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Abstract

Objective.—The differential diagnosis of behavioral variant frontotemporal dementia (bvFTD) 

and Alzheimer’s disease (AD) remains challenging in underrepresented, underdiagnosed groups, 

including Latinos, as advanced biomarkers are rarely available. Recent guidelines for the study 

of dementia highlight the critical role of biomarkers. Thus, novel cost-effective complementary 

approaches are required in clinical settings.

Approach.—We developed a novel framework based on a gradient boosting machine 

learning classifier, tuned by Bayesian optimization, on a multi-feature multimodal approach 

(combining demographic, neuropsychological, magnetic resonance imaging (MRI), and 

electroencephalography/functional MRI connectivity data) to characterize neurodegeneration 

using site harmonization and sequential feature selection. We assessed 54 bvFTD and 76 AD 

patients and 152 healthy controls (HCs) from a Latin American consortium (ReDLat).

Main results.—The multimodal model yielded high area under the curve classification values 

(bvFTD patients vs HCs: 0.93 (±0.01); AD patients vs HCs: 0.95 (±0.01); bvFTD vs AD patients: 

0.92 (±0.01)). The feature selection approach successfully filtered non-informative multimodal 

markers (from thousands to dozens).

Results.—Proved robust against multimodal heterogeneity, sociodemographic variability, and 

missing data.

Significance.—The model accurately identified dementia subtypes using measures readily 

available in underrepresented settings, with a similar performance than advanced biomarkers. 

This approach, if confirmed and replicated, may potentially complement clinical assessments in 

developing countries.

Keywords

multimodal neuroimaging; neurodegeneration; harmonization; feature selection; machine learning

1. Introduction

Global approaches to dementia should address the diversity and heterogeneity of poorly 

characterized, underdiagnosed populations, including Latinos. Despite having greater 

dementia risk, ethnoracially diverse groups are systematically underrepresented in research 

and clinical trials [1]. Dementia prevalence is notably high among diverse populations 

from upper middle-income countries and LMICs, including SACs [2]. Relative to US and 
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European samples, SACs present more heterogeneous populations with shorter lifespans, a 

preponderance of non-urban backgrounds, lower education level and SES [3], and, crucially, 

greater variability in dementia presentation [2]. Considering the impact of genetic, SES [3], 

and environmental risk factors in phenotypic heterogeneity across ethnic groups from SACs, 

multidimensional studies are urgently needed in the region [3, 4].

Mainstream dementia frameworks rely on underlying pathological biomarkers such as 

β-Amyloid and tau PET neuroimaging [5]. However, budgetary and access constraints 

limit the use of biomarker approaches in SACs [2, 6]. Moreover, as dementia presentation 

may depend on multiple factors (such as genetics [7], SES [3, 4], and environmental 

risk factors [8]), unimodal characterization by a single biomarker may then prove 

ineffective. Multimodal markers may help to bridge this gap particularly in SACs because 

neurodegenerative diseases usually present heterogeneous profiles across different levels 

[9]. In particular, the combination of multifactorial sources of variability [3] may induce 

atypical presentations of AD and bvFTD. In order to capture the broad spectrum of 

dementia presentation and heterogeneity, cognitive assessments [10], structural MRI [11], 

EEG [12], and rs-fMRI [13] markers are widely available across countries in the world, 

even in underrepresented populations [9, 10]. Unlike traditional univariate approaches, 

machine learning facilitates the modeling of complex interactions between variables across 

heterogeneous datasets [14]. Automatized diagnostic methods used as decision support tools 

have shown promising results in dementia [15], especially with high dimensionality methods 

that proven superior than classical statistical models [16]. Therefore, an automatized 

machine-learning approach to multimodal markers can potentially overcome current 

limitations in the characterization of populations from SACs and other underrepresented 

regions.

Here, we developed a multi-feature multimodal approach to neurodegeneration (MMAN, 

figure 1) from diverse samples of AD, bvFTD, and controls from SACs. We combined 

demographic (DEM) information, neuropsychological outcomes (NPSs) (cognitive 

screening, executive functions), structural MRI atrophy measures, and dynamic functional 

connectivity (FC) metrics from EEG and fMRI in an integrative approach using the eXtreme 

Gradient Boosting (XGBoost) machine learning classifier [17, 18]. The XGBoost parameters 

were tuned by Bayesian optimization, including a data harmonization technique to remove 

possible site-specific biases [19]. The differential characterization of dementia subtypes 

such as AD vs FTD presents several challenges (cf controls vs patients [17]), including 

overlapping atrophy patterns and variability in cognitive and neuroimaging measures 

among dementia subtypes [20, 21]. To overcome these limitations, we combined cognitive 

screening, MRI-based morphometry, measures of EEG connectivity [22], and dynamic 

measures of resting-state fMRI connectivity [23]. To this end, we assessed the relative 

weights of each feature (i.e. different markers of cognitive screening, EEG, MRI, ad fMRI) 

for a combined classification of AD and bvFTD using a technique from machine learning 

called feature importance analysis. Most of multimodal machine learning approaches for 

AD characterization [24–28] focusing on MRI data come from high-income countries such 

as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [29] and Open Access Series 

of Imaging Studies (OASIS) [30] databases, where both neuroimaging parameters and 

sample DEMs are homogeneous. Conversely, our work is developed for real-life clinical 
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scenarios with heterogenous acquisition parameters and patients’ diversity across SACs. To 

the best of our knowledge, this is the first multimodal approach intended for a differential 

characterization between two dementia subtypes.

We implemented a mixed hypothesis- and data-driven approach, including a priori 
predictions based on the literature and machine learning analyses of relevant multimodal 

data. First, we hypothesized that the XGBoost classifier would yield high accuracy to 

classify patients vs controls, but also AD vs FTD patients considering clinically relevant 

multimodal features. Second, we anticipated that the most important features to characterize 

dementia would have maximal predictive power with combined multimodal measures at 

different levels (cognitive, atrophy, EEG/fMRI connectivity). Third, we predicted that the 

MMAN would outperform all unimodal approaches in classifying patients from controls and 

AD from FTD patients. Moreover, classification performance would remain high even when 

considering (a) DEMs (sex, age, years of education) as a source of variability, (b) strong 

reduction in the number of features (from thousands to dozens), (c) missing data, and (d) 

multimodal sources of variability across clinical centers. By testing these hypotheses we 

aim to assess the robustness of a multimodal computational framework for characterizing 

neurodegenerative diseases in underrepresented populations.

