
SOL: An end-to-end solution for real-world remote
monitoring systems

7
Author(s)

Keoma Brun-Laguna ; Thomas Watteyne ; Sami Malek ; Ziran Zhang ; Carlos Oroza ; Steven D.
Glaser ; Branko Kerkez
View All Authors

1
Paper
Citation
74
Full
Text Views

Abstract
Document Sections

 I. Introduction

 II. Sol: Sensor Object Library

 III. End-To-End Integration and Implementation

 IV. Pilot Deployments

 V. Related Data Representations and Protocols

Show Full Outline
Authors
Figures
References
Citations
Keywords
Metrics
Abstract:
This paper introduces SOL, which is both an efficient data representation for sensor
measurements and network statistics, and a complete low-power wireless sensor
management system that builds around it. A SOL system consists of multiple low-power
wireless mesh networks in which motes connected to sensors and actuators send data to a

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Keoma%22&searchWithin=%22Last%20Name%22:%22Brun-Laguna%22&newsearch=true
https://ieeexplore.ieee.org/document/7794864/metrics
https://ieeexplore.ieee.org/document/7794864/keywords
https://ieeexplore.ieee.org/document/7794864/citations
https://ieeexplore.ieee.org/document/7794864/references
https://ieeexplore.ieee.org/document/7794864/figures
https://ieeexplore.ieee.org/document/7794864/authors
https://ieeexplore.ieee.org/document/7794864
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Branko%22&searchWithin=%22Last%20Name%22:%22Kerkez%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Steven%20D.%22&searchWithin=%22Last%20Name%22:%22Glaser%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Steven%20D.%22&searchWithin=%22Last%20Name%22:%22Glaser%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Carlos%22&searchWithin=%22Last%20Name%22:%22Oroza%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Ziran%22&searchWithin=%22Last%20Name%22:%22Zhang%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Sami%22&searchWithin=%22Last%20Name%22:%22Malek%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Thomas%22&searchWithin=%22Last%20Name%22:%22Watteyne%22&newsearch=true

single server. It offers multi-tier data replication and the associated data recovery. SOL is
used in 3 pilot deployments for micro-climate monitoring, building automation and
agriculture applications. In conjunction with Metronome Systems' NeoMote and Manager
devices, SOL is a turn-key ready-to-deploy end-to-end system.
Published in: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC)
Date of Conference: 4-8 Sept. 2016
Date Added to IEEE Xplore: 22 December 2016
 ISBN Information:
Electronic ISSN: 2166-9589
INSPEC Accession Number: 16555796
DOI: 10.1109/PIMRC.2016.7794864
Publisher: IEEE
Conference Location: Valencia, Spain
SECTION I.

Introduction
Between 2012 and 2015, the State of California has suffered its most intense
drought since record keeping began in 1895. Understanding the detailed effect
of the drought on the upper reaches of the Sierra Nevada, the mountain range
that spans the eastern border of the state, is important since approximately 2/3
of California's water comes from snowmelt processes. Water plays a crucial role
for personal consumption, irrigation of farmland, and production of electricity in
hydro-power plants, among others, and it is critical to be able to monitor,
explain and predict drought events.

Since 2011, we have deployed and operated 14 low-power wireless networks, to
monitor the snowpack in the American River basin [1]. Each network is
composed of 10-11 sensor stations deployed over 1 km, 2. A sensor station is a 4
m high pole on which we have mounted snow depth, temperature, solar
radiation and relative humidity sensors. Soil moisture and matric suction sensors
are inserted into the soil at two depths beneath the station pole. These sensors
are connected, through wires, to a low-power wireless module, itself installed in
an electrical box on the pole. The wireless modules communicate with one
another through a low-power wireless mesh network, and send sensor
measurements to a network manager. This manager is connected to the Internet
through a cellular or satellite link, allowing it to forward the data to a database
running on a server on the UC Berkeley campus. A total of 945 sensors are
deployed, each reporting a measurement every 15 min. The data appears in the
database near instantly after it was measured.

