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Development of a Nomogram Based
on 3D CT Radiomics Signature to
Predict the Mutation Status of
EGFR Molecular Subtypes in
Lung Adenocarcinoma:
A Multicenter Study
Guojin Zhang1,2*†, Liangna Deng3†, Jing Zhang4†, Yuntai Cao5†, Shenglin Li3,
Jialiang Ren6, Rong Qian1,2, Shengkun Peng1,2, Xiaodi Zhang7, Junlin Zhou3,
Zhuoli Zhang8, Weifang Kong1,2* and Hong Pu1,2*

1 Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China,
Chengdu, China, 2 Department of Radiology, Chinese Academy of Sciences Sichuan Translational Medicine Research
Hospital, Chengdu, China, 3 Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China, 4 Department of
Radiology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China, 5 Department of Radiology, Affiliated Hospital of
Qinghai University, Xining, China, 6 Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China, 7 Clinical
Science Department, Philips (China) Investment Co., Ltd., Chengdu, China, 8 Department of Radiology and BME, University
of California Irvine, Irvine, CA, United States

Background: This study aimed to noninvasively predict the mutation status of epidermal
growth factor receptor (EGFR) molecular subtype in lung adenocarcinoma based on CT
radiomics features.

Methods: In total, 728 patients with lung adenocarcinoma were included, and divided
into three groups according to EGFR mutation subtypes. 1727 radiomics features were
extracted from the three-dimensional images of each patient. Wilcoxon test, least
absolute shrinkage and selection operator regression, and multiple logistic regression
were used for feature selection. ROC curve was used to evaluate the predictive
performance of the model. Nomogram was constructed by combining radiomics
features and clinical risk factors. Calibration curve was used to evaluate the goodness
of fit of the model. Decision curve analysis was used to evaluate the clinical applicability of
the model.

Results: There were three, two, and one clinical factor and fourteen, thirteen, and four
radiomics features, respectively, which were significantly related to each EGFR molecular
subtype. Compared with the clinical and radiomics models, the combined model had the
highest predictive performance in predicting EGFR molecular subtypes [Del-19
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mutation vs.wild-type, AUC=0.838 (95% CI, 0.799-0.877); L858R mutation vs.wild-type,
AUC=0.855 (95% CI, 0.817-0.894); and Del-19 mutation vs. L858R mutation,
AUC=0.906 (95% CI, 0.869-0.943), respectively], and it has a stable performance in
the validation set [AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI, 0.790-0.913),
and 0.875 (95% CI, 0.781-0.929), respectively].

Conclusion: Our combined model showed good performance in predicting EGFR
molecular subtypes in patients with lung adenocarcinoma. This model can be applied
to patients with lung adenocarcinoma.
Keywords: NSCLC, lung adenocarcinoma, EGFR, computed tomography, radiomics
INTRODUCTION

Targeted therapy has brought based on recognizing the
importance of acquired gene driver mutations, such as
epidermal growth factor receptor (EGFR) mutations, kristen
rat sarcoma (KRAS) mutations and anaplastic lymphoma
kinase (ALK) rearrangements, in non-small cell lung cancer
(NSCLC) new hope to patients with these gene mutations. In
the Asian population, about 50% of lung adenocarcinoma
patients have known carcinogenic driver genes (1, 2). There
are currently targeted drugs used in clinical practice for these
mutations, such as gefitinib and osimertinib for EGFR
mutations. In contrast, patients without these mutations are
not candidates for targeted therapy (3). Furthermore, there are
molecular differences between each molecular mutation and
molecular subtype, and these differences lead to different
therapeutic effects after using other targeted drugs (4). EGFR
mutations mainly include exon 18-21 mutations. Among them,
exon 19 deletion (Del-19) mutation and 21 L858R point (L858R)
mutation are the two most common activating mutations, and
they are also the two most sensitive mutation sites for tyrosine
kinase inhibitors (TKI) treatment (5). In a single targeted
therapy, patients with Del-19 mutation benefited more from
osimertinib (6), while patients with L858R mutation benefited
significantly from dacomitinib (7); in addition, combination
therapy and immunotherapy brought patients with L858R for
more potential benefits (8, 9). Therefore, the detection of specific
EGFR mutation subtypes can make targeted therapies more
precise and allow patients receiving these treatments to benefit
the most.

Currently, the detection of EGFR mutation status from
histological specimens is the most common detection method.
However, in clinical practice, these detection techniques also
have some limitations. For example, tissue samples are obtained
through invasive methods such as biopsy or surgery; sometimes
the amount of tissue samples obtained due to operational errors
is insufficient; biopsy can increase the risk of tumor metastasis; in
addition, a small part of the tissue obtained does not represent
the heterogeneity of the entire tumor, etc. (10–12). In addition,
another noninvasive detection strategy for EGFR mutations is
‘liquid biopsy’, which is a biological detection method on the
blood. For patients with advanced NSCLC, ‘liquid biopsy’ is a
promising method to isolate circulating tumor DNA from blood
2

samples (13). However, ‘liquid biopsy’ has a high risk of false-
negative results (30%) (14). Therefore, until this defect is
effectively resolved, ‘liquid biopsy’ is far from substitute for
histological testing. Because of this, there is an urgent need for
a simple and noninvasive method to detect EGFR mutation
subtypes before targeted drug therapy.