2. Methods

2.1. Participants

This study comprised 282 participants from a multicenter protocol [4, 9] with sites in 

Argentina (Country-1), Chile (Country-2), and Colombia (Country-3). All centers used the 

standardized diagnostic assessment of the Multi-Partner Consortium to Expand Dementia 

Research in Latin America (ReDLat) [4, 9]. Clinical diagnoses were established by experts 

in dementia through an extensive neurological and neuropsychiatric examination comprising 

semi-structured interviews and standardized assessments, with current criteria for probable 

bvFTD [31], and NINCDS-ADRDA clinical criteria for AD [32]. We also included 152 

HCs, matched on age, sex, and education with the patient groups (table 1). However, given 

subtle DEM differences, age and education were also included in the machine learning 

pipeline. All participants provided written informed consent following the Declaration of 

Helsinki. Each institutional Ethics Committee approved the protocol.

In clinical settings, and specially across SAC’s sites, patient’s incomplete evaluations and 

assessment commonly occurs. Thus, we evaluated whether our MMAN model was robust 

against missing data in a fraction of subjects and features. As some centers may not have 

access to specific assessments, missing information can constitute an obstacle for this 

approach. We tested the same pipeline on a sub-sample (SS) without missing data and 

on a full-sample (FS) with missing data. The SS consisted of 54 HCs (18 from Country-1, 

20 from Country-2, and 16 from Country-3), 19 patients with bvFTD (7 from Country-1, 

7 from Country-2, and 5 from Country-3), and 32 patients with AD (9 from Country-1, 10 

from Country-2, and 13 from Country-3). The FS consisted of 152 HCs (51 from Country-1, 

49 from Country-2, and 52 from Country-3), 54 patients with bvFTD (16 from Country-1, 

20 from Country-2, and 18 from Country-3), and 76 patients with AD (25 from Country-1, 

24 from Country-2, and 27 from Country-3). The FS was not completely balanced in 
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DEM data, allowing us to test whether the classifier is robust even in the presence of 

these unmatched variables. To handle missing data in the FS, we used feature averaging 

imputation on the features that contained up to 30% missing values [33] (table 2). To this 

end, we used a single averaged value per feature to be imputed in the table fields of the 

subjects having missing values.

2.2. Cognitive markers (cognitive screening and executive functions)

The Montreal Cognitive Assessment (MoCA) [34] is a brief cognitive screening instrument 

that evaluates attention and concentration, abstraction, object recognition, executive 

functions, memory, language, visuoconstructional and visuospatial skills, conceptual 

thinking, calculations, and orientation (maximum score = 30, higher scores indicate better 

performance). The MoCA can track cognitive decline in patients with neurodegenerative 

diseases. The INECO Frontal Screening (IFS) [35] is a 10 min, easy-to-administer executive 

functions screening tool. It includes eight subtests, assaying three executive functions: 

response inhibition and set shifting (four tasks), working memory (three tasks), and 

abstraction capacity (one task). The maximum score is 30, higher scores indicate better 

performance. The IFS is sensitive and specific for detection frontal-executive dysfunction in 

patients with neurodegenerative diseases [35]. The MoCA and the IFS were not considered 

for the patient’s diagnostic procedures.

2.3. EEG markers

Participants completed a 10 min long high density EEG acquisition, on a 128-channel 

system with preamplified sensors and a DC coupling amplifier, at a sampling rate of 

1024. Across centers, data were recorded via Biosemi Active-two 128-channel systems 

with pre-amplified sensors and a DC coupling amplifier, at a sampling rate of 1024 Hz. 

Analog filters were set at 0.03 and 100 Hz. A digital bandpass filter between 0.5 and 45 

Hz was applied offline to remove unwanted frequency components. The reference was set 

to link mastoids for recordings and re-referenced offline to the average of all electrodes. 

Eye movements or blink artifacts were corrected with independent component analysis [36] 

and with a visual inspection protocol [37–39]. Bad channels were replaced via statistically 

weighted spherical interpolation (based on all sensors) [40]. The data was divided in 1000 

ms segments from the beginning until the end of the recording. All EEG signal processing 

steps were implemented on MATLAB software (vR2016a) through the EEGLAB (v14.1.2) 

[41] toolbox. During the 10 min long resting state protocol, participants were instructed not 

to think about anything in particular while keeping awake, still, and with eyes closed. We 

measured linear interactions between oscillatory signals using phase-locking value (PLV) 

[22] and non-linear information sharing via the weighted symbolic mutual information 

(wSMI) metric [42]. Connectivity was averaged across segments to create the adjacency 

matrix. To reduce the number of features while preserving topographic specificity, we 

defined 16 regions of interest (ROIs) of eight electrodes for each lobe and hemisphere. To 

quantify the strength of between- and within-ROI connections, we estimate the averaged 

connectivity values of all inter-electrode connections linking electrodes in any two ROIs or 

within a ROI, respectively.
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2.4. Structural and functional MRI markers

We obtained three-dimensional structural volumetric and 10 min long resting state MRI 

sequences from all participants—recordings were performed in three scanners (table 3). 