We use a Metronome Systems' NeoMote1 as the heart of each sensor station.
The NeoMote features a Cypress PSOC microcontroller with 48 fully configurable
IO pins, allowing it to interface to virtually all analog and digital sensors. The
NeoMote also features a SmartMesh IP low-power wireless module from Dust
Networks/Linear Technology2. This module handles all the networking out-of-the-
box, automatically forming a secure, reliable (over 99.999% end-to-end

https://doi.org/10.1109/PIMRC.2016.7794864
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7762553
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7762553

reliability) and low-power (<50 μA current draw at 3.6 V) mesh network among
sensor stations.

Fig. 1:
SOL has been running for months in three outdoor and indoor pilot deployments.

View All
The network manager sits at the root of the low-power mesh network. We use
Metronome Systems' Manager. The Manager is a ruggedized box containing a
Linux computer and a SmartMesh IP Manager. It is connected to an embedded
satellite modem over an Ethernet wire. The computer runs an application that
collects the sensor measurements reported by the sensor stations, and the
network statistics generated by the SmartMesh IP low-power wireless mesh
network. Every 5 min each mote in the network reports statistics on its own
state (charge consumed, battery state, etc.) and on the wireless connections it
has to other motes. Collecting and analyzing these statistics is needed to track
the state of the network.

One important limitation of the installations is that the satellite connection
connecting each manager to the Internet allows only 5 MB of data to be
transferred per month. This data includes both the sensor measurements and
the network statistics exchanged between the manager and the server.

https://ieeexplore.ieee.org/document/7794864/all-figures
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-fig-1-source-large.gif

The “Echo Peak” deployment is representative of the other 13 American River
Hydrologic Observatory (ARHO) sites. The Echo Peak network consists of 71
sensors connected to 53 network devices. With a data polled every 15 min; the
71 sensors produce approximately 1 MB of data each month. The network
devices generate network statistics each 5 min, which accounts for a total of 10
MB per month.

This highlights how constrained the uplink bandwidth is. The solution that
forwards the data from the manager to the server over the satellite link must
make a selection of the most representative statistics and cannot induce any
overhead itself.

Rather than presenting an extensive comparison with existing solutions, this
paper describes the mechanisms we chose to answer the specific application's
challenges we faced. This paper introduces and describes the SOL solution, and
makes the following contributions:

 We introduce SOL, a lightweight, parsimonious and agile object-based
data representation for sensor measurements and network statistics.

 We introduce a complete back-end solution for managing a network of
sensors and actuators for real-world monitoring system.

 We contribute a production-ready open-source implementation of the SOL
solution to the community.

 We present the results of three pilot deployments using SOL (i) on the UC
Berkeley Botanical Garden, for microclimate monitoring, (ii) in the Inria-
Paris offices, for a Smart Building application, (iii) in peach orchards in
Mendoza, Argentina, to predict frost events.

The remainder of this paper is organized as follows. Section II presents the
Sensor Object Library (SOL), an efficient representation of sensor measurements
and network statistics, compatible with current standardized
representations. Section III describes the end-to-end sensor network
management system that uses SOL at its core, and provides sensor data
gathering and storage, data retrieval, and remote
configuration/reprogramming. Section IV describes three SOL pilot deployments
running today. Section V presents the related data representations and
protocols, and how they are compatible/-complementary with SOL.
Finally, Section VI concludes this paper and discusses further improvements.
SECTION II.

Sol: Sensor Object Library
The “Sensor Object Library” (SOL) is an efficient representation of sensor
measurements and network statistics. It includes loss-less translation between a
binary and a JSON format. The binary format is used when sending the

measurements and statistics over the network, and represents the information
in a reduced number of bytes. The JSON format is a parsed version of the same
data, and is used to insert the information into the database on the server so it
can be efficiently queried.

Section V presents an overview of-often standards-based-data representations
and associated protocols for constrained (sensor) networks. It indicates how SOL
is compatible with other data representations such as CBOR, complementary to
IETF CoAP, and how it can integrate with OMA LWM2M or MQTT.

