: The process began with the trimming of single and

paired end reads. The quality of both end of the NGS reads tend to be lower. Also, NGS

reads contain at the beginning a DNA barcode and an adapter which has applications in

the sequencing process. NGS instruments have internal software modules for removing

adapters and low quality bases, but sometimes it is necessary to re-trim the reads before

assembling them.

Trimming started with removing the low quality nucleotides (with score lower than

25 for the paired end and 10 for the single end reads) from the both ends. Removing the

reads with several low quality nucleotides in the middle was the second step. Reads with

more than 20% low quality bases or “N”s were removed in this step. To help the mapper

to align the reads more accurately, base pairs with quality score lower than 15 were

replaced with “N”. Finally, six base pairs at the beginning of all the reads were removed

based on the quality profile of the reads. We eliminated all the reads shorter than 15 bases

85

(18 bases for single end reads). Table	
 14 contains the statistics collected about the three

input sets, before and after trimming.

	

Figure 22. The reference-guided assembly of heterogeneous DNA segments pipeline

	

b) Mapping and clustering the reads: because of the similarity between the reference

and the target genome, we expected the reads to cover most of the reference genome. As

expected, some parts of the reference genome remained uncovered (or poorly covered)

due to mutations and structural variations.

Table 14. Statistics for the input datasets, before and after trimming

Reads before

trimming

Reads after

trimming

Unmatched reads

after trimming

CG% (before |

after trimming)

Max length before

trimming

Min length

after trimming

Single end 37,376,378 29,926,656 - 30% | 28% 76 18

Paired 1 (C) 41,735,228 pairs 29,233,333 pairs 15,789,230 (total) 18% | 17% 51 (each pair) 15

Paired 2 (G) 36,592,078 pairs 29,741,545 pairs 15,789,230 (total) 37% | 36% 51 (each pair) 15

	

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

Segment'1' Segment'2' Segment'3' Segment'4'

Reference genome

Primary contigs

BI contigs

Reference genome

Mapping

Combining
contigs

Assembly

Validating
super-contigs

Super-contigs

Short reads

Scaffolding Ordered contigs

Mapping
the reads

Mapping a
suffix (or
prefix) of
the reads

86

We mapped a set of single end reads, two sets of paired end reads against the 3D7

genome separately with BWA. For each read, the maximum edit distance was set to 5%

of the read length, including at most 3% of gap opens. We prevented BWA from

mapping the reads with long gaps. Table	
 15 shows the result of mapping DD2 reads to the

3D7 genome.

Table 15. Mapping statistics

Name Alignment percentage Unique mapped Multiple mapped

SE reads 76% 68% 8%

Unmated reads 68% 62% 6%

PE read set 1 59% 55% 4%

PE read set 2 30% 26% 4%

We expected a significant deletion near the beginning of chromosome 2 in the DD2

genome. We observed the deletion by visualizing the mapping result, as shown in the left

panel of Figure	
 23.

Figure 23. Left: coverage profile of chromosome 2, including a deletion. b) coverage profile of
chromosomes 8.

We then separated the mapped reads into several group based on the depth of

coverage. We defined a segment as a section on the reference genome between two

adjacent not covered by reads. Segments and their corresponding reads were detected

Table 3. Mapping statistics

Name
Alignment
 percentage

Uniquely mapped
(of all reads)

Multiple location
mapped

(of all reads)

SE reads 76.00% 68.00% 8.00%

Unmated reads 68.00% 62.00% 6.00%

PE read set 1 59.00% 55.00% 4.00%

PE read set 2 30.00% 26.00% 4.00%

After mapping the reads, the software tool SHORE [22] was used to find segments described in
Section 3 based on the coverage profile. The 3D7 genome was partitioned to 3056 segments. We
excluded segments shorter than 200 bps: the longest segments has 170,941 bps. Mitochondrion and
apicoplast were considered as a single segment each. These segments cover roughly 93% of the 3D7
genome. Figure 6 shows the length distribution of the segments genome-wide.

De novo assembly and combining the contigs

Reads corresponding to each segment were assembled separately using VELVET [23]. Velvet was run
twelve times on each read set using twelve different k-mer sizes. For each choice of k, Velvet produces
a set of contigs for each segment. Reads can contribute to different local assemblies because the the
same read can be used in distinct contigs obtained by choosing different values of k. As a result, there
is redundancy among local contigs. That manifests as potential overlap among assembled contigs. We
merged these contigs using the assembler AMOScmp [24] which generates a set of non-redundant
supercontigs. The BI contigs mapped to the target chromosome were added to the local assemblies in
this step.

