
UC San Diego
UC San Diego Previously Published Works

Title
TreeSwift: A massively scalable Python tree package

Permalink
https://escholarship.org/uc/item/4md6k66d

Author
Moshiri, N

Publication Date
2020

DOI
10.1016/j.softx.2020.100436

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4md6k66d
https://escholarship.org
http://www.cdlib.org/

TreeSwift: A massively scalable Python tree package

N. Moshiri

Department of Computer Science and Engineering, UC San Diego, 92093, USA

Abstract

Phylogenetic trees are essential to evolutionary biology, and numerous methods exist that

attempt to extract phylogenetic information applicable to a wide range of disciplines, such

as epidemiology and metagenomics. Currently, the three main Python packages for trees are

Bio.Phylo, DendroPy, and the ETE Toolkit, but as dataset sizes grow, parsing and manipulating

ultra-large trees becomes impractical for these tools. To address this issue, we present TreeSwift, a

user-friendly and massively scalable Python package for traversing and manipulating trees that is

ideal for algorithms performed on ultra-large trees.

Keywords

Phylogenetics; Tree traversal; Scalable; Python

1. Motivation and significance

Phylogenetic trees are essential to evolutionary biology, and phylogenetic methods are

applicable to a wide range of disciplines, such as epidemiology [1,2] and metagenomics

[3–5]. However, the datasets analyzed by these methods are growing rapidly as sequencing

costs continue to fall, emphasizing the need for scalable methods of tree traversal and

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

a1moshir@ucsd.edu.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Code metadata

Current code version 1.1.3

Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_74

Legal Code License GNU GPL v3.0

Code versioning system used git

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies Python, pip (optionally matplotlib for LTT plot visualization)

If available Link to developer documentation/manual github.com/niemasd/TreeSwift/wiki

Support email for questions a1moshir@ucsd.edu

HHS Public Access
Author manuscript
SoftwareX. Author manuscript; available in PMC 2022 July 27.

Published in final edited form as:
SoftwareX. 2020 ; 11: . doi:10.1016/j.softx.2020.100436.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_74
https://github.com/niemasd/TreeSwift/wiki

manipulation. Beyond the analysis of real datasets, phylogenetic approaches can be utilized

in the analysis of potentially massive datasets generated by simulation experiments [6].

Methods for performing phylogenetic analyses such as clustering [7] and rerooting [8]

are typically presented as a series of higher-level tree traversals and manipulations. The

developers of these tools do not commonly implement basic tree processing from scratch:

they typically utilize existing tree packages to handle low-level tasks and instead implement

their algorithms as a series of calls to functions of these packages. As a result, the

performance of such a tool depends not only on the time complexity of its algorithm, but

also on the performance of the underlying tree package.

Currently, the three main Python packages for trees are the Bio.Phylo module of Biopython

[9], DendroPy [10], and the ETE Toolkit [11]. The three tools are simple to integrate into

new methods, include a plethora of functions that cater to most phylogenetics needs, and

are fast for reasonably-sized trees. However, as dataset sizes grow, parsing and manipulating

ultra-large trees becomes impractical. We introduce TreeSwift, a scalable cross-platform

Python package for traversing and manipulating trees that does not require any external

dependencies, and we compare its performance against that of Bio.Phylo, DendroPy, and the

ETE Toolkit.

2. Software description

2.1. Software overview

TreeSwift is a pure-Python package that has no required external dependencies and which

has been tested on Python versions 2.6–2.7 and 3.3–3.7. It is also compiled and hosted on

PyPI, meaning it can easily be installed with a single pip command without any need for

administrative privileges or any advanced knowledge. This is essential to contrast against the

current state-of-the-art, ETE Toolkit, which requires the Six and NumPy Python libraries to

install if the user has administrative privileges or Anaconda/Miniconda to install if the user

does not, and BioPython, which requires a C compiler and the NumPy Python library as well

as the computer fluency to compile tools from source using a Makefile.