The radiological features have been shown to reflect EGFR
mutation status in lung adenocarcinoma (12, 15–17). However,
the clinical applicability of these studies needs to be confirmed by
further research. Compared with traditional CT, radiomics
converts medical images into mineable data and extracts a
large number of features that cannot be observed by the
human naked eye system, thereby reflect ing more
characteristics of tumors (18). To our knowledge, some studies
have used radiomics to predict EGFR mutation status (19–22).
Although the prediction performance of these studies is different,
this shows that it is feasible to predict EGFR mutations
noninvasively through radiomics. However, only a few studies
have used radiomics methods to predict the mutation status of
EGFR molecular subtypes (23–26). Unfortunately, the sample
size included in these studies is limited, and the accuracy of the
obtained prediction model was only 65.5-79.0%. In this study, we
retrospectively collected a relatively large data set and
constructed a model based on CT radiomics signature to
noninvasively predict the mutation status of EGFR molecular
subtype in lung adenocarcinoma.
MATERIALS AND METHODS

Patient Population
This retrospective study was ethically approved by the
Institutional Review Board of the Sichuan Provincial People’s
Hospital and Lanzhou University Second Hospital, and the need
for patient informed consent was waived. Clinical data and chest
CT images of these patients were obtained from the picture
archiving and communication system (PACS). The inclusion
criteria were as follows: (1) patients with the histologic type of
lung adenocarcinoma; (2) patients with complete CT thin-slice
images (1.25 mm) and clinical data; (3) patients who did not
receive lung cancer-related treatment before CT scan; (4)
patients who underwent biopsy or surgery within one month
April 2022 | Volume 12 | Article 889293
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after CT scan; (5) patients with EGFR exon Del-19 mutation,
exon L858R mutation, and wild-type. The exclusion criteria were
as follows: (1) patients whose tumor boundary is difficult to be
recognized by the naked eye on CT images; (2) patients younger
than 18 years old.

According to the above inclusion and exclusion criteria, 728
patients (median age, 57.0 years, age range, 21-82 years, 370
males and 358 females) were finally selected from 2,557 patients
in the two hospitals. Among them, a total of 540 patients from
Sichuan Provincial People’s Hospital were used as the training
set from January 2018 to March 2021, and 188 patients from
Lanzhou University Second Hospital were identified as the
external validation set from January 2019 to September 2020.
The patient recruitment flowchart is shown in Figure 1.

Demographic and clinical data include the patient’s sex, age,
smoking history [including non-smoking (never smoked) and
smoking (former or current smoking)], carcinoembryonic
antigen (CEA) level, and tumor lobe location of the tumor
(including right upper, right middle, right lower, left upper and
left lower lobes). If the tumor crosses the fissure, the lobe location
is defined as the lobe in which the tumor predominates.

EGFR Mutation Status Detection
The polymerase chain reaction-amplified refractory mutation
system (PCR-ARMS) detected EGFR mutation status. The
human EGFR gene detection kit (Beijing SinoMD Gene
Detection Technology Co., Ltd., China; Amoy Diagnostics,
Xiamen, China) detected EGFR exon 18 to 21 mutation status.

CT Image Acquisition
CT scans ranged from the thoracic inlet to the level of the lower
edge of the 12th rib were completed by three spiral CT scanners
(Discovery CT750 HD, GE Healthcare; Philips iCT 256,
Koninklijke Philips N.V.; Somatom Sensation 64, Siemens
Frontiers in Oncology | www.frontiersin.org 3
Healthineers). Scanning parameters were as follows: (1) tube
voltage 120 kVp, tube current adjusted automatically for the
Sensation 64 scanner, and (2) tube voltage 120 kVp, tube current
150 to 200 mA for the other two scanners. For all scanners, 0.5-
1.0 second tube rotation time, and field of view (FOV): 350 mm;
matrix, 512 × 512; the layer thickness and spacing were both
5 mm; the reconstruction layer thickness and spacing were both
1.25 mm. All images were exported in DICOM format to
facilitate feature extraction.

Tumor Segmentation and Radiomics
Feature Extraction
Radiomics feature extraction and analysis workflow are shown in
Figure 2. To ensure the accuracy and consistency of the data, two
readers (radiologists with 6 and 4 years of experience in chest CT
diagnosis, respectively) independently used the open-source
software ITK-SNAP 3.8.0 (http://www.itksnap.org) to segment
the tumor on the thin-slice CT lung window (window width:
1500HU; window level: -500HU). Training cases were segmented
by reader 1 (G.J.Z), and validation caseswere segmented by reader 2
(L.N.D). Both readers were blinded to all patients’ clinical data,
pathological records, and EGFR status results. When the two
readers were unsure, a consultant radiologist (J.Z) confirmed the
segmentation with 17 years of experience. The region of interest
(ROI) was manually segmented on CT axial images with tumor
tissue and confirmed on sagittal and coronal images.

