
UCLA
UCLA Electronic Theses and Dissertations

Title
Weak Solutions to the Muskat Problem with Surface Tension via Optimal Transport

Permalink
https://escholarship.org/uc/item/4mg1f966

Author
Wallace, Ryan Carlton

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mg1f966
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Weak Solutions to the Muskat Problem with Surface Tension via Optimal Transport

A dissertation submitted in partial satisfaction of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Ryan Carlton Wallace

2022



© Copyright by

Ryan Carlton Wallace

2022



ABSTRACT OF THE DISSERTATION

Weak Solutions to the Muskat Problem with Surface Tension via Optimal Transport

by

Ryan Carlton Wallace

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2022

Professor Christina Kim, Chair

The Muskat problem, which models the flow of immiscible viscous fluids in a porous

medium, has been studied extensively in recent years from a number of perspectives.

While most studies have focused on harmonic analysis techniques in the graphical setting,

the formation of topological singularities makes it desirable to have a notion of weak

solution that exists globally in time. In the case of the Muskat problem, this is possible

due to the gradient flow structure of the problem relative to the quadratic Wasserstein

distance from optimal transport theory, which makes available the JKO or Minimizing

Movements scheme [JKO98; AGS05]. This scheme constructs discrete-in-time solutions

for a given timestep h > 0, then finds a continuous-time solution by taking the limit as

h→ 0. In this dissertation, we study the corresponding weak solutions in two settings.

In the first chapter, we study the discrete (in time) JKO solutions to the Muskat

problem in a two-dimensional square domain. We show that if the energy of the initial

configuration is sufficiently small, then asymptotically any discrete solution is close in

C1 to the global equilibrium consisting of a flat interface separating the heavier fluid on
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bottom from the lighter on top, modulo possible “drops”. Further, if the surface tension

is sufficiently strong, and the discrete solution converges to the global equilibrium, then

this convergence occurs exponentially fast.

The second chapter uses a modified JKO scheme to model a situation in which a

source and sink are present. Using estimates similar to those from the standard scheme,

we show convergence of the discrete solutions to a continuous solution, though with some

caveats.

The results of the first chapter of this thesis will be published in a mathematical

journal.
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CHAPTER 1

Long-term Behavior of Discrete Solutions in

Two-Dimensional Square Container

1.1 Introduction

1.1.1 Background

The Muskat problem, first introduced in [Mus34], models the flow of two incompressible,

immiscible fluids moving in a porous medium. Because of its importance to problems in

applied mathematics such as oil flows in reservoirs and groundwater flows in aquifers, it

has been studied extensively from a variety of perspectives since its introduction. In this

chapter we study the long-time behavior of discrete-in-time approximations to the flow

in a particular two-dimensional setting.

The mathematical setup is as follows: the porous medium will be represented by the

open unit square Ω := (0, 1)2 ⊆ R2, a generic point of which we denote by x = (x1, x2).

We will think of the x2 direction as vertical. We assume, crucially for our purposes,

that there is surface tension between the two fluids, with coefficient σ. The gravitational

potential corresponding to fluid i is gix2, where g1 > g2 (i.e. the first fluid is heavier).

We denote by Ei the set occupied by fluid i; since the fluids are immiscible and fill Ω, we

have E1 ∩ E2 = ∅, E1 ∪ E2 = Ω up to measure zero. The velocity of fluid i is denoted by

1



vi and is given by Darcy’s law

vi = − k

µi

(∇pi + gie⃗2), (1.1.1)

where pi is the pressure acting on phase i, k > 0 is the permeability of the medium, µi is

the viscosity of phase i, and e⃗2 = (0, 1) is the vertical unit vector. We call bi := k/µi the

mobility of phase i. Finally, the pressures solve the following free boundary problem:



−∆pi = ∇ · (gie⃗2) = 0 in Ei

∂
∂ν
(pi + giy) = 0 on ∂Ω

V := b1
∂
∂ν
(p1 + g1x2) = b2

∂
∂ν
(p2 + g2x2) on Γ

JpK := p1 − p2 = σH on Γ

ν = ν̃ on ∂Γ ∩ ∂Ω.

(1.1.2)

Here, Γ denotes the interface between the fluids, ν is the outer unit normal on Γ (relative

to E1) and ∂Ω (relative to Ω), V is the normal velocity of the interface in the ν direction,

ν̃ is the co-normal vector tangent to Γ and pointing outside of Ω, and H is the mean

curvature of Γ, positive if E1 is convex. The first condition encodes incompressibility,

the second says the fluids cannot enter or exit Ω, and the third says that the fluid inter-

face is advected by the fluids (i.e., there is no exchange of mass as in phase transitions).

The fourth condition is known in the static case as the Young-Laplace equation, and is

a balance-of-forces equation on the interface, the forces being pressure and surface ten-

sion. The last condition, known in the static case as the Young equation, says that the

interface must intersect the container walls at right angles (at non-corner points). Math-

ematically, the problem is equivalent to a two-fluid vertical Hele-Shaw cell. A typical

example is shown in Figure 1.

The Muskat problem, including variants with only one fluid, has been studied inten-

sively by a number of authors. Most results have focused on graphical solutions with
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Figure 1.1: Example configuration of fluids; the heavier fluid is dark gray, the lighter
fluid is light gray.

E2

E1

Γ

Ω

sufficient regularity, which allows the use of harmonic analysis methods. For a (very

nonexhaustive) sample of such studies, including without surface tension, see [Amb04;

Con+12; SCH04; Con+16; Con+17; CCG11]. Somewhat different approaches can be

found in [PS16b; PS16a; EM11]. These approaches generally do not allow for topological

changes in the phases E1 and E2, such as pinching, coalescing, etc. However, in general

topological singularities are unavoidable [EM11; Cas+13], so it is desirable to have a

notion of weak solution which can accommodate such changes. Such an approach has

been studied by various authors, especially Otto [Ott98; GO01], and is based crucially

on the observation that the Muskat problem turns out to be the gradient flow of a free

energy functional with respect to the (weighted product) Wasserstein metric. This allows

the use of the Euler implicit scheme, also known as de Giorgi’s minimizing movements

scheme [AGS05] or JKO scheme in the Wasserstein case [JKO98], to construct discrete-

in-time approximate solutions for a chosen timestep h > 0. By letting h→ 0 and taking

the limit, one obtains a candidate for a weak solution to the Muskat problem starting

from general initial data. To show that this is a genuine weak solution, it must be as-

sumed that there is no loss of perimeter when taking the limit; i.e., the time-integrated

perimeters of the approximate solutions converge to that of the limiting solution [Ott98].

3



Solutions obtained in this way are often called flat flows in other settings, such as the

mean curvature flows and Mullins-Sekerka flows (see below).

This scheme was recently modified in [JKM21], in which the authors replace the energy

functional (1.1.3) with an approximation inspired by the Merriman-Bence-Osher (MBO)

scheme for mean curvature flow [MBO92] in order to make the scheme amenable to

numerical simulations. See also [CL21], which gives a complete proof of global existence

for the original scheme of Otto [Ott98], with a slightly generalized notion of solution

involving varifolds that allows the perimeter convergence assumption to be dropped.

So far, the JKO scheme has only been applied to show existence of global-in-time

weak solutions to the Muskat/Hele-Shaw problem for general intitial conditions, usually

under conditional perimeter convergence. However, to the knowledge of the author, no

in-depth studies of particular settings have been published. In this chapter, we focus on

a particular simple 2D geometry, and study the discrete solutions coming from the JKO

scheme for a fixed timestep h > 0. In particular, we show that if the initial configuration

has energy sufficiently close to the global energy minimizer (heavier fluid on bottom,

lighter on top, flat interface between), then eventually the discrete solution is also close

to the global minimizer in a C1 sense, modulo the possible presence of a small amount

of displaced fluid at the top and bottom of the container. Additionally, if surface tension

is sufficiently strong, and if there is no displaced fluid present after some point, then the

solution converges exponentially fast to the global minimizer, both in terms of energy

and in Hausdorff distance.

The methods and results of this chapter are inspired by similar ones for the volume-

preserving mean curvature flow (MCF) in Rd, another important geometric motion that

has been studied from the perspective of minimizing movements [LS95; MSS16; ATW93].

In this motion we have a family of moving sets Et whose outer normal velocity V (x, t) at

x ∈ ∂Et is given by the negative of the mean curvature H∂Et(x) of ∂Et at x, adjusted by

a constant to preserve volume: V (x, t) = Ĥ(t) − H∂Et(x), where Ĥ(t) is the average of

H∂Et over ∂Et. In particular, our results are inspired by [MPS22], in which the authors

prove that any discrete solution must converge in Ck, k ≥ 1, exponentially fast to a
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disjoint union of balls of equal volume. The statement of our result is clearly similar,

although in general we cannot say whether the full discrete solution converges to anything.

Instead, we examine subsequential limits of the discrete solution, and show that these

must be smooth critical points of the energy functional (under locally volume preserving

perturbations). By energy dissipation, they must have energy lower than the initial

data. Elementary geometric arguments show that smooth critical points of the energy

functional with sufficiently low energy are constrained to have a particular form, which

is essentially the same as the global energy minimizer, modulo possible displaced fluid on

the top and bottom of the container. Finally, by proving a uniform minimality result for

the discrete sets En
1 , we upgrade convergence in L

1 to convergence in C1, as in [MPS22].

In both cases, the key for the exponential convergence is to prove an “energy-energy

dissipation” inequality, bounding the energy dissipated at each step by the difference in

energy between the current step and the global minimum. This essentially boils down to

certain PDE inequalities, which in [MPS22] takes the form of a “Quantitative Alexandrov

Theorem”.

Regarding the structure of smooth critical points of the energy functional, we mention

the paper [DM19], in which the authors show that critical points of the perimeter func-

tional among sets of finite perimeter, i.e. with no regularity assumptions, are disjoint

unions of balls. Since these more general sets appear as the limits of solutions in the

continuous-time case, analyzing their structure is important for the asymptotic study of

weak solutions to the MCF, and likewise for other gradient flows. It would be interesting

to see if similar results can be proved in the more complicated situation of added potential

energy due to gravity, as in our setting.

Another related geometric motion that has been studied via minimizing movements is

the Mullins-Sekerka equation [LS95; Rög05; Jul+21], which models phase transitions in

materials. Here, the moving interface Γ is the boundary separating the two phases, and

its normal velocity V is given by the jump in the normal derivative of the temperature

function u across the interface, where u is harmonic away from the interface and satisfies

u = HΓ on Γ. Recently, the authors in [Jul+21] were able to analyze the long-term
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behavior of the limiting time-continuous flow of both the volume-preserving mean curva-

ture flow and the Mullins-Sekerka flow in R2, improving earlier work for MCF in [JN20;

FJM22]. As in the discrete MCF case [MPS22], they prove exponential convergence to a

disjoint union of discs. The key in both cases is to use the natural estimates coming from

the minimizing movements scheme to deduce geometric information about the moving

interface. In our case this is more difficult, in part due to the higly nonlocal nature of

the flow (and the appearance of the difficult Wasserstein distance), but is an interesting

possibility for further research. (See remark 1.2.13 below.)

Partly because the implicit scheme for mean curvature flow is in some respects more

tractable than in the Muskat case, some more detailed results have been proved, includ-

ing analyzing special situations such as convex or graphical sets [DL18; CC06; Log16].

We hope that the present work will be a first step towards extending these efforts to the

Muskat setting. In particular, we mention the geometric Theorem 1.2.7, which is used to

prove that the discrete sets {En
1 }∞n=1 satisfy a uniform (in n) almost-minimality condition

involving perimeter, which is a key step for upgrading L1 convergence to C1 convergence.

In the MCF case this is much easier, because the metric term appearing in the minimiza-

tion step is linear in the test set E and is well-defined for sets E of any volume, not just

sets of the same size as the previous set En−1, making it easy to compare En directly to

any other set E. (In the Mullins-Sekerka case the metric term is not quite linear, but

is still given by an explicit formula that is amenable to manipulation.) By contrast, the

Wasserstein term in (1.1.4) below is highly nonlinear and only makes sense for sets E

with the same measure as En−1
1 . Thus, to study the perimeter-minimizing properties of

En
1 , we must first modify a competing set E to have the same measure as En

1 , while keep-

ing good control on the change in perimeter induced by this modification. In Theorem

1.2.7, we do this by a simple, constructive method in which the perimeter change in E

is controlled by the diameter of the largest component of En
1 . By the perimeter bounds

coming from the minimizing movements scheme, this diameter must be at least some

constant l independent of n. Hence, the uniform minimality of the sets En
1 is established.