To separate BI contigs, we aligned them to 3D7 genome using BLAST. 4,216 of BI contigs were
aligned to 3D7 genome, including 3829 uniquely mapped contigs. The total length of these contigs
(including the repeated contigs) is 20,280,254 bps.

Table 4 summarizes statistics about the BI contigs and the result of combining contigs generated in
this step and BI contigs. N:50 and total length of contigs are two main statistical measures to compare
two draft assembly sets. Given a set of contigs of varying lengths, the N50 is defined as the length N
for which 50% of all bases in the contigs are in a contig of length L < N. Figure 8 and 9 show the total
length of the two contig sets and N:50 for each chromosome separately. Observe that our contigs have
larger N:50 and total length than BI contigs for most of the chromosomes.

a) coverage profile of chromosome 2, containing a deletion b) coverage profile of chromosomes 8

Figure 5. Coverage profiles of chromosome 2 and 8

10

Table 3. Mapping statistics

Name
Alignment
 percentage

Uniquely mapped
(of all reads)

Multiple location
mapped

(of all reads)

SE reads 76.00% 68.00% 8.00%

Unmated reads 68.00% 62.00% 6.00%

PE read set 1 59.00% 55.00% 4.00%

PE read set 2 30.00% 26.00% 4.00%

After mapping the reads, the software tool SHORE [22] was used to find segments described in
Section 3 based on the coverage profile. The 3D7 genome was partitioned to 3056 segments. We
excluded segments shorter than 200 bps: the longest segments has 170,941 bps. Mitochondrion and
apicoplast were considered as a single segment each. These segments cover roughly 93% of the 3D7
genome. Figure 6 shows the length distribution of the segments genome-wide.

De novo assembly and combining the contigs

Reads corresponding to each segment were assembled separately using VELVET [23]. Velvet was run
twelve times on each read set using twelve different k-mer sizes. For each choice of k, Velvet produces
a set of contigs for each segment. Reads can contribute to different local assemblies because the the
same read can be used in distinct contigs obtained by choosing different values of k. As a result, there
is redundancy among local contigs. That manifests as potential overlap among assembled contigs. We
merged these contigs using the assembler AMOScmp [24] which generates a set of non-redundant
supercontigs. The BI contigs mapped to the target chromosome were added to the local assemblies in
this step.

To separate BI contigs, we aligned them to 3D7 genome using BLAST. 4,216 of BI contigs were
aligned to 3D7 genome, including 3829 uniquely mapped contigs. The total length of these contigs
(including the repeated contigs) is 20,280,254 bps.

Table 4 summarizes statistics about the BI contigs and the result of combining contigs generated in
this step and BI contigs. N:50 and total length of contigs are two main statistical measures to compare
two draft assembly sets. Given a set of contigs of varying lengths, the N50 is defined as the length N
for which 50% of all bases in the contigs are in a contig of length L < N. Figure 8 and 9 show the total
length of the two contig sets and N:50 for each chromosome separately. Observe that our contigs have
larger N:50 and total length than BI contigs for most of the chromosomes.

a) coverage profile of chromosome 2, containing a deletion b) coverage profile of chromosomes 8

Figure 5. Coverage profiles of chromosome 2 and 8

10

87

with software HORE [80]. We excluded from the analysis segments shorter than 200 bps.

Mitochondrion and apicoplast were considered as a single segment each. These segments

covered roughly 93% of the 3D7 genome. Figure	
 24 shows the length distribution of the

created segments, genome-wid.

	

Figure 24. Length distribution of the created segments

c) Assembly of the reads in each segment: After partitioning the mapped reads, we

carried out a local de novo assembly in each segment. In this case, the assembler handled

fewer reads and smaller targets, thus simplifying the assembly process.

De novo assembly is highly sensitive to parameters like the k-mer size. Choosing an

appropriate k-mer is not trivial as it is a trade off between specificity and sensitivity.