In order to evaluate the robustness and repeatability of the
radiomics feature extraction process, one month later, 40
patients were randomly selected from the training set and
segmented again by readers 1 and 2 to construct a re-
segmentation set, and 40 patients were randomly selected from
each CT scanner to construct different CT scanner sets for
calculating the intra-/interclass correlation coefficients (ICC),
respectively. ICC values > 0.8 reflected good consistency (26).
FIGURE 1 | The flowchart of the inclusion and exclusion criteria.
April 2022 | Volume 12 | Article 889293
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The open-source Python software package PyRadiomics 3.0.1
automatically extracted radiomics features from the three-
dimensional (3D) tumor volume after segmentation. Radiomics
features were divided into three main categories: 16 shape
features, 324 first-order features and 1387 texture features.
Details of radiomics features were included in the
Supplementary Material (Methods). According to the
recommendations of International Symposium on Biomedical
Imaging (ISBI), we only resampled the image and set the bin
width of gray discretization to 25. We performed z-score
preprocessing on the extracted radiomics features.

Radiomics Feature Selection
To avoid model overfitting and improve accuracy, we used three
steps for feature selection to obtain the optimal feature subset.
First, Wilcoxon test was used to retain the features with P-value
less than 0.05. Secondly, the least absolute shrinkage and
Frontiers in Oncology | www.frontiersin.org 4
selection operator (LASSO) regression with 10-fold cross-
validation was used to eliminate the collinearity features.
LASSO is a recognized algorithm that has been used for
feature selection of higher-dimensional variables (27). Finally,
multiple logistic regression was used to select the features, and
the minimum features of akaike information criterion (AIC)
were retained.

For clinical factors, the Chi-square and Student’s t-tests were
first used in the training set to screen for clinical characteristics
that were correlated between each group. P-value was set to 0.05.
Clinical factors with a P-value greater than 0.05 were excluded.
Next, use logistic regression to further analyze the most
relevant variables.

Radiomics Model Establishment
Logistic regression was used in the training set to build a model
for predicting Del-19 or L858R mutations, and its performance
FIGURE 2 | Flowchart of the process of radiomics. (A) The tumours were segmented on CT images to form the region of interest (ROI). (B) Radiomics feature
extraction from the ROI. (C) Radiomics feature dimensionality reduction process. (D) Construct a radiomics model.
April 2022 | Volume 12 | Article 889293
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was evaluated in the external validation set. Logistic regression is
a classic method in radiomics research. It is easy to understand,
explain, and combine discrete and continuous variables (28, 29).
To identify Del 19 and L858R mutations, we used logistic
regression, support vector machine (SVM), and random forest
(RF) to construct prediction models. The clinical and radiomics
models were constructed based on clinical factors and radiomics
features, respectively, while the combined model was constructed
based on clinical and radiomics models. Additionally, clinical
models were constructed using logistic regression.

Statistical analysis
All statistical analyses were performed using R 3.6.0 (http://www.
R-project.org). Two-sided P-values less than 0.05 were
considered to be statistically different. Kolmogorov-Smirnov
test was used to evaluate the normal distribution of the data.
Categorical variables were expressed as percentiles, and the Chi-
square test or Fisher’s exact test was used to analyze groups.
Continuous variables were expressed as mean ± standard
deviation (SD), and Student’s t-test or Mann-Whitney U test
was used for analysis between groups. Receiver operating
characteristic (ROC) curve was used to evaluate the
performance of the model, and the area under the curve
(AUC), sensitivity, specificity, accuracy, positive predictive
value (PPV), and negative predictive value (NPV) were
calculated. Delong test was used to compare the performance
differences of the prediction models.

Based on the above-screened clinical factors and radiomics
features, we constructed a personalized nomogram to predict the
mutation status of the EGFR molecular subtype. Calibration
curve and Hosmer-Lemeshow (H-L) test were used to evaluate
the model’s goodness of fit. Decision curve analysis (DCA) was
used to assess the clinical applicability of the model.
RESULTS

Clinical Characteristics of Patients
There were no significant differences in clinical factors (including
sex, smoking history, and CEA), the mutation rate of Del-19 or
L858R, and tumor location in each EGFR mutant subtype group
(all P > 0.05), while there were significant differences in age
between the two EGFR mutant subtype groups (Del-19 vs. wild
type, Del-19 vs. L858R) (Supplementary Tables S1–S3).

