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Abstract

Life course research embraces the complexity of health and disease development, tackling the
extensive interactions between genetics and environment. This interdisciplinary blueprint, or
theoretical framework, offers a structure for research ideas and specifies relationships between
related factors. Traditionally, methodological approaches attempt to reduce the complexity of
these dynamic interactions and decompose health into component parts, ignoring the complex
reciprocal interaction of factors that shape health over time. New methods that match the epis-
temological foundation of the life course framework are needed to fully explore adaptive, multi-
level, and reciprocal interactions between individuals and their environment. The focus of this
article is to (1) delineate the differences between lifespan and life course research, (2) articulate
the importance of complex systems science as a methodological framework in the life course
research toolbox to guide our research questions, (3) raise key questions that can be asked
within the clinical and translational science domain utilizing this framework, and (4) provide
recommendations for life course research implementation, charting the way forward. Recent
advances in computational analytics, computer science, and data collection could be used
to approximate, measure, and analyze the intertwining and dynamic nature of genetic and
environmental factors involved in health development.

Introduction

Fifteen years after mapping the human genome, an individual’s health is clearly shaped not only
by genomics, but also by a complex web of factors, from molecular to societal, that varies over
time. Genetics are fixed at conception, though gene expression is dynamic and “genetics” of
health and disease are complex and develop across the lifespan. While our understanding
of the genetics of disease evolves, another medical “revolution” has been occurring. During
the past several years, generation of massive quantities of data has become commonplace
and excitement surrounding “big data” as well as machine learning (ML) for medicine is pal-
pable. However, the explosion of these two fields has outpaced the evolution of theoretical and
conceptual frameworks that should underlie research in these arenas. Studies that are not
grounded in solid frameworks may lack reproducibility and biological plausibility. We propose
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that the marriage of a “life course” theoretical framework with com-
plexity science associated with big data applications has paradigm-
shifting potential for understanding health development across the
lifespan. It also offers potentially significant translational science
impact.

The Barker Hypothesis is often cited as an early use of the life
course research lens in chronic disease epidemiology [1]. The land-
mark Dutch Famine natural experiment used a large historic
cohort database, where the exogenous insult was lack of nutrition
in a defined population with available health outcomes data [2].
The study demonstrated a strong association with poor maternal
nutrition and later offspring risk for obesity and diabetes, but the
outcome depended on the gestational timing of the exposure this
general phenomenon of early life exposures (ELEs) affecting later
disease manifestation has since evolved to the more encompassing
Life Course Health Development (LCHD) framework [3]. LCHD
provides a theoretical framework for embracing complexity in
health research by integrating a developmental perspective into
the concept of health and describing how health development is
applicable to both individuals and populations. The model is built
on the recognition that although early determinants, exposures,
and influences may not become phenotypically evident for years
or decades, such events can lead to significant adverse later life
health consequences. Health risks and disease conditions evolve
over time, coexist with positive health states, and can be mitigated
or exacerbated by social, physical, and biologic contexts.

Life course research is often conflated with lifespan research;
however, the ideas are distinct and related to our recommendations
for moving beyond theory to implementation. The focus of this
article is to (1) delineate differences between lifespan and life
course research, (2) articulate the importance of complex systems
science as a methodological framework in the life course research
toolbox to guide our research questions, (3) raise key questions that
can be asked within the clinical and translational science domain
utilizing this framework, and (4) provide recommendations for life
course research implementation, charting the way forward.

Differentiating Lifespan from Life Course

Confusion often surrounds the terms lifespan and life course.
Lifespan is a measure of longevity reflecting underlying biologic
aging of an individual that occurs for everyone. Life course encom-
passes lifespan and is influenced by the interaction of contextual
factors over time that affect health and development and vary among
individuals (see Table 1 for a list of definitions). Furthermore, expo-
sures, whether physiologic or sociologic, can have differential impact
on health outcomes based on the following:

a. Dose: The amount of endogenous or exogenous exposure (such
as stress or air pollution).

b. Duration: Short- or long-term accumulation of physical and
psychosocial exposures throughout the life course on health
and development from gamete to grave.

c. Timing: The timing of exposure in relation to human develop-
ment, recognizing that some periods of development allow for
more plasticity and adaptation than other periods.