Longer k-mers decrease mis-assembly errors because the detected overlaps are more

reliable. Shorter k-mers increase contiguity in the assembly. We used VELVET [14]to

assemble the reads assigned to each segment. VELVET was run twelve times for each read

set using twelve different k-mer sizes. We called these local assemblies primary contigs.

d) Merging the contigs: We mapped the primary contigs to the reference genome

again in order to detect overlaps and merge them. We obtained several sets of connected

contigs, called supercontigs.	
 We merged the created contigs using the assembler

Figure 6. Length distribution of segments

Table 4. Comparison of BI contigs and the contigs produced by our method

Our contigs BI contigs

n min median mean N:50 max sum n min median mean N:50 max sum

Chr 1 290 200 1,377 2,467 4,342 23,629 533,030 346 233 1,249 1,996 2,203 23,600 690,853

Chr 2 348 201 1,435 3,014 6,612 66,171 816,945 366 204 1,251 2,571 5,422 59,641 941,118

Chr 3 368 204 1,480 3,309 8,390 50,081 976,393 376 203 1,246 2,656 7,019 31,357 998,850

Chr 4 498 201 1,256 2,699 5,608 40,788 996,199 429 203 1,242 2,603 7,440 43,280 1,116,813

Chr 5 559 202 1,040 2,685 7,390 53,549 1,272,902 409 218 1,270 2,813 7,320 38,536 1,150,919

Chr 6 487 200 1,289 3,154 7,340 63,633 1,252,322 531 204 1,239 2,681 7,916 57,538 1,423,991

Chr 7 490 200 1,254 3,212 10,283 43,095 1,262,415 446 229 1,265 2,900 8,957 40,513 1,293,403

Chr 8 578 200 1,302 2,815 5,963 30,606 1,300,960 466 211 1,239 2,642 7,069 42,645 1,231,384

Chr 9 568 202 1,262 3,218 9,636 65,466 1,416,117 454 221 1,300 2,844 7,817 33,203 1,291,368

Chr 10 658 200 1,257 2,929 7,569 42,100 1,552,881 567 209 1,289 2,719 7,938 39,372 1,542,120

Chr 11 623 200 1,534 3,602 10,550 39,247 1,920,340 657 180 1,295 2,891 8,272 34,994 1,899,808

Chr 12 758 200 1,392 3,310 8,358 52,954 2,069,271 599 222 1,344 2,915 7,684 27,118 1,746,543

Chr 13 873 200 1,468 3,669 10,504 50,108 2,759,147 733 210 1,300 3,317 9,170 33,326 2,431,576

Chr 14 800 202 1,770 4,581 12,839 88,013 3,156,696 650 206 1,512 3,744 9,252 36,634 2,433,612

11

20
0-5

00

50
1-1

000

1001
-2

000

2001
-4

000

4001
-8

000

8001
-1

6000

1600
1-3

2000

32
001-6

4000

64
001-1

28000

0

200

400

600

800

1000

1200

1400

Segment length

F
re

q
u

en
cy

88

AMOScmp [81] which generated a set of non-redundant supercontigs. The BI contigs

mapped to the target chromosome were added to the local assemblies in this step.

We then mapped the draft contigs against the reference genome using BLAST [82] ,

which enabled us to find the corresponding chromosome for each draft contig. Mapping

the draft contig with the primary contigs to their corresponding chromosome (and not the

entire genome) produced more accurate results. 4,216 of the BI contigs were aligned to

3D7 genome, including 3,829 uniquely mapped contigs. The total length of the mapped

contigs (including the repeated contigs) was 20,280,254 bps.

Table	
 16 summarizes the main statistics about the BI contigs and the result of

combining the contigs generated in this step and the BI contigs. Figure	
 25 shows the total

length of the two contig sets and N50 for each chromosome. Observe that our contigs

have larger N50 and they significantly longer than BI contigs for most of the

chromosomes.

Table 16. Comparison of the BI contigs and the contigs produced by our pipeline

Figure 6. Length distribution of segments

Table 4. Comparison of BI contigs and the contigs produced by our method

Our contigs BI contigs

n min median mean N:50 max sum n min median mean N:50 max sum

Chr 1 290 200 1,377 2,467 4,342 23,629 533,030 346 233 1,249 1,996 2,203 23,600 690,853

Chr 2 348 201 1,435 3,014 6,612 66,171 816,945 366 204 1,251 2,571 5,422 59,641 941,118

Chr 3 368 204 1,480 3,309 8,390 50,081 976,393 376 203 1,246 2,656 7,019 31,357 998,850

Chr 4 498 201 1,256 2,699 5,608 40,788 996,199 429 203 1,242 2,603 7,440 43,280 1,116,813