MRI cortical thickness metrics and volumetric estimates included voxel-based and surface-

based morphometry (SBM) [11]. The structural volumetric analysis preprocessing included 

removal of non-brain tissue, an automatic Talairach transformation, segmentation of the 

subcortical white matter (WM) and deep grey matter (GM) volumetric structures (including 

hippocampus, amygdala, caudate, putamen, and ventricles), intensity normalization, 

tessellation of the GM-WM boundary, an automatic topology correction, and surface 

deformation following intensity gradients to optimally place the GM/WM and GM/

cerebrospinal fluid (CSF) borders at the location where the greatest shift in intensity defines 

the transition to the other tissue class. All T1 images were processed via SBM on FreeSurfer 

software suite (v 6.0, https://surfer.nmr.mgh.harvard.edu/). Structural surface-based metrics 

included cortical volume and thickness. SBM avoids registration to a standard space, 

overcoming registration errors, improving parcellation, and offering reliable estimation 

of region-specific differences [43]. Once the cortical models were processed, additional 

procedures were performed for further analysis, including surface inflation, registration to a 

spherical atlas-based on individual cortical folding patterns—parcellation of the cerebral 

cortex into units relative to gyral and sulcal structure, and creation of a variety of 

surface-based data—including maps of curvature and sulcal depth. These methods use both 

intensity and continuity information of the entire 3D magnetic resonance (MR) volume from 

segmentation and deformation procedures to produce representations of cortical thickness, 

which is calculated as the closest distance from the GM/WM boundary to the GM/CSF 

boundary at each vertex on the tessellated surface. The maps were created using spatial 

intensity gradients across tissue classes; therefore, they were not simply reliant on absolute 

signal intensity. Since the ensuing maps were not restricted to the voxel resolution of 

the original data, they can detect submillimeter differences between groups. FreeSurfer’s 

morphometric procedures have been demonstrated to show good test–retest reliability across 

scanner manufacturers and field strengths. Full details on the implemented methods can be 

found elsewhere [44]. Finally, the volume, area, and thickness from each segmentation based 

on the Desikan–Killiany parcellation of cortical and subcortical areas [45] were quantified. 

The plain-text output of the FreeSurfer’s pipeline was post-processed on Python (version 

3.7.4, Python Software Foundation) and transformed into a better structure for statistical 

analysis. To avoid potential biases due to differences among the participants’ head size 

[46], volume measures of each area were normalized as a percentage of the estimated total 

intracranial volume (provided also in FreeSurfer’s results).

For the resting-state protocol, participants were asked not to think about anything in 

particular, to keep their eyes closed, and to avoid moving or falling asleep. In each center, 

we obtained three-dimensional volumetric and 10 min long resting-state MRI sequences 

from all participants. First, to ensure that magnetization achieved a steady state, we 

discarded the first five volumes of each subject’s resting-state recording. Then, images were 

pre-processed in MATLAB using an open-access toolbox: the Data Processing Assistant 

for Resting-State fMRI (DPARSF V2.3) [47], which generates an automatic pipeline for 

fMRI analysis by calling the Statistical Parametric Mapping software (SPM12) [48] and the 
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Resting-State fMRI Data Analysis Toolkit (REST V. 1.7 toolbox) [49]. The images were 

slicetime corrected (using as reference the middle slice of each volume) and aligned to 

the first scan of the session to correct head movement. To reduce the effects of motion 

and physiological artifacts, six head-motion parameters, as well as WM and CSF signals, 

were removed as nuisance variables. WM and CSF masks for this procedure were derived 

from the tissue segmentation of each subject’s T1 scan in native space. As an additional 

analysis, we calculated the frame-wise displacement (FD) [50] to check for head movement 

differences between groups. This measure, that indexes the movement of the head from one 

volume to the next, is calculated as the sum of the absolute values of the differentiated 

realignment estimates (by backwards differences) at every timepoint. After calculating FD 

for each group, no statistically significant differences were found after an ANOVA test 

(table 4). Using the pre-processed rs-fMRI time series as input, we captured static and 

linear associations using Pearson’s R static FC (SFC) [51]. We also performed a non-linear 

dynamic connectivity fluctuation analysis (DCFA) [23]. This method captures dynamic FC 

fluctuations [52], allowing for time-dependent connectivity analysis instead of averaging 

connectivity across the whole recording. We focused our analyses on five well-known and 

standard resting-state networks. The default mode network (DMN), the salience network 

(SN), the executive network (EN), the visual network, and the motor network [53].

2.5. Machine-learning methods

To limit biases and obtain more representative results, we employed a k-fold validation 

approach (k = 10) using 80% of the sample for training and validation, and 20% out-of-folds 

sample as an independent test-set. This testing dataset was never used for hyperparameter 

tuning, data reduction or feature engineering to evaluate the generalizability of our results. 

First, we performed a site normalization process for each feature of both HCs and patients 

via z-scores based on the mean and standard deviation of the corresponding center’s HCs. 

This process was applied within each fold to avoid information leakage (figure 1(C)). 

Afterwards, we performed feature stabilization by forward sequential feature selection [54] 

to obtain the best subset of features for each subject-group classification pair (figure 1(D)). 

For this, we optimized the accuracy of a random forest classifier (RFC) varying the number 

of features sequentially from a single one to all features according to its classificatory 

relevance. This classifier quantifies the importance of a feature depending on how much 

the average Gini impurity index decreases in the forest due to its use as node in a tree. 

This process was employed for both the FS (1523 features, while imputing the average on 

missing data), and the SS (1513 features without missing data). On each step for feature sets 

evaluation, we employed a RFC on default hyper-parameters [54] to evaluate classification 

accuracy based on a k-fold cross validation (k = 10). We used the Gini scores to eliminate 

features by removing features with the lowest importance at each iteration and checked for 

the robustness of our results based on the final number of features after stabilization for both 

samples. Finally, we kept the N first features in the ranking, where N is the optimal number 

of features such that using more than N features fails to improve classifier’s performance. 

