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Abstract

Although induction of differentiation represents an effective strategy for neuroblastoma treatment, 

the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a 

computational model of neuroblastoma differentiation consisting of interconnected gene clusters 

identified based on symmetric and asymmetric gene expression relationships. We identified a 

differentiation signature consisting of series of gene clusters comprised of 1251 independent 

genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma 

cell lines treated with agents known to induce differentiation. This differentiation signature was 

associated with patient outcomes in multiple independent patient cohorts and validated the role 
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of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified 

novel genes associated with MYCN via asymmetric Boolean implication relationships that would 

not have been identified using symmetric computational approaches and that were associated with 

both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a 

cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways 

that is strongly associated with neuroblastoma differentiation, and we validated the associations 

of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. 

Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene 

expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor 

differentiation that could represent potential therapeutic targets.
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Introduction

Children with high-risk neuroblastoma suffer from frequent relapses and treatment-resistant 

tumors that respond poorly to salvage therapy (1-5), and new treatment strategies are 

needed. Neuroblastoma tumors arise from primordial neural crest cells and are composed of 

immature, undifferentiated neuroblasts, and tumor differentiation is strongly associated with 

patient outcomes (6-9). While induction of differentiation represents a potentially curative 

therapeutic strategy, the signaling networks underlying neuroblastoma differentiation are 

not well understood, and improved understanding of the mechanisms of differentiation will 

identify important contributors that could serve as targets for novel therapies.

Pathway and network analyses have been applied to cancer datasets to find novel oncogenic 

and regulatory pathways (10-13), but gene associations in these analyses were established 

using symmetric computational frameworks such as analyses of correlation (14-19), 

linear regression (20), dimension reduction (21), and clustering (21,22). Gene expression 

relationships are frequently asymmetric, however, and strategies for exploration of 

asymmetric relationships are likely to uncover novel pathogenic and regulatory mechanisms. 

Boolean mathematical tools employ unbiased analyses to identify both symmetric and 

asymmetric gene expression relationships as well as gene expression changes conserved 

during biological processes despite disease and tissue heterogeneity that are likely to be 

fundamentally important for any given process (23).

Boolean analyses assign a parameter (such as the RNA level of a gene) with one of 

two values, i.e., high or low, and relationships between the expression levels of any pair 

of genes can then be determined (23,24). The Boolean principle dictates six different 

possible Boolean implication relationships between expression patterns of two genes: two 

are symmetric (equivalent or opposite) and four are asymmetric. Because the general 

relationships among pairs of genes across all samples irrespective of their heterogeneous 

origin (whether normal tissue or cancer) are likely consistent, these conserved relationships 

are termed "invariants." Using these invariant Boolean relationships from a given dataset, 
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a Boolean network can be created (23). Prior studies employed Boolean algorithms and 

MiDReG (Mining Developmentally Regulated Genes) software to identify novel genes 

expressed in stem and progenitor cells in normal and malignant tissues and to identify novel 

therapeutic targets in adult cancers (25-31), demonstrating the potential of this strategy for 

understanding cancer pathogenesis.

To increase our understanding of the molecular steps and pathways involved in the 

process of neuroblastoma differentiation and to identify candidate therapeutic targets, we 

evaluated gene expression profiles of neuroblastoma tumors using novel Boolean Network 

Explorer (BoNE) software (32,33) that incorporates MiDReG algorithms. Our analyses 

identified a gene signature comprised of a series of gene clusters significantly associated 

with neuroblastoma differentiation based on identified invariant relationships. We further 

validated the associations of these genes with patient survival and identified novel candidate 

genes associated with differentiation and with asymmetric implication relationships with 

MYCN that were only detectable using Boolean approaches. Our data demonstrate that 

Boolean approaches for analysis of gene expression profiles can identify novel genes 

and pathways associated with neuroblastoma tumor differentiation and identified a role 

for growth factor receptor trafficking pathways in neuroblastoma differentiation and 

pathogenesis.

Materials and Methods

Data collection and annotation

Publicly available microarray and gene expression databases were downloaded from 

the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) website (34,35) and the European Molecular Biology Laboratory European 

Bioinformatics Institutes (EMBL-EBI) ArrayExpress website (36,37). NCBI GEO and 

EMBL-EBI ArrayExpress were searched for transcriptomic studies of neuroblastoma 

patient primary tumor samples (38-43), of transcriptomic studies of neuroblastoma 

cell lines before and after differentiation-inducing treatment (44-51), and of single-cell 

RNA-sequencing of neuroblastoma cell lines and tumor samples (52,53). Accession 

numbers for these crowdsourced datasets are provided (Supplemental Table 1). The 

National Cancer Institute (NCI) Therapeutically Applicable Research to Generate Effective 

Treatments dataset (TARGET; phs000467.v1.p1) and the KidsFirst: Neuroblastoma dataset 

(KidsFirstNB; phs001436.v1.p1) were downloaded from the NIH database for genotypes 

and phenotypes (NIH dbGaP; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000218.v4.p1) (54,55).

Boolean Network Explorer (BoNE) analysis

Previously developed and validated computational tools, including StepMiner (24); 

MiDReG (25), and BooleanNet statistics for the identification of Boolean Implication 

relationships (23) were integrated into a single platform, the Boolean Network Explorer 

(BoNE) (see Supplementary Methods; workflow summarized in Supplementary Figures 1,2; 

32,33), that analyzes both symmetric and asymmetric properties of Boolean implication 

relationships to discover natural progressive time-series changes in major cellular processes.
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Gene expression summarization from neuroblastoma patient tumors and cell lines was 

performed by normalizing Affymetrix platforms by RMA (Robust Multichip Average)

(56,57) and RNA-Sequencing platforms by computing TPM (Transcripts Per Millions) 

(58,59) values whenever normalized data were not available in GEO. Boolean logic 

(23-25,60) is a simple mathematic relationship of two values, i.e., high/low, 1/0, or positive/

negative, and expression levels of all genes in each dataset were converted into Boolean 

values (0/1) using the StepMiner algorithm (24). A noise margin of 2-fold change is 

applied around the threshold to determine intermediate values, and these values are ignored 

during Boolean analysis. Pairwise comparison of relative gene expression levels was then 

carried out to capture fundamental symmetric and asymmetric relationships between genes. 

BooleanNet statistics (S, p) were used to assess the significance of the Boolean implication 

relationships (23) and binarization error is controlled using a noise margin of +/− 0.5 around 

the determined StepMiner threshold. S > 3 and p < 0.1 were used as thresholds, where S = 

(expected - observed)/(√expected), for a false discovery rate <10−3 (23,25).

Invariant Boolean relationships were then used to make a universal model. These 

relationships were simplified by first clustering genes with equivalent relationships 

to each other. Internal logically consistent clusters were identified by following the 

equivalent relationships from genes that share at least half of the equivalences within a 

cluster. Subsequently, a graph was built connecting the individual clusters to each other 

using Boolean relationships. To identify cluster connections, the most prevalent Boolean 

relationships were used from ten statistically top ranked members from each cluster. To 

identify the global continuum of cellular states along the stemness-differentiation axis in 

neuroblastoma tumors, pathway discovery was performed using the MiDReG algorithm 

(25). The largest cluster was used as a starting point and other clusters were discovered 

using specific Boolean implication relationships. A greedy algorithm (61) was employed for 

choosing clusters during depth-first traversal and was used to identify the pathway involving 

sequential gene clusters with the strongest association with differentiation (clusters 3-4-5-6) 

that was designated the differentiation signature. For further validation, multiple pathways 

were derived from connected clusters in the network as previously described (32), and 

machine learning and model training were performed by ranking Boolean cluster pathways 

including up to 4 connected clusters based on their performance (ROC-AUC values) in 

distinguishing neuroblastoma differentiation as defined by MYCN expression. Reactome 

pathway analysis of each cluster was then performed to identify and organize molecular 

relationships into biological pathways and processes and to identify the enriched pathways 

(62).