Univariate analysis revealed that age, sex and smoking history
were significantly different between the Del-19 mutation and
wild-type groups (P < 0.05), sex and smoking history were
significantly different between the L858R mutation and wild-
type groups (P < 0.05), and age was significantly different
between the Del-19 mutation and L858R mutation groups (P <
0.05). Multivariate analysis revealed that age (OR, 0.972; 95% CI,
0.948-0.996; P = 0.021) and sex (OR, 3.193; 95% CI, 1.836-5.565;
P < 0.001) were correlated independently with the task of
Del-19 vs. wild-type (Table 1), sex (OR, 2.612; 95% CI, 1.548-
4.457; P < 0.001) and smoking history (OR, 0.427; 95% CI, 0.238-
0.761; P = 0.001) were correlated independently with the task of
Frontiers in Oncology | www.frontiersin.org 5
L858R vs. wild-type (Table 2), and age (OR, 1.050; 95% CI,
1.022-1.081; P < 0.001) was correlated independently with the
task of Del-19 vs. L858R (Table 3). Based on multivariate
analysis results, clinical factors with P < 0.05 in each task were
incorporated in the clinical model.

Radiomics Feature Selection and
Model Establishment
In total, 1727 radiomics features were extracted from the 3D images
of each ROI. The ICC values of the radiomics features extracted
from two readers and different CT scanners were all greater than
0.80, reflecting good consistency. Fourteen radiomics features were
highly correlated with Del-19 mutation (Table S4; Figure S1),
thirteen radiomics features were highly correlated with L858R
mutation (Table S4; Figure S2). For Del-19 mutation vs. L858R
mutation, only four radiomics features were screened after using the
Wilcoxon test (Table S4; Figure S3). Therefore, we retained these
four features to construct the prediction model.

Correlation analysis showed that the correlation between each
feature is weak and independent in the training and validation sets
(Figures S4–S6).

Based on the above-screened radiomics features and clinical
factors, the clinical, radiomics, and combined models were
established in the training set, respectively, to predict the EGFR
molecular subtype mutation status.

Predictive performance and Validation
Based on Clinical, Radiomics, and
Combined Models
The predictive performance of different models in the training and
validation sets is shown in Figure 3 and Table 4. The predictive
performance of the combined model was higher than that of other
single models. In the training set, the AUC of the combined model
was 0.838 (95% CI, 0.799-0.877), 0.855 (95% CI, 0.817-0.894), and
0.906 (95% CI, 0.869-0.943), respectively. In addition, we used an
external validation set to verify the accuracy of the combinedmodel,
and the AUC was 0.813 (95% CI, 0.740-0.886), 0.852 (95% CI,
0.790-0.913), and 0.875 (95% CI, 0.781-0.929), respectively. In
addition, when distinguishing between Del-19 and L858R
mutations, the prediction model’s performance constructed using
random forest was higher than that of other single models. The
AUC of the training and validation sets were 0.881 (95% CI, 0.840-
0.921) and 0.871 (95% CI, 0.802-0.941), respectively.

Delong test showed that there were significant differences in
AUC values of the three models in the training set between EGFR
Del-19 mutation or L858R mutation and wild-type groups (all P <
0.05); However, only the AUC value of combinedmodel and clinical
model was significantly different in the validation set (P < 0.05), and
the AUC values between other models were not statistically
significant (P > 0.05) (Figures S7A–D). There were significant
differences in AUC values of the combinedmodel and clinical, SVM
or Logistic models in the training and validation sets between EGFR
Del-19 mutation and L858R mutation groups (all P < 0.05).
However, the AUC value between combined model and RF
model was not statistically significant in the both sets (P > 0.05)
(Figures S7E, F).
April 2022 | Volume 12 | Article 889293

http://www.R-project.org
http://www.R-project.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics Predicting EGFR Subtypes Status
Clinical Application of the
Combined Model

Based on radiomics score and clinical risk factors, we constructed
two user-friendly nomograms to predict the mutation status of
EGFR molecular subtypes (Figures 4A and 5A). The detailed
Frontiers in Oncology | www.frontiersin.org 6
formula for calculating the radiomics score is shown in the
Supplementary Material (Result). The calibration curve analysis
showed that the probability of Del-19 mutation or L858R
mutation predicted by the combined model was highly
consistent with the actual possibility, indicating that the model
had the best discriminant ability (Figures 4B, C, and 5B, C).
TABLE 1 | The relationship between clinical variables of patients and EGFR molecular subtypes (Del-19 mutation vs. Wild-type) in the training set.

Variable Total (n = 395) Del-19 mutation (n =154) Wild-type (n = 241) `Univariate analysis Multivariate analysis

P value OR (95%CI) P
value

Age (years) <0.001 0.972
(0.948-0.996)

0.021

- Mean ± SD 56.70 ± 9.19 54.87 ± 8.13 58.87 ± 9.65
- Median (Q1, Q3) 56.0 (50.0,63.0) 55.0(49.0,61.0) 58.0(51.0,65.0)
- Range 26-79 32-78 26-79

Sex (%) <0.001 <0.001
- Male 221 (55.9%) 51 (33.1%) 170 (70.5%) Reference
- Female 174 (44.1%) 103 (66.9%) 71 (29.5%) 3.193