Afterwards, to evaluate if the results were unbiased with respect to the acquisition site, we 

performed an RFC analysis (on default hyperparameters) to check if the confusion matrices 

were yielding non-significant results (figure 1(E)).
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Finally, we used the XGBoost [17] classifier, tuned by Bayesian hyper-parameter 

optimization (figure 1(G)), to obtain the patient group classification. The XGBoost 

algorithm is a gradient boosting machines (GBMs) implementation that provides parallel 

computation tree boosting, enabling fast and accurate predictions which have proven 

successful in several fields [55–57]. GBMs are based on the gradient boosting technique, 

in which ensembles of decision trees iteratively attempt to correct the classification 

errors of their predecessors by minimizing a loss function (i.e. a function representing 

the difference between the estimated and true values) pointing in the negative gradient 

direction [58]. When compared to other GBM algorithms, XGBoost provides regularized 

boosting, helping to reduce overfitting and thus providing more generalizable results [57, 

59]. For a fast and accurate machine learning model hyper-parameter tuning on big datasets 

comprising of several features, we employed Bayesian optimization [60, 61]. The XGBoost 

has several hyper-parameters, such as the learning rate, the minimum loss reduction 

required to make a further partition of a leaf node, the maximum depth of a tree, the 

maximum number of leaves, and the regularization weights. In order to choose the best 

parameters for the classification in this high dimensional hyper-parameter space, we used 

Bayesian optimization [60, 61] (figure 1(F)). This state-of-the-art optimization framework 

demonstrated wide applicability to different problem settings. This is an iterative algorithm 

with two key ingredients: a probabilistic surrogate model and an acquisition function to 

decide which point to evaluate next. At each step, a new point of the hyper-parameter space 

to explore is selected to be the maximum of an activation function of the prior knowledge 

and the uncertainty. As this optimization progresses, the chances of finding a better solution 

increase. Compared to other techniques such as the grid-search which is undermined by 

issues of dimensionality or random-search (where each guess is independent from the 

previous run), the Bayesian optimization algorithm is fast to compute, enabling a thorough 

optimization of the hyper-parameters. To evaluate our classification results, we used the 

area under the curve (AUC) of the ROC curve. The confidence intervals were obtained with 

bootstrapping by resampling 5000 times [54].

3. Results

3.1. Feature optimization and harmonization results for the SS

First, we applied the progressive feature elimination technique for the bvFTD vs HCs 

classification in the SS without missing data. For this classification pair, we obtained an 

optimal number of nine specific features that gave a maximum mean validation accuracy 

of 91.6% (±1.5%) (figure 2(A), first row). The site-harmonization processing yielded 

non-statistically significant confusion matrices for each country-wise classification after 

normalization (p > 05) (figure 2(B), second column) confirming unbiased results. For the 

classification between AD patients and HCs, we also obtained an optimal number of nine 

features, yielding a maximum mean validation accuracy of 92.2% (±4.3%) (figure 2(A), 

second row). The harmonization analysis showed a non-statistically significant country 

classification at chance level (figure 2(B), second column). Finally, for the classification 

between bvFTD and AD patients, we obtained an optimal number of ten features after 

stabilization, with a maximum mean validation accuracy of 91.7% (±2.1%) (figure 2(A), 
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third row). Here, too, the confusion matrix also revealed non-significant results for each 

country after normalization (figure 2(B), second column).

3.2. Patient group classification in the SS

After obtaining an optimized subset of features for each classification pair and checking 

that our results were unbiased site-wise, we tested the robustness of the machine learning 

classifier on the patient’s SS dataset. The machine learning classifier when applied on 

bvFTD patients and HCs yielded an AUC of 0.92 (±0.01) in the test set, with a sensitivity 

of 90% (±3%), and a specificity of 91% (±1%), In the feature importance list, the executive 

functions total score resulted as the top feature, followed by the left insula atrophy, left 

temporal pole atrophy, the nonlinear SN, the nonlinear wSMI EEG connectivity from the 

central-frontal to the right-frontal region, the nonlinear DCFA measure of the EN, the EEG 

PLV linear connectivity in the beta band from the left-frontal to the left-temporal region, 

the right anterior cingulate-cortex atrophy, and the linear SFC measure in the SN (figure 

3, first row). For the classification between AD patients and HCs, we obtained an AUC 

of 0.94 (±0.01) in the test set, with a sensitivity of 89% (±2%) and a specificity of 94% 

(±1%). In the feature importance list, the cognitive assessment (total score) constituted the 

most important feature, followed by atrophy in the left entorhinal cortex, atrophy in the left 

hippocampus, the nonlinear DMN, the nonlinear EEG marker with from the centra-frontal to 

the left-frontal region, left amygdala atrophy, the linear DMN, the nonlinear EN, and finally, 

the linear EN (figure 3, second row). Lastly, for the classification between bvFTD and AD 

patients, the AUC was of 0.90 (±0.01) in the test set, with a sensitivity of 87% (±2%), 

and a specificity of 89% (±3%). The executive function total score was the top feature, 

followed by cognitive assessment (total score), the nonlinear SN, the left insular atrophy, age 

(DEM scores), non-linear EEG connectivity from the left-frontal to the right-central region, 

the linear SN, the linear EEG connectivity in the beta band from the left-temporal to the 

central-occipital region, the nonlinear EN, and the linear DMN (figure 3, third row).

3.3. Feature optimization and harmonization results for the FS

For the machine learning classification between bvFTD patents and HCs in the FS 

dataset that had missing data, we obtained an optimal number of nine features after the 

optimization, resulting in a maximum mean validation accuracy of 91.1% (±2.3%) (figure 

4(A), first row). The site-harmonization processing yielded a non-statistically significant 

confusion matrices for each country-wise classification after normalization (p > 05) (figure 

4(B), second column), confirming unbiased results. For the classification between AD 

patients and HCs, we also obtained an optimal number of nine features, with a maximum 

mean validation accuracy of 92.3% (±1.6%) (figure 4(A), second row). The harmonization 

process also yielded a non-statistically significant country classification after normalization 

(figure 4(B), first column). Finally, for the classification between bvFTD and AD patients, 

we obtained an optimal number of ten features, with a maximum mean validation accuracy 

of 91.9% (±2.4%) (figure 4(A), third row). The harmonization analysis again showed a 

non-significant profile in the confusion matrix for each country after normalization (figure 

4(B), second column).
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3.4. Patient group classification with the FS

After selecting the optimum features for each classification pair and checking for unbiased 

results in the FS, we ran the classification analysis between bvFTD patients and HCs using 

the MMAN with the FS. This classification yielded an AUC of 0.93 (±0.01) in the test set, 

with a sensitivity of 92% (±3%), and a specificity of 90% (±1%). The feature importance list 

showed a similar feature profile with respect to the features obtained in the SS classification. 