Chr 5 559 202 1,040 2,685 7,390 53,549 1,272,902 409 218 1,270 2,813 7,320 38,536 1,150,919

Chr 6 487 200 1,289 3,154 7,340 63,633 1,252,322 531 204 1,239 2,681 7,916 57,538 1,423,991

Chr 7 490 200 1,254 3,212 10,283 43,095 1,262,415 446 229 1,265 2,900 8,957 40,513 1,293,403

Chr 8 578 200 1,302 2,815 5,963 30,606 1,300,960 466 211 1,239 2,642 7,069 42,645 1,231,384

Chr 9 568 202 1,262 3,218 9,636 65,466 1,416,117 454 221 1,300 2,844 7,817 33,203 1,291,368

Chr 10 658 200 1,257 2,929 7,569 42,100 1,552,881 567 209 1,289 2,719 7,938 39,372 1,542,120

Chr 11 623 200 1,534 3,602 10,550 39,247 1,920,340 657 180 1,295 2,891 8,272 34,994 1,899,808

Chr 12 758 200 1,392 3,310 8,358 52,954 2,069,271 599 222 1,344 2,915 7,684 27,118 1,746,543

Chr 13 873 200 1,468 3,669 10,504 50,108 2,759,147 733 210 1,300 3,317 9,170 33,326 2,431,576

Chr 14 800 202 1,770 4,581 12,839 88,013 3,156,696 650 206 1,512 3,744 9,252 36,634 2,433,612

11

20
0-5

00

50
1-1

000

1001
-2

000

2001
-4

000

4001
-8

000

8001
-1

6000

1600
1-3

2000

32
001-6

4000

64
001-1

28000

0

200

400

600

800

1000

1200

1400

Segment length

F
re

q
u

en
cy

89

e) Quality check and validation of the contigs: Because of the repeats in the target

genome and sequencing errors in the reads, invalid contigs could be generated. Therefore,

a validation process was necessary. In order to do this, we mapped the single and paired

end reads to the supercontigs. We then eliminated supercontigs with insufficient

coverage.

f) Scaffolding: The order of supercontigs was still undetermined at the beginning of

this step. Neighbor supercontigs were determined with the paired reads aligned to the two

separate supercontigs.

Figure 25. Left: Comparison of sum of the length of BI contigs and the improved contigs. Right:
Comparison of N50 for BI contigs and the improverd contigs

g) Building new contigs and patching them: After mapping single and paired end

reads against the reference genome, some reads were still remained unmapped. The

unmapped and the orphan reads (paired end reads with one mate mapped and the other

unmapped) could be distinctive parts of the DD2 genome that are not present in the 3D7

genome, or they could be due to contamination. Since P. faciparum parasites are grown

in human blood, we expected that a fraction of the short reads was from the human

genome. To identify these reads, we aligned all reads not mapped to the 3D7 genome

Figure 7. Comparison of sum of the length of BI contigs and contigs produced by our method

Figure 8. Comparison of N:50 of BI contigs and contigs produced by our method

13

C
h
r

1

C
h
r

2

C
h
r

3

C
h
r

4

C
h
r

5

C
h
r

6

C
h
r

7

C
h
r

8

C
h
r

9

C
h
r

1
0

C
h

r
1
1

C
h
r

1
2

C
h
r

1
3

C
h
r

1
4

0

2000

4000

6000

8000

10000

12000

14000

Our contigs

BI contigs

C
h
r

1

C
h
r

2

C
h
r

3

C
h
r

4

C
h
r

5

C
h
r

6

C
h
r

7

C
h
r

8

C
h
r

9

C
h
r

1
0

C
h

r
1
1

C
h
r

1
2

C
h
r

1
3

C
h
r

1
4

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Our contigs

BI contigs

Figure 7. Comparison of sum of the length of BI contigs and contigs produced by our method

Figure 8. Comparison of N:50 of BI contigs and contigs produced by our method

13

C
h
r

1

C
h
r

2

C
h
r

3

C
h
r

4

C
h
r

5

C
h
r

6

C
h
r

7

C
h
r

8

C
h
r

9

C
h
r

1
0

C
h

r
1
1

C
h
r

1
2

C
h
r

1
3

C
h
r

1
4

0

2000

4000

6000

8000

10000

12000

14000

Our contigs

BI contigs

C
h
r

1

C
h
r

2

C
h
r

3

C
h
r

4

C
h
r

5

C
h
r

6

C
h
r

7

C
h
r

8

C
h
r

9

C
h
r

1
0

C
h

r
1
1

C
h
r

1
2

C
h
r

1
3

C
h
r

1
4

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Our contigs

BI contigs

90

against the human genome and removed the mapped reads. We mapped the leftover reads

to the genome of every known organism with BOWTIE [83] (no mismatch and gap). Table	

17 summarizes statistics of aligning the reads not mapped to the 3D7 genome to the

human genome.