Matching Theory to Methods: Complex Systems Science as
a Methodological Framework in the Life Course Research
Toolbox to Guide Our Research Questions

A theoretical tenet of life course research is the interdependence
between and dynamic nature of factors that shape health. Recent

advances in high-performance computing create possibilities
for the combination of data across a vast number of sources to
make sense of the complex, interdependent factors that shape
health. As a result of these technological advances, as with genomic
medicine two decades ago, the potential for ML-based methods to
solve complex disease questions has emerged [4,5]. While ML can
identify important patterns that may not be extractable by the
human mind, theoretical and methodological grounding is neces-
sary to avoid misattributing causation to spurious associations.
A hybrid approach is needed, one that connects theory to meth-
odological frameworks to allow for scientifically rigorous and bio-
logically plausible inquiries.

A Life Course Approach Influences New Hypotheses

Below we highlight three case examples illustrating the complex
nature of human health and disease and the importance of couch-
ing questions related to the development of immunity, type 2 dia-
betes (T2DM), and Alzheimer’s disease (AD) within the LCHD
theoretical framework using methodological tools from complexity
science. This demonstrates how using a life course lens within com-
plexity science frameworks can lead to generation of new scientific
hypotheses and associated interventions that consider the high
dimensionality, nonlinearity, and heterogeneity of health and
disease.

Case 1: The Development of Immunity and Impact of
Ubiquitous Persistent Infection

Early infancy and childhood represent windows where fundamen-
tal processes prime the immune system and development of the
microbiome occurs. For example, early life acquisition of human
cytomegalovirus (CMV), a ubiquitous childhood infection, can lead
to enhanced responsiveness to vaccines including those for influenza

Table 1. Core definitions

Term Definition

Lifespan A measure of longevity reflecting the
underlying chronologic biologic aging of an
individual that occurs for everyone.

Life course The interaction of contextual factors over
time that affect health and development
and varies among individuals.

Framework A conceptualization structure providing
guidance to the researcher as research
questions are developed and theories are
tested.

Theoretical framework A framework that has been derived from
tested theories and is generally accepted.
The set of concepts drawn from the theory
can be thought of as the guide to build and
support a study and should define the
epistemological, methodological, and
analytical approach to the problem.

Methodological framework Methodological guide linking the theoretical
framework to the appropriate
methodological tools.

Complexity science The study of complex systems and
problems that are dynamic, unpredictable,
and multidimensional. These patterns
emerge over time as a result of systems
that are interconnected [57–59].
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[6,7]. Conversely, later in the life course, ongoing CMV infectionmay
promote immunosenescence, paradoxically conferring decreased
vaccine responsiveness and increased susceptibility to other infections
[8]. Thus, the timing of exposure to and acquisition of CMV has
potentially a profound impact on immune system priming and
function, and functional immunologic outcomes can clearly evolve
over the life course.

However, sole examination of timing of CMV infection does
not fully describe its broad influence over the immune network,
which is reactive and adaptive to both heritable and nonheritable
influences [8]. A study by Brodin et al. used monozygotic identical
twins discordant for CMV serostatus (i.e., one twin infected, the
other uninfected) to demonstrate substantial differences in CD8þ cell
effector function, gamma-delta T-cell populations, and differences in
both cytokine levels and overall responsiveness to IL-10 and IL-6.
These parameters vary with age; generally heritable factors have lim-
ited influence and nonheritable factors increase influence as cumula-
tive environmental exposures shape the microbiome over the life
course. In fact, responses to influenza vaccine were found to be
entirely influenced by nonheritable factors, indicating that inter-
actions between the microbiome and infections are complex and
driven by a combination of inherited and nutritional or pathogenic
factors, which vary based on timing of exposure during vulnerable
windows of development. Shifts in the microbiome, in turn, affect
immune system health at large, which continually adapts to envi-
ronmental circumstances [9]. Social patterns of immunity and
infection may also give rise to differential trajectories of exposure
and illness within populations. The example of CMV infection is
instructive, given that there are striking disparities in congenital
infection and early life seroprevalence depending upon race, eth-
nicity, and socioeconomic status [10,11].

Because the development and influence of the immune system
are dependent on the timing of exposure to infections and long-
term influence on immune system functioning, a life course lens
leads us to different research questions that could shed light on pre-
vention strategies and improve health across the lifespan. Research
questions should be framed historically, as occurring within a spe-
cific time context, and holistically, focusing on genetic changes
over time and multiple step processes to disease initiation rather
than reducing the question to cause and effect of a single variable.