Table I: Fields contained in a SOL object

Conceptually, a SOL object is a generalized Type-Length-Value (TLV), a format
widely used in network protocols. On top of the type and the value of the object,
a SOL object contains a unique identifier of the hardware device that has
created the object (its MAC address) and a timestamp of when it was
created. Table I summarizes the conceptual fields present in each SOL object.

We maintain a registry of the different SOL object types3. This registry associates
a SOL type (a number) to a format of the value. For example, a SOL object of
type 3 (type SNOW_MAXBOTIX_MB7554_RS232_RAW in the SOL registry)
represents a raw measurement of the MAXBOTIX MB7554 ultrasonic range-
finder, formatted as a 16-bit unsigned integer.

As it implements the IEEE802.15.4 TSCH standard [2], a SmartMesh IP network
is synchronized to within 15 μs across the entire network. This allows a sensor
station to accurately timestamp when a sensor measurement was taken, before
sending it to the manager. The timestamp is included in the SOL object, so even
if the satellite link is down, the sensor measurements is still associated with the
actual time it was measured when the object is eventually inserted into the
database.
The technical format specification of SOL objects is given in [3]. This paper does
not repeat that information, but rather describes how SOL objects are used in an
end-to-end sensor network management system (Section III), and how this
system is being tested on pilot deployments (Section IV). Fig. 2 gives an
example of both the JSON and binary formats. We assume mote with MAC
address 00-17-0d-00-00-18-ac-50 and mote with MAC address 00-17-0d-00-00-
18-22-60 sample a temperature of 26 C and 21 C at timestamps 115364509 and
163263811, respectively. They each report this information to the manager,
using SOL objects with type 33 (temperature). The manager reports this to the
server, as a compound SOL object.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-table-1-source-large.gif

Fig 2a shows the binary representation of the compound SOL objects. The binary
SOL representation allows the compaction of compound SOL objects: fields that
have the same value in individual objects (the SOL type in the example) only
appear once in the SOL compound object to save space. The binary
representation is used when objects transit from the motes to the server.

Fig 2b shows the JSON representation of the compound SOL object from Fig 2a.
Both JSON and binary formats are equivalent and translation from one format to
the other is lossless. Upon receiving the data in binary format, the server
translates it into the equivalent JSON format, which it inserts into the database.
This fully parsed format allows queries to be done on the database for post-
processing of the data.

Fig. 2:
The binary and JSON formats of an example compound SOL object.

View All

https://ieeexplore.ieee.org/document/7794864/all-figures
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-fig-2-source-large.gif

Fig. 3:
End-to-end network architecture of a SOL system.

View All

SECTION III.

End-To-End Integration and Implementation
Fig. 3 depicts the overall end-to-end architecture of SOL. Each mote samples
each of the sensors it is attached to every 15 min and creates the corresponding
SOL objects in binary format. The SOL objects are reported to the manager
through the SmartMesh IP low-power wireless mesh network. If multiple sensor
measurements are reported at the same time, the compound representation is
used. The manager further reports the SOL binary objects to the server over a
satellite link. The server translates the SOL binary objects into their JSON
equivalent format, and enters that information into the database. The server
presents that data to a user through a series of dynamic web pages.

A. Implementation

The implementation of the end-to-end SOL sensor network management system
consists of three elements: mote firmware, manager firmware and server
software.

1) Mote Firmware

https://ieeexplore.ieee.org/document/7794864/all-figures
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-fig-3-source-large.gif

These elements are implemented as PSOC Creator modules. PSOC Creator is the
Integrated Development Environment provided by Cypress, the manufacturer of
the PSOC micro-controller on the NeoMote. PSOC Creator offers a graphical
interface allowing the user to drag-and-drop modules and configure the use of
the IO pins. The SOL-specific code, which performs the tasks listed below, is
implemented as a module and can hence be dragged-and-dropped into a user's
project. This gives users entire flexibility, and in particular allows them to
integrate any sensor or actuator through the PSOC's advanced interfacing
options. The SmartMesh IP module on the NeoMote periodically generates
network statistics without requiring intervention from the PSOC micro-controller.
The firmware on both the SmartMesh IP module and PSOC micro-controller can
be remotely replaced using Over-the-Air-Programming (OTAP) capabilities bundle
in both the SmartMesh IP and PSOC products.