To build unique (distinctive) blocks of the target genome, the remaining unmapped

reads were assembled de novo with VELVET. We repeated the assembly with 12 different

k-mers. As we assembled short reads without any reference in this step, the quality of the

created contigs were not as high as BI contigs which were not mapped to the

chromosomes.

Table 17. Aligning the reads not mapped to the 3D7 against the human genome

 Unmapped SE reads Orphan reads Unmapped PE reads

Number of reads 12,341,533 929,012 21,217,665

Unmapped to the HG 7,956,583 (64%) 670,081 (72%) 12,095,895 (57%)

4.2.3. Methods and Excremental Results

We presented a method that enabled the assembling of heterogeneous DNA segments

of P. falciparum strain DD2 based on a reference genome (3D7). We followed a pipeline

consist of trimming, mapping, partitioning, de-novo assembly, combining contigs,

validating and scaffolding. Contigs obtained with our pipeline were longer on average

than the BI original contigs. However, the BI contigs not mapped to the 3D7 genome

were longer in average than the contigs we generated with unmapped reads

	

91

Chapter 5: Conclusions

Advancement in sequencing technologies has been reducing sequencing costs at an

astonishing rate. The estimated cost of the human genome project was about 3 billion

dollars. At the time of writing the cost of sequencing one human genome is below

$1,000. For the same reason, ultra-deep sequencing is also now feasible, especially for

smaller genomes and clones. As it becomes more and more common, ultra-deep

sequencing data is expected to create new algorithmic challenges in the analysis pipeline.

In this dissertation, we focused on two of these challenges: the accuracy of decoding

reads and quality of de novo assemblies created from the ultra deep sequencing data.

In hierarchical genome sequencing approach, a genome is sequenced into long DNA

fragments (i.e., BAC clones). To take advantage of the throughput of modern sequencing

instruments, BACs are usually pooled before sequencing. Each reads then has be

assigned to its original BAC after the sequencing process. Our experiments showed that

decoding “slices” of the input reads instead of the whole dataset may increase the

accuracy of the decoding process. We presented an effective ‘divide and conquer’

solution: we ‘slice’ the data in subsamples, decode each slice independently, then merge

the results. In order to handle conflicts in the BAC assignments (i.e., reads that appear in

multiple slices that are decoded to different sets of BACs), we devised a simple set of

voting rules.

We also showed that popular modern de novo assemblers are unable to take advantage

of ultra-deep coverage, and the quality of assemblies starts degrading after a certain depth

92

of coverage. We proposed an iterative approach to solves this problem, which

significantly improves the final quality of the assembly. Experiments on a set of ultra-

deep barley BACs and simulated data shows that our proposed method leads to high

quality assemblies. We also demonstrated that this approach is more resilient to high

sequencing error rates than the other methods.

Additionally, we reported on a protocol to discover high quality SNPs for complex and

repetitive genomes like plant genome. The SNPs discovered for the cowpea genome

using the protocol were used to design an Illumina “60k” iSelect genotyping chip. The

pipeline for ordering and orienting the previously sequenced cowpea BACs and WGS

contigs, using the discovered SNPs, was reported in this dissertation as well.

Finally, a computational pipeline for assembly of heterogeneous sequencing data was

described and the quality of assemblies created for a drug-resistant malaria strain based

on the pipeline was investigated.

To conclude, new algorithms and methods will be required to handle deeper and more

heterogeneous sequencing data as we witness advances in sequencing technology. This

dissertation is a step toward this goal.

	

93

Bibliography

1. The Genome International Sequencing Consortium, Initial sequencing and analysis of the human
genome. Nature, 2001. 409: p. 860-921.

2. Willis, J.C. and G.M. Lord, Immune biomarkers: the promises and pitfalls of personalized
medicine. Nat Rev Immunol, 2015. 15(5): p. 323-9.