The feature importance top-list included the executive function total score as the top feature, 

followed by left insular atrophy, nonlinear SN, left temporal pole, the inhibition subtest 

(executive score), the nonlinear EN, right frontal to left central nonlinear EEG connectivity, 

right insular atrophy, and the linear EN (figure 5, first row). For the classification between 

AD patients and HCs, we obtained an AUC of 0.95 (±0.01) in the test set, with a 

sensitivity of 91% (±2%) and a specificity of 95% (±1%). In the feature importance list, 

the cognitive assessment total score represented the most important feature, followed by left 

hippocampus atrophy, the memory subtest, nonlinear DMN, nonlinear EEG connectivity, left 

amygdala atrophy, nonlinear EN, linear DMN, and linear EEG connectivity between the left 

frontal and central parietal regions (figure 5, second row). Lastly, for the bvFTD vs AD 

classification, the AUC was of 0.92 (±0.01) in the test set, with a sensitivity of 88% (±1%), 

and a specificity of 88% (±1%). The feature importance list showed the cognitive assessment 

(total score) as the top feature, followed by left insular atrophy, nonlinear SN, the memory 

subtest, inhibition subtest (executive score), age (DEMs), nonlinear DMN, nonlinear EEG 

connectivity features from right frontal to left central regions, nonlinear EN, and the linear 

EEG connectivity from left frontal to central occipital regions (figure 5, third row).

3.5. Multimodal vs unimodal comparison

To compare our multimodal results (MMAN, both with the SS and the FS) with unimodal 

analyses, we ran the same preprocessing and machine learning pipeline but using specific 

feature sets for each modality type (figure 6). To statistically compare the performance 

between MMAN (SS and the FS) with respect to unimodal approaches, we employed a 

non-parametric permutation comparison. For all classification pairs, the MMAN yielded 

higher performance when compared to the individual unimodal approaches. Moreover, the 

difference in performance was statistically significant in the two MMAN (SS and the FS) 

with respect to all the unimodal analysis (p < 0.05). For the CogA and EF outcomes, 

we pooled a NPS set. For MRI-FC, we grouped the DCFA and SFC values. All atrophy 

measures were put together in the atrophy measure. The EEG-FC consisted of the PLV 

values (comprising all bands) and wSMI (comprising all tau values). Finally, we included 

DEM variables (sex, age, and years of education). For all classification pairs, the MMAN 

(both FS and SS) results outperformed unimodal analysis for the three classification pairs 

(figure 6). For the bvFTD vs HC classification, the MMAN FS AUC was 0.93(±0.01), 

while the MMAN SS AUC was 0.92(±0.01), the NPS AUC was of 0.89(±0.02), for rsFC 

was 0.86(±0.03), the Atrophy AUC 0.85(±0.02), the EEG AUC 0.78(±0.04), and finally the 

DEM AUC was of 0.71(±0.03). For the AD vs HC classification, we obtained an AUC for 

MMAN FS of 0.95(±0.01), while the MMAN SS AUC was 0.94(±0.01), the NPS AUC 

was of 0.90(±0.02), the rsFC AUC of 0.87(±0.03), atrophy AUC was 0.86(±0.02), the EEG 

AUC was of 0.85(±0.03), and lastly the DEM AUC was of 0.75(±0.02). Lastly, for the 

bvFTD vs AD classification, the MMAN FS AUC was 0.92(±0.01), while MMAN SS AUC 
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was 0.90(±0.01), the NPS AUC was of 0.86(±0.02), the rsFC AUC of 0.85(±0.04), the 

atrophy AUC of 0.85(±0.03), the EEG AUC of 0.81(±0.02), and finally the DEM AUC of 

0.77(±0.04).

4. Discussion

The MMAN approach provided support for all the proposed hypotheses on the 

characterization of AD and bvFTD patients from underrepresented and heterogeneous 

samples. Using both a SS with complete data and a FS with missing data, the MMAN 

outperformed all unimodal approaches in classifying bvFTD patients and HCs, AD patients 

and HCs, and bvFTD and AD patients. MMAN was robust against confounding variables 

such as multicentric recordings, sociodemographic heterogeneities after harmonization, and 

overfitting by applying feature reduction techniques. Furthermore, we obtained a modality-

specific ranking of classification performance, providing insights on the relevance of 

different levels of measurements. Overall findings provide a complementary computational 

framework for diagnosis and characterization of underrepresented populations that can 

complement dementia assessment in clinical settings.

Our multimodal XGBoost classifier yielded high accuracy and showed similarities with 

respect to pathophysiological and cognitive profiles registered in unimodal studies on 

homogeneous populations regarding patterns of atrophy, NPSs, and FC [19, 23, 52, 62]. 

Top features for the bvFTD vs HC classification were executive dysfunction, insular and 

temporal atrophy, and non-linear measures of SN connectivity. Executive deficits [10] and 

insular atrophy [51] are critical in bvFTD. Our feature importance analysis shown that the 

SN and the ENs were key predictors for this dementia subtype [51]. Moreover, dynamical 

nonlinearities (DCFA) out-performed statistical and linear methods (SFC) as previously 

shown [63]. This pattern also emerged when considering EEG connectivity, with non-linear 

(wSMI) connectivity in frontal hubs emerging as a selected feature that also outperformed 

the linear measures (PLV). Therefore, our method was able to tap into more complex and 

comprehensive brain markers of frontal lobe neurodegeneration and nonlinear connectivity.