The mote firmware runs on the PSOC micro-controller of the NeoMote. It is
written in C and is responsible for (i) sampling the sensors attached to the mote,
(ii) formatting those measurements as SOL objects, (iii) making a local copy of
that information, (iv) interfacing to the SmartMesh IP mote over a serial (HDLC)
interface to send the data to the manager, and (v) offering an interface for
remote configuration, for example to change the rate at which a sensor is
sampled.
2) Manager Firmware
The manager firmware runs on the GNU/Linux computer of Metronome Systems'
Manager. The firmware is written in Python and is responsible for (i) interfacing
to the SmartMesh IP manager over a serial (HDLC) interface, (ii) retrieving the
sensors measurements and network statistics generated by the low-power
wireless network, (iii) making a local copy of that information, (iv) forwarding
that information to the server, and (v) offering an interface for the server to
configure the manager, and retrieve sensor measurements and network
statistics over some range of time.
The manager firmware is implemented as a multi-threading Python application.
It connects to the server over a RESTful interface, implemented as JSON over
HTTPS. Authentication between the server and the manager is made using
certificates. Authorization is done using tokens.

3) Server Software
The server software runs on a GNU/Linux server, hosted by UC Berkeley for the
pilot deployments listed in Section IV. It consists of (i) a Python application that
offers a RESTful HTTPS/JSON interface for the manager to publish data, (ii) an
InfluxDB database to hold the SOL objects parsed as time series, (iii) a (mostly
Grafana-based) web visualization framework for users to visualize the data in
real-time.

The source code of the different components of a SOL system are provided
open-source under a BSD license 4. State-of-the-art source control, continuous

integration, deployment and bug tracking are used to maintain production-
quality source code, ready to be deployed.

B. Deploying Sol
1) Create Sensor Stations
The first step of deploying SOL is to create sensor stations, by connecting the
NeoMotes to sensors. This step is the most open-ended, as each application
requires different sensors and different measurement settings. A user must
select the sensors and connect those to the NeoMote.

The hardware integration is greatly simplified by the programmable pinout of
the PSOC, which allows pins on the micro-controller to be re-purposed as analog
and digital interfaces. Besides re-purposing pins, the PSOC comes with a number
of analog and digital blocks internal to the chip, which can be “wired” to
interface to virtually any sensor or actuator. Analog blocks include switch
capacitors, opamps, comparators, Analog-to-Digital converters, and Digital-to-
Analog converters. Digital blocks include timers, counters, Pulse Width
Modulation (PWM), or serial communication blocks.

The software integration is greatly simplified as the SOL-specific mote firmware
is provided as a PSOC Creator module. As detailed in Section III-A1, this module
formats SOL objects and interfaces to the SmartMesh IP mote. It can be added
to a customer's application in a drag-and-drop fashion.

Note that the low-power wireless mesh network can consist of any SmartMesh IP
devices, including non-NeoMote boards.

2) Create the Manager
The manager firmware runs on any GNU/Linux platform that runs a Python
interpreter. The preferred hardware is the Metronome Systems' Manager, as is
already integrates a SmartMesh IP manager, and has been designed to run in
harsh environments. Creating the manager consists in running the latest release
of the manager firmware, configuring the address of the server, and provision
the server certificate and authorization token. When switched on, the manager
attempts to forward all sensors measurements and network statistics to the
server, by encoding both as a JSON strings. The certificate ensures the server
authentication and allows this JSON string to be sent securely over HTTPS. The
token, sent as an HTTP header, allows the server to authorize the manager.