The outline of the chapter is as follows: in the first section, we introduce the dis-
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crete scheme and establish its regularity properties, and then prove the result about the

structure of low-energy critical points alluded to above, establishing subsequential con-

vergence in L1 to critical points similar to the global minimizer. Then we prove the

geometric Theorem 1.2.7, which establishes uniform almost-minimality of the discrete

sets and consequently (by the classical regularity theory) convergence in C1. In the sec-

ond section, we upgrade this to exponential convergence by proving an energy dissipation

inequality as in [MPS22], assuming convergence to the global minimizer.

1.1.2 Statement of Results

Again, our setting is the open unit square Ω = (0, 1)2. In general, (E1, E2) denotes a

partition of Ω: |E1 ∩ E2| = 0, |Ω\(E1 ∪ E2)| = 0, and Ei represents fluid i. We will

restrict to the special case where both fluids occupy equal volumes: |E1| = |E2| = 1/2.

Since surface tension is proportional to area, we will restrict to sets of finite perimeter.

Recall that a set E is said to have finite perimeter in the open set A if the perimeter of

E in A

P (E;A) := sup{
∫
E

∇ · ξ dx : ξ ∈ C1
c (A;R

2)} <∞.

We will abbreviate P (E; Ω) as P (E), and will always assume we have chosen the Lebesgue

representative of E. (See [Mag12] for more on finite perimeter sets.) As mentioned in

the introduction, the Muskat flow is the gradient flow of a particular energy functional,

denoted by E :

E(E1) = Φ(E1) + σP (E1), (1.1.3)

where

Φ(E1) :=

∫
E1

g1x2 dx+

∫
E2

g2x2 dx

is the total potential energy and P (E) is as above. Thus σP (E) is the total interfacial

energy.

The metric associated with this gradient flow structure is the Wasserstein metric.

Recall that the quadratic Wasserstein distance W2(µ, ν) between two positive measures

7



µ, ν of the same mass on Ω is defined by

W 2
2 (µ, ν) = inf

γ∈Π(µ,ν)

∫
Ω×Ω

|x− y|2 dµ(x) dν(y),

where Π(µ, ν) is the set of all couplings between µ and ν, i.e. measures γ on the product

space Ω × Ω with marginals µ and ν: π1#γ = µ and π2#γ = ν, where π1(x, y) = x and

π2(x, y) = y are the coordinate projections and # denotes the pushforward operation.

If µ is absolutely continuous with respect to Lebesgue measure, then Brenier’s theorem

says there is a unique minimizer γ ∈ Π(µ, ν) which has the form of a transport map:

γ = (Id, T )#, where T pushes µ onto ν: T#µ = ν. Moreover, T (x) = x−∇φ(x), where φ

is a Lipschitz function (a “Kantorovich potential”) determined µ-a.e. up to an additive

constant. See [Vil03] for more on the Wasserstein distance.

In our case, the measures involved are simply uniform measures on the sets Ei, rescaled

to have total mass |Ei| = 1/2. Thus, the measure associated with the set Ei is 1Ei
(x) dx.

Since there are two phases, each with different mobility, the total squared distance be-

tween two fluid configurations (E1, E2) and (F1, F2) is

1

b1
W 2

2 (1E1dx,1F1dx) +
1

b2
W 2

2 (1E2dx,1F2dx).

We will abbreviate W2(1E dx,1F dx) by W2(E,F ) throughout the chapter.

Let (E0
1 , E

0
2) be the initial configuration of fluids, and let h > 0 be a chosen time-step.

Given (En−1
1 , En−1

2 ), we recursively define

En
1 ∈ argmin

|E1|=|En−1
1 |

F(E1;E
n−1
1 ), (1.1.4)

where

F(E1;E
n−1
1 ) =

1

2hb1
W 2

2 (E1, E
n−1
1 ) +

1

2hb2
W 2

2 (E2, E
n−1
2 ) + E(E1);

and we let En
2 be the complementary set to En

1 , i.e. En
2 = (En

1 )
c. Such a sequence

{(En
1 , E

n
2 )}∞n=1 will be called a discrete flow or discrete solution to the Muskat problem

8



with initial data (E0
1 , E

0
2).

Let E∞ = (0, 1)×(0, 1
2
) be the global minimizer of E among sets of volume 1/2. Define

g = g1 − g2 > 0. Then our main result is as follows:

Theorem 1.1.1 (Main Theorem). (1) For any ϵ > 0, there is an energy threshold

L = L(σ, g, ϵ) such that if E(E0
1) < L, then for any h > 0 and any discrete solution

{(En
1 , E

n
2 )}∞n=1, there exists N such that for n ≥ N , the configuration (En

1 , E
n
2 ) has the

following form: there is a C2 function fn : [0, 1] → (0, 1), with ||fn − 1/2||L∞ < ϵ/2 and

f ′
n(0) = f ′

n(1) = 0, such that

{(x1, x2) : ϵ < x2 < fn(x1)} ⊆ En
1

and

{(x1, x2) : fn(x1) < x2 < 1− ϵ} ⊆ En
2 .

(See figure 1.2.) Moreover, ||f ′
n||L∞ → 0 as n → ∞. In particular, any subsequential

limit point (E1, E2) of {(En
1 , E

n
2 )}∞n=1 has the same form, with fn replaced with a constant

f(x) = c, for some c with |c− 1/2| < ϵ.

(2) For any h > 0 and discrete solution {(En
1 , E

n
2 )}∞n=1, if

σ > 2g/π4, (1.1.5)

and if En
1 → E∞ as n → ∞, then En

1 converges exponentially fast (relative to E and in

Hausdorff distance) to E∞. Also, En
1 → E∞ in C2 (though not necessarily exponentially

fast), meaning that for large n, En
1 is the subgraph of a C2 function fn : [0, 1] → (0, 1),

En
1 = {(x1, x2) : 0 < x2 < fn(x1)},

and we have fn → 1/2 in C2([0, 1]).

Remark 1.1.2. It remains an interesting open problem to prove quantitative convergence

rates which are independent of the timestep h, which would allow to prove convergence

9



Figure 1.2: Structure of configuration for large n.

x2 = fn(x1)

ϵ

En
1

En
2

1/2

ϵ

ϵ(?)

(?)

for the continuous-time solution obtained by taking the limit as h → 0. This is done

for the volume-preserving mean curvature flow and the Mullins-Sekerka flow in R2 in

[Jul+21] (as noted above). See also remark 1.2.13 below.

Remark 1.1.3. The specific choice of the square domain Ω is mostly for simplicity and

convenience; the proofs would apply equally well to many other domains, the main re-

quirement being the existence of a structural theorem for low-energy critical points as in

Proposition 1.2.5 below. In fact, the proofs should extend to the three-dimensional case,

on domains such as the cylinder Ω = B(0, 1) × (0, 2); however, this would require some

boundary regularity theory for almost-minimal surfaces.

Remark 1.1.4. This theorem can be interpreted as a sort of well-posedness or stability

result for discrete solutions near the global minimizer E∞: any initial configuration suf-

ficiently close to E∞ (as measured by energy) must eventually be close to E∞ in C1,

modulo possible displaced fluid on top and bottom. This accords with the fact that E∞

is a stable configuration in the classical (smooth) case, since the heavier fluid is beneath

the lighter one.

Notation 1.1.5. The following notation will be used throughout chapters one and two:

– ∂E = the topological boundary of E as a subset of R2;

– E = the closure of E in R2;

10



– H1 = one-dimensional Hausdorff measure on R2;

– A ≲ B means A ≤ C · B for some constant C > 0 independent of A,B (where A

and B are variable quantities).

1.2 Proofs

1.2.1 Convergence in C1

We will collect here some properties of the discrete flow {(En
1 , E

n
2 )}∞n=1. First, note that

the existence of minimizers for (1.1.4) is immediate by the direct method of the calculus

of variations. Next, we have the usual estimates coming from the minimizing movements

scheme [Vil03]: using En−1
1 as a competitor to En

1 in (1.1.4), we get

E(En
1 ) +

1

2hb1
W 2

2 (E
n−1
1 , En

1 ) +
1

2hb2
W 2

2 (E
n−1
2 , En

2 ) ≤ E(En−1
1 ), (1.2.1)

and iterating this inequality and summing yields

1

2h

N∑
n=1

{
1

b1
W 2

2 (E
n−1
1 , En

1 ) +
1

b2
W 2

2 (E
n−1
2 , En

2 )

}
≤ E(E0

1)− E(EN
1 )

≤ E(E0
1)− E(E∞).

In particular,

E(En
1 ) ≤ E(E0

1) (1.2.2)

for all n ≥ 1 and

1

2h

∞∑
n=1

{
1

b1
W 2

2 (E
n−1
1 , En

1 ) +
1

b2
W 2

2 (E
n−1
2 , En

2 )

}
<∞. (1.2.3)

Moreover, from optimal transport theory we know [Vil03]

W 2
2 (E

n−1
i , En

i ) =

∫
En

i

|∇φn
i |2 dx, (1.2.4)

11



where T (x) = x−∇φn
i (x) is the optimal transport map from En

i to En−1
i ; hence (1.2.3)

becomes

1

2h

∞∑
n=1

{
1

b1

∫
En

1

|∇φn
1 |2 dx+

1

b2

∫
En

2

|∇φn
2 |2 dx

}
<∞. (1.2.5)

Next, we examine some regularity properties of discrete solutions:

Proposition 1.2.1 (Regularity of Discrete Solutions). Let {(En
1 , E

n
2 )}∞n=1 be a discrete

flow defined by the minimizing movements scheme (1.1.4).

1. There exist constants Λ, r0 > 0, a priori depending on n*, such that

P (En
1 ;B(x, r)) ≤ P (E;B(x, r)) + Λ|En

1△E| (1.2.6)

whenever En
1△E ⊆ B(x, r) ∩ Ω and r < r0. In the language of [Mag12], En

1 is a

(Λ, r0)-perimeter minimizer in Ω.

2. ∂En
1 ∩ Ω is in fact a locally C2,α curve for every 0 < α < 1/2, and the mean

curvature H therefore is well-defined in the classical sense on ∂En
1 ∩Ω, and for each

connected component Γc of ∂E
n
1 ∩ Ω there is a constant λ such that�

σH + gx2 +
φn
1

hb1
− φn

2

hb2
= λ (1.2.7)

on Γc, where φ
n
i is the Kantorovich potential for the optimal transport of En

i onto

En−1
i (see (1.2.4)). Consequently, H extends continuously to the closure Γ.

3. ∂En
1 ∩ Ω has bounded curvature for each n ≥ 1 and therefore has a well-defined

tangent space at each point of ∂(∂En
1 ∩ Ω). If ∂En

1 intersects ∂Ω at a non-corner

point, then the two curves intersect orthogonally.�

Proof. (1) Arguing exactly as in [Mag12, pp. 279-80], we can find C, r0 > 0, depending

on En
1 ,Ω, such that if En

1△F ⊆ Br ∩ Ω with r < r0, then there exists G ⊆ Ω with

*In 1.2.7 below, we will se that the dependence on n can be omitted.
�This is the discrete analogue of the Young-Laplace equation in (1.1.2).
�This is the discrete analogue of the Young equation in (1.1.2).
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|G| = |En
1 | and En

1△G ⊆ Ω such that |En
1△G| = 2|En

1△F | and

P (G) ≤ P (F ) + C
∣∣|En

1 | − |F |
∣∣. (1.2.8)

Using G as a competitor to En
1 in the minimality of F(·, En−1

1 ), we get

F(En
1 , E

n−1
1 ) ≤ F(G,En−1

1 ),

or

P (E) ≤ P (G) +
1

2σhb1
(W 2

2 (G,E
n−1
1 )−W 2

2 (E
n
1 , E

n−1
1 ))

+
1

2σhb2
(W 2

2 (G
c, En−1

2 )−W 2
2 (E

n
2 , E

n−1
2 ))

+
1

σ
(

∫
G\En

1

g1x2 dx−
∫
En

1 \G
g1x2 dx)

+
1

σ
(

∫
En

1 \G
g2x2 dx−

∫
G\En

1

g2x2 dx).