Case 2. Emerging Adolescent and Adult Type 2 Diabetes
Mellitus (T2DM)

Individuals may be genetically predisposed to the development of
T2DM, with rates of heritability ranging from 20% to 80%. To date,
over 150 genetic variations that increase risk of T2DM diagnosis
have been identified [12]. While genetic predisposition is an
important contributor, it cannot fully explain the overall risk for
the development of T2DM. T2DM is a heterogeneous phenotype
]13 ] that involves mechanisms at multiple levels (individual, fam-

ily, community, policy) that interact dynamically, consistent with
the LCHD framework. A complex set of factors throughout the life
course contributes to risk of disease in adulthood, some having
additive or multiplicative interactive effects and others, such as
interactions between transcription/translation regulation andmet-
abolic networks, affecting risk through feedback loops [14].

Dose, duration, and timing of exposures may also have impor-
tant roles between environment and T2DM risk. The level and
length of time spent in unhealthy environments (i.e., dose and
duration) may be important factors to consider when linking pos-
sible exposures to T2DM. The developmental period (i.e., timing)

of exposure is also an important consideration. During the prenatal
period, higher maternal prepregnancy BMI, maternal hypergly-
cemia, and exposures to endocrine disrupting compounds are
associated with later T2DM risk [15,16]. In newborns, low infant
birth weight and associated rapid catch-up growth in the first 6
months of life increase the risk for T2DM in adolescence and
young adulthood [17]. Furthermore, the infant gut microbiota,
influenced by pre-, peri-, and early postnatal factors, may also
affect risk associated with adult-onset disorders such as T2DM
[18]. Childhood and young adult exposures such as poverty,
adverse childhood experiences, depression, and engagement in risk
behaviors (e.g., smoking, alcohol use) all further influence the risk
for the development of T2DM in middle adulthood, and account
for some racial and ethnic disparities observed [19].

Selecting tools from complexity science allows for holistic
approaches to understanding the associations and can be used
to assess the relative contributions of factors that could be altered
to benefit health. For example, a recent study by Frisard et al. used
the Women’s Health Initiative Clinical Trials Cohort and
Observational Study Cohort, both longitudinal cohorts, to investi-
gate the association between antidepressant use over time and
T2DM risk [20]. The authors used marginal structural models
(MSMs) to allow for predictor variables such as antidepressant
use and BMI to vary across an average of 7.6 years of follow-up.
A handful of other studies investigating T2DM risk used similar
approaches to allow for variation in measures, such as socioeco-
nomic status, over time [21,22]. Other approaches have incorpo-
rated multiple types of genetic and dietary information. Network
analyses have been used to integrate genetic, genomic, and func-
tional data to explore the mechanisms predisposing individuals
to T2DM [23,24]. Random forests have been used to predict meta-
bolic syndrome status based on dietary and genetic data [25].

The current literature lacks in-depth studies that combine a
spectrum of data ranging from genes to environment and utilize
multilevel models and methods that embrace the complexity of
T2DM. Novel research questions will likely require new methods
that allow for the incorporation of time and complex interactions.
For example, investigating the relationship between neighborhood,
diet and exercise, differential DNA methylation over time, and
resulting changes in fasting glucose and insulin metabolism in
individuals transitioning from normal to pre-T2DM and T2DM
requires a methodological framework that can model the complexity
of the relationships without ignoring changes over time. By looking
through a life course lens, drawing fromexisting tools and the creation
of new tools, identified risk factors at the individual, parental, and
environmental level alongwith the timing and interaction of the expo-
sures could be used to direct targeted T2DM interventions.

Case 3. Cognitive Impairment/AD in Older Ages

Cognitive decline is an example of a complex phenotype that may
have multiple interrelated risk factors across the lifespan, with
genetics and environment playing an important role in shaping
risk. Early life risk factors, including learning disabilities, educa-
tional attainment, impaired body growth and development, and
lower childhood socioeconomic status all impact adult brain struc-
ture and function, and when present, increase vulnerability to the
development of cognitive impairment/ AD in later life [26–30].While
AD is a major cause of dementia in Western societies, it develops
asymptomatically decades before diagnosis. Genes play a role, but
by themselves rarely predict when or if AD will emerge [31], sug-
gesting the need to consider the interactive role of environment.