3) Create the Server
The server software runs on any GNU/Linux platform that runs a Python
interpreter. Creating a server consists in running the latest release of the
software, and ensuring that the manager(s) can issue HTTPS requests to the
server.

4) Deploy the Low-Power Wireless Network
Deploying the low-power wireless network consists in switching on the manager
and the sensor stations, and letting the network form. The SmartMesh IP
firmware on the manager and motes handles network formation and self-
healing, thus, no action is required from the user. The devices publish statistics
about the connectivity between each others. These statistics are forwarded to
the server and allow a user to track the “health” of the network. If the network is
too sparse, additional repeater nodes can be installed.

5) Process Incoming Sensor Measurements
This last step is open-ended, as how to process the sensor measurements
depends on the application. The server software offers a web-page dashboard to
visualize the time series of sensor measurements as it is received. The data can
simply be logged, displayed in a convenient manner, fed into prediction models,
etc. Section IV details how the sensors measurements are used in three pilot
deployments.

C. Miscellaneous Features

1. Support of multiple mesh networks: The SOL solution allows multiple low-
power mesh networks, each with its own manager, to report to the same
server. A secure connection is established between each manager and the
server using HTTPS. Adding a new low-power mesh network is
straightforward, and consists in providing the server address and
certificate to the new manager.

2. Impact of packet size on energy consumption: In a SmartMesh IP low-
power wireless mesh network, the maximum application payload is 90 B.
Because of the underlying technology, it is more energy efficient to send
one packet with 90 B of payload, rather than 9 packets with 10 B of
payload. The recommended behavior of the sensor station is to collect
sensor measurements and to send multiple measurement as one SOL
compound object, as close as possible to 90 B. Since each measurement
is timestamped, no information is lost even if the sensors measurements
are buffered on the sensor station. The implementer can choose to
implement a timeout such that sensor measurements are sent to the
manager even when they don't occupy 90 B of the payload.

3. Periodically transmitting from manager to server: Maintaining a
permanent TCP session between the manager and the server is not
feasible as the satellite connection of the manager often breaks. Instead
of forwarding the data as soon as it receives it, the manager locally
buffers the sensor measurements and network statistics, and transfers
them as a compound SOL object periodically.

4. Multi-tier data replication: Each element in the network can fail, and
bringing it back online can take time. To avoid loosing data, data is backed
up at different locations. All sensor measurements are stored onto a flash

memory card at each NeoMote before being sent to the manager. Sensor
measurements and network statistics are stored to non-volatile memory
at the manager. The data can hence be reconstructed in the event of
catastrophic failure of different parts of the network.

5. Retrieving old data: The server can retrieve old data from the multi-tier
data backups in an automated way. The manager offers a RESTful
interface that allows the server to retrieve the data stored in the manager
back-up between two dates.

6. Changing environment parameters: The server can send commands to the
manager to change the environment parameters such as calibration
constants, sampling intervals, sensor operational status, and
programming the operational real-time clock after the SOL system
deployment.

SECTION IV.

Pilot Deployments
SOL has been running for months in real-world pilot deployments. The role of
those pilots is to increase the level of maturity of the code, and assess how SOL
matches the needs of real use-cases.

A. Precision Agriculture, Botanical Garden, UC Berkeley, USA

The UC Berkeley Botanical Garden has over 13, 000 different kinds of plants
from around the world, cultivated by region in naturalistic landscapes over its 34
acres. Established in 1890, it is a landmark of the University.

Irrigation in such as diverse botanical environment is complex, in particular as
different plants have different needs. The team of botanists combine
meteorological information with observations of the plants. The goal of this pilot
is to complement that with detailed in-situ measurements. In 2015, we deployed
a SOL network with 5 motes and 8 repeaters 56. The sensor stations are equipped
with air temperature, relative humidity, soil moisture, soil temperature and soil
electrical conductivity sensors at two depths. The manager is connected to a
server hosted at UC Berkeley through a cellular connection.