From the definition of the W2 metric, we have

|W 2
2 (E

n
1 , A)−W 2

2 (E
n
1 , B)| ≤ 2|A△B|

(since the diameter of Ω is
√
2). Hence,

P (En
1 ) ≤ P (G) +

1

σhb1
|En

1△G|+
1

σhb2
|En

2△Gc|+ g1
σ
|En

1△G|+
g2
σ
|En

1△G|

= P (G) + C ′|En
1△G|

where

C ′ =
1

σ
(g1 + g2 +

1

hb1
+

1

hb2
).

Therefore, using |En
1△G| = 2|En

1△F | and (1.2.8) (and the trivial inequality ||En
1 |−|F || ≤

|En
1△F |), we get

P (En
1 ) ≤ P (F ) + Λ|En

1△F |,

13



where Λ = C + 2C ′.

(2) By the classical regularity theory for almost-minimal surfaces [Mag12], it follows

from part (1) that Γ := ∂En
1 ∩ Ω is locally C1,α for every 0 < α < 1/2. To upgrade this

to C2,α and prove (2), we have to look at the optimality condition (1.1.4) and derive the

associated Euler-Lagrange equation. Let p ∈ Γ. By the local C1,α regularity, there is a

direction ν ∈ S1 and radius δ > 0 such that Γ is the graph of a C1,α((−δ, δ)) function

within the cylinder C ⊂ Ω defined by C := {x : |(x − p) · ν| < δ}. By rotating we can

assume ν = (0, 1)t, so that

En
1 ∩C = p+ S(u),

where S(u) is the subgraph of a C1,α((−δ, δ)) function u:

S(u) := {(x1, x2) : −δ < x2 < u(x1),−δ < x1 < δ},

u(0) = 0. (See figure 1.2.1.)

Figure 1.3: Local representation of Γ as a graph.

We now want to modify En
1 by perturbing its boundary withinC. Let η ∈ C∞

c ((−δ, δ))

satisfy
∫ δ

−δ
η dx1 = 0, and given ϵ > 0, replace En

1 by the set Eϵ defined by replacing En
1

inside C by

p+ S(u+ ϵη).

(Of course, ϵ must be small enough so that this new set is contained in C.) We have

14



|Eϵ| = 1/2, hence

F(En
1 ;E

n−1
1 ) ≤ F(Eϵ;E

n−1
1 )

for small ϵ. In particular,

d

dϵ
F(Eϵ;E

n−1
1 )

∣∣∣
ϵ=0

= 0, (1.2.9)

provided the derivative exists. By standard calculations

d

dϵ
E(Eϵ)

∣∣∣
ϵ=0

=

∫ δ

−δ

σ
u′η′√

1 + (u′)2
+ guη dx1,

since u is C1,α. To differentiate the W2 terms, it is more natural to flow En
1 along a

divergence-free field. We define such a field v as follows:

v =


0 Ω\C

∇p En
1 ∩C

∇q En
2 ∩C,

where p, q solve the boundary value problems



∆p = 0 on En
1 ∩C

∂p
∂ν

= η√
1+(u′)2

on Γ

∂p
∂ν

= 0 on ∂(En
1 ∩C)\Γ,



∆q = 0 on En
2 ∩C

∂q
∂ν

= − η√
1+(u′)2

on Γ

∂q
∂ν

= 0 on ∂(En
2 ∩C)\Γ,

ν being the unit outer normal on the domain in question (either En
1 ∩C or En

2 ∩C). Let

E ′
ϵ be the image of En

1 under the flow of v for time ϵ > 0§. Since the normal component

§Note that although v is in general discontinuous across Γ, the flow is still well-defined and volume-
preserving because the component of v normal to Γ is continuous across Γ, and v is divergence-free on
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of v on Γ coincides with that of ηe⃗2, we have |Eϵ△E ′
ϵ| = o(ϵ) and hence

d

dϵ
W 2

2 (E
n−1
1 , Eϵ)

∣∣∣
ϵ=0

=
d

dϵ
W 2

2 (E
n−1
1 , E ′

ϵ)
∣∣∣
ϵ=0
,

again provided one (and hence both) derivative exists. But the derivative on the right

can be evaluated, and equals¶ ∫
En

1 ∩C
∇φn

1 · v dx,

∇φn
1 being the optimal displacement from En

1 to En−1
1 . As φn

1 is Lipschitz, we can use

the Gauss-Green formula for vector fields of bounded variation, to get

∫
En

1 ∩C
∇φn

1 · v dx =

∫ δ

−δ

φn
1 (x1, u(x1))η(x1) dx1.

Performing the same calculation but for the flow of En
2 , we finally see that (1.2.9) is

equivalent to

∫ δ

−δ

σ
u′η′√

1 + (u′)2
+ guη +

b−1
1 φn

1 (x1, u(x1))− b−1
2 φn

2 (x1, u(x1))

h
η(x1) dx1 = 0.

This is an elliptic equation in divergence form, with Lipschitz coefficients. From here

Schauder theory easily gives that u′ is C1,α, i.e. u is C2,α, which means ∂En
1 ∩Ω is locally

C2,α. Hence, we may convert the equation to differential (pointwise) form, to get (1.2.7).

(See [Mag12, §27] for analogous calculations.) Since φi is Lipschitz continuous on En
i ,

it extends to a continuous Lipschitz function on the closure En
i . Therefore, from the

equation (1.2.7) we deduce that H is in fact continuous on Γ, i.e. it is continuous up to

the boundary ∂Ω.

(3) See below, 1.2.1.

Remark 1.2.2. The (Λ, r0)-minimality and consequent regularity of sets appearing in

En
1 and En

2 separately.
¶The proof given in [Vil03] assumes that the vector field in question is C1; however, since our v is

bounded, one can easily verify that the same proof applies mutatis mutandis to our situation.
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minimization problems involving the perimeter and the Wasserstein distance has been

studied before, in [Mil06; Xia05]. However, these studies do not examine the higher

C2-regularity as we did above, which is crucially needed for our purposes.

We now investigate the long-term behavior of the sets En
1 , and prove the first part of

Theorem 1.1.1. To do so, we will first establish the last statement: that any subsequential

W2-limit point (E1, E2) of {(En
1 , E

n
2 )}∞n=1 satisfies (0, 1)×(ϵ, c) ⊆ E1 and (0, 1)×(c, 1−ϵ) ⊆

E2, where c is a constant with |c − 1/2| < ϵ. See figure 1.2.1 for an example. In other

words, E1 is essentially the same as the global equilibrium E∞, except for the fact that

some mass may be displaced to the top and bottom of Ω. Then, we will show that the

sets (En
1 , E

n
2 ) satisfy a stronger almost-minimality property that is uniform in n, and

therefore, by the classical regularity theory for almost minimal surfaces, any subsequence

{(Enk
1 , Enk

2 )}∞k=1 with (Enk
1 , Enk

2 ) → (E1, E2) in W2 actually converges in C1, and hence

must have the form described in Theorem 1.1.1(1). Since any subsequence has a further

subsequence which is convergent, this establishes the first part of the theorem.

E1

E2

Figure 1.4: An example critical point. Note that some fluid is displaced to the top and
bottom.

To prove the first statement above, that any limit point of the discrete solution has

the form described, we argue as follows: first, any limit point E1 of the discrete solution

{En
1 }∞n=1 must be a C2 critical point for the energy functional E under locally volume-

preserving variations, and hence must satisfy the associated Euler-Lagrange equations.

On the other hand, by energy dissipation, E1 must have lower energy than E0
1 . But,
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by elementary geometric considerations, critical points of E with C2 boundary and suffi-

ciently low energy are very constricted, and in fact must have the form described in the

theorem.

Remark 1.2.3. The study of the precise shapes of the critical points of energy functionals

involving perimeter and gravity (“equilibrium capillary surfaces”) is a classical subject,

see [Fin12]. Since we do not need any detailed information about these shapes beyond

what is contained in Proposition 1.2.5, we will not go into more detail.

Lemma 1.2.4 (Limit points are critical points). Let {Enk
1 }∞k=1 be a subsequence of

{En
1 }∞n=1 such that Enk → E1 in W2. Then E1 is a C2 critical point of E , meaning

the following: |E1| = 1/2, ∂E1 ∩ Ω has finitely many components and is locally the

graph of a C1 function, and for each component Γc of ∂E1 and all continuous functions

s : Γc → R with
∫
Γc
s dH1 = 0, we have

∫
Γc

(σH + gx2)s dH1 = 0,

where H is the mean curvature of Γc, with positive sign where E1 is convex. In particular,

there is a constant λ such that σH + gx2 = λ on Γc.

Proof. We first claim that E1 minimizes the functional

F1 7→
1

2hb1
W 2

2 (E1, F1) +
1

2hb2
W 2

2 (E2, F2) + E(F1). (1.2.10)

For suppose not, i.e. suppose there were some F1 ̸= E1 with

1

2hb1
W 2

2 (E1, F1) +
1

2hb2
W 2

2 (E2, F2) + E(F1) < E(E1).

Since W2(E
nk
1 , E1) → 0, for large enough k we have

1

2hb1
W 2

2 (E
nk
1 , F1) +

1

2hb2
W 2

2 (E
nk
2 , F2) + E(F1) < E(E1).
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Adding

1

2hb1
W 2

2 (E
nk
1 , Enk+1

1 ) +
1

2hb2
W 2

2 (E
nk
2 , Enk+1

2 )

to the right side, and using E(E1) ≤ E(Enk+1
1 ), we deduce

1

2hb1
W 2

2 (E
nk
1 , F1) +

1

2hb2
W 2

2 (E
nk
2 , F2) + E(F1)

<
1

2hb1
W 2

2 (E
nk
1 , Enk+1

1 ) +
1

2hb2
W 2

2 (E
nk
2 , Enk+1

2 ) + E(Enk+1
1 ),

contradicting the definition of Enk+1
1 .

Thus, E1 minimizes the functional (1.2.10), and so, using the same reasoning as in

Proposition 1.2.1, we deduce ∂E1 ∩ Ω is locally C2,α and that for each component Γc of

∂E1 ∩ Ω and all continuous functions s : Γc → R with
∫
Γc
s dH1 = 0, we have

∫
Γc

(σH + gx2)s dH1 = 0,

as desired.

Now, we show that critical points with sufficiently low energy must have the form

described in Theorem 1.1.1(1).

Proposition 1.2.5 (Structure of critical points). Let ϵ > 0. Then there is an energy

threshold L = L(σ, g, ϵ) such that, if E1 is a C2 critical point of E in the sense above,

with complementary set E2, then E(E1) < L implies

(0, 1)× (ϵ, c) ⊆ E1

and

(0, 1)× (c, 1− ϵ) ⊆ E2,

where c is a constant with |c− 1/2| < ϵ.

Proof. We first determine what kinds of curves the connected components of Γ := ∂E1∩Ω

can be. Let Γc be such a component. If Γc is either a closed curve or a curve with both
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endpoints on the left or right wall of Ω, then by shifting Γc vertically up or down we

see that E1 cannot be a critical point of E . Thus, Γc must be one of three types: both

endpoints on the top wall or bottom wall of Ω, endpoints on adjacent walls (spanning a

“corner” of Ω), or endpoints on opposite walls (left and right or top and bottom).

Since E∞ minimizes both the potential energy Φ(E) and the perimeter P (E) among

E ⊆ Ω with |E| = 1/2, in order for E(E1) to be close to E(E∞), Φ(E1) must be close

to Φ(E∞) and P (E1) must be close to P (E∞) = 1. Φ(E1) being close to Φ(E∞) forces

|E1△E∞| to be small. In order to achieve this using the allowable curves above, while

still keeping P (E1) close to 1, there must be exactly one curve Γc with endpoints on

{0} × (0, 1) and {1} × (0, 1), with E1 immediately below it. (Γ may of course have other

curves, but it must have precisely one of this form, connecting the left and right walls.)

