UCLA

Posters

Title

Do Not Disturb: An Application Leveraging Heterogeneous Sensor Network

Permalink

https://escholarship.org/uc/item/4mf6b32b

Authors

Omprakash Gnawali Mark Yarvis

Publication Date

2003

S Center for Embedded Networked Sensing

Shh! Take Your Conversation Elsewhere

Exploiting Heterogeneity with Directed Diffusion

Omprakash Gnawali and Mark Yarvis

University of Southern California / Information Sciences Institute, Intel Corporation http://enl.usc.edu

Motivation

The "Do Not Disturb" Application

- Conventional Approach
 - Threatening signs
- Our Approach
 - Deploy sound-level and motion sensors
 - Actuate an alert when sound occurs near occupied cubicles
- - Leverage heterogeneity to reduce deployment costs and improve scaling and performance

Correlating Sensor Values

- Localize sounds that carry across a field of sound-level sensors
- Correlate sound propagation w/ motion sensors in a cubicle "neighborhood"

Exploiting Heterogeneity with Directed Diffusion

Implementation Using TinyDiffusion Pull sensor data to a central location A distributed approach requires too much data 1. Data processor sends an "interest" Injected as flood 2. Sensors return data values Packets multihop to sink 3. Server analyzes results · Is sound occurring near people? 4 Server actuates alert signal

Scaling Up With Multiple Processors

- Larger networks require more processors
 - Ad hoc processor deployment
 - Each introduces attraction gradient
 - Sensors use metrics to choose the "best" processor
- Overlaps lead to non-linear scaling
 - More processors mean more overlaps
 - Many sensors must send duplicates of data to multiple processors
- How many processors for optimal scaling?

Acknowledgement: Ramesh Govindan and John Heidemann