3. Waterman, M.S., Introduction to computational biology: maps, sequences and genomes. 1995:
CRC Press.

4. Lonardi, S. and others, Combinatorial Pooling Enables Selective Sequencing of the Barley Gene
Space. PLoS Comput Biol, 2013. 9(4): p. e1003010.

5. Stein, N. and others, A physical, genetic and functional sequence assembly of the barley genome.
Nature, 2012. 491(7426): p. 711--716.

6. Munoz-Amatriain, M., et al., Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense
regions of the barley genome. Plant J, 2015.

7. Yu, Y. and others, A bacterial artificial chromosome library for barley (\emphHordeum vulgare
L.) and the identification of clones containing putative resistance genes. Theoretical and Applied
Genetics, 2000. 101(7): p. 1093-1099.

8. Luo, M.-C. and others, High-throughput fingerprinting of bacterial artificial chromosomes using
the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis.
Genomics, 2003. 82(3): p. 378--389.

9. Bozdag, S. and others, A compartmentalized approach to the assembly of physical maps, in
Proceedings of IEEE International Symposium on Bioinformatics \& Bioengineering (BIBE'07).
2007. p. 218--225.

10. Soderlund, C. and others, Contigs Built with Fingerprints, Markers, and FPC V4.7. Genome
Research, 2000. 10(11): p. 1772-1787.

11. Bozdag, S. and others, A Graph-Theoretical Approach to the Selection of the Minimum Tiling
Path from a Physical Map. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2013. 10(2): p. 352-360.

12. Thierry-Mieg, N., A new pooling strategy for high-throughput screening: the shifted transversal
design. BMC Bioinformatics, 2006. 7(28).

13. Ding, Y. and others, Five-Color-Based High-Information-Content Fingerprinting of Bacterial
Artificial Chromosome Clones Using Type IIS Restriction Endonucleases. Genomics, 2001. 74(2):
p. 142--154.

14. Zerbino, D.R. and E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn
graphs. Genome Res, 2008. 18(5): p. 821-9.

94

15. International Barley Genome Sequencing, C., et al., A physical, genetic and functional sequence
assembly of the barley genome. Nature, 2012. 491(7426): p. 711-6.

16. Bankevich, A., et al., SPAdes: a new genome assembly algorithm and its applications to single-
cell sequencing. Journal of Computational Biology, 2012. 19(5): p. 455-77.

17. Peng, Y., et al., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data
with highly uneven depth. Bioinformatics, 2012. 28(11): p. 1420-8.

18. Salzberg, S.L. and others, GAGE: A critical evaluation of genome assemblies and assembly
algorithms. Genome Research, 2011.

19. Lander, E.S. and M.S. Waterman, Genomic mapping by fingerprinting random clones: a
mathematical analysis. Genomics, 1988. 2(3): p. 231--239.

20. Roach, J.C., et al., Pairwise end sequencing: a unified approach to genomic mapping and
sequencing. Genomics, 1995. 26: p. 345-353.

21. Ekblom, R., L. Smeds, and H. Ellegren, Patterns of sequencing coverage bias revealed by ultra-
deep sequencing of vertebrate mitochondria. BMC Genomics, 2014. 15: p. 467.

22. Eid, J., et al., Real-time DNA sequencing from single polymerase molecules. Science, 2009.
323(5910): p. 133-138.

23. Clarke, J., et al., Continuous base identification for single-molecule nanopore DNA sequencing.
Nat Nanotechnol, 2009. 4(4): p. 265-70.

24. English, A.C., et al., Mind the gap: upgrading genomes with Pacific Biosciences RS long-read
sequencing technology. PLoS One, 2012. 7(11): p. e47768.

25. Spence, J.M., J.P. Spence, and W.R. Burack, Quantification of intraclonal diversity in follicular
lymphoma. Modern Pathology, 2012. 25: p. 372A-372A.

26. Campbell, P.J., et al., Subclonal phylogenetic structures in cancer revealed by ultra-deep
sequencing. Proceedings of the National Academy of Sciences of the United States of America,
2008. 105(35): p. 13081-13086.

27. Widasari, D.I., et al., A deep-sequencing method detects drug-resistant mutations in the hepatitis B
virus in indonesians. Intervirology, 2014. 57(6): p. 384-392.

28. Beerenwinkel, N. and O. Zagordi, Ultra-deep sequencing for the analysis of viral populations.
Current Opinion in Virology, 2011. 1(5): p. 413-418.