A key feature of TreeSwift is its simplicity in class design in order to reduce time and

memory overhead of loading, traversing, and manipulating trees. The entire package consists

of just two classes: a Node class, which contains the data and local relationships, and a

Tree class, which handles manipulation and traversal on the Node objects. A key distinction

between TreeSwift and DendroPy is that DendroPy stores bipartition information to enable

efficient comparisons between multiple trees that share the same set of taxa, but because

TreeSwift is designed for the fast traversal and manipulation of individual trees (and not for

the comparison of multiple trees), TreeSwift forgoes this feature to avoid the accompanied

overhead, resulting in a much lower memory footprint and faster execution of equivalent

functions (Fig. 1).

2.2. Software functionalities

TreeSwift supports loading trees in the Newick, Nexus, and NeXML file formats via the

read_tree_newick, read_tree_nexus, and read_tree_nexml functions, respectively. Inputs to

Moshiri Page 2

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these functions can be strings, plaintext files, or gzipped files, and TreeSwift handles the

nuances of parsing them internally to maintain user-friendly operability.

TreeSwift provides generators that iterate over the nodes of a given tree in a variety of

traversals, including pre-order, in-order, post-order, level-order, and root-distance-order.

TreeSwift also allows for the modification of the structure of a given tree by simply

modifying the Node objects of the tree. These built-in generators and modifiers intend

to provide developers a simple yet efficient manner in which to implement their own

algorithms such that they only need to consider higher-level details of the traversal process.

TreeSwift also provides the ability to compute various summarizing statistics of a given tree,

such as tree height, average branch length, patristic distances between nodes in the tree,

treeness [12], and the Gamma statistic [13]. Beyond numerical statistics to describe trees,

TreeSwift can also generate a visual summary of a tree in the form of a Lineages-Through-

Time (LTT) plot [14], a feature not currently implemented in any other Python tree package.

3. Benchmarking

TreeSwift, Bio.Phylo, DendroPy, and the ETE Toolkit were benchmarked by running the

following operations on binary trees with 100, 1000, 10,000, 100,000 and 1000,000 leaves:

pre-order traversal, post-order traversal, in-order traversal, level-order traversal, finding the

most recent common ancestor (MRCA) of all pairs of leaves, and computing the pairwise

distances of all pairs of leaves. These operations were chosen because they are fundamental

algorithms commonly performed on tree structures.

Timing was performed on a computer running CentOS release 6.6 (Final) with an Intel(R)

Xeon(R) CPU E5–2670 0 at 2.60 GHz and 32 GB of RAM. Each point shows the average

and 95% confidence interval over 10 runs. All scripts and data can be found in the following

GitHub repository: github.com/niemasd/TreeSwift-Paper

As can be seen in Fig. 1, for all tests, TreeSwift consistently outperforms the existing tools.

When loading trees, TreeSwift is consistently faster than the other tools, and it consumes

significantly less memory; DendroPy is consistently around an order of magnitude slower

and consumes over an order of magnitude more memory than TreeSwift. When performing

pre-order traversals, the ETE Toolkit, DendroPy, and TreeSwift have similar runtimes,

with the ETE Toolkit seeming to run slightly faster; Bio.Phylo is close to an order of

magnitude slower. When performing post-order traversals, DendroPy and TreeSwift have

similar runtimes; the ETE Toolkit is consistently around half an order of magnitude slower,

and Bio.Phylo is consistently an order of magnitude slower. When performing in-order

traversals, DendroPy and TreeSwift have similar runtimes, with TreeSwift seeming to run

slightly faster; Bio.Phylo and the ETE Toolkit did not appear to have in-order traversals

implemented. When performing level-order traversals, the ETE Toolkit and TreeSwift

have similar runtimes, with the ETE Toolkit seeming to run slightly faster; Bio.Phylo is

consistently around an order of magnitude slower, and while DendroPy is similar in runtime

for trees with up to 10,000 leaves, its runtime significantly worsens when traversing trees

with 100,000 and 1000,000 leaves. When finding the most recent common ancestor, the ETE

Moshiri Page 3

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.github.com/niemasd/TreeSwift-Paper

Toolkit, DendroPy, and Treeswift have similar runtimes for trees with up to 100,000 leaves,

with TreeSwift seeming to run slightly faster; Bio.Phylo is consistently over an order of

magnitude slower, and TreeSwift was the only tool able to scale this operation to trees with

1000,000 leaves. When computing a matrix containing the distances between all pairs of

leaves, TreeSwift and Bio.Phylo have similar runtimes; the ETE Toolkit and DendroPy are

over an order of magnitude slower.