For comparison studies, a gene signature score from the differentiation signature was 

computed by using scaled linear combinations of gene expression values which were 

used to classify sample categories, and the performance of the multi-class classification 

was measured by ROC-AUC (Receiver Operating Characteristics Area Under the Curve) 

values (see Supplemental Methods). Comparisons of the differentiation signature with gene 

expression datasets from independent patient cohorts were analyzed separately using the 

Boolean analysis framework. A color-coded bar plot was combined with a density plot 

to visualize the gene signature-based classifications. Boxplots and scatterplots of gene 
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expression values were computed using the Hegemon (Hierarchical exploration of gene 

expression microarrays online) computational algorithm (28,29,31).

For pathway-based signature analysis, the differentiation signature score was compared to 

gene signatures from four different pathways: MES (mesenchymal; 63), ADRN (adrenergic; 

63), cell cycle (KEGG_CELL_CYCLE, hsa04110; 64), and senescence (FRIDMAN 

SENESCENCE_UP, FRIDMAN_SENESCENCE_DN; 65). The gene lists for the cell 

cycle and senescence pathways were downloaded from the Molecular Signatures Database 

(MSigDB), a joint project between UC San Diego and the Broad Institute (66). Genes 

from these pathways were converted to a gene signature score by using the average of 

the normalized gene expression values based on the Z-score approach centered around the 

StepMiner threshold (formula = (expr - SThr)/3*stddev; see Supplemental Methods).

For selection of candidate genes, genes from clusters 3, 4, 5, and 6 were ranked based on T-

test scores between gene expression levels from cell lines with less differentiation (IMR-32 

with and without retinoic acid treatment, SK-N-AS with and without retinoic acid treatment, 

and untreated SK-N-BE(2) cells) and gene expression levels from cell lines with evidence 

of differentiation (SK-N-BE(2) cells after retinoic acid treatment and SK-N-SH cells with 

and without retinoic acid treatment) (see Figure 2; Table 1). Analogous comparisons were 

made comparing T-test scores between gene expression levels from cell lines with and 

without retinoic acid treatment (see Table 1). Additional genes whose expression was 

significantly associated with expression of MYCN through one of the four asymmetric 

Boolean implication relationships (high->high, high->low, low->high, low->low) without 

direct symmetric correlations with MYCN expression were selected and prioritized based 

on BooleanNet statistics and absence of prior published associations with neuroblastoma 

differentiation or patient outcomes.

Standard t-tests were performed using python scipy.stats.ttest_ind package (version 

0.19.0) with Welch’s Two Sample t-test (unpaired, unequal variance (equal_var=False), 

and unequal sample size) parameters. Multiple hypothesis correction was performed 

by adjusting p values with statsmodels.stats.multitest.multipletests (fdr_bh: Benjamini/

Hochberg principles). The results were independently validated with R statistical software 

(R version 3.6.1; 2019-07-05). Patient subgroups were compared with respect to survival 

outcomes with the use of Kaplan–Meier curves, log-rank tests, and multivariate analyses 

based on the Cox proportional-hazards method. Kaplan-Meier analyses were performed 

using lifelines python package version 0.14.6 and results were validated with R statistical 

software. Statistical significance of the difference between patient groups is computed using 

log-rank test. Univariate and multivariate survival analysis is performed using R survival 

package.

Cell culture

The neuroblastoma cell lines SK-N-AS, SK-N-SH, SK-N-BE(2), CHP-134, IMR-32, NGP, 

LAN1, SH-SY5Y, and SH-EP have been previously described (67,68) and were generously 

provided by the Children’s Oncology Group (COG) Childhood Cancer Repository 

(www.cccells.org), Susan Cohn (The University of Chicago Children’s Hospital, Chicago, 

IL), John Maris (Children’s Hospital of Philadelphia, Philadelphia, PA), or were purchased 
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from the American Type Culture Collection (ATCC; Rockville, MD). Cell lines were 

maintained in RPMI-1640 (Mediatech Inc, Manassas, VA) with 10% fetal bovine serum 

(FBS; Omega, Tarzana, CA), L-glutamine, non-essential amino acids (Mediatech), sodium 

pyruvate (Mediatech), and Hyclone antibiotic/antimycotic (Fisher Scientific, Hampton, NH) 

at 37°C in 5% CO2. All cell lines were authenticated by DNA profiling prior to use.

Therapeutic agents

Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) was purchased from Selleck 

Chemicals (Houston, TX) and 13-cis-retinoic acid from Sigma-Aldrich (St. Louis, MO). 

All compound preparations were stored at −20°C, with dilutions maintained at 4°C for 

experimental use. 13-cis-retinoic acid was diluted directly into media prior to use

RNA-sequencing

RNA-sequencing of SK-N-AS, SK-N-SH, SK-N-BE(2), CHP-134, IMR-32, NGP, and 

LAN1 neuroblastoma cells was performed as previously described (69); see Supplemental 

Methods for details.

Quantitative PCR

SK-N-AS and SK-N-BE(2) neuroblastoma cells were plated and allowed to proliferate 

until approximately 70% confluent. Cells were harvested, and RNA was isolated from 

cell populations using a Qiagen RNeasy Kit (Qiagen). RNA was reverse transcribed to 

cDNA and qPCR was subsequently performed using primers for PCDHA12, DCLK1, and 

UBE4B with GAPDH used as a control. Fold change in gene expression was calculated by 

comparing levels of the gene of interest against GAPDH.

Western blots

SK-N-AS and SK-N-BE(2) neuroblastoma cells were plated in 6-well plates at 

approximately 70–80% confluence and allowed to adhere overnight. Wells were treated 

with 5μM 13-cis-retinoic acid for 2, 5, and 7 days. Cells were then washed with PBS and 

lysed with RIPA buffer supplemented with Protease inhibitor and phosphatase inhibitor (Life 

Technologies, Carlsbad, CA). Lysates were centrifuged and the supernatants were collected. 

Protein concentration in cell lysates was measured using a protein assay Dye Reagent (Bio-

Rad, Hercules, CA). 20–30μg of denatured total protein from each sample was separated 

by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) using 4–12% 

Bolt gels (Invitrogen, Carlsbad, CA) and transferred to PVDF membranes. Membranes were 

blocked with 3% BSA made in 1× TBS + 0.1% Tween-20 and then incubated with primary 

antibodies to UBE4B (Abcam, Cambridge, United Kingdom; ab97697) and β-actin (Sigma-

Aldrich; AS316). All antibodies were diluted in 5% BSA in 1× TBS + 0.01% Tween-20. 