We claim that Γc must be a straight horizontal line. Suppose not. Then we can find

two points p = (p1, p2) and q = (q1, q2) on Γc, with p2 > q2, such that H(p) ≥ 0 and

H(q) ≤ 0. Indeed, we can simply choose p to be the highest point on Γc, and q the lowest;

then since E1 is below Γc, we have H(p) ≥ 0 ≥ H(q). But this contradicts the equation

σH + gx2 = λ which must hold on Γc by Lemma 1.2.4, which implies that H strictly

decreases with height. (See figure 1.5.) Thus, Γc is a straight line.

p

q

E2

E1

Figure 1.5: Forbidden configuration: H(p) ≥ 0 ≥ H(q) but p2 > q2.

The only other curves left to account for are those that have both endpoints on the

top or bottom walls of Ω, or that connect two adjacent walls at the corners. Since we
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already have a curve of length 1, each of the remaining curves can have diameter at most

δ := P (E1)− 1 = P (E1)−P (E∞), and since they touch either the bottom or top wall of

Ω, they must be contained within the strips (0, 1)×(0, δ) and (0, 1)×(1−δ, 1). Hence, we

simply choose L small enough so that P (E1)−P (E∞) < ϵ. This completes the proof.

Remark 1.2.6. By examining the above proof more closely, it is easy to see how L could

be calculated approximately; but since we do not need this information, we will not

investigate it further.

All of the above proofs dealt with convergence in W2, and hence convergence in

L1 (since Ω is bounded). To upgrade to C1 convergence, we will exploit the fact that

the sets En
i actually satisfy a stronger uniform minimality condition, in contrast to the

statement of Proposition 1.2.1(1), which is a priori dependent on n. As explained in

the introduction, this involves a geometric construction for changing the volume of a set

while controlling the associated change in perimeter.

Theorem 1.2.7 (Uniform Almost-Minimality). Let E(E0
1) ≤ M . There are constants

Λ, r0 > 0, depending only on M, g1, g2, σ, h (but not on n), such that En
1 is a (Λ, r0)-

perimeter minimizer in Ω for all n ≥ 1.

Proof. From above, ∂En
1 ∩Ω is locally C2,α. Thus ∂En

1 ∩Ω consists of a finite� number of

locally C2,α curves Γi (its connected components). Since |En
1 | = 1/2 and P (En

1 ) ≤M/σ,

there is a constant l > 0, depending only on M/σ, such that at least one Γi, say Γc, has

diameter at least l. Define r0 = l/2
√
2, and suppose F ⊆ Ω satisfies F△En

1 ⊆ B(x, r)∩Ω

for some x ∈ Ω, r < r0. To apply the minimality condition (1.1.4) satisfied by En
1 , we

have to compare En
1 to a set of the same size 1/2. If |F | = 1/2 already, then there is

nothing to do. In general, however, |F | will not equal 1/2, and hence we must construct

another set F ′ such that |F ′| = 1/2 and such that we have good control on the excess

(P (F ′)−P (F ))+ in terms of the difference |F△F ′|. The construction used in Proposition

�Finiteness follows easily from the perimeter and curvature bounds: infinitely many components with
diameter at least some positive constant would yield infinite perimeter, while on the other hand allowing
arbitrarily small diameter components would lead to arbitrarily large curvature.
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1.2.1 above is taken from [Mag12] and depends on the set En
1 ; since we want the result to

be independent of n, this will not work. Similarly, the studies mentioned above [Mil06;

Xia05] use approaches that either are dependent on the set in question or else do not

seem to apply to our situation. Hence, we must use another procedure.

Without loss of generality we may assume |F | < 1/2, since the two cases are com-

pletely symmetric (just apply the same reasoning to En
2 instead of En

1 ). We will construct

a set F ′ with the following properties:

1. |F ′| = 1/2;

2. F ⊆ F ′;

3. P (F ′) ≤ P (F ) + 8
√
2

l
|F ′△F |.

The basic idea is very simple: if we have a nice connected set (say convex) with diameter

d, then we can increase its volume by “thickening” it in the direction perpendicular to

its diameter by some distance δ (see figure 1.6). The volume added by this change is

dδ, whereas the perimeter has increased by 2δ. Thus, the ratio of perimeter increase ∆P

to volume increase ∆V is ∆P/∆V = 2/d. Hence, if we have a lower bound l on the

diameter d, then we can bound ∆P/∆V ≤ 2/l, exactly the kind of bound we are looking

for.

Figure 1.6: Enlarging a set by “thickening”.

We want to apply this strategy to F , or rather to one of its connected components.

However, F may not have a nice, convex component like the set in figure 1.6 above.

Hence, we will first have to apply some modifications, which amount to “filling in” holes

in F and various concave portions of ∂F . Moreover, we have to take into consideration

the presence of other components of F , as well as the container wall ∂Ω, both of which
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may obstruct the extension we are trying to make. Most of the rest of the proof is

devoted to these technicalities; however, they should not overshadow the basically simple

geometric idea behind them.

Throughout the following, we will be continually modifying the set F ′, which initially

is F . Hence, F ′ will simply stand for the current modification of F , at the given stage of

the construction.

Since r0 = l/4, we can find a rectangle R, of the form (a, b) × (0, 1) or (0, 1) × (a, b)

for some 0 < a < b < 1, such that

1. R∩B(x, r) = ∅;

2. the width b− a is at least l/4
√
2;

3. R∩Γc contains at least one curve, call it B, with endpoints on opposite sides of R.

Indeed, since Γc has diameter at least l, its projection onto one of the coordinate axes

must have diameter at least l/
√
2; since we want to avoid the ball B(x, r), we subtract

r0 = l/2
√
2. The remaining projection then has at least one interval of length ≥ l/4

√
2,

which we use as (a, b). Since Γc is connected, the preimage of (a, b) has at least one

connected curve joining opposite sides of R.

For concreteness, assume w.l.o.g. that R is vertical, (a, b)×(0, 1). See figure 1.7. Note

that since R does not intersect B(x, r), En
1 ∩ R = F ∩ R; in particular, ∂F is smooth

within R.

Our strategy is to enlarge F within R, using the method outlined above, by “thick-

ening” the portion of F within R in the vertical direction. Let E be the connected

component of En
1 ∩R = F ∩R touching B. We will first fill in any holes in E. Let C be

a closed curve in ∂E not containing B, and call the region it encloses RC ⊆ R. (Note: it

may be that F has other components within RC; this is fine.) If |RC\F | ≤ |En
1 |−|F |, then

add RC to F to get F ′ = F ∪ RC; this clearly decreases P (F ). Otherwise, we partially

“fill in” RC from the left, i.e. we add to F the set At := ((0, t)× (0, 1)) ∩ RC, where t is

chosen so that |At\F | = |En
1 | − |F |, i.e. so that the new set |F ′| = 1/2. See figure 1.8.
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Figure 1.7: An example configuration, with rectangle R.

Figure 1.8: Partially filling in a hole.

Clearly, the new F ′ has strictly smaller perimeter than the original F . If we added

all of RC to F and still have |F ′| < 1/2, then move on to the next closed curve in ∂E

disjoint from B, and repeat the procedure. If, after adding all such “holes” RC to F , we

still have |F ′| < 1/2, then we do the same thing for any “side holes”, i.e. components

of En
2 ∩ R bounded by a curve C ⊆ ∂E with both endpoints on {a} × (0, 1) or both on

{b} × (0, 1).

Suppose after adding all such “holes” we still have |F ′| < 1/2. We now want to apply

to E the “thickening” strategy in the vertical direction. Recall that B ⊆ ∂E connects

opposite sides of R; suppose without loss of generality that it is an upper boundary cuve

of E (i.e. E lies immediately below it). In order to have F ⊆ F ′, B must not “fold over

itself”, i.e., its outer normal vector n⃗ must satisfy n⃗ · e⃗2 ≥ 0 everywhere. If this is not

the case, we simply “fill in” the offending areas from the left or right, as with the holes

above, until either we have overcome the volume deficit 1/2 − |F ′| or B no longer folds
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over itself, as in figure 1.9.

Figure 1.9: Filling in the “fold” on B (dark gray region).

E

B

E

B

We continue to use ‘E’ to denote this enlarged version of the original E. As before,

this only decreases the perimeter of F ′. It may happen that as we are filling in portions

of B, we intersect the boundary of another component G of F ∩ R. If this occurs, we

simply add G to E, and repeat all of the above procedure, beginning with filling in holes,

to the enlarged E. This is best illustrated visually, in figure 1.10. Again, all of this only

decreases P (F ′).

Suppose after all the above that we still have |F ′| < 1/2. We now have a (possibly

new) upper boundary curve B, connecting opposite sides of R, which does not fold over

itself. After these preparations, we can finally apply to E the extension procedure. We

enlarge E by translating B upwards by a distance δ. Thus, we replace the curve B with

the translated curve B′ := B + δe⃗2, for some δ > 0, along with the vertical segments

between p and p+ δe⃗2 and between q and q + δe⃗2, where p, q are the endpoints of B (see

figure 1.11).

Note that since B′ doesn’t fold over itself, the new F ′ strictly contains the old F ′. If

the extended region does not intersect any other components of F ∩ R or the container

wall ∂Ω, then this increases the volume of F ′ by ∆V = (b− a) · δ and the perimeter by

∆P = 2δ. Thus, ∆P/∆V = 2/(b−a). If, on the other hand, we run into the boundary of

another component G of F ∩R, and we still have a volume deficit, then we do the same

thing we did above: we add G to E, then fill in any holes, then fill in the upper boundary

curve until it doesn’t fold over itself, to get a new upper boundary curve, which we then

extend again if necessary. Similarly if we run into ∂Ω, as illustrated in figure 1.12.

If a deficit remains after all this, we do the same procedure with the lower boundary
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Figure 1.10: Hitting another component.

x = a

B

G
E

(a) While trying to fill in the fold on B, we
hit another component G.

x = a

E
E

B

(b) We add G to the expanded E, to get
a larger connected set E, with new upper
boundary B.

x = a

E

B

E

(c) We apply the procedures described pre-
viously to the new E: filling in holes and
side holes, and the fold on the new B (mid-
dle dark gray region).

x = a

E

B

(d) The final result, with new upper bound-
ary B.
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B
p

q

p+ δe⃗2

q + δe⃗2
δ

E

x = a x = b

Figure 1.11: Extending B upward by distance δ.

∂Ω

E

Figure 1.12: If the extended boundary hits ∂Ω, we simply fill in on the left and/or right
(dark gray region), until either the volume deficit is overcome or the entire region between
∂Ω and the translated B is added to E.

curve (if any) of E, so that, if necessary, we end up adding the entire rectangle R =

(a, b)× (0, 1) to F ′.

Finally, if a deficit still remains when F ′ = R, then we let

F ′ = [(a− δ, b+ δ)× (0, 1)] ∩ Ω,

where δ is chosen so that |F ′| = 1/2. In other words, we simply expand the sides of R

until the deficit is finally eliminated. Again, this clearly decreases P (F ′).

All of the above procedures either add volume while decreasing perimeter, or else

(during an extension) sastify ∆P/∆V ≤ 2/(b− a). Thus, since F ⊆ F ′, we have

P (F ′) ≤ P (F ) +
2

b− a
|F ′△F | ≤ P (F ) +

8
√
2

l
|F ′△F |, (1.2.11)
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where we used the fact that b− a ≤ l/4
√
2.