4. Illustrative example

In the following example, a tree is loaded from a gzipped file, the minimum distance from

each node to a leaf is computed, the minimum leaf distance of the root is printed, and a

Lineages-Through-Time (LTT) plot is created (Fig. 2).

from treeswift import read_tree_newick

tree = read_tree_newick(“my_huge_tree.nwk.gz”)

min_leafdist = dict()

for u in tree.traverse_postorder():

 if u.is_leaf():

 min_leafdist[u] = ⦸

 else:

 min_leafdist[u] = min(

 min_leafdist[c] +

 c.edge_length

 for c in u.children

)

print(

 “Minimum leaf distance from root: %f” %

 min_leafdist[tree.root]

)

tree.lineages_through_time(color=“blue”)

5. Impact

The key impact of TreeSwift is its significant performance improvement over existing

Python tree packages (Fig. 1). For almost all tested tree operations, TreeSwift performed

tasks significantly faster than all existing tools (by orders of magnitude at times), and it

was the only tool that not only had all tested functions implemented, but that also was able

to scale to the largest of tested datasets. Further, TreeSwift’s memory consumption was

significantly lower than all existing tools. Thus, phylogenetic tools written in Python can

utilize TreeSwift for scalability.

Further, TreeSwift was designed to be simple to use. As can be seen in the example code

in Section 4, a user with minimal Python experience can generate a Lineages-Through-Time

(LTT) plot in just 3 lines of Python code. Even complex tree algorithms can be implemented

cleanly by utilizing TreeSwift’s traversal generators [7].

Moshiri Page 4

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

It must be emphasized that, although TreeSwift was designed with the field of phylogenetics

in mind, the package is general in that it can be utilized with any arbitrary tree structure,

including those in non-phylogenetic applications [15]. Thus, its utility can extend well

beyond its intended phylogenetics audience.

6. Conclusions

In this article, we presented TreeSwift, a pure-Python package for loading, traversing, and

manipulating trees in a massively-scalable manner. The current version implements a wide

range of typical tree operations, and due to its simple design, it has significant room for

developers from other disciplines to further expand its capabilities to target a larger suite of

potential applications.

Acknowledgments

This work was supported by NIH subaward 5P30AI027767-28 to NM. We would like to acknowledge Siavash
Mirarab for his mentorship. We would also like to acknowledge Jeet Sukumaran and Mark Holder, as DendroPy
provided much motivation during TreeSwift’s development.

References

[1]. Ragonnet-Cronin M, Hodcroft E, Hué S, Fearnhill E, Delpech V, Brown AJ, Lycett
S. Automated analysis of phylogenetic clusters. BMC Bioinformatics 2013;14(1):317.
10.1186/1471-2105-14-317, URL 10.1186/1471-2105-14-317. [PubMed: 24191891]

[2]. Rose R, Lamers SL, Dollar JJ, Grabowski MK, Hodcroft EB, Ragonnet-Cronin M, Wertheim
JO, Redd AD, German D, Laeyendecker O. Identifying transmission clusters with cluster picker
and HIV-TRACE. AIDS Res Human Retrovir 2017;33(3):211–8. 10.1089/aid.2016.0205, URL
10.1089/aid.2016.0205. [PubMed: 27824249]

[3]. Kembel SW, Eisen JA, Pollard KS, Green JL. The phylogenetic diversity of metagenomes. PLoS
One 2011;6(8). e23214. 10.1371/journal.pone.0023214, URL 10.1371/journal.pone.0023214,
arXiv:arXiv:1208.5792v1.