Both real-time and historic sensor measurement data is made available to the
team of botanists in charge of the garden.

B. Building Automation, Inria Offices, Paris, France

The Paris campus of Inria opened in January 2016. With 540 researchers and
staff divided over 40 research teams, it is the largest Inria site. The Inria-Paris
campus consists of two large 6-story buildings, which feature state of the art
building automation. Heating, ventilation, air-conditioning, blind operation and

lighting are operated through IR remote controls deployed throughout the
building.

To further automate the operation of the building, IR remote controls (which
require manual operation) are being augmented by low-power wireless motes
equipped with IR transmitting capabilities. These motes allow tasks to be
automated, including shutting the blinds when the illumination gets too high, or
starting the heating right before the occupant of an office arrives. An initial
proof-of-concept deployment of a SOL system has been rolled out, and consist of
2 managers and 6 motes. The data is sent to a local server and can be
visualized in real-time 6. Fig. 4 shows an example dashboard displaying the
temperature measurements and network statistics over a 7 days period.

C. Frost Prediction in Peach Orchards, Mendoza, Argentina

In 2013, 85% of the peach production in the Mendoza region (Argentina) was
lost due to frost events. The flowering period of the peach trees (September in
Argentina) is a critical period. If during that period, temperature drops below-3 C
for over 4 hours, the flower buds fall off and no peaches are produced. This
means that a farmer can lose most of his/her crop in one night. If the frost event
is detected, effective countermeasures exist, such as using return-stack orchard
heaters and a helicopter to mix hot and cold air. Detecting those events is
typically done by combining the in-situ data from a (single) meteorological
station in the orchard with meteorological data. This leads to false
positives/negatives, as the micro-climatic variance inside the orchards cannot be
captured by a single meteorological station.

Fig. 4:
Example dashboard for visualizing sensor the measurements and network statistics from the inria
smart building pilot deployment in real time.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-fig-4-source-large.gif

View All
To accurately model the micro-climatic variance in the orchard, we have
equipped three trees with temperature, solar radiation, wind velocity and
direction and relative humidity sensors in a 110 m×50 m peach orchard in the
Mendoza region 789. A total of 23 motes have been deployed and report sensor
values every 30 seconds. The collected sensor measurements are fed into a
micro-climatic model that uses machine learning to predict frost events.
SECTION V.

Related Data Representations and Protocols
Several standards-based sensor data representations and associated protocols
exist. This section discusses why SOL was created, and how it is compatible with
those existing solutions.

Virtually any binary protocol organizes the bits and bytes of its header into
fields. The binary format of a SOL object adopts the same approach, and defines
a header (containing the MAC, timestamp, type and length fields) and a payload
(the value). Since a SOL object can also be represented as JSON object, it is
tempting to use already existing binary representations of a JSON object instead
of a custom header format.

A. Data Representation

There are several (often standards-based) binary JSON representation.
UBJSON 8 and Smile 9 focus on keeping the binary representation human
readable. The “Concise Binary Object Representation” (CBOR) [4] is designed to
translate JSON to binary format with minimal computation overhead.

The reason why SOL does not use a generic binary representation of JSON is
because it would result in longer binary representations. To verify this, we
extract 2 weeks worth of network statistics in JSON format from the server on
the Inria pilot deployment (Section IV-B), and apply the different binary
translations. Results are summarized in Table II. The SOL binary format offers
greater compression compared to the generic UBJSON, Smile and CBOR. This is
expected, as SOL binary is custom-made to encode only SOL objects; other
solutions are generic and can encode any JSON string.

Table II: A two-weeks dataset of JSON SOL objects encoded using different binary formats

It is important for a SOL binary object to be encoded in as few bytes as possible
since it saves energy in the low-power wireless mesh network, and bandwidth on
the satellite link. We therefore use the SOL binary format between the mote and
the manager, and between the manager and the server. This format can easily

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/7762553/7794546/7794864/7794864-table-2-source-large.gif
https://ieeexplore.ieee.org/document/7794864/all-figures

be translated to CBOR at the server, for example if the data is made available
through a CoAP proxy.