Journal of Clinical and Translational Science 3



Some gene–environment interactions may be expressed in epi-
genetic markers; several epigenetic candidates demonstrate an
association with dementia later in life [32]. This is referred to as
the Latent Early Life Associated Regulation model which suggests
epigenetic markers acquired from gestation to older age could
modify gene expression that may induce or accelerate AD [33].
These nonheritable factors include infections, stress, nutrition, adi-
posity, and exposure to toxins (such as pesticides) which may have
differing effects on risk of AD development depending on the
degree and timing of the exposure, as well as the interaction of
these factors [34].

While exposures such as these in early childhood can alter brain
structure, predisposing the brain to increased risk for learning and
memory dysfunction throughout life, exposure at other times in
life can also affect brain health and risk for neurodegeneration.
Chronic medical conditions, such as hypertension and T2DM in
adolescence or adulthood, are associated with later cognitive
impairment. This may be the result of defects in insulin signaling
and consequent activation of neuroinflammatory pathways.
However, the manifestation of cognitive impairment could be
affected by control of the underlying condition, with cumulative
effects of dysregulation over time exacerbating the onset and tim-
ing of cognitive impairment [35].

Moreover, it is not just early in life that these various exposures
affect whether and when cognitive impairment will emerge, but
also duringmiddle age when there aremany physiological changes.
One such physiologic change includes an alternation in hormone
levels. As women are 50% more likely to develop dementia some-
time in their lives compared with men, multiple studies have
turned to examining estrogen levels and total reproductive years
to understand these associations [36]. However, specific mediators
of neural injury have not yet been elucidated [31]. Women with
pregnancy-related complications, such as preeclampsia, are also
at increased risk of developing later life cognitive decline [37].
Using a complexity science lens would inform new hypotheses
to look not only at estrogen levels, fertility, and pregnancy outcomes
over one’s lifespan, but examine the interactions of exposures such
as infections, medications, chronic illnesses (such as T2DM), early

childhood brain development, and social deprivation. By examing
interactions, timing of these interactions, dose of exposure, and
duration over time, different types of interventions would emerge.

Another example of how this lifecourse framework could
change the timing and type of interventions is the relatively new
discovery that the gut microbiome mediates regulation of brain
homeostasis, potentially resulting in the alteration of microglial
activation and brain function in middle age. Middle-aged mice
who received prebiotic diets had reversal of stress-induced immune
priming and reduction in aging-related monocyte infiltration, modu-
lating the peripheral immune response and altering neuroinflamma-
tion inmiddle age [38]. This could redirect our thinking – it is not only
the intervention type, such as providing prebiotics, but the intervention
timing, during middle age, that needs to be considered.

Taken together, the complex web of family history, genetic and
epigenetic influences, environment and social context, chronic
medical conditions, and microbiome influence require a life course
approach to truly help us understand how to prevent or delay the
onset and improve treatment of cognitive impairment and AD in
older age [39,40].

Charting the Life Course Recommendations

We are not the first to note a need for a complexity science
approach to the epidemiology of health and disease [41–43]; how-
ever, we think new technological innovations can now enable this
approach to improve population health using a life course theoreti-
cal framework. We offer recommendations to build the necessary
databases (process recommendations) that would allow for appli-
cation of complexity science to generate and test new hypotheses
(application recommendations). These five recommendations are
summarized in Fig. 1. Process recommendations include the follow-
ing: (1) creating systematic processes for longitudinal integration
of datasets across the lifespan representing multiple levels of expo-
sures from physiologic to sociologic; (2) utilizing data science
core resources to prepare and package integrated datasets to make
them accessible for researchers to generate and test new hypotheses;
and (3) developing and validating ways to model high dimensional

Fig. 1. Five recommended pathways for moving transnational life course research forward.
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data.Application recommendations include the following: (4) promot-
ing and applying existingmethods that fit a complexity science meth-
odological framework; and (5) developing analyticalmethods that can
capture multiple dimensions of time (timing, dose, and duration).
Below, we elucidate next steps to act upon these recommendations.

Integrate Datasets Across the Lifespan

Prioritization for the creation of datasets that allow for investiga-
tions of the interplay between factors at the molecular level to the
organ level within a single individual, the study of individual inter-
actions with the environment, and the elucidation of how these
factors vary between people and over time is necessary to move life
course research forward. Large amounts of data from individuals in
different contexts and across time will allow us to explore gene–
environment interactions or family member to family member
influences in ways that were impossible before.