Bound primary antibodies were incubated in anti-rabbit or anti-mouse HRP-conjugated 

secondary antibodies (1:5000, Sigma-Aldrich) at room temperature for 1 hour and the signal 

was visualized using Amersham ECL (GE Healthcare Bio-Sciences, Pittsburgh, PA).
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In vitro growth and differentiation assays

Neuroblastoma cells with depleted UBE4B were generated using lentiviral particles 

produced in HEK 293T cells using 3rd Generation Packaging Mix and UBE4B 

sgRNA CRISPR/Cas9 All-in-One Lentivector set (Human) containing plasmid pLenti-U6-

sgRNA-SFFV-Cas9-2A-Puro (Applied Biological Materials Inc., Richmond, BC, Canada). 

Lentivirus containing culture media was collected from 293T cells, centrifuged at 300g for 

10 minutes to remove cells, filtered through a 0.45 μM sterile filter and added to target 

cells with 6 μg/ml Polybrene. Target cells were incubated at 37°C overnight, and then 

culture media was replaced with complete media (RPMI supplemented with 10% FBS, 2mM 

L-glutamine, 1X Antibiotic-Antimycotic solution (Corning) and incubated at 37°C. Infected 

cells were selected for stable expression with 1 μg/ml puromycin and UBE4B depletion was 

validated by quantitative PCR and Western blot.

Parental and UBE4B depleted neuroblastoma cells were plated in 96-well plates at seeding 

densities between 5,000–10,000 cells/well for 24 hours. Plates were placed in the Incucyte 

Zoom™ continuous live cell imaging system (Essen Bioscience, Ann Arbor, MI) and phase 

contrast images were taken every 6 hours at 10× magnification for up to 192 hours. Cell 

growth curves were generated from percent cell confluence acquired from the Incucyte 

Zoom™ analyzer as previously described (67,68). The change in percent confluence over 

time was normalized to the percent confluence at time zero. All experiments were performed 

in triplicate, and differences in normalized confluence were compared using Student’s 

T-tests. For neurite growth experiments, cells were treated with 13-cis-retinoic acid or 

vorinostat, and neurite length per field was quantified using NeuroTrack™ processing 

software on the Incucyte Zoom™ as previously described (67,68). The growth rate of 

neurites in each well was obtained by measuring the total neurite length per high-power field 

at each time point and expressed as mm/mm2.

Results

Boolean Network Explorer (BoNE) Analysis Reveals an Invariant Signature for 
Neuroblastoma Differentiation

Because neuroblastoma tumors arise from primordial neural crest cells and are composed 

of immature, undifferentiated neuroblasts, and tumor differentiation is strongly associated 

with improved patient outcomes (6-9), we sought to create a mathematical model for 

neuroblastoma differentiation by extracting the fundamental gene expression relationships 

from transcriptomic profiles of neuroblastoma tumors to investigate progressive changes 

in gene expression along the stemness-differentiation continuum. Amplification of the 

chromosome 2p24 region, including the oncogene MYCN, is found in ~25% of all 

tumors and is a marker of high-risk disease and poor prognosis (71,72). Elevated 

MYCN expression is also known to drive stemness (73-75) and reduced MYCN is often 

observed during neuroblastoma differentiation (76-79), and MYCN expression, but not 

expression of the related MYC gene, is significantly correlated with neuroblastoma tumor 

differentiation (Supplemental Figure 3). MYCN expression is also reduced in both MYCN-

amplified and nonamplified cell lines and tumors (Supplemental Figure 3), suggesting that 
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MYCN expression represents a marker of neuroblastoma phenotypes along the stemness-

differentiation continuum (Figure 1A, B).

Gene expression levels from 498 neuroblastoma patient tumors (38) including a 

representative sample of patients and tumors from all risk groups with representative 

distributions of all known prognostic features were converted to Boolean values, and 

Boolean cluster relationships were used to chart individual gene expression changes 

along a Boolean path within the stemness-differentiation continuum using Boolean 

Network Explorer (BoNE) software, which clusters genes using Boolean equivalent 

relationships. Pairwise Boolean implication relationships were used to create a Boolean 

network (23,24) with the edges between clusters defined using the identified implication 

relationships, and the path direction was derived from the connections established from 

high MYCN expression (representing undifferentiated neuroblastoma) to low MYCN 
expression (representing differentiated neuroblastoma), with the arrow colors reflecting the 

implication relationships (Figure 1C). We then generated a map using BoNE software with 

identified Boolean relationships representing the sequential progression of gene clusters in 

neuroblastoma tumors from undifferentiated to differentiated tumors (Figure 1D).

Using a greedy algorithm (61) and a classical machine learning framework, we performed 

model selection to identify gene clusters associated with neuroblastoma differentiation based 

on MYCN expression. The pathway involving four sequential gene clusters (clusters 3, 4, 5, 

and 6) consisting of 1440 total genes (with 1251 independent genes) emerged as one of the 

best models that spanned multiple clusters with the strongest association with neuroblastoma 

differentiation (Figure 1D,E,F). Reactome pathway analyses (62) of each of the clusters 

in the continuum between undifferentiated and differentiated neuroblastoma were then 

performed, with significant pathways for each cluster identified (Figure 1D). These 

four gene clusters demonstrated enrichment of gene transcription and protein translation 

pathways in clusters 3 and 4 and enrichment of intracellular signaling, receptor trafficking, 

and cell-cell communication and signaling pathways in clusters 5 and 6 (Supplemental Table 

2), with a progression of cellular functions likely required for neuroblastoma differentiation. 

As the 3-4-5-6 gene clusters demonstrated the strongest association with neuroblastoma 

differentiation, they will henceforth be referred to as a differentiation signature.

The Differentiation Signature Predicts Neuroblastoma Cell and Tumor Differentiation

To validate the association of our differentiation signature with neuroblastoma cell 

differentiation, we projected our Boolean network onto gene expression profiles from 

neuroblastoma cell lines with both low and high MYCN gene expression levels before 

and after treatment with the differentiating agent 13-cis-retinoic acid (CRA) using BoNE 

software (Figure 2A). Comparing Boolean continuum scores calculated from expression 

levels of genes in the differentiation signature, the differentiation signature was able 

to perfectly separate gene expression profiles of CRA-treated neuroblastoma cell lines 

from untreated cells (ROC-AUC = 1.00; Figure 2B). CRA treatment also resulted in 

increased differentiation signature scores in neuroblastoma cells sensitive to CRA (SK-

N-SH, p=3.86e-06; SK-N-BE(2), p=0.000107), while CRA treatment resulted in smaller 

fold changes in differentiation signature scores in neuroblastoma cells resistant to CRA 
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(IMR32, p=2.51e-05; SK-N-AS, p=0.0479) (80) (Figure 2C). SK-N-SH neuroblastoma 

cells, which consist of a mixture of both more differentiated N-type SH-SY5Y cells and less 

differentiated S-type SH-EP cells (80), demonstrated an increased differentiation signature 

score at baseline that was further increased with CRA treatment (Figure 2C).