B. Communication Protocols

SmartMesh IP implements 6LoWPAN and is hence IPv6 ready. The motes in the
SOL implementation send the SOL object to the manager directly over UDP, to
port 0xf0ba. One legitimate question is: “Why not use an application-level
protocol to carry the SOL objects”.

The “Constrained Application Protocol” (CoAP) [5] is an ideal candidate. CoAP is
a standards-based RESTful protocol designed for constrained devices, often
dubbed the “HTTP for motes”. As such, it offers services similar to HTTP,
including resource identification through URIs, and timeout/retry. Several
extensions to CoAP exist: 1) OMA Lightweight M2M (LWM2M) [6] that
standardizes the format of the CoAP payload. 2) the IPSO Smart Object
Guidelines [7] that define well-known sensor/actuator types based on the OMA
LWM2M object model. 3) ETSI M2M that defines the requirements, functional
architecture and interface descriptions for M2M communications (as part of the
OneM2M initiative 10). In their paper [8], F. T. Mamo et al. implement such
extensions and discuss their strength and weaknesses.

While those solutions offer powerful mechanisms such as data management and
resources identification, some features are not mandatory for our application.
The satellite connection in a SOL system often drops, so data is not sent directly
from the mote to the server. Using an end-to-end protocol such as CoAP hence
does not apply to SOL. Moreover, a SmartMesh IP network is reliable; complex
retransmission at different levels of the protocol stack ensure that a data packet
generated by a mote makes it to the manager. This means the timeout-and-retry
service that CoAP offers through Confirmable Messages (i.e messages that
require an acknowledgment) is not needed. Finally, data generated by a mote
sent to UDP port 0xf0ba are always SOL objects, thus, the concept of CoAP
resources is not needed.

What is done with the data at the server depends entirely on the application.
The server can make the data available over popular publish/subscribe protocols
such as “Message Queuing Telemetry Transport” (MQTT) [9] or a CoAP proxy,
can inject the sensor data in a SCADA management system, or publish to a
third-party cloud service such as Xively. Using SOL for efficiently communicating
the data from the mote to the server does not prevent any of these interactions.
SECTION VI.

Conclusion
This paper presents SOL, which is both a lightweight object-based data
representation, and an end-to-end low-power wireless sensor network
management solution. SOL is fully implemented and available open-source as
ready-to-deploy and production-ready code. SOL has been running for months

on micro-climate monitoring, building automation and agriculture pilot
deployments. The data representation and protocol used in SOL are designed
towards low-overhead, but stay compatible with popular binary representations
such as CBOR or protocols such as CoAP.

Using a manager for application-level forwarding between the motes and the
server opens up the solution to man-in-the-middle attacks. We are currently
working on implementing object-security on top of SOL object, using the
solutions designed by the IETF COSE working group, inspired by OSCAR [10].

Our next pilot deployment, scheduled for summer 2016, is to retrofit the 14
Sierra Nevada deployments with SOL.

Authors
Figures
References
Citations
Keywords
Metrics

	SOL: An end-to-end solution for real-world remote monitoring systems
	Introduction
	Sol: Sensor Object Library
	End-To-End Integration and Implementation
	A. Implementation
	1) Mote Firmware
	2) Manager Firmware
	3) Server Software

	B. Deploying Sol
	1) Create Sensor Stations
	2) Create the Manager
	3) Create the Server
	4) Deploy the Low-Power Wireless Network
	5) Process Incoming Sensor Measurements

	C. Miscellaneous Features

	Pilot Deployments
	A. Precision Agriculture, Botanical Garden, UC Berkeley, USA
	B. Building Automation, Inria Offices, Paris, France
	C. Frost Prediction in Peach Orchards, Mendoza, Argentina

	Related Data Representations and Protocols
	A. Data Representation
	B. Communication Protocols

	Conclusion
	Authors
	Figures
	References
	Citations
	Keywords
	Metrics