Similar advantages were found for the classification between AD patients and HCs, 

with top features involving overall cognitive assessments, hippocampal atrophy, memory-

specific cognitive assessments, and non-linear connectivity measures. Overall cognition 

assessments provided highly accurate AD markers. Direct associations between memory-

specific impairments and hippocampal atrophy [64] are observed in this condition in 

standard neuroradiological assessments for this dementia subtype. Regarding functional 

neuroimaging, non-linear FC-MRI results mirror previous studies for AD characterization 

based on the DMN, a network associated with autobiographic memory and specific AD-

affected hubs [65], alongside EN alterations that are also present in amnestic mild-cognitive 

impairment [66]. Moreover, the non-linear FC-EEG measure showed connectivity alterations 

in fronto-parietal hubs, in line with previous multi-centric study [67] and mirroring broad 

regions of the FC DMN counterpart [65]. In sum, our results provided a deeper insight into 

the different pathophysiological markers for this dementia subtype by combining different 

diagnostic modalities.

Moguilner et al. Page 11

J Neural Eng. Author manuscript; available in PMC 2024 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, the most clinically relevant prediction was bvFTD vs AD, because such 

classification requires a more subtle differentiation between neurodegenerative conditions, 

and not between normal vs neurodegenerative brain health processes. Such accurate 

differential diagnosis for dementia subtypes is also challenged by the overlapped 

compromise among conditions [20]. However, cognitive measures (memory and inhibition), 

insular atrophy, non-linear fMRI and EEG connectivity, as well as age emerged as 

top features for a high accurate classification. A previous age-matched cohort study 

comparing overall cognition in bvFTD and AD patients showed distinct patterns of 

cognitive impairment [68]. In particular, memory impairments and disinhibition are hallmark 

symptoms of AD and bvFTD, respectively [35]. Further divergent results have been shown 

in volumetric studies, where specific decreases in gray matter were found in insular regions 

when comparing FTD to AD [69]. In the MRI-FC connectivity domain, the DCFA on 

the DMN and SN yielded a high feature importance for differentiating between diseases, 

in line with previous results on specific network anticorrelations differentiating the two 

disorders [51]. Moreover, the non-linear EEG connectivity in frontal hubs also confirmed 

previous reports [70]. Finally, the age-DEM feature appeared as a relevant feature, mirroring 

differences of disease progression for each dementia subtype [71]. In summary, when 

assessing data-driven feature differentiation between AD and bvFTD, the model yielded 

a neurocognitively plausible combination of impairments in specific cognitive domains, 

together with impairments in specific neural networks differentially affected in each disease. 

Moreover, results suggest that pathophysiological profiles in neurodegeneration are better 

described in terms of an integrative approach combining NPS, DEMs, atrophy and non-

linear fluctuations of global brain dynamics.

The MMAN provided more accurate dementia characterizations than its unimodal 

counterparts. When considering modality-specific feature sets for classification, our MMAN 

(with both the SS and the FS) significantly surpassed NPS, rsFC, Atrophy, EEG, and DEM 

unimodal classifications. This difference between MMAN (both in FS and SS) and all the 

unimodal analyses was statistically significant (p < 0.05). Possible DEM biases that may 

have an effect in the multimodal approach were checked in our harmonization analysis 

showing that the site-specific classification analysis yielded non-significant confusion 

matrices differences. Moreover, the model performance increase was also statistically 

significant employing the SS, which had not significant differences in sex, age, and 

education. Although age appeared as the 4th most important feature in the AD vs FTD 

classification, this is an expected result since AD onset is usually 10–20 later than FTD 

onset and can come as a confound when it comes to the detection of sporadic AD [72]. 

Nevertheless, no other classification had any relevant sociodemographic feature as shown 

in the feature importance list. Moreover, similar feature profiles were found in FS and 

SS, pointing those DEM differences had little effect in classification performance. The 

classification accuracy was subtly improved by adding MRI and EEG to NPS. However, 

the multifeatured approach was more robust against DEM heterogeneity when compared to 

NPS tasks alone, which can be biased for specific populations. Moreover, MRI routine 

diagnostic protocols and EEG affordable markers can be easily incorporated into the 

dementia assessment to provide a more comprehensive pathophysiological profile.
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Our approach successfully integrated cost-effective markers of dementia in a unified 

computational pipeline that can be implemented in clinical diagnostic setting across 

developing countries. Other affordable options, such as CSF and plasma biomarkers, are 

not employed in SACs due to their invasiveness or lack of availability in the region. Major 

challenges in LMICs, and SACs in particular, involve the lack of expertise available at 

local centers for the correct interpretation of each diagnostic modality. Similarly, difficulties 

on grouping a team of experts of each assessment (neuropsychology, MRI/fMRI, EEG) 

to condense all the interacting factors into a multimodal characterization [73] constitute 

an important barrier in low-resourced clinical settings. Moreover, multimodal assessments 

involved routine clinical assessment and methods that are substantially less expensive that 

PET studies. These, when combined with a robust machine-learning pipeline, constitute 

a promising approach for centers with limited budgets and infrastructure. Crucially, those 

protocols should be able to tackle multilevel heterogeneity when employed in variable 

acquisition contexts [4]. MMAN results similar or better than those of previous PET studies 

reporting classifications between AD patients and HCs [74] (PET AUC = 0.93 vs MMAN 

FS AUC = 0.93), bvFTD patients and HCs [75] (PET AUC = 0.89 vs MMAN FS AUC = 

0.95), and AD and FTD patients [76] (PET AUC = 0.86 vs MMAN FS AUC = 0.92). These 

results suggest that, in the absence of PET access, MMAN can provide a complementary 

option for underrepresented populations. Our approach tackles important clinical tools in the 

quest for accessible markers in under-represented groups and theoretical implications for a 

multilevel pathophysiological and neurocognitive characterization of dementia subtypes.

Consortia’s pre-harmonization standards are not massively assessed in UMIC and LMIC. 