Our Boolean continuum scores were also able to perfectly separate gene expression profiles 

of SK-N-SH and SH-SY5Y neuroblastoma cells after 5 days of treatment with 10μM all-

trans-retinoic acid (ATRA)(48; ROC-AUC=1.00, Figure 2D). The differentiation signature 

was able to perfectly separate undifferentiated LAN1 neuroblastoma cells from LAN1 

cells differentiated with the combination of 10μM ATRA and 5-aza-deoxycytidine, of 

undifferentiated SK-N-BE(2)C neuroblastoma cells from SK-N-BE(2)C cells differentiated 

with 10μM ATRA, and of undifferentiated SH-SY5Y cells from SH-SY5Y cells 

differentiated with 10μM ATRA and neurobasal medium (44-46,50; ROC-AUC=1.00 for 

each; Figure 2E). The differentiation signature was also able to predict responses of 

neuroblastoma cells to the histone deacetylase (HDAC) inhibitor vorinostat (suberoylanilide 

hydroxamic acid/SAHA) (47; Figure 2E) and was able to separate neuroblastoma cells with 

overexpressed TFAP2B and depleted MYCN (50,51; Figure 2E).

We then projected our Boolean network onto gene expression profiles from neuroblastoma 

tumors in the TARGET database (54). Comparing Boolean continuum scores, the 

differentiation signature was able to separate differentiating from undifferentiated 

neuroblastoma tumors in the TARGET neuroblastoma tumor gene expression dataset 

(p=2.923-06; Figure 2F). The differentiation signature was also able to separate nodular 

from intermixed ganglioneuroblastoma tumors from the KidsFirst neuroblastoma dataset 

(49; p=0.0397; Figure 2G). Using single-cell RNA-sequencing data from human fetal 

adrenal samples, the differentiation signature was able to distinguish neuroblastoma tumor 

samples from Schwann cell precursors (SCPs), Sympathoblasts (SBs), and Chromaffin 

(CF) cells (52; Figure 2H). In single-cell RNA-sequencing data from neuroblastoma 

tumor samples from untreated and previously treated patients, the differentiation signature 

distinguished neuroblastoma cells from SCPs and CF cells, but there was no significant 

difference from SBs (53; Figure 2I), further validating the significance of these clusters in 

neuroblastoma tumor differentiation.

The Differentiation Signature Predicts Neuroblastoma Patient Outcomes

To evaluate the associations of the differentiation signature with patient outcomes, we 

projected our Boolean network onto gene expression profiles of neuroblastoma tumors from 

databases that included patient survival information. Elevated differentiation signature scores 

were also found in patients with neuroblastoma who were alive at the completion of standard 

therapy, compared to scores in patients who did not survive (43; p=0.00995; Figure 3A). 

To further evaluate the association of the differentiation signature score with neuroblastoma 

patient outcomes, available datasets of gene expression profiles of neuroblastoma tumors 

with information about patient survival were divided into subsets with high and low 

MYCN expression. Among tumors with low MYCN expression levels, datasets were 

further subdivided by differentiation signature gene expression levels into low and high 

expression groups, and Kaplan-Meier curves were generated. Overall survival rates in 
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patients with tumors with low MYCN expression with low cluster differentiation signature 

gene expression levels were lower in all tested neuroblastoma tumor gene expression 

profiles (38-42,55); Figure 3B,C,D).

In both univariate and multivariate Cox regression analyses for overall survival (OS) 

using gene expression patterns and prognostic features from 498 patients (38), including 

the differentiation signature score, MYCN amplification status, tumor stage, patient age 

at diagnosis, and up or down regulated gene set expression from LAN1 neuroblastoma 

cells treated with 10μM ATRA and 5-aza-deoxycytidine (44) as independent variables, the 

differentiation signature score was independently associated with overall patient survival (** 

p <0.01, *** p<0.001; Figure 3E).

Association of the Differentiation Signature with Established Neuroblastoma Gene 
Signatures

Since MYCN expression has been shown to be associated with cell fates other than 

differentiation, including cell cycle progression (81), mesenchymal transition (63) and 

cellular senescence (49), the differentiation score was compared to gene signatures from 

four different pathways: MES (mesenchymal; 63); ADRN (adrenergic; 63), cell cycle 

(KEGG_CELL_CYCLE, hsa04110; 64) and senescence (FRIDMAN SENESCENCE_UP, 

FRIDMAN_SENESCENCE_DN; 65). While the differentiation signature score was 

consistently able to separate undifferentiated from differentiated neuroblastoma cells and 

tumors (Figure 2B-F), gene signature scores for mesenchymal and adrenergic states and 

for cell cycle and cellular senescence pathways were unable to consistently separate 

undifferentiated neuroblastoma cell lines from cell lines differentiated with 13-cis-retinoic 

acid (Figure 4A). Comparisons of the signature-based classifications across all datasets 

further demonstrated that the differentiation signature score had the best performance 

and highest ROC-AUC value in separating undifferentiated from differentiated cell lines 

using data compiled from all previously tested datasets, while other tested gene signatures 

demonstrated lower ROC-AUC values in at least one dataset with reduced performance 

in separating undifferentiated from differentiated cell lines (Figure 4B). Additionally, 

recently identified pediatric cancer gene modules were unable to significantly separate 

undifferentiated neuroblastoma cell lines from cell lines differentiated with 13-cis-retinoic 

acid (82; Figure 4E, Supplemental Figure 4).

The differentiation signature score was also able to separate neuroblastoma cell lines 

treated with all-trans retinoic acid (ATRA) to induce differentiation from those treated with 

topotecan (49), although topotecan treatment appears to also induce neuroblastoma cell line 

differentiation, as demonstrated by increasing differentiation signature score (Figure 4C, 

left). The senescence gene signature (65) was also able to segregate neuroblastoma cells 

treated with topotecan from those treated with ATRA (Figure 4D, left). However, while the 

differentiation signature was able to perfectly segregate undifferentiated neuroblastoma cell 

lines from those differentiated with 13-cis-retinoic acid (Figure 4C, right), the senescence 

signature was not able to consistently and correctly segregate undifferentiated from 

differentiated neuroblastoma cells (Figure 4D, right), suggesting that the differentiation 

score reflects the association of MYCN expression with differentiation.
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Boolean Analyses Identifies Novel Genes Associated with MYCN Expression and 
Neuroblastoma Differentiation

In order to identify novel genes from our differentiation signature associated with 

neuroblastoma differentiation, genes from clusters 3, 4, 5, and 6 were ranked based on 

significance between gene expression levels from cell lines with less differentiation (IMR-32 

with and without retinoic acid treatment, SK-N-AS with and without retinoic acid treatment, 

and untreated SK-N-BE(2) cells) and gene expression levels from cell lines with evidence of 

differentiation (SK-N-BE(2) cells after retinoic acid treatment and SK-N-SH cells with and 

without retinoic acid treatment) (Figure 2; Supplemental Table 3A). Analogous comparisons 

were made comparing T-test scores between gene expression levels from cell lines with and 

without retinoic acid treatment (Supplemental Table 3B).