It is becoming increasingly common for studies to link multiple
large datasets to allow for a more in-depth examination of disease
risk. For example, the Utah Population Database (UPDB) is an
immense genealogical dataset that has been record-linked to many
statewide datasets (including the Utah Cancer Registry and state-
wide medical claims from 1996 to present), with annual updates.
The full dataset contains nearly 10 M people, 4 M of whom have
3–18 generations of genealogy available, and infrastructure that
links distinct records for a specific person allows the UPDB to cre-
ate a depiction of the life history of an individual based on medical
and administrative data [44,45]. UPDB links EHRs data to govern-
ment datasets, such as birth and death certificates, census record,
geospatial data, and social determinants of health. Creating a “tap-
estry” of information sources allows for a wealth of measurement
on factors influencing health and disease, identification of sensitive
windows of exposure, and targets for prevention [46]. EHRs linked
to government datasets, such as birth and death certificates, census
records, geospatial data, and social determinants of health, as well
as other large data (e.g., school, child welfare, and employment
records).

Utilize Data Science Core Resources

As the amount of patient-related data linked to external sources
increases, data science cores focused on the curation, cleaning,
analysis, andmodeling of data need developed. Data science builds
upon principles and methods from across multiple disciplines,
including ethics, engineering, statistics, communication, math-
ematics, and epidemiology. Organizing teams including experts
from across these disciplines would allow for the development of
innovative methods and increase interpretability of large
amounts of complex data. In addition to data curation and
methods development, these teams should be focused on devel-
oping ways to communicate results from the scientific commu-
nity to the lay population, as well as standards for data sharing
and for improving algorithm portability (such as the model
adopted by the www.ohdsi.org) to enable a wider range of analy-
sis on these curated datasets.

Develop New Ways to Model High Dimensional Data

In order to fully leverage data integrated from a vast number of
sources, new ways to model high dimensional data collected seri-
ally need to be developed. Combining data across multiple
sources and utilizing ML (variable selection) techniques can help
us develop more accurate predictive models by identifying large-

scale properties of interacting variables and enabling targeted
approaches by clustering patients with similar characteristics or
phenotypes. This hypothesis-generating approach will allow us
to expand on traditional hypothesis-driven approaches and find
innovative ways to improve population health through pattern dis-
covery and disease prediction. ML identifies patterns that explain
the data available in both supervised (trained on an outcome) or
unsupervised (trained to find a pattern) approaches. Pattern dis-
covery algorithms are generally unsupervised, and can be used
to refine our definition of phenotype [47, 47–50]. Algorithms
are developed to seek out variables and combinations of variables
to predict outcomes. ML differs from traditional regression meth-
ods because it can handle large amounts of combinations of data to
examine interactions and nonlinear assumptions [51]. However,
algorithms can also overfit models and lead to false conclusions.
Consequently, data generated from ML approaches need valida-
tion from different populations. Moreover, outcomes are only as
good as the data input and therefore can lead to biases reflected
in the datasets themselves [52].

Expand Traditional Epidemiological Methods to Include
Systems and Network Modeling

Complex systems assume that the functional form is nonlinear,
distributions are nonnormal, individuals are heterogeneous, and
health reflects multilevel structures, dynamic temporality, and
interaction between factors. Traditional epidemiological methods
need to expand to include systems modeling, network analyses,
and machine learning. Complex systems analyses model the
dynamic interactions between factors at the same level (e.g., cells,
individuals) and across levels (e.g., tissue, neighborhood). Agent-
based models are a commonly used approach for complex systems
analyses and have been used in chronic disease epidemiology [53],
health disparities [54], and health behaviors research [55] to
explore dynamically complex processes and strengthen under-
standing of causal processes. Network analyses have been very use-
ful for unraveling the complexity of genetic pathways and their
interactions in chronic diseases. Phylogeography, a form of net-
work analysis, is a method that can be used to study spatial viral
disease distribution and would be useful for COVID-19-related
studies [56]. ML methods take a more agnostic approach to epi-
demiological discovery by learning themodels that best fit the data.
ML methods, therefore, can play an important role in discovering
unknown predictors of disease as well as refining phenotypic def-
initions of disease. Pattern identification, dimension reduction,
and phenotypic definitions can be used to hone the search for
causal mechanisms [45,47]. Methods embracing complexity sci-
ence have the potential to identify factors having the largest impact
on disease risk, the importance of duration and dose of exposure,
periods across the lifespan that might be most amenable to inter-
vention, the dynamic nature of risk, and moderating factors that
should be considered.