(1.836-5.656)
Smoking history (%) <0.001 NA
- No 240 (60.8%) 122 (79.2%) 118 (49.0%)
- Yes 155 (39.2%) 32 (20.8%) 123 (51.0%)

CEA (%) 0.391 NA
- Normal 167 (42.3%) 61 (39.6%) 106 (44.0%)
- High 228 (57.7%) 93 (60.4%) 135 (56.0%)

Lobe location (%) 0.959 NA
- Right upper lobe 135 (34.2%) 54 (35.1%) 81 (33.6%)
- Right middle lobe 17 (4.3%) 6 (3.9%) 11 (4.6%)
- Right lower lobe 97 (24.6%) 35 (22.7%) 62 (25.7%)
- Left upper lobe 81 (20.5%) 33 (21.4%) 48 (19.9%)
- Left lower lobe 65 (16.5%) 26 (16.9%) 39 (16.2%)
April 2022
 |
 Volume 12 | Article
CEA, Carcinoembryonic antigen; CI, Confidence interval; Del 19, Exon-19 deletion mutation; EGFR, Epidermal growth factor receptor; NA, not applicable; OR, Odds ratio; SD, Standard
deviation. vs., versus.
TABLE 2 | The relationship between clinical variables of patients and EGFR molecular subtypes (L858R mutation vs. Wild-type) in the training set.

Variable Total (n = 386) L858R mutation (n = 145) Wild-type (n = 241) Univariate analysis Multivariate analysis

P value OR (95%CI) P value

Age (years) 0.686 NA
- Mean ± SD 58.12 ± 9.46 58.50 ± 9.15 58.87 ± 9.65
- Median (Q1, Q3) 58.0 (52.0,65.0) 58.0(53.0,64.0) 58.0(51.0,65.0)
- Range 21-82 21-82 26-79

Sex (%) <0.001 <0.001
- Male 223 (57.8%) 53 (36.6%) 170 (70.5%) Reference
- Female 174 (44.2%) 92 (63.4%) 71 (29.5%) 2.612

(1.548-4.457)
Smoking history (%) <0.001 0.004
- No 234 (60.6%) 116 (80.0%) 118 (49.0%) Reference
- Yes 152 (39.4%) 29 (20.0%) 123 (51.0%) 0.427

(0.238-0.761)
CEA (%) 0.301 NA
- Normal 162 (42.0%) 56 (38.6%) 106 (44.0%)
- High 224 (58.0%) 89 (61.4%) 135 (56.0%)

Lobe location (%) 0.262 NA
- Right upper lobe 124 (32.1%) 43 (29.7%) 81 (33.6%)
- Right middle lobe 24 (6.2%) 13 (9.0%) 11 (4.6%)
- Right lower lobe 99 (25.6%) 37 (25.5%) 62 (25.7%)
- Left upper lobe 83 (21.5%) 35 (24.1%) 48 (19.9%)
- Left lower lobe 56 (14.5%) 17 (11.7%) 39 (16.2%)
CEA, Carcinoembryonic antigen; CI, Confidence interval; EGFR, Epidermal growth factor receptor; L858R, Exon-21 L858R point mutation; NA, not applicable; OR, Odds ratio; SD,
Standard deviation. vs., versus.
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Decision curve analysis showed that the combined model
threshold in range of 0.18-0.77 have higher net benefit for Del-
19 vs. wild type and the cutoff value was 0.440 fall in this rang; the
combined model threshold in range of 0.16-0.715 have higher
net benefit for L858R vs. wild type and the cutoff value was 0.389
fall in this range (Figures 4D, E and 5D, E).

The precision-recall curves showed that the combined model
constructed by the RF model combined with clinical factors had
better performance than other single models in predicting Del-19
and L858R mutations (Figures 6A, B).
DISCUSSION

Preoperative noninvasive prediction of EGFR mutant subtypes is
a new field that attracts researchers’ attention. It can well
overcome some shortcomings of molecular mutation detection
based on histology and provide critical information for the
rational formulation of targeted therapy in clinical practice.
This study established different models based on clinical
factors and radiomics features to predict EGFR mutation
subtypes. Among them, the combined model showed good
predictive performance in the training set. It also had good
stability when evaluating the model’s performance in the external
validation set, which reveals the feasibility of predicting EGFR
molecular subtypes through radiomics features.

Previous studies have found that some clinical variables such
as female, non-smokers, patients with histological type of lung
adenocarcinoma, and East Asian populations are significantly
associated with EGFR mutations (16, 17, 20, 30, 31). Our
previous research has also confirmed this (12, 15). However,
these studies did not further analyze the correlation between
EGFR mutation subtypes and clinical variables. In our study, sex,
Frontiers in Oncology | www.frontiersin.org 7
smoking history, and age were significantly different in the EGFR
mutation subtypes group. Compared with EGFR wild-type
patients, Del-19 mutation patients were more common in
females and non-smokers, and L858R mutation patients were
more common in females and non-smokers. Compared with
patients with Del-19 mutation, patients with L858R mutation
were relatively older. Only patients with Del-19 mutation and
L858R mutation were selected because they are the most
common mutations in EGFR mutation subtypes. The two
mutation sites most related to the sensitivity of EGFR
TKI treatment.