The MMAN was also robust against sources of non-harmonized heterogeneity, such as 

DEMs (sex, age, years of education), acquisition scanners (1.5 Tesla vs 3 Tesla) and 

parameters, and missing data. In multicentric data, it is often challenging to balance 

samples of different DEM backgrounds and acquisition parameters because of population 

heterogeneity and unequal access to assessments [2, 4, 6, 9]. Moreover, some centers 

may not have access to specific assessments, resulting in missing data when combining 

site samples in multi-centric studies. The MMAN provided a harmonization protocol that 

successfully handled heterogeneity, as reflected in a site-specific confusion matrix from the 

RFCs analysis. Furthermore, the stability of our results was assessed by using a recursive 

feature elimination process that allowed us to keep the most stable features (from thousands 

to dozens), providing optimal classification accuracy and thus preventing overfitting with an 

adequate combination of multilevel markers. Overall, the reproducibility of our results opens 

new avenues for optimizing current diagnostic protocols in health centers with variable 

acquisition settings.

4.1. Limitations and future studies

Our work features some limitations. First, AD and bvFTD diagnoses were based on clinical 

expertise but without pathological or genetic confirmation. However, this limitation is 

shared by similar works employing traditional statistical and machinelearning techniques 

to study dementia [19, 51]. Future studies may combine confirmative biomarkers for further 

assessing the ground truth of patient diagnosis. In this line, our MMAN could also benefit 

from adding PET imaging, fluid markers, and genetic markers, at least for comparative 
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purposes because of economic constraints in protocol design, to test for synergies between 

distinct multimodal modalities. Second, the sample size, while limited, was comparable to 

other multicentric studies of dementia [77]. Thinking forward, more samples from other 

world regions may be added to test the specificity of the most relevant features in more 

heterogeneous samples. In the future, we expect to add more ReDLat [4] subject data, 

with more multimodal features such as genetic, epigenetic, and social determinant of health 

measures, to test a more detailed profile for dementia characterization. Third, we cannot 

completely rule out some possible DEM effects in the unmatched sample. In particular, age 

effects in the AD vs FTD classification are relevant, as current evidence points that age is 

a critical factor distinguishing both dementia subtype and progression [72]. Future studies 

may approach age effects in a more systematic way. Finally, these integrative assessments 

will allow more global comparisons of dementia, by comparing underrepresented samples 

with those coming from US or Europe.

5. Conclusion

In summary, we report a robust pipeline to characterize different measures and deal 

with regional heterogeneity in underrepresented populations based on low-cost multimodal 

markers to classify dementia subtypes. These findings highlight the relevance of MMAN 

for multi-centric studies and clinical settings, where costly biomarkers are unavailable. 

Moreover, we gained insights into pathophysiological and cognitive profiles for AD 

and bvFTD, capturing complex associations between clinical, cognitive, atrophy, and 

nonlinear brain connectivity features. Our approach may improve and facilitate multimodal 

characterization of dementia that can be used as a complementary decision support tool in 

clinical settings.
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Abbreviations

AD Alzheimer’s disease

bvFTD Behavioral-variant frontotemporal dementia

HCs Healthy controls

MRI Magnetic resonance imaging

fMRI Functional magnetic resonance imaging

rs-fMRI Resting-state functional magnetic resonance imaging

EEG Electroencephalography

LMICs Low middle-income countries

SACs South American countries

SES Socioeconomic status

PET Positron emission tomography
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Figure 1. 
MMAN (A) recruitment from three centers consisted of of 54 bvFTD patients, 76 AD 

patients, and 152 HCs. (B) Acquisition of multimodal markers consisting of NPSs, DEMs 

(sex, age, years of education), EEG-FC, atrophy markers, and MRI-FC markers. (C) 

Normalization of all modalities via z-scores. (D) Feature stabilization techniques using 

recursive feature elimination to find the optimal set of features. (E) RFC approach to test 

for unbiased results by classifying relative to the images’ site of origin. (F) For testing 

different feature combinations, we used a k-fold (k = 10) validation scheme for Bayesian 

hyper-parameter tuning to obtain trained XGBoost models. (G) For receiver operating 

characteristic (ROC) analysis, we defined bvFTD group as the ‘positive’ class and AD group 

as the ‘negative’ class, allowing the sensitivity and specificity metrics being applicable 

to patient group comparisons, and feature importance analysis results. (H) Generalization 

results using an out-of-sample set. BvFTD: behavioral-variant frontotemporal dementia; 

AD: Alzheimer’s disease; HCs: healthy controls; NPS: neuropsychological cognitive 
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and executive markers; EEG-FC: EEG functional connectivity; MRI-FC: MRI functional 

connectivity; RFC: random forest classifiers.
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Figure 2. 
Feature stabilization and RFC analysis in the SS. (A) Feature stabilization curve for 

classification between bvFTD patients and HCs, AD patients and HCs, and bvFTD and 

AD patients, showing accuracy vs number of features in a logarithmic scale. Starting with a 

set containing all features available in the SS and finally keeping the set of features yielding 

maximal accuracy The optimal number of features for each classification pair and sample is 

highlighted in a discontinuous red line. (B) RFC analysis results for the non-normalized 

and normalized samples. A high accuracy rate was observed for classifying subjects 
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per acquisition site prior normalization, and a non-statistically significant classification 

result for the normalized samples, confirming unbiased results. BvFTD: behavioral variant 

frontotemporal dementia; AD: Alzheimer’s disease; HCs: healthy controls; Log: logarithmic 

scale.
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Figure 3. 
MMAN results for the SS. Machine learning results. (A) BvFTD patients vs HCs. ROC 

curve indicating specificity (true positive rate) and sensitivity (false positive rate), while 

calculating the AUC. Confusion matrix for true label and predicted label accuracy details. 