[4]. Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis
of genomes and metagenomes. PeerJ 2014;2. e243. 10.7717/peerj.243, URL https://peerj.com/
articles/243/. [PubMed: 24482762]

[5]. Filipski A, Tamura K, Billing-Ross P, Murillo O, Kumar S. Phylogenetic placement of
metagenomic reads using the minimum evolution principle. BMC Genom 2015;16(Supplement
1):S13. 10.1186/1471-2164-16-S1-S13, URL 10.1186/1471-2164-16-S1-S13.

[6]. Moshiri N, Ragonnet-Cronin M, Wertheim JO, Mirarab S. FAVITES: simultaneous simulation of
transmission networks, phylogenetic trees, and sequences. Bioinformatics 2018;bty921. 10.1093/
bioinformatics/bty921, arXiv:1805.08905.

[7]. Moshiri AN. Treecluster: Massively scalable transmission clustering using phylogenetic
trees. bioRxiv 2018;261354. 10.1101/261354, URL https://www.biorxiv.org/content/early/
2018/02/21/261354.

[8]. Mai U, Sayyari E, Mirarab S. Minimum variance rooting of phylogenetic trees and implications
for species tree reconstruction. PLoS One 2017;12(8). 10.1371/journal.pone.0182238.

[9]. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Fried-
berg I, Hamelryck T, Kauff F, Wilczynski B, De Hoon MJ. Biopython:
Freely available python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25(11):1422–3. 10.1093/bioinformatics/btp163, URL
https://academic.oup.com/bioinformatics/article/25/11/1422/330687, arXiv:arXiv:1011.1669v3.
[PubMed: 19304878]

Moshiri Page 5

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/arXiv:1208.5792v1
https://peerj.com/articles/243/
https://peerj.com/articles/243/
http://arxiv.org/abs/1805.08905
https://www.biorxiv.org/content/early/2018/02/21/261354
https://www.biorxiv.org/content/early/2018/02/21/261354
https://academic.oup.com/bioinformatics/article/25/11/1422/330687,arXiv:arXiv:1011.1669v3
http://arxiv.org/abs/arXiv:1011.1669v3

[10]. Sukumaran J, Holder MT. DendroPy: A python library for phylogenetic
computing. Bioinformatics 2010;26(12):1569–71. 10.1093/bioinformatics/btq228, URL https://
academic.oup.com/bioinformatics/article/26/12/1569/287181. [PubMed: 20421198]

[11]. Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of
phylogenomic data. Mol Biol Evol 2016;33(6):1635–8. 10.1093/molbev/msw046. [PubMed:
26921390]

[12]. Phillips MJ, Penny D. The root of the mammalian tree inferred from whole mitochondrial
genomes. Mol Phylogenetics Evol 2003;28(2):171–85. 10.1016/S1055-7903(03)00057-5.

[13]. Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular
phylogenies. Proc R Soc B 2000;267(1459):2267–72. 10.1098/rspb.2000.1278, URL http://
rspb.royalsocietypublishing.org/content/267/1459/2267.

[14]. Harvey PH, May RM, Nee S. Phylogenies without fossils. Evolution 1994;48(3):523–9.
10.2307/2410466, URL 10.1111/j.1558-5646.1994.tb01341.x. [PubMed: 28568267]

[15]. Moshiri N. TreeN93: a non-parametric distance-based method for inferring viral transmission
clusters. bioRxiv 2018. 10.1101/383190.

Moshiri Page 6

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://academic.oup.com/bioinformatics/article/26/12/1569/287181
https://academic.oup.com/bioinformatics/article/26/12/1569/287181
http://rspb.royalsocietypublishing.org/content/267/1459/2267
http://rspb.royalsocietypublishing.org/content/267/1459/2267

Fig. 1.
Runtimes of DendroPy, Bio.Phylo, the ETE Toolkit, and TreeSwift for a wide range of

typical tree operations using trees of various sizes, as well as memory consumption after

loading a tree (see Section 3 for details).

Moshiri Page 7

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2.
Example Lineage-Through-Time (LTT) plot generated using TreeSwift.

Moshiri Page 8

SoftwareX. Author manuscript; available in PMC 2022 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Motivation and significance
	Table T1
	Software description
	Software overview
	Software functionalities

	Benchmarking
	Illustrative example
	Impact
	Conclusions
	References
	Fig. 1.
	Fig. 2.