Improve Reproducibility with Standardized Measures

As we move forward in identifying these measures, standard ways
of operationalizingmeasures would improve reproducibility. Progress
in recommendations 1–4 will be for naught without high-quality,
semantically interoperable, and structured data. The penultimate
solution would be a single American healthcare system, allowing
for standardized records collection and storage. Until that goal
can be achieved, investigators will have to continue to derive
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Table 2. Examples of existing methods that can be used to investigate health across the lifespan using multiple interactions, time as a dimension, system science-based
approaches, and computational approaches

Challenges Potential Solutions

Process
Recommendations

Integrate Datasets Across the
Lifespan

– Data storage Close collaboration with computer science and data
science colleagues.

– Fragmented healthcare leads to
disparate data types and storage

Development of novel ways to combine historical
data that are flexible and scalable. Identify ways to
quantify error when combining data from multiple
sources.

– Ethical aspects and need for data
oversight committees

Data repositories should have an oversight committee
that includes representatives from the community.
Data storage and sharing ethics should be a common
topic of conversation for staff involved in curating,
maintaining, and distributing the data.

– Data need to be standardized, curated,
and high quality

Development of rigorous and sharable standards for
standardizing and curating data. Quantify error
related a dataset or measure.

– Data ownership Recognition that individuals are owners of their data.
Outward facing programs that garner community
involvement and knowledge about the datasets being
used for health research. Discussion about how to
give back to the community. Encourage discussion
with the community about knowingly contributing
data that can lead to medical innovations.

Utilize Data Science Core
Resources

– Scalability Data science core resources need to be able to serve
a broad range of research questions across multiple
disciplines. Processes should be developed that are
general enough to allow them to be far-reaching.

– Need to have a culture of data sharing Academic health centers should openly enable,
encourage, and reward data sharing.

– Complying with rules for data access Create easily accessible documents that clearly state
data use and reuse rules. Educate data users,
trainees, and investigators on responsible data use
and reuse practices.

Develop New Ways to Model
High Dimensional Data

– Requires transdisciplinary teams that
may have differences in communication

Organize workshops, symposia, and meetings that
regularly bring together scientists from multiple
disciplines. Provide educational opportunities for
investigators to learn how to present their research in
lay language to make it accessible for all audiences.

– Novel methods may be deemed high
risk

Develop NIH initiatives, like Physical Sciences in
Oncology (PSON), that bring together scientists from
across a wide range of disciplines to address major
questions and barriers in research.

– Models are only as good as the data Set benchmarks for data processing and transparency
high.

Application
Recommendations

Expand Traditional
Epidemiological Methods to
Include Systems and Network
Modeling

– Requires training and a shift in
epidemiological thinking

Develop easily accessible synchronous and
asynchronous learning opportunities for investigators.

– Models rest on assumptions about the
distribution, sparsity, magnitude of
effect, relationship between actors, and
others that are carefully considered.

Create minimum standards for publishing complexity
and machine learning results in health care journals.
Create guidelines for systematic and rigorous
research.

– Algorithms and simulations are not
substitutes for formal statistical
modeling

Selection of models should be based on the
epistemological foundation of the question. Methods
should be combined with more traditional models to
fully understand problems. Limitations should be
clearly stated.

Improve Reproducibility with
Standardized Measures

– Institutional specific software and data
storage procedures

Develop standardized, extensible data schemas with
well-defined entities, attributes, and metadata.

– High variation in data types and
structure across institutions.

Document data architecture and create templates to
ensure standardized collection of data
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innovative solutions to overcoming the fragmented nature of data
collection and storage.

Conclusions

Health and disease evolve over time through complex interactions.
New technology allows for the development of new methods and
measures to effectively conduct life course research, applying a life
course framework drawing from tools – from complexity science
methodology to both generating and testing novel hypotheses.
These recommendations are not without limitations (Table 2);
however, the benefits outweigh the limitations. The field will ben-
efit from a consistent approach to generate verifiable big data and a
systematic approach to identify key methods and measures to
maximize utility of that data. New statistical analytic approaches
to handle the complexity of time, dose and duration of exposures,
and context need to be developed and tested. These recommenda-
tions begin to chart the way forward in life course research to fur-
ther develop the field and move it from theory to application.
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