29. Lonardi, S., et al., When less is more: 'slicing' sequencing data improves read decoding accuracy
and de novo assembly quality. Bioinformatics, 2015. 31(18): p. 2972-80.

30. Desai, A., et al., Identification of optimum sequencing depth especially for de novo genome
assembly of small genomes using next generation sequencing data. PLoS One, 2013. 8(4): p.
e60204.

31. Zhou, W., et al., Bias from removing read duplication in ultra-deep sequencing experiments.
Bioinformatics, 2014. 30(8): p. 1073-1080.

95

32. Aird, D., et al., Analyzing and minimizing PCR amplification bias in Illumina sequencing
libraries. Genome Biology, 2011. 12(2): p. R18.

33. Yang, X., S.P. Chockalingam, and S. Aluru, A survey of error-correction methods for next-
generation sequencing. Briefings in Bioinformatics, 2013. 14(1): p. 56-66.

34. Brown, C.T., et al., A reference-free algorithm for computational normalization of shotgun
sequencing data, in arXiv preprint arXiv:1203.4802. 2012.

35. McCorrison, J.M., et al., NeatFreq: reference-free data reduction and coverage normalization for
de novo sequence assembly. BMC Bioinformatics, 2014. 15(1): p. 357.

36. Hui, L.C.K., Color Set Size Problem with Applications to String Matching. Combinatorial Pattern
Matching, 1992. 644: p. 230-243.

37. Pop, M., D.S. Kosack, and S.L. Salzberg, Hierarchical scaffolding with Bambus. Genome
Research, 2004. 14(1): p. 149-159.

38. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 2009. 25(14): p. 1754-60.

39. Ilie, L. and M. Molnar, RACER: Rapid and accurate correction of errors in reads. Bioinformatics,
2013. 29(19): p. 2490-3.

40. Gurevich, A., et al., QUAST: quality assessment tool for genome assemblies. Bioinformatics,
2013. 29(8): p. 1072-5.

41. Boisvert, S., F. Laviolette, and J. Corbeil, Ray: simultaneous assembly of reads from a mix of
high-throughput sequencing technologies. Journal of Computational Biology, 2010. 17(11): p.
1519-33.

42. Raghunathan, A., et al., Genomic DNA amplification from a single bacterium. Appl Environ
Microbiol, 2005. 71(6): p. 3342-7.

43. Soueidan, H., et al., Finishing bacterial genome assemblies with Mix. BMC Bioinformatics, 2013.
14: p. S16.

44. Nijkamp, J., et al., Integrating genome assemblies with MAIA. Bioinformatics, 2010. 26(18): p.
i433-9.

45. Vicedomini, R., et al., GAM-NGS: genomic assemblies merger for next generation sequencing.
BMC Bioinformatics, 2013. 14: p. S6.

46. Turk, K.J., A.E. Hall, and C.W. Asbell, Drought adaptation of cowpea. I. Influence of drought on
seed yield. Agronomy Journal, 1980. 72(3): p. 413-420.

47. Mai-Kodomi, Y., B.B. Singh, and O. Myers, Two mechanisms of drought tolerance in cowpea.
Indian Journal of Genetics & Plant Breeding, 1999. 59(3): p. 309-316.

48. Pottorff, M.O., et al., Genetic mapping, synteny, and physical location of two loci for f. sp. race 4
resistance in cowpea [(L.) Walp]. Mol Breed, 2014. 33: p. 779-791.

96

49. Timko, M.P., et al., Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics,
2008. 9: p. 103.

50. Elshire, R.J., et al., A robust, simple genotyping-by-sequencing (GBS) approach for high diversity
species. PLoS One, 2011. 6(5): p. e19379.

51. Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 2009. 25(14): p. 1754-1760.

52. Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p.
2078-9.

53. Lorenc, M.T., et al., Discovery of Single Nucleotide Polymorphisms in Complex Genomes Using
SGSautoSNP. Biology (Basel), 2012. 1(2): p. 370-82.

54. Garrison, E. and G. Marth, Haplotype-based variant detection from short-read sequencing. arXiv
preprint arXiv:1207.3907, 2012.

55. McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res, 2010. 20(9): p. 1297-303.

56. Lucas, M.R., et al., Cowpea–soybean synteny clarified through an improved genetic map. The
Plant Genome, 2011. 4(3): p. 218-225.