Thus, we eventually arrive at a modified set F ′, satisfying |F ′| = 1/2 and

P (F ′) ≤ P (F ) +
8
√
2

l
|F ′△F |. (1.2.12)

Also, |F ′△En
1 | ≤ 2|F△En

1 |, since F ⊆ F ′ and |F ′| − |F | = |En
1 | − |F |. Now, just as in

the proof of Proposition 1.2.1, since |F ′| = 1/2, we have

F(En
1 , E

n−1
1 ) ≤ F(F ′, En−1

1 ),

which after rearranging terms implies

P (En
1 ) ≤ P (F ′) + C|En

1△F ′|,

with C = σ−1(g1 + g2 + h−1b−1
1 + h−1b−1

2 ). Combining this with 1.2.12 and |F ′△En
1 | ≤

2|F△En
1 |, we get

P (En
1 ) ≤ P (F ) + Λ|En

1△F |, (1.2.13)

where

Λ =
16C

√
2

l
. (1.2.14)

Thus, En
1 is a (Λ, r0)-perimeter minimizer in Ω, where Λ and r0 only depend on l, which

in turn only depends on P (En
1 ) ≤ M/σ and not on n. Hence, the sets {En

1 }∞n=1 are

uniformly (Λ, r0)-perimeter minimizers.

Remark 1.2.8.

With this stronger regularity at hand, we can now complete the proof of Theorem

1.1.1(1). First, however, we finish the proof of Proposition 1.2.1:

Proof of Proposition 1.2.1(3). Note that the proof of uniform minimality given above did

not depend on the perturbation F△En
1 being compactly contained in B(x, r) ∩ Ω, but

only on the size of r < r0. Thus, the inequality (1.2.13) applies whenever F△En
1 ⊆
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B(x, r) ∩ Ω with r < r0, including when F is a perturbation of En
1 at the boundary.

Now suppose p is a non-corner intersection point of Γ and ∂Ω. Since Γ has bounded

curvature, Γ and ∂Ω intersect at a well-defined angle at p. If this is not orthogonal, then

by modifying En
1 in a small enough neighborhood of p, we can produce a set F such that

(P (En
1 ) − P (F ))/|F△En

1 | > 0 is as large as desired, in particular larger than Λ from

1.2.14, a contradiction. Likewise, since the limit critical points appearing in Lemma 1.2.4

minimize the functional (1.2.10), the same proof and conclusion applies to them as well,

to deduce orthogonal intersection.

Remark 1.2.9. The orthogonal intersection can also be proved in a similar manner to the

proof of Proposition 1.2.1(2), using divergence-free vector fields; we chose to prove it this

way in order to illustrate another use of the geometric method introduced in Theorem

1.2.7. It is also interesting to note that the same reasoning used in the previous proof

shows that corner intersections are in fact not possible, both for the discrete sets and

their limits; but we do not need this fact.

Proof of Theorem 1.1.1(1). We claim that the threshold of Proposition 1.2.5 works. Sup-

pose not; that is, suppose that for some E0
1 with E(E0

1) < L = L(σ, g, ϵ), there is a

subsequence {(Enk
1 , Enk

2 )}∞k=1 such that no (Enk
1 , Enk

2 ) has the form described in 1.1.1(1).

By compactness, we can find a subsequence, not relabeled, so that (Enk
1 , Enk

2 ) → (E1, E2)

for some sets E1, E2 ⊆ Ω. By Lemma 1.2.4, E1 is a C2 critical point of E , and since

E(E1) < L by energy dissipation, Proposition 1.2.5 implies that

(0, 1)× (ϵ, c) ⊆ E1

and

(0, 1)× (c, 1− ϵ) ⊆ E2

for some constant c, |c − 1/2| < ϵ/2. By Theorem 1.2.7 and the regularity theory for

almost-minimal sets [Mag12], we have Enk
1 → E1 in C1. In particular, for large k, there
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is a C2 function fnk
: [0, 1] → (0, 1) such that fnk

→ c in C1((0, 1)) and

{(x1, x2) : ϵ < x2 < fn(x1)} ⊆ En
1

and

{(x1, x2) : fn(x1) < x2 < 1− ϵ} ⊆ En
2 .

Also, by Lemma 1.2.1, f ′
nk
(0) = f ′

nk
(1) = 0. Thus, for such k, (Enk

1 , Enk
2 ) has the

structure described in Theorem 1.1.1(1), contrary to assumption. The statement on limit

sets follows immediately from the first part.

1.2.2 Exponential Convergence

We now assume that En
1 converges to the global energy minimizer E∞, and want to

show that if in addition (1.1.5) holds, then the convergence is exponentially fast, both

relative to energy and in Hausdorff distance, and that En
1 → E∞ in C2. We do this

by first estimating how quickly the energy is dissipated at each step, E(En−1
1 ) − E(En

1 ),

in terms of the (weighted) W2-gradient of E at En
1 , which comes naturally from the

minimizing movement scheme. Then, we show that this energy dissipation is bounded

by a constant times the energy difference E(En
1 )−E(E∞), which immediately yields that

E(En
1 ) → E(E∞) exponentially fast. This second step is the main goal of this section, and

boils down to certain basic PDE inequalities. Finally, the Hausdorff convergence follows

from the energy convergence by examining the convergence of the perimeter.

Since En
1 → E∞ in C1, for large n we know that En

1 is the subgraph of a C2 function

fn : [0, 1] → (0, 1):

En
1 = {(x1, x2) : 0 < x2 < fn(x1)}. (1.2.15)

Since Γ := ∂En
1 ∩Ω intersects ∂Ω orthogonally, we have f ′

n(0) = f ′
n(1) = 0. Furthermore

∫ 1

0

fn(x1) dx1 = 1/2,
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and

||f ′
n||L∞([0,1]) → 0

as n→ ∞. Moreover, by direction computation we have the following expression for the

energy difference E(En
1 )− E(E∞):

E(En
1 )− E(E∞) =

g

2

∫ 1

0

|fn −
1

2
|2 dx1 + σ

∫ 1

0

√
1 + (f ′

n)
2 − 1 dx1.

(Note also that E(En
1 ) → E(E∞) by the C1 convergence fn → 1/2.)

Throughout this section, we use the notation Γ := ∂En
1 ∩ Ω.

Our first goal is to prove the energy dissipation inequality (1.2.16), which is another

one of the basic estimates coming from the minimizing movements scheme [Vil03, §8].

Given n > 0, we proved in Proposition 1.2.1 that Γ is locally C2,α and intersects ∂Ω

orthogonally at non-corner points. Consequently, it is possible to solve the boundary

value problem (1.1.2) with Ei := En
i for the pressures p1, p2. Let vi = −bi∇(pi + gix2) be

the corresponding velocity field on En
i , and let Eϵ

i be the image of En
i under the flow of

v := v1χEn
1
+ v2χEn

2
for time ϵ. (This vector field v is the (weighted) W2-gradient of E at

(En
1 , E

n
2 ).) Then by Gauss’s theorem

1

b1

∫
En

1

|v1|2 dx+
1

b2

∫
En

2

|v2|2 dx =

∫
∂En

1

(p1 − p2 + (g1 − g2)x2)v1 · ν dH1

=

∫
∂En

1

(σH + gx2)v1 · ν dH1

=
dE(Eϵ

1)

dϵ

∣∣∣∣
ϵ=0

.

With this fact in hand, we can prove:

Proposition 1.2.10 (One-step energy dissipation). For n ≥ 1, let v be the W2-gradient

of E at (En
1 , E

n
2 ) defined above. Then

1

b1

∫
En

1

|v|2 dx+ 1

b2

∫
En

2

|v|2 dx ≤ E(En−1
1 )− E(En

1 )

h
. (1.2.16)
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Proof. The proof in the general case is given in [Vil03, §8.4.1]; for the convenience of

the reader, we reproduce it here in our specific case. Given two sets E,F ⊆ Ω with

|E| = |F | = 1/2, we abbreviate

dist(E,F ) :=

√
1

b1
W 2

2 (E,F ) +
1

b2
W 2

2 (E
c, F c).

We also use ||v||W2 to denote the weighted W2-norm of v:

||v||W2 :=

√
1

b1

∫
En

1

|v1|2 dx+
1

b2

∫
En

2

|v2|2 dx.

Let Eϵ
i be the image of En

i under the flow of v for time ϵ. By minimality of En
1 in (1.1.4),

F(En
1 ;E

n−1
1 ) ≤ F(Eϵ

1;E
n−1
1 ),

or

E(En
1 ) + dist(En

1 , E
n−1
1 ) ≤ E(Eϵ

1) + dist(Eϵ
1, E

n−1
1 ). (1.2.17)

From the discussion above, we have

E(Eϵ
1) = E(En

1 ) + ϵ||v||2W2
+ o(ϵ). (1.2.18)

Next, elementary manipulations yield

dist2(En−1
1 , Eϵ

1)− dist2(En−1
1 , En

1 )

= [dist(En−1
1 , Eϵ

1) + dist(En−1
1 , En

1 )][dist(E
n−1
1 , Eϵ

1)− dist(En−1
1 , En

1 )]

≤ [dist(En−1
1 , Eϵ

1) + dist(En−1
1 , En

1 )] dist(E
n
1 , E

ϵ
1)

≤ [2 dist(En−1
1 , En

1 ) + dist(En
1 , E

ϵ
1)] dist(E

n
1 , E

ϵ
1). (1.2.19)

Since

dist(En
1 , E

ϵ
1) = ϵ||v||W2 + o(ϵ),
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we get

dist(En−1
1 , Eϵ

1)
2

2h
≤ dist(En−1

1 , En
1 )

2

2h
+ ϵ dist(En−1

1 , En
1 )

||v||W2

h
+ o(ϵ). (1.2.20)

Combining the inequalities (1.2.17), (1.2.18), (1.2.20) and taking ϵ → 0, we arrive at

the desired inequality.

The following proposition is the main result of this section:

Proposition 1.2.11 (Energy-energy dissipation inequality). There is a constant C > 0

depending only on Ω such that for sufficiently large n, and for the vector field v of

Proposition (1.2.10), we have

E(En
1 )− E(E∞) ≤ C

(
1

b1

∫
En

1

|v|2 dx+ 1

b2

∫
En

2

|v|2 dx
)
. (1.2.21)

For this we will need a lemma:

Lemma 1.2.12 (Vanishing curvature). We have

||H||L∞(Γ) → 0

as n→ ∞.

Proof. Suppose n is large enough that En
1 is of the form (1.2.15). In equation (1.2.7), we

may assume
∫
φn
i = 0 for i = 1, 2, by adjusting φn

i by a constant if necessary. Using test

functions then yields that λ = g/2, so that (1.2.7) takes the form

σH + gx2 +
φn
1

hb1
− φn

2

hb2
= g/2.

We know that ||gx2 − g/2||L∞(Γ) → 0 as n → ∞; therefore, if we can show that

||φn
i ||L∞(Γ) → 0 for i = 1, 2, the lemma will follow. Since En

1 → E∞ in C1, for large

n there is a single constant C, independent of n, so that for all w ∈ H1(En
i ), i = 1, 2, we

33



have the Poincare inequality

||w − (w)En
i
||L2(En

i )
≤ C||∇w||L2(En

i )
,

where (w)En
i
denotes the average of w over En

i : (w)En
i
:= 2

∫
En

i
w. In particular,

||φn
i ||L2(En

i )
≤ C||∇φn

i ||L2(En
i )
.

By (1.2.5), this implies ||φn
i ||L2(En

i )
→ 0 as n → ∞. Hence, given any subsequence of

{(En
1 , E

n
2 )}∞n=1, we can find a further subsequence along which φn

i → 0 almost everywhere.

On the other hand, we know that the family {φn
i }n,i is equicontinuous, since |∇φn

i | ≤
√
2 (as ∇φn

i is a displacement vector within Ω). Consequently, we must have φn
i → 0

uniformly along this subsequence. As the original subsequence was aribtrary, we conclude

that ||φn
i ||L∞ → 0.

Proof of Proposition 1.2.11. The proof is divided into two steps. First, we want to show

that there is a constant C1 such that for large n we get

E(En
1 )− E(E∞) ≤ C1

∫
Γ

|σH + gx2 − (σH + gx2)Γ|2 dH1, (1.2.22)

where (f)Γ denotes the average of f over Γ: (f)Γ := (1/|Γ|)
∫
Γ
f dH1. Second, we will

show there is a constant C2 such that for large enough n,

∫
Γ

|σH + gx2 − (σH + gx2)Γ|2 dH1 ≤ C2

∫
Ω

|v1|2

b1
+

|v2|2

b2
dx. (1.2.23)

We assume n is large enough so that the En
1 ’s are of the form (1.2.15).

