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TreeSwift: A massively scalable Python tree package

N. Moshiri

Department of Computer Science and Engineering, UC San Diego, 92093, USA

Abstract

Phylogenetic trees are essential to evolutionary biology, and numerous methods exist that 

attempt to extract phylogenetic information applicable to a wide range of disciplines, such 

as epidemiology and metagenomics. Currently, the three main Python packages for trees are 

Bio.Phylo, DendroPy, and the ETE Toolkit, but as dataset sizes grow, parsing and manipulating 

ultra-large trees becomes impractical for these tools. To address this issue, we present TreeSwift, a 

user-friendly and massively scalable Python package for traversing and manipulating trees that is 

ideal for algorithms performed on ultra-large trees.
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1. Motivation and significance

Phylogenetic trees are essential to evolutionary biology, and phylogenetic methods are 

applicable to a wide range of disciplines, such as epidemiology [1,2] and metagenomics 

[3–5]. However, the datasets analyzed by these methods are growing rapidly as sequencing 

costs continue to fall, emphasizing the need for scalable methods of tree traversal and 
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manipulation. Beyond the analysis of real datasets, phylogenetic approaches can be utilized 

in the analysis of potentially massive datasets generated by simulation experiments [6].

Methods for performing phylogenetic analyses such as clustering [7] and rerooting [8] 

are typically presented as a series of higher-level tree traversals and manipulations. The 

developers of these tools do not commonly implement basic tree processing from scratch: 

they typically utilize existing tree packages to handle low-level tasks and instead implement 

their algorithms as a series of calls to functions of these packages. As a result, the 

performance of such a tool depends not only on the time complexity of its algorithm, but 

also on the performance of the underlying tree package.

Currently, the three main Python packages for trees are the Bio.Phylo module of Biopython 

[9], DendroPy [10], and the ETE Toolkit [11]. The three tools are simple to integrate into 

new methods, include a plethora of functions that cater to most phylogenetics needs, and 

are fast for reasonably-sized trees. However, as dataset sizes grow, parsing and manipulating 

ultra-large trees becomes impractical. We introduce TreeSwift, a scalable cross-platform 

Python package for traversing and manipulating trees that does not require any external 

dependencies, and we compare its performance against that of Bio.Phylo, DendroPy, and the 

ETE Toolkit.

2. Software description

2.1. Software overview

TreeSwift is a pure-Python package that has no required external dependencies and which 

has been tested on Python versions 2.6–2.7 and 3.3–3.7. It is also compiled and hosted on 

PyPI, meaning it can easily be installed with a single pip command without any need for 

administrative privileges or any advanced knowledge. This is essential to contrast against the 

current state-of-the-art, ETE Toolkit, which requires the Six and NumPy Python libraries to 

install if the user has administrative privileges or Anaconda/Miniconda to install if the user 

does not, and BioPython, which requires a C compiler and the NumPy Python library as well 

as the computer fluency to compile tools from source using a Makefile.

A key feature of TreeSwift is its simplicity in class design in order to reduce time and 

memory overhead of loading, traversing, and manipulating trees. The entire package consists 

of just two classes: a Node class, which contains the data and local relationships, and a 

Tree class, which handles manipulation and traversal on the Node objects. A key distinction 

between TreeSwift and DendroPy is that DendroPy stores bipartition information to enable 

efficient comparisons between multiple trees that share the same set of taxa, but because 

TreeSwift is designed for the fast traversal and manipulation of individual trees (and not for 

the comparison of multiple trees), TreeSwift forgoes this feature to avoid the accompanied 

overhead, resulting in a much lower memory footprint and faster execution of equivalent 

functions (Fig. 1).

2.2. Software functionalities

TreeSwift supports loading trees in the Newick, Nexus, and NeXML file formats via the 

read_tree_newick, read_tree_nexus, and read_tree_nexml functions, respectively. Inputs to 
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these functions can be strings, plaintext files, or gzipped files, and TreeSwift handles the 

nuances of parsing them internally to maintain user-friendly operability.

TreeSwift provides generators that iterate over the nodes of a given tree in a variety of 

traversals, including pre-order, in-order, post-order, level-order, and root-distance-order. 

TreeSwift also allows for the modification of the structure of a given tree by simply 

modifying the Node objects of the tree. These built-in generators and modifiers intend 

to provide developers a simple yet efficient manner in which to implement their own 

algorithms such that they only need to consider higher-level details of the traversal process.

TreeSwift also provides the ability to compute various summarizing statistics of a given tree, 

such as tree height, average branch length, patristic distances between nodes in the tree, 

treeness [12], and the Gamma statistic [13]. Beyond numerical statistics to describe trees, 

TreeSwift can also generate a visual summary of a tree in the form of a Lineages-Through-

Time (LTT) plot [14], a feature not currently implemented in any other Python tree package.