Some previous studies have predicted the mutation status of
EGFR molecular subtypes based on CT radiomics features and
achieved promising results. For example, Li and colleagues (26)
retrospectively collected 312 patients with NSCLC, and 580
radiomics features were extracted from each patient’s CT
images to construct a model to predict EGFR mutation
subtypes (Del 19 and L858R). The test set’s AUC for
predicting Del 19 and L858R mutations were 79.3% and 77.5%,
respectively. Similarly, Zhao et al. (25) included 637 patients with
lung adenocarcinoma in their study to predict EGFR mutation
subtypes, and extracted 475 radiomics features to construct a
model. The results showed that the AUC in the training and
validation datasets were 68.9% and 75.7%, respectively. However,
these studies did not distinguish between the Del-19 mutation
and the L858R mutation, limiting the clinical applicability of
these studies. In this study, we not only distinguished between
EGFR Del-19 mutation or L858R mutation and EGFR wild-type.
More importantly, we further distinguished the Del-19 mutation
and the L858R mutation, and achieved good prediction
performance. The training and validation sets’ AUC was 90.6%
and 87.5%, respectively. Therefore, our research may be more in
line with actual clinical needs.
TABLE 3 | The relationship between clinical variables of patients and EGFR molecular subtypes (Del-19 mutation vs. L858R mutation) in the training set.

Variable Total (n = 299) Del-19 mutation (n = 154) L858R mutation (n = 145) Univariate analysis Multivariate analysis

P value OR (95%CI) P value

Age (years) <0.001 1.050
(1.022-1.081)

<0.001

- Mean ± SD 56.63 ± 8.81 54.87 ± 8.13 58.50 ± 9.15
- Median (Q1, Q3) 56.0 (50.5,62.5) 55.0(49.0,61.0) 58.0(53.0,64.0)
- Range 21-82 32-78 21-82

Sex (%) 0.533 NA
- Male 104 (34.8%) 51 (33.1%) 53 (36.6%)
- Female 195 (65.2%) 103 (66.9%) 92 (63.4%)

Smoking history (%) 0.867 NA
- No 238 (79.6%) 122 (79.2%) 116 (80.0%)
- Yes 61 (20.4%) 32 (20.8%) 29 (20.0%)

CEA (%) 0.861 NA
- Normal 117 (39.1%) 61 (39.6%) 56 (38.6%)
- High 182 (60.9%) 93 (60.4%) 89 (61.4%)

Lobe location (%) 0.235 NA
- Right upper lobe 97 (32.4%) 54 (35.1%) 43 (29.7%)
- Right middle lobe 19 (6.4%) 6 (3.9%) 13 (9.0%)
- Right lower lobe 72 (24.1%) 35 (22.7%) 37 (25.5%)
- Left upper lobe 68 (22.7%) 33 (21.4%) 35 (24.1%)
- Left lower lobe 43 (14.4%) 26 (16.9%) 17 (11.7%)
April 2022 | V
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CEA, Carcinoembryonic antigen; CI, Confidence interval; Del 19, Exon-19 deletion; EGFR, Epidermal growth factor receptor; L858R, Exon-21 L858R point mutation; NA, not applicable;
OR, Odds ratio; SD, Standard deviation. vs., versus.
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In this study, whether in the training or validation sets, the
combined model established by clinical factors combined with
radiomics features can improve the diagnostic performance of
identifying EGFRmolecular subtypes. Liu et al. (24) included 263
patients with lung adenocarcinoma in their study to detect EGFR
mutation status and its molecular subtypes. Among the 6 models
established, the combined model had better distinguishing ability
than the model that only uses radiomics features or clinical
factors. Tu et al. (20) included 404 NSCLC patients in their study
to predict EGFR mutation status, and the comprehensive model
showed higher predictive performance than any other single
Frontiers in Oncology | www.frontiersin.org 8
model. Jia et al. (32) also showed that a comprehensive model
with radiomics features combined with clinical factors had better
diagnostic performance than a single model. It shows that adding
clinical factors to the radiomics model can improve the
diagnostic performance of the model.