To prove (1.2.22), we split it into two parts, corresponding to the two types of energy:

P (En
1 )− P (E∞) ≲

∫
Γ

|H − (H)Γ|2 dH1, (1.2.24)

Φ(En
1 )− Φ(E∞) ≲

∫
Γ

|x2 − (x2)Γ|2 dH1, (1.2.25)
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again for large enough n. To prove (1.2.24), note first that (H)Γ = 0, since f ′
n(0) =

f ′
n(1) = 0 and H is the rate of change of the angle of inclination of the tangent line with

respect to arclength. Using coordinates, the inequality therefore takes the form

∫ 1

0

√
1 + (f ′

n)
2 − 1 dx1 ≤

∫ 1

0

(f ′′
n(x1))

2

(1 + (f ′
n(x1))

2)5/2
dx1.

Using
√
1 + t ≤ 1 + t/2, and the Sobolev inequality for H1

0 ([0, 1]) with optimal constant

1/π2, we get ∫ 1

0

√
1 + (f ′

n)
2 − 1 dx1 ≤

1

2π2

∫ 1

0

(f ′′
n(x1))

2 dx1.

Since ||f ′
n||L∞([0,1]) → 0, we have (e.g.)

∫ 1

0

(f ′′
n(x1))

2 dx1 ≤ 2

∫ 1

0

(f ′′
n(x1))

2

(1 + (f ′
n(x1))

2)5/2
dx1

for large enough n, which proves (1.2.24).**

To prove (1.2.25), note that

∫ 1

0

|fn(x1)−
1

2
|2 dx1 ≤

∫ 1

0

|fn(x1)− (y)Γ|2 dx1,

since
∫ 1

0
fn = 1/2. Combined with the trivial inequality

∫ 1

0

|fn(x1)− (x2)Γ|2 dx1 ≤
∫ 1

0

|fn(x1)− (x2)Γ|2
√

1 + (f ′
n(x1))

2 dx1,

we get (1.2.25) with implicit constant = 1.

To combined these to get (1.2.22), we expand:

∫
Γ

|σH + g · [x2 − (x2)Γ]|2 dH1 = σ2

∫
Γ

H2 dH1 + g2
∫
Γ

|x2 − (x2)Γ|2 dH1

+ 2σg

∫
Γ

H · [x2 − (x2)Γ] dH1 (1.2.26)

**This is an easier version of [MPS22, Theorem 1.3], our setting being a one-dimensional interval
rather than a sphere of arbitrary dimension.

35



= σ2

∫
Γ

H2 dH1 + g2
∫
Γ

|x2 − (x2)Γ|2 dH1

+ 2σg

∫
Γ

Hx2 dH1.

The last term equals (using integration by parts)

∫
Γ

Hx2 dH1 =

∫ 1

0

fnf
′′
n

1 + (f ′
n)

2
dx1 = −

∫ 1

0

(f ′
n)

21 + (f ′
n)

2 − 2fnf
′′
n

(1 + (f ′
n)

2)2
dx1.

By Lemma 1.2.12, we know ||H||L∞ → 0; and since ||f ′
n||L∞ → 0, it follows that

||f ′′
n ||L∞ → 0 as well. Hence, for any ϵ > 0, we have

∣∣∣ ∫
Γ

Hx2 dH1
∣∣∣ ≤ (1 + ϵ)

∫ 1

0

(f ′
n)

2 dx1

for large enough n. Combined with the Sobolev Inequality, this gives

∣∣∣ ∫
Γ

Hx2 dH1
∣∣∣ ≤ 1 + ϵ

π2

∫ 1

0

(f ′′
n)

2 dx1

for large n. Converting f ′′
n back to H, we conclude that for large n,

∣∣∣ ∫
Γ

Hx2 dH1
∣∣∣ ≤ 1 + ϵ

π2

∫
Γ

H2 dH1.

In particular, since σ > 2g/π4, we can choose ϵ so that

δ := σ2 − (1 + ϵ)
2σg

π2
> 0.

Consequently, from (1.2.2), we get

∫
Γ

|σH + g(x2 − (x2)Γ)|2 dH1 ≥ δ

∫
Γ

H2 dH1 + g2
∫
Γ

|x2 − (x2)Γ|2 dH1

≥ ∆

{
σ

∫
Γ

H2 dH1 + g

∫
Γ

|x2 − (x2)Γ|2 dH1

}

for ∆ = min{δ/σ, g}. Combined with (1.2.24) and (1.2.25), this immediately yields
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(1.2.22).

To prove (1.2.23), we note (as in the proof of Lemma 1.2.12) that, since En
1 → E∞ in

C1, for large n there is a single constant C, independent of n, so that for all w ∈ H1(En
i ),

i = 1, 2, we have the trace and Poincare inequalities

||Tw||L2(∂En
i )

≤ C||w||H1(En
i )
,

||w − (w)En
i
||L2(En

i )
≤ C||∇w||L2(En

i )
,

where T : H1(En
i ) → L2(∂En

i ) denotes the trace operator (we use the same symbol for

the trace operator on the separate domains En
1 , E

n
2 ). In particular, we can combine the

two inequalities to get

||T (w − (w)En
i
)||L2(∂En

i )
≤ C||∇w||L2(En

i )

for i = 1, 2, where we are using the same letter to denote a different constant C. We let

wi = pi + gix2 for i = 1, 2, where pi is the pressure in the definition of the W2-gradient of

E above. Then Tw1 − Tw2 = σH + gx2, and thus

∫
Γ

|σH + g(x2 − (x2)Γ)|2 dH1 =

∫
Γ

|Tw1 − Tw2 − g(x2)Γ|2 dH1

≤
∫
Γ

|Tw1 − Tw2 − ((w1)En
1
− (w2)En

2
)|2 dH1

=

∫
Γ

|T (w1 − (w1)En
1
)− T (w2 − (w2)En

2
)|2 dH1

≤ 2

∫
Γ

|T (w1 − (w1)En
1
)|2 dH1

+ 2

∫
Γ

|T (w2 − (w2)En
2
)|2 dH1

≤ 2C2||∇w1||2L2(En
1 )

+ 2C2||∇w2||2L2(En
2 )
.

Since vi = bi∇wi, this immediately gives (1.2.23) with

C2 = 2C2 ·min{b−1
1 , b−1

2 }.
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This completes the proof of Proposition 1.2.11.

Remark 1.2.13. The idea used in this proof of deducing an inequality on ∂En
1 involving

mean curvature from Sobolev-type bounds on a harmonic function on En
1 is used also

in [Che93] for a similar problem in the plane R2, in the continuous time setting. By

contrast, in the case of mean curvature flow, the natural estimate from the gradient flow

structure is already in the form of an L2 inequality involving mean curvature on the

boundary of the evolving set, which carries over (with some technical modifications) to

the discrete minimizing movements scheme; see [JN20, Proposition 4.1.(ii)] and [Jul+21].

This allows the authors of [Jul+21] to prove uniform estimates that are independent of

h and thus deduce the convergence of the limiting solution. Similarly, in the case of the

minimizing movements scheme for Mullins-Sekerka, the natural estimates come in the

form of uniform Ḣ1 bounds on the entire domain Ω (rather than the evolving set), which

can then be transferred to the evolving interface using a theorem of Schatzle [Sch01] to

again deduce convergence of the limiting flow [Jul+21]. Since our estimates, by contrast,

come from using the trace and Poincare inequalities on the evolving domain, they involve

a distortion factor coming from the shape of the domain, which is why we only apply

them after the domain is C1-close to E∞. It remains an interesting open problem to

deduce similar uniform estimates for the Muskat flow, which would allow to prove the

convergence of the limiting flow.

Proof of Theorem 1.1.1(2). We have already proved that En
1 → E∞ in C1; by Lemma

1.2.12, we also have convergence in C2. If (1.1.5) holds, then combining Propositions

1.2.10 and 1.2.11 yields the inequality

E(En
1 )− E(E∞) ≤ C

h
(E(En−1

1 )− E(En
1 )),

for sufficiently large n. This immediately implies that E(En
1 ) → E(E∞) exponentially

fast.

To show that En
1 → E∞ exponentially fast in Hausdorff distance, we need to show that
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||fn − 1/2||L∞ → 0 exponentially fast. Since the total energy difference E(En
1 ) − E(E∞)

decreases exponentially, so does the perimeter difference P (En
1 )− 1. Since

√
1 + t− 1 ≥

t/2− t2/4, we have

P (En
1 )− 1 ≥

∫ 1

0

(f ′
n)

2/2− (f ′
n)

4/4 dx1,

and since f ′
n → 0 uniformly, for large n this gives

P (En
1 )− 1 ≥

∫ 1

0

(f ′
n)

2/4 dx1

(say). Also, we know that ||f ′′
n ||L∞ is bounded (e.g. from 1.2.12), say by 1 (for large

enough n). Hence, if x is a point at which |f ′
n| achieves its maximum, then there is an

interval around x of length at least ||f ′
n||L∞/2 on which |f ′

n| ≥ ||f ′
n||L∞/2. Therefore, for

large n, ∫ 1

0

(f ′
n)

2/4 dx1 ≥ (||f ′
n||L∞/2) · (||f ′

n||2L∞/16) = ||f ′
n||3L∞/32.

Finally, since each fn equals 1/2 at some x1 in [0, 1], we have ||fn||L∞ ≤ ||f ′
n||L∞ . Putting

it all together, for sufficiently large n

||fn||L∞ ≤ ||f ′
n||L∞ ≤ 32

1
3 (P (En

1 )− 1)
1
3 .

Since P (En
1 ) → 1 exponentially fast, this finishes the proof.
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CHAPTER 2

Muskat Problem with Source

2.1 Introduction

2.1.1 Background

In this chapter we adapt the minimizing movement scheme for the Muskat problem to

the case when a source and sink are involved. Specifically, we model the extraction of oil

from an oil sand, in which water is pumped into the sand to force oil out. In recent years

several studies have appeared which adapt the JKO scheme to similar situations where

mass is not conserved. For example, in [JKT21], the authors modify the JKO scheme

to model Darcy’s law for tumor growth with a pressure-dependent source term. Most

relevant to our situation is [MRS10], in which the authors study the motion of a crowd

exiting a domain subject to a density constraint. The exit is represented by a subset Γ

of the domain boundary, and a measure on Γ represents the portion of the crowd that

has exited. In our model, we will have two boundary curves, one where water enters the

domain, the other where oil and water exit.

The oil sand is represented by the domain Ω ⊆ R2, the open region between two

smooth simple closed curves Sw and Ss, where Ss is enclosed by Sw (see figure 2.1 for

an example). For example, Sw and Ss could be concentric spheres with radii R1 > R2

respectively. Water is pumped into Ω through Sw at a constant rate of one unit volume per

unit time, uniformly distributed across Sw, causing oil and water to flow out of Ω through
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Figure 2.1: Example domain with fluids. The blue region is water, the gray region oil.

Sw

Ss

Ω

E1

E2

Ss. The boundary Ss is assumed to be uniformly permeable, so that fluid flows just as

easily through any portion of it. We assume that water and oil completely fill Ω at all

times and that they are incompressible and immiscible. We will describe the configuration

of fluids at any given time both by their domains of saturation and their density functions,

which by incompressibility are simply the indicator functions of the saturation domains.

We will denote by E1 the saturation domain of water and by E2 the saturation domain

of oil. Similarly the density functions of water and oil will be denoted by ρ1 and ρ2

respectively; by the above remarks, ρi = 1Ei
. Since the fluids are immiscible and fill Ω,

we have ρ1 + ρ2 = 1 and ρ1ρ2 = 0 a.e., or equivalently |E1 ∩ E2| = |Ω\(E1 ∪ E2)| = 0.

As in chaper 1, we assume that surface tension is present between the fluids, and that

each fluid is subject to a conservative force. The total interfacial energy due to surface

tension is σP (E1), where σ is the surface tension coefficient; and the total potential

energy of fluid i is
∫
Ei
Φi dx, where Φi is Lipschitz continuous on Ω̄ and −∇Φi is the force

on fluid i. Thus the total energy of the configuration is

E(E1) := E(E1, E2) := σP (E1) +

∫
E1

Φ1 dx+

∫
E2

Φ2 dx. (2.1.1)
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Finally, bi again denotes the mobility of fluid i, as in chapter 1.