The gene lists were then screened for genes whose expression was significantly associated 

with expression of MYCN through one of the four asymmetric Boolean implication 

relationships (high->high, high->low, low->high, low->low) without direct symmetric 

correlations with MYCN expression and without prior published associations with 

neuroblastoma differentiation or patient outcomes, and five novel genes were identified 

(Table 1, Figure 5). These genes were located in clusters 3/4 (PSMC3, SLC25A39, PFDN2) 

and clusters 5/6 (PCDHA12, DCLK1) and were associated with MYCN expression via 

high->high (PSMC3, SLC25A39, PFDN2) or high->low (PCDHA12, DCLK1) implication 

relationships (Figure 5). In neuroblastoma cell lines, the SLC25A39 gene from clusters 

3/4 demonstrated significantly reduced expression after CRA treatment, while DCLK1 and 

PCDHA12 from clusters 5/6 demonstrated significantly increased expression after CRA 

treatment (Figure 5, Supplemental Figure 5), consistent with their Boolean relationships 

with MYCN expression. Furthermore, increased expression of PCDHA12 (p=1.8c-38) 

and DCLK1 (p=7.5e-40) were associated with increased rates of survival in MYCN-

nonamplified tumors, while increased expression of PSMC3 (p=2.0e-39), SLC25A39 
(p=3.4e-40), PFDN2 (p=9.9e-40) were each associated with lower survival rates in MYCN-

nonamplified tumors (Figure 5).

UBE4B is a Network-predicted Modulator of Neuroblastoma Differentiation

In our Boolean network, The UBE4B gene was identified in cluster 5, one of the gene 

clusters within the differentiation signature and was found to be equivalent to other 

genes involved in intracellular signaling and receptor trafficking pathways (Figures 1D, 

6A). UBE4B is an E3/E4 ubiquitin ligase involved in growth factor receptor trafficking 

in neuroblastoma tumors that has been shown to be associated with neuroblastoma 

tumor differentiation (69,83,84), and to validate the results of our Boolean analyses, we 

evaluated neuroblastoma cells before and after treatment with 13-cis-retinoic acid (CRA) 

for UBE4B expression. Both UBE4B gene and protein expression increased in response 

to CRA-treatment in CRA-sensitive SK-N-BE(2) neuroblastoma cells while UBE4B gene 

and protein expression decreased in CRA-resistant SK-N-AS neuroblastoma cells (*p<0.05; 

Figure 6B, C), although the more significant observed changes in protein expression 

compared to gene expression suggest that other post-translational mechanisms may be 

involved.
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Elevated expression of UBE4B and the previously established neuroblastoma differentiation 

marker GAP43 (85) were also found in differentiating neuroblastoma tumors, compared 

to undifferentiated tumors, while MYCN expression demonstrated lower expression in 

differentiating tumors, consistent with the established association of UBE4B and MYCN 
expression with neuroblastoma differentiation (69,74,76; Figure 6D). We further analyzed 

the associations of the expression patterns of UBE4B and other genes associated with 

neuroblastoma differentiation (GAP43, SYP), and UBE4B expression in patient tumor 

samples demonstrated expected Boolean relationships with neuroblastoma differentiation 

markers GAP43 and SYP, but was not associated with expression of NTRK2, RPFOX3, 

or NPY, genes previously shown to have increased expression after retinoic acid treatment 

(86; Figure 6E). Lastly, UBE4B depletion in neuroblastoma cell lines also resulted in both 

in increased growth rate and inhibition of neurite outgrowth in response to either CRA 

or to histone deacetylase inhibition (p=5.9e-08 and p=4.8e-13, respectively; Figure 6F,G; 

Supplemental Figure 6), consistent with reduced neuroblastoma differentiation as predicted 

by our Boolean network and differentiation signature.

Discussion

Neuroblastoma tumors are childhood tumors that arise from primordial neural crest cells that 

normally differentiate to form sympathetic ganglion and adrenal chromaffin cells (87-89). 

Children with high-risk, undifferentiated neuroblastoma suffer from frequent relapses and 

treatment-resistant tumors that respond poorly to salvage therapy (1-5), while children 

with well-differentiated tumors have improved survival rates (6-9). Neuroblastoma is also 

characterized by the capacity for spontaneous tumor regression in a subset of patients (90), 

resulting in part through neuronal differentiation, and aggressive neuroblastoma tumors 

can be induced to differentiate along sympathoadrenal lineage pathways, suggesting that 

a block in the differentiation process likely contributes to neuroblastoma pathogenesis. 

While induction of differentiation is an effective strategy for neuroblastoma treatment, our 

understanding of the signaling pathways and networks in the process of neuroblastoma 

differentiation is incomplete and does not fully account for the complex interplay 

of intracellular signaling pathways with transcriptional, post-transcriptional, and other 

regulatory events that underlie the differentiation process. Improved understanding of the 

mechanisms regulating neuroblastoma differentiation may highlight events that contribute to 

neuroblastoma tumorigenesis and identify important contributors that could serve as targets 

for novel therapies.

The multiple, overlapping roles of protein kinases, transcription factors, and other regulatory 

molecules in neuroblastoma differentiation are best analyzed using a systems-based 

approach that can more effectively model complex intracellular signaling networks and 

their role in cellular behaviors. Boolean networks are models of biological networks used 

to study complex behavior in biological systems, and Boolean mathematical models employ 

unbiased analyses of transcriptomic datasets to identify general relationships among pairs 

of genes across all samples irrespective of their origin or prior manipulation, and these 

relationships are conserved despite disease and tissue heterogeneity and are likely to 

be fundamentally important for any given process. The Boolean principle dictates only 

six different possible relationships between the expression levels of any pair of genes: 

Zage et al. Page 12

Genes Chromosomes Cancer. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two are symmetric (equivalent or opposite) and four are asymmetric (low => low, high 

=> low, low => high, and high => high)(Figure 1). A Boolean implication relationship 

between expression levels of two genes exists when one or more quadrants of a gene 

expression profile are sparsely populated (23). Analyses of Boolean relationships from a 

given dataset can be used to generate a Boolean network, which can then be used to identify 

invariant gene expression changes conserved during biological processes despite disease and 

tissue heterogeneity and disease evolution, and these Boolean networks can then be easily 

extrapolated to independent cohorts for validation.

Boolean analyses involve the conversion of individual gene expression patterns into binary 

values. While use of continuous expression data would incorporate more information, 

the use of continuous data for the analyses would lead to increased "noise" that would 

increase the difficulty in interpretation of the results. Prior studies have employed Boolean 

algorithms and the MiDReG (Mining Developmentally Regulated Genes) software to 

successfully identify novel genes expressed in stem and progenitor cells in both normal 

and malignant tissues (25-31) and to identify novel therapeutic targets in bladder (26,27,31) 

and colorectal cancers (28,29). Using recently developed Boolean Network Explorer 

(BoNE) software that uses MiDReG principles to sort developmentally regulated genes 

along the stemness-differentiation axis, we have generated a map with identified Boolean 

relationships representing the sequential progression of gene clusters in neuroblastoma 

tumors from undifferentiated to differentiated tumors. Using our Boolean network, we 

have identified a differentiation signature comprised of 1251 independent genes in 4 

gene clusters, and this signature predicted neuroblastoma differentiation in independent 

datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. 

This differentiation signature was also associated with patient outcomes in multiple 

independent patient cohorts and validated the role of MYCN expression as a marker 

of neuroblastoma differentiation. Our results identified novel genes whose expression 

demonstrated asymmetric Boolean implication relationships with MYCN expression and 

that were associated with both neuroblastoma differentiation and patient outcomes, 

suggesting that our Boolean network was able to identify novel genes associated with 

the differentiation process and with MYCN expression that would not have been detected 

using symmetric computational analyses. Our differentiation signature included a cluster of 

genes involved in intracellular signaling and growth factor receptor intracellular trafficking 

pathways that is strongly associated with neuroblastoma differentiation, and UBE4B, a 

gene within this cluster associated with growth factor receptor trafficking and intracellular 

signaling, was associated with neuroblastoma cell and tumor differentiation. Our results 

have shown that Boolean analyses are able to identify gene expression patterns that more 

accurately predict neuroblastoma cell and tumor differentiation status, demonstrating the 

advantages of our approach.