3. Benchmarking

TreeSwift, Bio.Phylo, DendroPy, and the ETE Toolkit were benchmarked by running the 

following operations on binary trees with 100, 1000, 10,000, 100,000 and 1000,000 leaves: 

pre-order traversal, post-order traversal, in-order traversal, level-order traversal, finding the 

most recent common ancestor (MRCA) of all pairs of leaves, and computing the pairwise 

distances of all pairs of leaves. These operations were chosen because they are fundamental 

algorithms commonly performed on tree structures.

Timing was performed on a computer running CentOS release 6.6 (Final) with an Intel(R) 

Xeon(R) CPU E5–2670 0 at 2.60 GHz and 32 GB of RAM. Each point shows the average 

and 95% confidence interval over 10 runs. All scripts and data can be found in the following 

GitHub repository: github.com/niemasd/TreeSwift-Paper

As can be seen in Fig. 1, for all tests, TreeSwift consistently outperforms the existing tools. 

When loading trees, TreeSwift is consistently faster than the other tools, and it consumes 

significantly less memory; DendroPy is consistently around an order of magnitude slower 

and consumes over an order of magnitude more memory than TreeSwift. When performing 

pre-order traversals, the ETE Toolkit, DendroPy, and TreeSwift have similar runtimes, 

with the ETE Toolkit seeming to run slightly faster; Bio.Phylo is close to an order of 

magnitude slower. When performing post-order traversals, DendroPy and TreeSwift have 

similar runtimes; the ETE Toolkit is consistently around half an order of magnitude slower, 

and Bio.Phylo is consistently an order of magnitude slower. When performing in-order 

traversals, DendroPy and TreeSwift have similar runtimes, with TreeSwift seeming to run 

slightly faster; Bio.Phylo and the ETE Toolkit did not appear to have in-order traversals 

implemented. When performing level-order traversals, the ETE Toolkit and TreeSwift 

have similar runtimes, with the ETE Toolkit seeming to run slightly faster; Bio.Phylo is 

consistently around an order of magnitude slower, and while DendroPy is similar in runtime 

for trees with up to 10,000 leaves, its runtime significantly worsens when traversing trees 

with 100,000 and 1000,000 leaves. When finding the most recent common ancestor, the ETE 
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Toolkit, DendroPy, and Treeswift have similar runtimes for trees with up to 100,000 leaves, 

with TreeSwift seeming to run slightly faster; Bio.Phylo is consistently over an order of 

magnitude slower, and TreeSwift was the only tool able to scale this operation to trees with 

1000,000 leaves. When computing a matrix containing the distances between all pairs of 

leaves, TreeSwift and Bio.Phylo have similar runtimes; the ETE Toolkit and DendroPy are 

over an order of magnitude slower.

4. Illustrative example

In the following example, a tree is loaded from a gzipped file, the minimum distance from 

each node to a leaf is computed, the minimum leaf distance of the root is printed, and a 

Lineages-Through-Time (LTT) plot is created (Fig. 2).

from treeswift import read_tree_newick

tree = read_tree_newick(“my_huge_tree.nwk.gz”)

min_leafdist = dict()

for u in tree.traverse_postorder():

   if u.is_leaf():

      min_leafdist[u] = ⦸

   else:

      min_leafdist[u] = min(

     min_leafdist[c] +

     c.edge_length

     for c in u.children

      )

print(

   “Minimum leaf distance from root: %f” %

   min_leafdist[tree.root]

)

tree.lineages_through_time(color=“blue”)

5. Impact

The key impact of TreeSwift is its significant performance improvement over existing 

Python tree packages (Fig. 1). For almost all tested tree operations, TreeSwift performed 

tasks significantly faster than all existing tools (by orders of magnitude at times), and it 

was the only tool that not only had all tested functions implemented, but that also was able 

to scale to the largest of tested datasets. Further, TreeSwift’s memory consumption was 

significantly lower than all existing tools. Thus, phylogenetic tools written in Python can 

utilize TreeSwift for scalability.

Further, TreeSwift was designed to be simple to use. As can be seen in the example code 

in Section 4, a user with minimal Python experience can generate a Lineages-Through-Time 

(LTT) plot in just 3 lines of Python code. Even complex tree algorithms can be implemented 

cleanly by utilizing TreeSwift’s traversal generators [7].
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It must be emphasized that, although TreeSwift was designed with the field of phylogenetics 

in mind, the package is general in that it can be utilized with any arbitrary tree structure, 

including those in non-phylogenetic applications [15]. Thus, its utility can extend well 

beyond its intended phylogenetics audience.

6. Conclusions

In this article, we presented TreeSwift, a pure-Python package for loading, traversing, and 

manipulating trees in a massively-scalable manner. The current version implements a wide 

range of typical tree operations, and due to its simple design, it has significant room for 

developers from other disciplines to further expand its capabilities to target a larger suite of 

potential applications.
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Fig. 1. 
Runtimes of DendroPy, Bio.Phylo, the ETE Toolkit, and TreeSwift for a wide range of 

typical tree operations using trees of various sizes, as well as memory consumption after 

loading a tree (see Section 3 for details).
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Fig. 2. 
Example Lineage-Through-Time (LTT) plot generated using TreeSwift.
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