In recent years, the study of radiomics in predicting tumor gene
mutations has attracted extensive attention from researchers (20,
22, 32, 33). The intrinsic relationship between the radiomics
features and EGFR mutation status in patients with lung
adenocarcinoma can be further explored through data mining to
guide clinical decision-making, predict prognosis and evaluate
BA

C D

E F

FIGURE 3 | Receiver operating characteristic (ROC) curves of the three models were used to predict the mutant status of EGFR molecular subtypes. (A, B) Del-19
mutation vs. wild-type. (C, D) L858R mutation vs. wild-type. (E, F) Del-19 mutation vs. L858R mutation. (A, C, E) Training set. (B, D, F) Validation set.
April 2022 | Volume 12 | Article 889293
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efficacy (19, 22, 32). This study investigated the relationship
between radiomics features and EGFR molecular subtypes.
Among these features, most of them were texture features,
indicating that texture features were more closely related to
EGFR molecular subtypes. The human visual system cannot
recognize these features, nor can they be interpreted as specific
Frontiers in Oncology | www.frontiersin.org 9
meanings (34, 35). We observed that radiomics features, including
logarithm_glcm_Correlation, wavelet.LLL_glszm_Zone Entropy
(ZE), and gradient_glszm_Gray Level Non-Uniformity
Normalized (GLNN), etc. were associated significantly with Del-
19 mutation. Among them, logarithm_glcm_Correlation and
wavelet.LLL_glszm_ZE reflected the image texture of the tumor
TABLE 4 | The prediction performance of different models in the training and validation sets.

Models AUC Accuracy Sensitivity Specificity PPV NPV

Del-19 mutation vs. wild-type
Training set
Clinical model 0.719

(0.668-0.770)
0.706

(0.659-0.751)
0.721

(0.589-0.792)
0.697

(0.574-0.743)
0.603

(0.554-0.626)
0.796

(0.763-0.806)
Radiomics model 0.807

(0.765-0.850)
0.747

(0.701-0.789)
0.708

(0.597-0.779)
0.772

(0.651-0.834)
0.665

(0.626-0.686)
0.805

(0.777-0.817)
Combined model 0.838

(0.799-0.877)
0.775

(0.30-0.815)
0.682

(0.565-0.760)
0.834

(0.705-0.896)
0.724

(0.685-0.745)
0.804

(0.776-0.815)
Validation set
Clinical model 0.693

(0.606-0.781)
0.667

(0.581-0.745)
0.648

(0.268-0.787)
0.679

(0.512-0.762)
0.565

(0.349-0.612)
0.750

(0.694-0.771)
Radiomics model 0.779

(0.694-0.864)
0.732

(0.650-0.804)
0.685

(0.592-0.815)
0.762

(0.571-0.952)
0.649

(0.615-0.687)
0.790

(0.738-0.825)
Combined model 0.813

(0.740-0.886)
0.768

(0.689-0.836)
0.648

(0.407-0.759)
0.845

(0.678-0.929)
0.729

(0.629-0.759)
0.789

(0.750-0.804)
L858R mutation vs. wild-type
Training set
Clinical model 0.701

(0.651-0.750)
0.679

(0.630-0.725)
0.634

(0.507-0.722)
0.705

(0.600-0.769)
0.564

(0.509-0.596)
0.762

(0.732-0.778)
Radiomics model 0.825

(0.783-0.868)
0.764

(0.719-0.806)
0.772

(0.662-0.842)
0.759

(0.647-0.826)
0.659

(0.623-0.678)
0.847

(0.825-0.858)
Combined model 0.855

(0.817-0.894)
0.756

(0.710-0.798)
0.890

(0.793-0.945)
0.676

(0.531-0.747)
0.623

(0.596-0.637)
0.911

(0.889-0.918)
Validation set
Clinical model 0.697

(0.614-0.781)
0.672

(0.585-0.750)
0.660

(0.458-0.820)
0.679

(0.552-0.798)
0.550

(0.459-0.603)
0.770

(0.732-0.798)
Radiomics model 0.812

(0.737-0.887)
0.746

(0.664-0.817)
0.760

(0.580-0.880)
0.738

(0.547-0.845)
0.633

(0.568-0.667)
0.838

(0.793-0.855)
Combined model 0.852

(0.790-0.913)
0.739

(0.656-0.811)
0.920

(0.740-1.000)
0.631

(0.500-0.774)
0.597

(0.544-0.617)
0.930

(0.913-0.942)
Del-19 mutation vs. L858R mutation
Training set
Logistic model 0.581