Feature importance plot of the most relevant features for the classification. Results show an 

AUC of 0.92, a sensitivity of 90%, and a specificity of 91%, with the EF total value as the 

top feature, followed L Insula and L Temp Pole as the top-three features. (B) AD patients vs 

HCs. ROC curve indicating specificity (true positive rate) and sensitivity (false positive rate), 

while calculating the AUC. Confusion matrix for true label and predicted label accuracy 

details. Feature importance plot of the most relevant features for the classification. Results 

yielded an AUC of 0.94, with a sensitivity of 89% and a specificity of 94%. The CogA total 

value resulted in the most important feature, followed by L Entorhinal and L Hipp as the 

top-three features (C) bvFTD vs AD patients. ROC curve indicating specificity (true positive 

rate) and sensitivity (false positive rate), while calculating the AUC. Confusion matrix for 

true label and predicted label accuracy details. Feature importance plot of the most relevant 
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features for the classification. Results yielded an AUC of 0.90, a sensitivity of 87%, and 

a specificity of 89%, with the EF total value as the top feature, followed by CogA total 

and the SN DCFA as the top-three features. ROC: receiver operating characteristic; AUC: 

area under the curve; bvFTD: behavioral variant frontotemporal dementia; AD: Alzheimer’s 

disease; HCs: healthy controls; EF: executive functions; CogA: cognitive assessment; L 

Insula: left insula; L Temp Pole: left temporal pole; DCFA: dynamic functional connectivity 

analysis; SN: salience network; DMN: default mode network; EN: executive network; 

wSMI: weighted symbolic mutual information; PLVb: phase-locking value in the beta band; 

CF: central-frontal; LT: left-temporal; RF: right-frontal; L amygdala: left-amygdala.
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Figure 4. 
Feature stabilization and RFC analysis in the FS. (A) Feature stabilization curve for 

classification between bvFTD patients and HCs, AD patients and HCs, and bvFTD and AD 

patients, showing accuracy vs number of features in a logarithmic scale. Starting with a set 

containing all the features available in the FS and finally keeping the set of features yielding 

the best accuracy The optimal number of features for each classification pair and sample 

is highlighted in a discontinuous red line. (B) RFC analysis results for the non-normalized 

and normalized samples. High accuracy rates were obtained for classifying subjects per 
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acquisition site prior normalization, and a non-significant classification result for the 

normalized samples, confirming unbiased results. BvFTD: behavioral variant frontotemporal 

dementia; AD: Alzheimer’s disease; HCs: healthy controls; Log: logarithmic scale.
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Figure 5. 
MMAN results for the FS. Machine learning results. (A) BvFTD patients vs HCs. ROC 

curve indicating specificity (true positive rate) and sensitivity (false positive rate), while 

calculating the AUC. Confusion matrix for true label and predicted label accuracy details. 

Feature importance plot of the most relevant features for the classification. Results show 

an AUC of 0.93, a sensitivity of 92%, and a specificity of 90%, with the EF total value 

as the top feature, followed L Insula and the SN DCFA as the top-three features. (B) 

AD patients vs HCs. ROC curve indicating specificity (true positive rate) and sensitivity 

(false positive rate), while calculating the AUC. Confusion matrix for true label and 

predicted label accuracy details. Feature importance plot of the most relevant features 

for the classification. Results yielded an AUC of 0.95, with a sensitivity of 91% and a 

specificity of 95%. The CogA total value constituted the most important feature, followed 

by L Hipp and CogA memory as the top-three features (C) BvFTD vs AD patients. ROC 

curve indicating specificity (true positive rate) and sensitivity (false positive rate), while 

calculating the AUC. Confusion matrix for true label and predicted label accuracy details. 
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Feature importance plot of the most relevant features for the classification. Results yielded 

an AUC of 0.92, a sensitivity of 88%, and a specificity of 88%, with the CogA total value 

as the top feature, followed by L Insula and the SN DCFA as the top-three features. ROC: 

receiver operating characteristic, AUC: area under the curve; bvFTD: behavioral variant 

frontotemporal dementia, AD: Alzheimer’s disease; HCs: healthy controls; EF: executive 

functions; CogA: cognitive assessment; L Insula: left insula; L Temp Pole: left temporal 

pole; DCFA: dynamic functional connectivity analysis; SN: salience network; DMN: default 

mode network; EN: executive network; wSMI: weighted symbolic mutual information; 

PLVb: phase-locking value in the beta band; CF: central-frontal; LT: left-temporal; RF: 

right-frontal; L amygdala: left-amygdala.
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Figure 6. 
MMAN vs unimodal analysis results. MMAN analysis when using the FS and SS compared 

to modality-specific results for classification between bvFTD patients and HCs, AD patients 

and HCs, and bvFTD and. AD patients shown in their respective ROC curves. For the 

bvFTD vs HC classification, the MMAN FS AUC was 0.93, while the MMAN SS AUC was 

0.92, the NPS AUC was of 0.89, for rsFC was 0.86, the Atrophy AUC 0.85, the EEG AUC 

0.78, and finally the DEM AUC was of 0.71. For the AD vs HC classification, we obtained 

an AUC for MMAN FS of 0.95, while the MMAN SS AUC was 0.94, the NPS AUC was 

of 0.90, the rsFC AUC of 0.87, atrophy AUC was 0.86, the EEG AUC was of 0.85, and 

lastly the DEM AUC was of 0.75. Lastly, for the bvFTD vs AD classification, the MMAN 

FS AUC was 0.92, while MMAN SS AUC was 0.90, the NPS AUC was of 0.86, the rsFC 

AUC of 0.85, the atrophy AUC of 0.85, the EEG AUC of 0.81, and finally the DEM AUC of 

0.77. BvFTD: behavioral variant frontotemporal dementia; AD: Alzheimer’s disease; HCs: 

healthy controls; NPS: neuropsychological markers; MRI-FC: functional connectivity MRI 

analysis; atrophy: atrophy analysis; EEG-FC: functional connectivity EEG analysis; DEM: 

demographic values.
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Table 2.

Missing data distribution in the FS per group.

Feature HC bvFTD AD

CogA abstraction 27% 25% 26%

CogA memory 27% 25% 26%

CogA visuospatial 27% 25% 26%

CogA recognition 27% 25% 26%

CogA attention 27% 25% 26%

EF inhibition 24% 22% 25%

EF conflicting 24% 22% 25%

EF digits 24% 22% 25%

EF proverb 24% 22% 25%

EF motor series 24% 22% 25%

MRI/fMRI 28% 27% 28%

EEG 29% 27% 26%

HCs: healthy controls; bvFTD: behavioral variant of frontotemporal dementia; AD: Alzheimer’s disease; CogA: cognitive assessment; EF: 
executive functions.
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