Since prior studies have shown that elevated MYCN expression drives neuroblastoma 

stemness (73-75) and that reduced MYCN expression is observed during neuroblastoma 

differentiation (76-79), we evaluated neuroblastoma differentiation using gene expression 

relationships from transcriptomic profiles of neuroblastoma tumors to investigate 

progressive gene expression changes along the stemness-differentiation continuum defined 

by MYCN expression. MYCN expression has previously been shown to be associated 
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with cell fates other than neuronal-like differentiation, such as mesenchymal transition 

(63) and senescence (49), but our results demonstrate that gene signatures associated with 

mesenchymal and adrenergic phenotypes and those associated with cell cycle progression 

and cellular senescence were unable to consistently distinguish undifferentiated from 

differentiated neuroblastoma cells, while our differentiation signature was consistently 

able to separate undifferentiated from differentiated neuroblastoma cells and tumors. 

Furthermore, pathways involved in cell cycle progression and cellular mitosis that might 

be linked to MYCN expression were located in an alternate gene cluster (cluster #10; Figure 

1D) that was identified in unbiased fashion by our analysis and that was not included 

in the differentiation signature, and gene cluster #10 was further located in a completely 

independent path of gene clusters along the stemness-differentiation continuum (Figure 

1D,F). Furthermore, some neuroblastoma tumors are not marked by expression of MYCN, 

but rather, the related c-MYC protein (91). However, the role of c-MYC in neuroblastoma 

differentiation is not clear, and MYC expression is not associated with patient tumor 

differentiation (Supplemental Figure 3), and our results are generally identical in both 

MYCN-amplified and –non-amplified tumors and cell lines (for example, see Figures 2B 

and 3E), demonstrating the likely significant role of MYCN expression in neuroblastoma 

differentiation.

The four gene clusters identified in our differentiation signature demonstrated enrichment 

of gene transcription and protein translation pathways in clusters 3 and 4 and enrichment 

of intracellular signaling, receptor trafficking, and cell-cell communication and signaling 

pathways in clusters 5 and 6. While the relative roles of these individual intracellular 

and extracellular pathways and of individual genes within each cluster remain to be fully 

delineated, this progression of cellular functions appears to be consistent with a process 

required for a complex cellular behavior such as differentiation. Further studies are clearly 

needed to identify the most critical genes and pathways within these clusters that drive 

the differentiation process. However, we have demonstrated associations between our 

identified differentiation signature and neuroblastoma differentiation induced in vitro by 

a range of agents, including retinoids and HDAC inhibitors, which have been shown to 

induce neuroblastoma differentiation in previous studies (45,92-94), as well as associations 

with neuroblastoma tumor differentiation in multiple independent patient tumor gene 

expression datasets (54,55), further establishing the validity of our Boolean network. Diverse 

neuroblastoma prognostic features, such as tumor stage and patient age at diagnosis, are all 

included within the Boolean analysis framework, and the analyzed datasets include patients 

with the typical distribution of risk groups, tumor stages, patient ages, and other biologic 

and prognostic features (38-43), suggesting that our Boolean network and differentiation 

signature represent invariant gene expression patterns conserved during differentiation 

despite disease and tissue heterogeneity and disease evolution.

Our Boolean network identified five novel genes, 3 in clusters 3/4 (PSMC3, SLC25A39, 

PFDN2) and 2 in clusters 5/6 (PCDHA12, DCLK1), whose expression was associated 

with MYCN expression via asymmetric Boolean implication relationships and with 

neuroblastoma cell differentiation and patient outcomes. None of the five genes has 

previously been associated with neuroblastoma differentiation or survival in published 

literature to our knowledge. While the genes in clusters 3/4 have known or suggested 
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functions that are not clearly linked to neural differentiation, the identified genes in 

clusters 5/6 have more established roles in neural development. The PSMC3 gene encodes 

one of the ATPase subunits of the 26S proteasome and has been associated with T-cell 

receptor signaling and with cell cycle checkpoints. SLC25A39 is a member of the SLC25 

transporter or mitochondrial carrier family of proteins that are typically embedded in the 

inner mitochondrial membrane, although its specific function is unknown. The PFDN2 gene 

encodes a subunit of prefoldin, a molecular chaperone complex that binds and stabilizes 

newly synthesized polypeptides to allow for appropriate folding. Of the genes in clusters 

5/6, however, PCDHA12 encodes a neural protocadherin cell adhesion protein that has 

been suggested to be involved in the establishment and maintenance of specific neuronal 

connections in the brain, and DCLK1 encodes a kinase that has been shown to also 

have microtubule-polymerizing activity and is involved in neuronal migration, retrograde 

transport, neuronal apoptosis and neurogenesis and is up-regulated by brain-derived 

neurotrophic factor. The functional roles of these genes in neuroblastoma differentiation 

and pathogenesis are currently under further investigation.

To further validate our differentiation signature, and in particular the identified cluster 

of genes involved in receptor endocytosis and trafficking and intracellular signaling, we 

evaluated the association of UBE4B, an E3/E4 ubiquitin ligase (95) that has been linked 

to neuroblastoma differentiation (69), in neuroblastoma cell lines and tumors. We have 

identified increases in UBE4B expression in differentiated neuroblastoma cells and tumors, 

associations with differentiation marker genes, and increased growth and reduced neurite 

outgrowth in neuroblastoma cells with depleted UBE4B, suggesting potential roles for 

UBE4B ubiquitin ligase activity and UBE4B-mediated GFR trafficking and degradation 

in the regulation of downstream signaling required for neuroblastoma differentiation. 

However, the molecular mechanisms underlying the associations of UBE4B expression and 

UBE4B-mediated signaling with differentiation are not known. Aberrant expression and 

activity of several GFRs, including RET, EGFR, TrkA, and TrkB, have been associated 

with neuroblastoma differentiation (96-108). While further studies are clearly needed to 

determine the relative roles of individual intracellular and extracellular pathways and of 

individual genes within each cluster, our data demonstrating the association of UBE4B with 

neuroblastoma differentiation suggests that UBE4B-mediated signaling may play a key role 

in the differentiation process.

Our results demonstrating that our differentiation signature identified from a Boolean 

network derived from neuroblastoma tumor gene expression profiles sorted along 

a stemness-differentiation continuum based on MYCN expression is associated with 

neuroblastoma cell and tumor differentiation in multiple independent datasets further 

validate our novel approach to identifying critical genes and pathways in the neuroblastoma 

differentiation process. Our analyses have identified a pathway of 4 gene clusters which 

predicted neuroblastoma differentiation in neuroblastoma cell lines and patient tumors, 

and which also predicted neuroblastoma patient outcomes in a series of diverse patient 

cohorts. We identified a cluster of genes involved in growth factor receptor trafficking and 

intracellular signaling that was strongly associated with differentiation, and we identified 

novel candidate genes associated with MYCN expression and neuroblastoma differentiation 

via asymmetric relationships. Our findings therefore demonstrate that Boolean approaches 
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for gene expression analysis can identify novel pathways relevant for neuroblastoma tumor 

differentiation that could represent potential therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A Boolean Network Model of the Stemness-Differentiation Continuum in 
Neuroblastoma Tumors
(A,B) Schematics summarizing the significance of MYCN amplification in neuroblastoma 

tumors (A) and its association with disease phenotypes and its antagonistic impact on the 

desired therapeutic goals (B).