2.1.2 Construction of Scheme and Statement of Results

We first describe the scheme intuitively, then define it more precisely. Fix a timestep

h > 0. At each step in the discrete scheme, we put a uniform measure of total mass h on

the outer curve Sw, representing the water that flows into Ω in the next h units of time.

We then push this measure into Ω, and require a total volume of h of water and oil to exit

from Ω onto the inner curve Ss. The water and oil pushed out of Ω are each represented

by a measure supported on Ss. As in chapter 1, we measure the cost of this procedure in

terms of optimal transport, while simultaneously trying to minimize the total energy of

the new configuration.

Let E0
1 , E

0
2 be the initial configuration of oil and water in Ω. For n > 0, we define

(En
1 , E

n
2 , ν

n
1 , ν

n
2 ) ∈ argmin

{
1

2hb1

(
W 2

2 (hµ+ 1En−1
1

dx,1E1dx+ ν1)

+
1

2hb2
W 2

2 (1En−1
2

dx,1E2dx+ ν2) + E(E1)

}
, (2.1.2)

where E1, E2, ν1, ν2 are subject to the constraints



|Ω\(E1 ∪ E2)| = 0,

|E1 ∩ E2| = 0,

N (Sw, h
2) ⊆ E1,

ν1, ν2 ≥ 0, ||ν1||+ ||ν2|| = h,

h+ |En−1
1 | = |E1|+ ||ν1||,

|En−1
2 | = |E2|+ ||ν2||.

(2.1.3)

Here N (Sw, δ) := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} is the (closed) δ-neighborhood of Sw in

Ω; ν1, ν2 are Radon measures on Sw; and µ is uniform measure on Sw, rescaled to have

mass h. Thus, ν1 represents the water that accumulates on Ss after exiting Ω during the
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timestep, and similarly ν2 represents the corresponding measure for oil. The reason for

requiring N (Sw, h
2) ⊆ E1 is because, if water is actually being pumped in continuously,

then it should not be able to jump instantaneously away from its source Sw; moreover,

the total distance covered by the water should be ∼ h, so to give enough room we just

require the water to occupy at least a distance of h2 adjacent to Sw.

From the discrete scheme we create piecewise-constant interpolations by setting

ρhi (t) := ρ
⌊t/h⌋
i ,

t ≥ 0, i = 1, 2. We then take h → 0 and hope to extract a subsequence converging to

some form of solution to the Muskat problem. The main result states that this is the

case, under conditional perimeter convergence. To state it, we first recall that the space

BV (Ω) of functions of bounded variation on Ω is defined as all u ∈ L1(Ω) such that there

exists a finite Radon measure Du on Ω with

∫
Ω

ξ ·Du dx = −
∫
Ω

u∇ · ξ dx

for all ξ ∈ C∞
c (Ω;R2). Given u ∈ BV (Ω), its BV -norm is

||u||BV (Ω) := ||u||L1(Ω) + |Du|(Ω),

where |Du| is the absolute variation of Du. Thus, a set E ⊆ Ω is of finite perimeter if

and only if 1E ∈ BV (Ω).

Theorem 2.1.1. Let ρ01, ρ
0
2 ∈ BV (Ω; {0, 1}) be initial data for the Muskat problem. For

any time T > 0, there exist

ρ1, ρ2 ∈ L∞([0, T ];BV (Ω; {0, 1})) ∩ C0, 1
4 ([0, T ];L1(Ω)), (2.1.4)

v1, v2 ∈ L2([0, T ]× Ω;R2), (2.1.5)
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such that for every t, we have ρ1(t) + ρ2(t) = 1 and ρ1(t)ρ2(t) = 0 a.e.; ρ1(0) = ρ01,

ρ2(0) = ρ02; and

∂tρi +∇ · (ρivi) = 0, (2.1.6)

i = 1, 2, in the distributional sense on Ω: i.e., for all ψ ∈ C∞
c ([0, T ]× Ω)

[∫
Ω

ψ(t, x)ρi(t, x) dx

]t=T

t=0

−
∫ T

0

∫
Ω

(∂tψ + vi · ∇ψ)ρi dx dt = 0 (2.1.7)

(i = 1, 2). Moreover, if the perimeter convergence assumption (2.2.15) holds, then ρi, vi

solve the Muskat problem in weak formulation: for all ξ ∈ C∞
c ([0, T ]×Ω;R2) with ∇·ξ =

0, we have

−
∫ T

0

∫
Ω

2∑
i=1

b−1
i vi · ξ dx dt =

∫ T

0

∫
Ω

2∑
i=1

Φiξ ·Dρi dt

+ σ

∫ T

0

∫
Ω

(∇ · ξ − n · ∇ξn)|Dρ1| dt, (2.1.8)

where

n =
Dρ1
|Dρ1|

is the Radon-Nikodym derivative of Dρ1 with respect to its absolute variation |Dρ1|.

Remark 2.1.2. Note that the continuity equation (2.1.7) only gives information about

what happens within Ω, and not about the creation and loss of mass on ∂Ω. See below,

section 2.3 for discussion.

2.2 Proofs

First, we prove the existence of minimizers to (2.1.2), using the direct method of the

calculus of variations. Specifically, let {(Em
1 , E

m
2 , ν

m
1 , ν

m
2 )}∞m=1 be a minimizing sequence.

By the perimeter bounds, we can find finite-perimeter sets E1, E2 with Em
1 → E1 and

Em
2 → E2 in L

1(Ω) after taking subsequences. ClearlyN (Sw, h
2) ⊆ E1, sinceN (Sw, h

2) ⊆

Em
1 for each m. By the Banach-Aloagula theorem, after taking a further subsequence we
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can also assume νm1 → ν1 and νm2 → ν2 weakly-star, for nonnegative Radon measures

ν1, ν2 on So. Since Ss is compact, we have ||νmi || → ||νi||, and hence ||ν1|| + ||ν2|| = h

and (E1, E2, ν1, ν2) is admissible. Since all terms in (2.1.2) are lower semicontinuous, we

conclude that (E1, E2, ν1, ν2) is a minimizer.

Let M0 be the minimum appearing in (2.1.2). Since we cannot simply use the cur-

rent configuration as a competitor (as in the usual minimizing movements situation), we

instead estimate M directly by constructing a feasible candidate (E1, E2, ν1, ν2). To do

this, let ξ = ∇q, where q solves


∆q = 0 in Ω

∂q
∂n

= −(H1(Sw))
−1 on Sw

∂q
∂n

= −(H1(Ss))
−1 on Ss.

(2.2.1)

Then ξ is bounded and C1 on Ω̄. We extend ξ to R2 by setting ξ = 0 outside Ω. Let

the measures θ1, θ2 be the images of the measures ρn−1
1 dx, ρn−1

2 dx under the flow of ξ for

time h, respectively. Then we define E2, ν2 by the equation 1E2dx + ν2 = θ2, and we

then define E1 := Ω\E2 and ν1 as the singular part of θ1. It is clear that (E1, E2, ν1, ν2)

is admissible for (2.1.2). Since ξ is bounded, the W 2
2 distances appearing in (2.1.2) are

O(h2), with an implicit constant independent of (En−1
2 , En−1

2 ). Likewise, because ξ is

bounded and C1, and because N (Sw, h
2) ⊆ En−1

1 for n ≥ 2, it follows that for n ≥ 2

the total energy increase [E(En
1 ) − E(En−1

1 )]+ is O(h), again with constant independent

of n. (Note: the reason we need n ≥ 2 is that if oil is initially adjacent to Sw [i.e., if

∂E0
2 ∩Sw has positive Hausdorff measure], then when water is pushed in during the next

timestep, a new interface is created, causing the perimeter component of E to increase

suddenly. However, after the first timestep, no oil is adjacent to Sw, so this situation no

longer occurs.) Similarly, one can verify that [E(E1
1)− E(E0

1)]+ = O(1). Therefore,

N∑
n=1

{
1

2hb1
W 2

2 (hµ+ρ
n−1
1 dx, ρn1dx+ν

n
1 )+

1

2hb2
W 2

2 (ρ
n−1
2 dx, ρn2dx+ν

n
2 )

}
≤ C1T (2.2.2)
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and

E(En
1 ) ≤ C2(1 + T ) (2.2.3)

for some constants C1, C2 > 0 independent of h.

We now define the discrete velocities vni . Let Ẽn−1
i be the subset of En−1

i that is

pushed onto En
i in (2.1.2) (as opposed to being pushed onto the boundary Ss). Since

ρni dx is absolutely continuous with respect to Lebesgue measure, Brenier’s theorem gives

a transport map T n
i : En

i → Ẽn−1
i such that (T n

i )#(ρ
n
i dx) = 1Ẽn−1

i
dx and

∫
Ω

|T n
i (x)− x|2ρni (x)dx = W 2

2 (1Ẽn−1
i

dx, ρni dx).

We define vni by

vni (x) :=
T n
i (x)− x

h
,

i = 1, 2, and the corresponding interpolations

vhi (t) := v
⌊t/h⌋
i .

From (2.2.2) we conclude

||vhi ||2L2([0,T ]×Ω) =

∫ T

0

∫
Ω

|vhi (t, x)|2 dx dt ≤ C2T. (2.2.4)

Now we take h → 0 and attempt to extract a convergent subsequence. For this, we

need to show pre-compactness of {ρhi }h>0 in L1([0, T ] × Ω) for i = 1, 2. For any fixed t,

we have by the uniform perimeter bound (2.2.3)

||ρhi (t, ·)− ρhi (t, · − y)||L1(Ω) ≤ |y| · |Dρhi (t, ·)|(Ω) ≲ |y|, (2.2.5)

for a constant independent of h.
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To get equicontinuity in time, we note that since ρh1(t, ·) + ρh2(t, ·) = 1 for all t, h, it

is enough to show equicontinuity for ρh2 . To compare ρm2 and ρn2 for m < n, we split

Em
2 into the part Cm,n which goes into En

2 , and the remainder Dm,n which goes into Ss.

Specifically, Cm,n := T−1(En
2 ), where

T := T n
2 ◦ T n−1

2 ◦ · · · ◦ Tm+1
2 ,

and Dm,n := Em
2 \Cm,n. By construction |Cm,n| = |En

2 |. Also, |Dm,n| ≤ (n−m) · h, since

||νn2 || ≤ h for all n. We next define the measure θm,n as

θm,n := ρn2 dx+
n∑

k=m+1

νk2 ,

and the associated interpolation θh(s, t) := θ⌊s/h⌋,⌊t/h⌋. In other words, θm,n represents

the current oil in Ω at timestep n plus the oil that has accumulated on Ss since timestep

m. In particular, |Em
2 | = ||θm,n|| for all n > m, and |Dm,n| = ||θm,n − ρn2 dx||. Moreover

W2(θ
m,n, θm,n+1) ≤ W 2

2 (ρ
n
2 dx, ρ

n+1
2 dx+ νn+1

2 ).

Therefore, if 0 ≤ s < t ≤ T , then setting n1 = ⌊s/h⌋, n2 = ⌊t/h⌋ we get

W2(ρ
h
2(s, ·) dx, θs,t) = W2(ρ

n1
2 dx, θn1,n2)

≤ W2(ρ
n1
2 dx, θn1,n1+1) +

n2∑
k=n1+2

W2(θ
n1,k, θn1,k−1)

≤
n2∑

k=n1+1

W2(ρ
k−1
2 dx, ρk2 dx+ νk2 )

≤

(
n2∑

k=n1+1

W 2
2 (ρ

k−1
2 dx, ρk2 dx+ νk2 )

)1/2

· (n2 − n1)
1/2

≲ (hT )1/2 ·
(t− s+ h

h

)1/2
= T 1/2(t− s+ h)1/2.
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Since W2(1Cm,n dx, ρn2 dx) ≤ W2(ρ
m
2 dx, θm,n), we get

W2(1Cm,n dx, ρn2 dx) ≲ T 1/2(t− s+ h)1/2. (2.2.6)

We now quote a result from [CL21]:

Lemma 2.2.1. Let A,B have finite perimeter in Ω. Then

|A△B| ≲
√
P (A) + P (B)

√
W1(χA, χB),

where the implicit constant depends only on Ω.