57. Arai-Kichise, Y., et al., Discovery of genome-wide DNA polymorphisms in a landrace cultivar of
Japonica rice by whole-genome sequencing. Plant Cell Physiol, 2011. 52(2): p. 274-82.

58. You, F.M., et al., Annotation-based genome-wide SNP discovery in the large and complex
Aegilops tauschii genome using next-generation sequencing without a reference genome sequence.
BMC Genomics, 2011. 12: p. 59.

59. le Roex, N., et al., Novel SNP Discovery in African Buffalo, Syncerus caffer, using high-
throughput Sequencing. PLoS One, 2012. 7(11): p. e48792.

60. Pabinger, S., et al., A survey of tools for variant analysis of next-generation genome sequencing
data. Brief Bioinform, 2014. 15(2): p. 256-78.

61. Danecek, P., et al., The variant call format and VCFtools. Bioinformatics, 2011. 27(15): p. 2156-
8.

62. Uitdewilligen, J.G., et al., A next-generation sequencing method for genotyping-by-sequencing of
highly heterozygous autotetraploid potato. PLoS One, 2013. 8(5): p. e62355.

63. Venturini, L., et al., De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils
varietal diversity. BMC Genomics, 2013. 14: p. 41.

64. Vidotto, M., et al., Transcriptome sequencing and de novo annotation of the critically endangered
Adriatic sturgeon. BMC Genomics, 2013. 14: p. 407.

65. Delcher, A.L., S.L. Salzberg, and A.M. Phillippy, Using MUMmer to identify similar regions in
large sequence sets. Curr Protoc Bioinformatics, 2003. Chapter 10: p. Unit 10 3.

97

66. Wu, Y., et al., Efficient and accurate construction of genetic linkage maps from the minimum
spanning tree of a graph. PLoS Genet, 2008. 4(10): p. e1000212.

67. Wilson, R.J., et al., Complete gene map of the plastid-like DNA of the malaria parasite
Plasmodium falciparum. J Mol Biol, 1996. 261(2): p. 155-72.

68. Gardner, M.J., et al., Genome sequence of the human malaria parasite Plasmodium falciparum.
Nature, 2002. 419(6906): p. 498-511.

69. Volkman, S.K., et al., A genome-wide map of diversity in Plasmodium falciparum. Nat Genet,
2007. 39(1): p. 113-9.

70. Yang, X., et al. CloG: A pipeline for closing gaps in a draft assembly using short reads. in
Computational Advances in Bio and Medical Sciences (ICCABS), 2011 IEEE 1st International
Conference on. 2011. IEEE.

71. Tsai, I.J., T.D. Otto, and M. Berriman, Improving draft assemblies by iterative mapping and
assembly of short reads to eliminate gaps. Genome Biol, 2010. 11(4): p. R41.

72. Koren, S., et al., An algorithm for automated closure during assembly. BMC Bioinformatics,
2010. 11: p. 457.

73. Vicedomini, R., et al., GAM-NGS: genomic assemblies merger for next generation sequencing.
BMC Bioinformatics, 2013. 14 Suppl 7: p. S6.

74. Zimin, A.V. and others, Assembly reconciliation. Bioinformatics, 2008. 24(1): p. 42-45.

75. Policriti, A., et al., GAM: Genomic Assemblies Merger. EMBnet. journal, 2012. 18(A): p. pp. 50-
51.

76. Gnerre, S., et al., Assisted assembly: how to improve a de novo genome assembly by using related
species. Genome Biol, 2009. 10(8): p. R88.

77. Schneeberger, K., et al., Reference-guided assembly of four diverse Arabidopsis thaliana genomes.
Proc Natl Acad Sci U S A, 2011. 108(25): p. 10249-54.

78. Warren, R.L. and R.A. Holt, Targeted assembly of short sequence reads. PLoS One, 2011. 6(5): p.
e19816.

79. Klein, J.D., et al., LOCAS--a low coverage assembly tool for resequencing projects. PLoS One,
2011. 6(8): p. e23455.

80. Ossowski, S., et al., Sequencing of natural strains of Arabidopsis thaliana with short reads.
Genome Res, 2008. 18(12): p. 2024-33.

81. Pop, M., et al., Comparative genome assembly. Brief Bioinform, 2004. 5(3): p. 237-48.

82. Altschul, S.F., et al., Basic local alignment search tool. J Mol Biol, 1990. 215(3): p. 403-10.

83. Langmead, B., Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics, 2010.
Chapter 11: p. Unit 11 7.