(C) Boolean network analysis identifies clusters of genes that are enriched in a continuum of 

cellular states. The Boolean network utilizes the six possible invariant Boolean relationships 

between genes, where the two symmetric relationships each have two diagonally opposite 

sparse quadrants, while the four asymmetric Boolean relationships each have one sparse 

quadrant in their gene expression profile. Genes with similar expression profiles are 

organized into clusters, and their relationships serve as the basis for a directed Boolean 

Network with nodes as genes and edges corresponding to the Boolean relationships (23,24). 

Boolean cluster relationships are used to chart individual gene expression changes along 

a Boolean path within the stemness-differentiation continuum using Boolean Network 

Explorer (BoNE) software, which clusters genes using Boolean equivalent relationships, 

while the edges between clusters are defined using the identified implication relationships.

(D) Boolean Network Explorer (BoNE) software was used to analyze RNA expression 

profiles of 498 neuroblastoma patient tumors (38; GSE62564/GSE49711). The path 

direction was derived from the connections established from high MYCN expression 
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(representing undifferentiated neuroblastoma) to low MYCN expression (representing 

differentiated neuroblastoma), with the arrow colors reflecting the implication relationships. 

Reactome pathway analyses (62) of each of the clusters in the continuum between 

undifferentiated and differentiated neuroblastoma were performed, with significant pathways 

for each cluster listed.

(E) The Boolean relationships and candidate genes within each gene cluster in the identified 

cluster 3-4-5-6 pathway are shown. Representative Boolean gene expression relationships 

are shown.

(F) Machine learning and model training was performed by ranking Boolean cluster 

pathways including up to 4 connected clusters based on their performance (ROC-AUC 

values) in distinguishing neuroblastoma differentiation as defined by MYCN expression.
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Figure 2. Validation of the Boolean Model of Neuroblastoma Tumor Differentiation.
BoNE software identified a pathway that included gene clusters #3-4-5-6 as the pathway 

most significantly associated with neuroblastoma differentiation, which we have termed a 

differentiation signature. The expression of genes within these clusters was converted to a 

differentiation signature score by using linear combinations of gene expression values for 

individual genes in each cluster.

(A) Neuroblastoma cell lines with both low and high MYCN gene expression levels before 

and after treatment with the differentiating agent 13-cis-retinoic acid (CRA) were analyzed 

by RNA-sequencing for gene expression profiles.

(B) Sample ordering based on the differentiation signature score using BoNE software of 

gene expression profiles of untreated control neuroblastoma cell lines and neuroblastoma 

cell lines after 13-cis-retinoic acid treatment (ROC-AUC=1.00 for each). P-values were 

computed using two-tailed, two sample Welch's T-tests.

(C) Sample ordering based on the differentiation signature using BoNE software of gene 

expression profiles of control, untreated, neuroblastoma cell lines (C) and neuroblastoma 

cell lines after 13-cis-retinoic acid treatment (RA), with p-values comparing scores in RA 

treated and untreated cell lines shown.
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(D) Time course analysis of differentiation induced by treatment of SK-N-SH, SH-SY5Y-A 

cells (ATCC: CRL-2266), and SH-SY5Y-E cells (ECACC: EC94030304) (48; GSE9169) 

with 10μM all-trans-retinoic acid (RA). ROC-AUC of the untreated compared to treated 

samples is plotted against the treatment duration.

(E) (Left) Sample ordering based on the differentiation signature score generated from 

BoNE software of gene expression profiles of undifferentiated LAN1 neuroblastoma cells 

and LAN1 cells differentiated with the combination of 10μM all-trans-retinoic acid (ATRA) 

and 5-aza-deoxycytidine (RA+AZA; 44; GSE100568; ROC-AUC=1), of undifferentiated 

SK-N-BE(2)C neuroblastoma cells and SK-N-BE(2)C cells differentiated with 10μM ATRA 

(RA; 45,50; GSE45587, GSE163431; ROC-AUC=1.00), and of undifferentiated SH-SY5Y 

cells and SH-SY5Y cells differentiated with 10μM ATRA and neurobasal medium (RA; 

46; GSE77383; ROC-AUC=1.00). (Right) Sample ordering based on the differentiation 

signature score of gene expression profiles of untreated control NB-1 neuroblastoma cells 

and NB-1 cells treated with the PI3K/mTOR inhibitor BEZ-235 (BEZ) and with the histone 

deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid/SAHA) (47; GSE95189; 

ROC-AUC of the cells treated with BEZ-235 compared to control = 0.89; ROC-AUC of 

the cells treated with SAHA compared to control = 1.0), and sample ordering based on the 

differentiation signature score of gene expression profiles of IMR-32 neuroblastoma cells 

expressing either GFP or TFAP2B (51; GSE74350; ROC-AUC-1.00) and of gene expression 

profiles of IMR5 neuroblastoma cells with depleted MYCN (shMYCN; 50; GSE163431; 

ROC-AUC=1.00).

(F) Sample ordering based on the differentiation signature using BoNE software of 

gene expression profiles from a mixed cohort of undifferentiated and differentiating 

neuroblastoma tumors (from phs000467.v1.p1; 54; p=2.92e-06).

(G) Sample ordering based on the differentiation signature using BoNE software of gene 

expression profiles from a mixed cohort of nodular and intermixed ganglioneuroblastoma 

tumors (from phs001436.v1.p1; 55; p=0.04, ROC-AUC=0.76).

(H,I) Sample ordering based on the differentiation signature using BoNE software of single-

cell RNA-sequencing gene expression profiles of human fetal adrenal samples and human 

neuroblastoma tumor samples (52,53; GSE137804, EGAD0000100637). SCPs = Schwann 

cell precursors, SB = sympathoblastas, CF = Chromaffin cells, NB = neuroblastoma tumor 

samples.
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Figure 3. Association of the differentiation signature with neuroblastoma patient outcomes.
(A) Relative differentiation signature scores (Path #3-4-5-6 Score) were plotted in patients 

treated for neuroblastoma who were categorized as alive or dead (43; GSE16237), with 

patient numbers shown in parentheses (p=0.00995).

(B) Gene expression values from 498 patient tumors (38; GSE62564/GSE49711) were 

sorted by MYCN expression levels into high MYCN (MYCN) and low MYCN expression 

groups, and patient tumors with low MYCN expression were further divided into groups 

with low and high expression of genes in the differentiation signature (Low, High) using 

BoNE software, with patient numbers in each group shown in parentheses. Kaplan-Meier 

analyses were performed on each of the three patient groups in each dataset.

(C) Gene expression values from neuroblastoma patient tumors (55; phs001436.v1.p1) were 

sorted by MYCN expression levels into high (MYCN) and low expression groups, and 

patient tumors with low MYCN expression were further divided into groups with low and 

high expression of genes in the differentiation signature (Low, High) using BoNE software, 

with patient numbers in each group shown in parentheses. Kaplan-Meier analyses were 

performed on each of the three patient groups in each dataset.