(0.510-0.651)
0.587

(0.524-0.649)
0.789

(0.593-0.854)
0.395

(0.256-0.473)
0.554

(0.483-0.574)
0.662

(0.559-0.701)
RF model 0.881

(0.840-0.921)
0.786

(0.730-0.835)
0.715

(0.621-0.825)
0.853

(0.769-0.948)
0.822

(0.801-0.842)
0.759

(0.739-0.778)
SVM model 0.601

(0.531-0.671)
0.591

(0.528-0.653)
0.805

(0.634-0.870)
0.388

(0.240-0.465)
0.556

(0.497-0.575)
0.676

(0.564-0.714)
Clinical model 0.660

(0.593-0.726)
0.599

(0.536-0.660)
0.797

(0.645-0.872)
0.411

(0.278-0.506)
0.563

(0.511-0.585)
0.679

(0.589-0.723)
Combined model† 0.906

(0.869-0.943)
0.833

(0.781-0.877)
0.821

(0.738-0.916)
0.845

(0.758-0.923)
0.835

(0.819-0.849)
0.832

(0.816-0.844)
Validation set
Logistic model 0.673

(0.569-0.777)
0.679

(0.582-0.767)
0.827

(0.481-0.924)
0.537

(0.315-0.686)
0.632

(0.500-0.658)
0.763

(0.654-0.804)
RF model 0.871

(0.802-0.941)
0.849

(0.766-0.911)
0.788

(0.394-0.904)
0.907

(0.654-0.981)
0.891

(0.804-0.904)
0.817

(0.763-0.828)
SVM model 0.652

(0.547-0.758)
0.651

(0.552-0.741)
0.808

(0.538-0.962)
0.500

(0.370-0.648)
0.609

(0.509-0.649)
0.730

(0.667-0.778)
Clinical model 0.514

(0.402-0.625)
0.538

(0.438-0.635)
0.692

(0.378-0.885)
0.389

(0.248-0.546)
0.522

(0.373-0.582)
0.568

(0.455-0.648)
Combined model† 0.875

(0.781-0.929)
0.830

(0.745-0.896)
0.885

(0.490-0.962)
0.778

(0.536-0.889)
0.793

(0.680-0.806)
0.875

(0.828-0.889)
Ap
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AUC, Area under the curve; Del 19, Exon-19 deletion; L858R, Exon-21 L858R point mutation; NPV, Negative predictive value; PPV, Positive predictive value; RF, Random forest; SVM,
Support vector machine; vs., versus.
†Combined model: RF model combined Clinical model.
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area, and gradient_glszm_GLNN reflected the gray image value of
the tumor area (36). Compared with the EGFR wild-type group,
the values of these features were higher in Del-19 mutation,
indicating that the image texture and gray image values were
related to Del-19 mutation. Lbp.3D.m1_firstorder_10Percentile
and Lbp.3D.m1_firstorder_Skewness, etc. were associated
significantly with L858R mutation. They reflected the voxel
intensity of the image (36). Compared with the EGFR wild-type
group, the values of these features were higher in L858R mutation,
indicating that the image voxel intensity was related to L858R
mutation. Therefore, radiomics features as a new auxiliary tool can
predict EGFR molecular subtypes.
Frontiers in Oncology | www.frontiersin.org 10
Compared with the radiomics model based on only containing
radiomics features, incorporatingpreoperative clinical factors of the
nomogram showed the best predictive performance. This user-
friendly nomogram will help clinicians easily predict EGFR
molecular subtypes in clinical practice. The results were more
practical than a single model and can be used for clinical
applications in patients with lung adenocarcinoma undergoing
CT scans. The task of Del-19 vs. wild-type and L858R vs. wild-
type build with linear model (logistic regression) could obtain a
satisfactory result, and the linearmodel is easy for application. Such
we didn’t applied nonlinear model. The task of Del-19 vs. L858R
washard, the performance of linearmodelwasnot satisfactory, sowe
A

B

D E

C

FIGURE 4 | Nomogram was used to identify Del-19 mutation and wild-type. (A) Construct a nomogram in the training set based on the combined model. (B, C)
Calibration curve of the combined model in the training (B) and validation (C) sets. The x-axis represents the use of the combined model to predict the risk of Del-19
mutation. The y-axis represents the actual Del-19 mutation rate. The green, red, and blue lines represent the distinguishing ability of the clinical, radiomics, and
combined models, respectively, while the gray diagonal line represents the ideal evaluation of the ideal model. The closer the fit to the diagonal line indicates the
better discrimination ability. (D, E) Decision curve analysis for the combined model in the training (D) and validation (E) sets. The x-axis shows the threshold
probability, and the y-axis measures the net benefit. The gray line represents all patients with Del-19 mutation, and the black line represents all patients without Del-
19 mutation. The green, red, and blue lines represent the clinical, radiomics, and combined models, respectively.
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add nonlinear model for comparison and selected best model for
radiomics score construction.

Our study had several limitations. First, although we collected
data from two large medical centers, this was a retrospective study
and there may be inevitable selection bias. The conclusions of this
study need to be prospectively verified in more centers to improve
the clinical applicability of our model. Second, although our study
included 728 patients, increasing the sample size will further
improve the accuracy of the results of this study. Finally, two
Frontiers in Oncology | www.frontiersin.org 11
radiologists spent a lot of time manually segmenting ROI.
Therefore, ROI can be segmented automatically and effectively in
future research.
CONCLUSION

In conclusion, demonstrated the feasibility of identifying EGFR
molecular subtypes through the radiomics features of patients
A

B

D E

C

FIGURE 5 | Nomogram was used to identify L858R mutation and wild-type. (A) Construct a nomogram in the training set based on the combined model. (B, C)
Calibration curve of the combined model in the training (B) and validation (C) sets. (D, E) Decision curve analysis for the combined model in the training (D) and
validation (E) sets.
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with lung adenocarcinoma, making the formulation of clinically
individualized targeted therapy programs more precise and more
in line with actual clinical needs, so as to benefit the patients with
candidate targeted therapy the most.
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