Since W1 ≤ W2 by Cauchy-Schwarz, Lemma 2.1 combined with (2.2.6) gives

||ρh2(s, ·)− ρh2(t, ·)||L1(Ω) = ||ρn1
2 − ρn2

2 ||L1(Ω) (2.2.7)

≤ |Dn1,n2 |+ |Cn1,n2△En2|

≲ (n2 − n1) · h+ T 1/2 ·
{
T 1/2(t− s+ h)1/2

}1/2
≤
(t− s

h
+ 1
)
· h+ T 1/2 ·

{
T 1/2(t− s+ h)1/2

}1/2
= (t− s+ h) + T 3/4(t− s+ h)1/4.

Thus {ρh2}h, and therefore also {ρh1}h, is equicontinuous in time. Combining this with

(2.2.5), we get

||ρhi (s, ·)− ρhi (t, · − y)||L1(Ω) ≤ ||ρhi (s, ·)− ρhi (s, · − y)||L1(Ω)

+ ||ρhi (s, · − y)− ρhi (t, · − y)||L1(Ω)

≲ |y|+ (t− s+ h) + T 3/4(t− s+ h)1/4.

Thus, {ρhi }h>0 is equicontinuous in L
1([0, T ]×Ω) for i = 1, 2, and so by the Riesz-Frechet-

Kolmogorov theorem is precompact. In particular, after taking a subsequence, we have

ρhi → ρi in L
1([0, T ]× Ω) for some ρi. This implies ρhi (t, ·) → ρi(t, ·) in L1(Ω) for almost

every t. This ρi(t, ·) is necessarily a characteristic function, and lower semicontinuity of
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the perimeter/total variation implies ρi(t, ·) ∈ BV (Ω; {0, 1}), with ρi(t, ·) bounded in BV

norm uniformly in t. Thus

ρi ∈ L∞([0, T ];BV (Ω; {0, 1})).

Moreover, from (2.2.7) we see that

||ρi(s, ·)− ρi(t, ·)||L1(Ω) ≲ (t− s) + T 3/4(t− s)1/4 ≲ (t− s)1/4, (2.2.8)

i.e.

ρi ∈ C0, 1
4 ([0, T ];L1(Ω)).

(Thus we actually have ρhi (t, ·) → ρi(t, ·) in L1(Ω) for every t.) It is clear that ρi(0, ·) = ρ0i

for each i, since ρhi (0, ·) = ρ0i for each h; and similarly ρ1(t, x) + ρ2(t, x) = 1 a.e.

Next, we derive the continuity equation (2.1.7). For simplicity we assume T/h is an

integer; the general case is similar. Likewise, we assume that ψ is actually defined on

[−ϵ, T + ϵ] × Ω̄ for some small ϵ > 0; this can easily be removed, and is simply to make

the proof easier to follow. First, by the uniform L2 bounds (2.2.4), and the weak com-

pactness of L2([0, T ]×Ω), we deduce that there exist vi ∈ L2([0, T ]×Ω) with vhi ⇀ vi as

h → 0 (along a further subsequence of the subsequence above, again not relabeled). Let

ψ ∈ C∞([0, T ]× Ω). Since −∇ϕn
i = −hvhi pushes ρni dx onto ρn−1

i dx,

∫
Ω

ψ(ρni − ρn−1
i ) dx =

∫
Ω

ρni [ψ(t, x)− ψ(t, x− hvni (x))] dx

=

∫
Ω

ρni ∇ψ(t, x) · (hvni ) dx

up to O(||∇2ψ||L∞h2||vni ||L2) error. Therefore

T/h∑
n=1

h

∫
Ω

ρni v
n
i · ∇ψ(nh, x) dx =

T/h∑
n=1

∫
Ω

ψ(nh, x)(ρni − ρn−1
i ) dx+O(h).
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(The O(h) comes from the fact that we summed ∼ h−1-many terms.) On the other hand

h

∫
Ω

ρni ∂tψ(t, x) dx =

∫
Ω

ρni [ψ(t+ h, x)− ψ(t, x)] dx+O(h2||∂ttψ||L∞);

hence

T/h∑
n=1

h

∫
Ω

ρni ∂tψ(nh, x) dx =

T/h∑
n=1

∫
Ω

ρni [ψ((n+ 1)h, x)− ψ(nh, x)] dx+O(h).

Adding, we get

T/h∑
n=1

h

∫
Ω

ρni [∂tψ(nh, x) + vni · ∇ψ(nh, x)] dx =

T/h∑
n=1

∫
Ω

ψ(nh, x)(ρni − ρn−1
i )

+ ρni [ψ((n+ 1)h, x)− ψ(nh, x)] dx+O(h).

But the sum on the right simplifies to

T/h∑
n=1

∫
Ω

[ρni ψ((n+ 1)h, x)− ρn−1
i ψ(nh, x)] dx = ∫

Ω

ρ
T/h+1
i ψ(T, x) dx−

∫
Ω

ρ1iψ(0, x) dx.

Thus,

∫ T

0

∫
Ω

ρhi (∂tψ + vhi · ∇ψ) dx dt =
∫
Ω

ρ
T/h+1
i ψ(T, x) dx−

∫
Ω

ρ1iψ(0, x) dx+O(h).

Since ρhi v
h
i = vhi (a.e.) and vhi ⇀ vi, and since ρ

T/h+1
i → ρi(T, ·) and ρ1i → ρ0i in L1(Ω),

we get

∫ T

0

∫
Ω

ρi(∂tψ + vi · ∇ψ) dx dt =
∫
Ω

ρi(T, x)ψ(T, x) dx−
∫
Ω

ρ0i (x)ψ(0, x) dx. (2.2.9)
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Finally, we derive the curvature equation (2.1.8). Let ξ ∈ C∞
c ([0, T ] × Ω;R2) be di-

vergence free: ∇ · ξ = 0. For each τ ∈ R, let Eτ
i be the image of Eh

i under the flow of ξ

for time τ , and define

F(τ) =
1

2hb1
W 2

2 (hµ+ ρn−1
1 dx,1Eτ

1
dx+ νn1 )

+
1

2hb2
W 2

2 (ρ
n−1
2 dx,1Eτ

2
dx+ νn2 ) + E(Eτ

1 ). (2.2.10)

Then, since F(τ) achieves its minimum at τ = 0, we have F ′(0) = 0, or

∫
Ω

(b−1
1 vh1 + b−1

2 vh2 ) · ξ dx =

∫
Ω

Φ1ξ ·Dρh1 + Φ2ξ ·Dρh2

+ σ

∫
Ω

(∇ · ξ − nh · ∇ξnh)|Dρh1 | (2.2.11)

(see [Mag12, §17.3] for the formula for first variation of perimeter). Here nh is the Radon-

Nikodym derivative of Dρh1 with respect to its absolute variation |Dρh1 |. Integrating both

sides over [0, T ] with respect to t yields

∫ T

0

∫
Ω

(b−1
1 vh1 + b−1

2 vh2 ) · ξ dx dt =
∫ T

0

[∫
Ω

Φ1ξ ·Dρh1 + Φ2ξ ·Dρh2
]
dt

+ σ

∫ T

0

∫
Ω

(∇ · ξ − nh · ∇ξnh)|Dρh1 | dt. (2.2.12)

We now want to take h → 0 for each of the three terms in this equation, to recover

(2.1.8). Since vhi ⇀ vi in L
2([0, T ]× Ω), we immediately get

∫ T

0

∫
Ω

(b−1
1 vh1 + b−1

2 vh2 ) · ξ dx dt→
∫ T

0

∫
Ω

(b−1
1 v1 + b−1

2 v2) · ξ dx dt. (2.2.13)

For the second term, we note that since ρhi (t, ·) → ρi(t, ·) in L1(Ω) for each t, we have

∫
Ω

Φiξ ·Dρhi →
∫
Ω

Φiξ ·Dρi

for each t, by definition of Dρhi , Dρi. Since the integrals
∫
Ω
Φ1ξ · Dρh1 are uniformly
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bounded by virtue of the perimeter bounds, dominated convergence yields

∫ T

0

[∫
Ω

Φ1ξ ·Dρh1 + Φ2ξ ·Dρh2
]
dt→

∫ T

0

[∫
Ω

Φ1ξ ·Dρ1 + Φ2ξ ·Dρ2
]
dt. (2.2.14)

Finally, for the curvature term we will need the following perimeter convergence assump-

tion: ∫ T

0

P (Eh
1 (t)) dt→

∫ T

0

P (E1(t)) dt. (2.2.15)

Note that since the perimeter is automatically lower-semicontinuous, perimeter conver-

gence simply means that no perimeter is lost in the limit, for example through disappear-

ing interfaces (see for example [LO16, Fig. 1] and discussion, as well as [Rög05; LS95]).

Since P (E1(t)) ≤ P (Eh
1 (t)) for every h, t by lower-semicontinuity, (2.2.15) implies that

P (E1(t)) → P (Eh
1 (t)) for almost every t. Therefore, by a theorem of Reshetnyak [Mag12,

§20.12], ∫
Ω

(∇ · ξ − nh · ∇ξnh)|Dρh1 | →
∫
Ω

(∇ · ξ − n · ∇ξn)|Dρ1|.

Again, the perimeter bounds imply that the integrals on the left are uniformly bounded,

and so dominated convergence gives

∫ T

0

∫
Ω

(∇ · ξ − nh · ∇ξnh)|Dρh1 | dt→
∫ T

0

∫
Ω

(∇ · ξ − n · ∇ξn)|Dρ1| dt. (2.2.16)

Combining (2.2.13), (2.2.14), and (2.2.16), we get (2.1.8), which concludes the proof of

Theorem 2.1.1. □

2.3 Remarks and Open Questions

Many questions remain about the more detailed behavior of the weak solution in Theorem

2.1.1. In particular, the continuity equation (2.1.7) only gives information about what

happens inside Ω, since it only involves test functions vanishing near ∂Ω; it does not

capture the source and sink behavior on ∂Ω. One expects that there exist measures
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ν1(t), ν2(t) ≥ 0 on Ss such that

∂tρ1 +∇ · (ρ1v1) = µ− ν1

and

∂tρ2 +∇ · (ρ2v2) = −ν2

distributionally on Ω̄. In other words, νi represents the instantaneous flux of fluid i across

Ss in the direction out of Ω. The distributional form of the above equations is

[∫
Ω

ψ(t, x)ρ1(t, x) dx

]t=T

t=0

+

∫ T

0

∫
∂Ω

ψ(ρ1v1) · nΩ dH1 dt

−
∫ T

0

∫
Ω

(∂tψ + v1 · ∇ψ)ρ1 dx dt =
∫ T

0

∫
∂Ω

ψ d(µ− ν1) dt

and

[∫
Ω

ψ(t, x)ρ2(t, x) dx

]t=T

t=0

+

∫ T

0

∫
∂Ω

ψ(ρ2v2) · nΩ dH1 dt

−
∫ T

0

∫
Ω

(∂tψ + v2 · ∇ψ)ρ2 dx dt = −
∫ T

0

∫
∂Ω

ψ dν2 dt,

where nΩ is the outer unit normal to ∂Ω. However, the integrals over ∂Ω involving ρivi

require us to know the boundary values of ρivi = vi, which for general vi ∈ L2(Ω;R2)

does not make sense without further regularity assumptions, e.g. vi ∈ W 1,p(Ω) for some

p ≥ 1. Since the natural estimates only give vi ∈ L2(Ω;R2), it is not clear whether this

extra regularity holds. Moreover, it is not very clear what the correct boundary condition

on Ss is to capture the uniform permeability of Ss; heuristic calculations suggest that

the velocities vi should be normal to Ss, but again this requires evaluating them on the

boundary.

Beyond these technical issues, many natural questions arise concerning the qualitative

behavior of solutions. For example, does all oil eventually exit Ω? If so, how long does

it take? Does this depend on the initial data? Also, how does this change if we alter the
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rate at which water is pumped in? Is there an optimal rate that extracts oil fastest?
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