(D) Gene expression datasets from four groups of neuroblastoma patient tumors (39-42; 

E-MTAB-1781, E-MTAB-161, E-TABM-38, GSE85047) were sorted by MYCN expression 

levels into high (MYCN) and low expression groups, and patient tumors with low MYCN 

expression were further divided into groups with low and high expression of genes in the 
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differentiation signature (Low, High) using BoNE software, with patient numbers in each 

group shown in parentheses. Kaplan-Meier analyses were performed on each of the three 

patient groups in each dataset.

(E) Univariate and multivariate Cox regression analyses for overall survival (OS) were 

performed on gene expression patterns and prognostic features in 498 patients (38; 

GSE62564/GSE49711) including the differentiation signature score, MYCN amplification 

status, tumor stage, patient age at diagnosis, and up or down regulated gene set expression 

from LAN1 neuroblastoma cells treated with 10μM ATRA and 5-aza-deoxycytidine 

(LAN1-14d-up, LAN1-14d-down; 44) as independent variables.
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Figure 4. Association of the Differentiation Signature with MYCN Expression
(A) Sample ordering based on the gene expression scores from four pathways (mesenchymal 

(MES), 63; adrenergic (ADRN), 63; cell cycle, KEGG_CELL_CYCLE, 64; and senescence, 

FRIDMAN SENESCENCE_UP, 65) are shown in three representative cell line datasets to 

demonstrate heterogeneity and inconsistency. P-values were computed using two-tailed, two 

sample Welch's T-tests.

(B) Direct comparison of the performance of the differentiation signature score (using 

BoNE software) with up or down regulated gene set expression from LAN1 neuroblastoma 

cells treated with 10μM ATRA and 5-aza-deoxycytidine (LAN1-14d-up, LAN1-14d-down; 

44), and with other pathways (mesenchymal (MES), 63; adrenergic (ADRN), 63; 

cell cycle, KEGG_CELL_CYCLE, 64; and senescence, FRIDMAN SENESCENCE_UP, 

FRIDMAN_SENESCENCE_DN, 65) by computing the average of ROC-AUC values in 12 

independent datasets (8 datasets from Figure 2B; GSE100568, GSE45587, GSE77383 and 

GSE59298; 44-46,49)

(C) (Left) Sample ordering based on the differentiation signature score using BoNE 

software of gene expression profiles of untreated control neuroblastoma cell lines and 
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cell lines treated with either 10μM ATRA (RA) or topotecan (TPT) (ROC-AUC = 1.00 

each)(49; GSE59298), and (Right) of gene expression profiles of SK-N-SH and IMR-32 

neuroblastoma cell lines with and without 13-cis-retinoic acid treatment (Figure 2B; ROC-

AUC=1.00 for each).

(D) (Left) Sample ordering based on the senescence gene signature score (65) of gene 

expression profiles of untreated control neuroblastoma cell lines and cell lines treated with 

either 10μM ATRA (RA) or topotecan (TPT) (ATRA or TPT, ROC-AUC = 1.00 each), 

and (Right) of gene expression profiles of SK-N-SH and IMR-32 neuroblastoma cell lines 

with and without 13-cis-retinoic acid treatment (Figure 2B; ROC-AUC=1.00 for SK-N-SH, 

ROC-AUC=0.00 for IMR-32), demonstrating heterogeneity and inconsistency.

(E) Comparisons of the differentiation score and published pediatric cancer gene modules 

(82) in distinguishing differentiation induced by 13-cis-retinoic acid in 4 neuroblastoma 

cell lines (IMR-32, SK-N-AS, SK-N-BE(2), and SK-N-SH). Significant changes in the 

combined gene signatures were color coded by signficance and direction of expression 

change (Red = increased, Blue = decreased, Grey = not significant) based on T-test scores 

calculated by comparisons of gene signature expression between control and retinoic acid-

treated cell lines (Raw p-values in Supplemental Figure 4)
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Figure 5. Novel Genes Associated with MYCN Expression and Neuroblastoma Differentiation.
(Left) Using BoNE software analysis of RNA expression profiles of 498 neuroblastoma 

patient tumors (38; GSE62564/GSE49711), the gene expression relationships between 

MYCN and PCDHA12, DCLK1, PSMC3, SLC25A39, and PFDN2 were evaluated using 

Boolean implication analysis (Center) Gene expression values from neuroblastoma patient 

tumors (38; GSE62564/GSE49711) were sorted by MYCN expression levels into high and 

low expression groups and were further divided into groups with low and high expression 

of individual genes using BoNE software, with line colors matching the patient groups from 

adjacent plots. Kaplan-Meier analyses were performed on each of the four patient groups 

in each dataset. (Right) Sample ordering based on the differentiation signature using BoNE 

software of gene expression profiles of control, untreated, neuroblastoma cell lines (C) 

and neuroblastoma cell lines after 13-cis-retinoic acid treatment (RA). p-values comparing 

individual untreated (C) and treated (RA) cell lines are shown.
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Figure 6. Validation of UBE4B, a Network-predicted Modulator of Neuroblastoma 
Differentiation.
(A) The UBE4B gene is located in cluster 5 in our Boolean network, one of the gene clusters 

within our differentiation signature, and cluster 5 is comprised of genes that are involved in 

intracellular signaling and receptor trafficking pathways.

(B,C) Retinoic acid-resistant SK-N-AS and retinoic acid-sensitive SK-N-BE(2) 

neuroblastoma cells were treated with 5μM 13-cis-retinoic acid (CRA) for 10 days and 

analyzed by Western blot for UBE4B protein expression at days 2, 5, and 7 (B) and by 

qPCR for UBE4B gene expression at days 7 and 10 (C).

(D) Using the TARGET dataset (54; phs000467.v1.p1), MYCN, UBE4B, and GAP43 
expression were compared in undifferentiated (Undiff) and differentiating (Diff) patient 

tumors (p=8.5e-05, =0.066, and =0.0243, respectively)

(E) Using BoNE software analysis of RNA expression profiles of 498 neuroblastoma 

patient tumors (38; GSE62564/GSE49711), the gene expression relationships between 

UBE4B and MYCN (UBE4B high => MYCN low; S>3, p=0.06) and between UBE4B and 

differentiation markers GAP43 (UBE4B high => GAP43 high; S>3, p=0.12), SYP (UBE4B 
low => SYP low; S>3, p=0.11), NTRK2 (p=NS), RBFOX3 (p=NS), and NPY (p=NS), were 

evaluated using Boolean implication analysis.
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(F,G) Parental and UBE4B-depleted (UBE4B KD) neuroblastoma cells were treated with 

10μM 13-cis-retinoic acid and were monitored for cell confluence using continuous live cell 

imaging (F; p= 5.8777e-08) and for differentiation determined by total neurite length per 

high-power field using NeuroTrack™ software (G; p=4.772763e-13).
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Table 1.

Genes with Asymmetric Boolean relationships with MYCN in Neuroblastoma Tumors.

Gene Name Δ Expression p-value Source

cluster 3-4

PSMC3 −9.26074543 5.05E-10 Suppl Table 2B

SLC25A39 −9.10994675 2.65E-09 Suppl Table 2B

PFDN2 −6.03631336 1.99E-06 Suppl Table 2B

cluster 5-6

PCDHA12 5.5122718 7.93E-05 Suppl Table 2B

DCLK1 4.3965 5.20E-05 Suppl Table 2A
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