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Time reversal symmetry breaking and odd viscosity in active fluids:
Green-Kubo and NEMD results

Cory Hargus,1, ∗ Katherine Klymko,2 Jeffrey M. Epstein,3 and Kranthi K. Mandadapu1, 4, †

1Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
2Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

3Department of Physics, University of California, Berkeley, CA, USA
4Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Active fluids, which are driven at the microscale by non-conservative forces, are known to ex-
hibit novel transport phenomena due to the breaking of time reversal symmetry. Recently, Epstein
and Mandadapu [1] obtained Green-Kubo relations for the full set of viscous coefficients govern-
ing isotropic chiral active fluids, including the so-called odd viscosity, invoking Onsager’s regression
hypothesis for the decay of fluctuations in active non-equilibrium steady states. In this Communica-
tion, we test these Green-Kubo relations using molecular dynamics simulations of a canonical model
system consisting of actively torqued dumbbells. We find the resulting odd and shear viscosity
values from the Green-Kubo relations to be in good agreement with values measured independently
through non-equilibrium molecular dynamics (NEMD) flow simulations. This provides a rigorous
test of the Green-Kubo relations, and validates the application of the Onsager regression hypothesis
in relation to viscous behaviors of active matter systems.

Introduction. Statistical physics has traditionally been
concerned with systems at equilibrium. A natural gen-
eralization pursued by Onsager, Prigogine, de Groot and
Mazur, and others is to consider systems that are globally
out of equilibrium but that obey the local equilibrium hy-
pothesis [2–6]. Such systems model transport phenomena
allowing linear laws, such as those of Fourier and Fick, to
be derived from the principles of equilibrium thermody-
namics and statistical mechanics [4, 5, 7]. The physical
origin of the non-equilibrium nature of these systems is
driving at boundaries, as in a rod heated from one end
or a channel connecting regions of different solute con-
centration.

A more radical departure from equilibrium is achieved
in active matter systems, in which equilibrium is broken
at the local level by non-conservative microscopic forces.
Such activity is known to modify existing phase behavior
as well as give rise to qualitatively new dynamical phases,
as in motility-induced phase separation [9, 10]. Similarly,
activity not only modifies existing transport coefficients,
but can lead to entirely new coefficients, such as the odd
(or Hall) viscosity appearing in chiral active fluids [1, 11–
14].

Recent work by Epstein and Mandadapu [1] reveals
that odd viscosity arises in two-dimensional chiral active
fluids due to the breaking of time reversal symmetry at
the level of stress correlations. This is demonstrated by a
set of Green-Kubo relations derived through the applica-

Authors’ note: Independent and concurrently released work by
Han et al. [8] measures transport coefficients including the odd
viscosity in a model system consisting of frictional granular par-
ticles, upon obtaining identical Green-Kubo equations presented
in [1] through a projection operator formalism. Together with the
present work, this confirms the robustness and applicability of the
Green-Kubo relations.

tion of the Onsager regression hypothesis [4, 5, 7]. In this
Communication, we evaluate these Green-Kubo relations
using molecular dynamics simulations of a model system
composed of microscopically torqued dumbbells, find-
ing them to be in good agreement with non-equilibrium
molecular dynamics (NEMD) flow simulations across a
wide range of densities and activities (Fig. 4).

Theory. We begin by reviewing the continuum theory
in [1] for two-dimensional viscous active fluids with inter-
nal spin. This provides the setting for the derivation of
Green-Kubo relations for viscosity coefficients in fluids
breaking time reversal symmmetry. Because the chiral
active dumbbell model considered in this paper is capa-
ble of storing angular momentum in the form of molec-
ular or internal spin, we anticipate coupling between a
velocity field vi and a spin field m. These satisfy balance
equations for linear and angular momentum, as proposed
by Dahler and Scriven [15]:

ρv̇i = Tij,j + ρgi , (1)

ρṁ = Ci,i − εijTij + ρG . (2)

Tij denotes the stress tensor and Ci the spin flux,
which accounts for transfer of internal angular momen-
tum across surfaces. The variables gi and G denote body
forces and body torques, respectively. Finally note that
the balance of angular momentum includes a term in
which the two-dimensional Levi-Civita tensor εij is con-
tracted with the stress, so that the antisymmetric compo-
nent of the stress may be nontrivial. We use the notation
a,i = ∂a/∂xi.

The most general isotropic constitutive equations for
viscous fluids relating Tij and Ci to vi, m and their
derivatives up to first order in two-dimensional systems
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2

are given by

Tij = ηijklvk,l + γijm− pδij + p∗εij , (3)

Ci = αijm,j , (4)

where ηijkl, γij and αij are the viscous transport coeffi-
cients [1]. Here, p and p∗ are hydrostatic contributions
and are not constitutively related to vi and m. Isotropy
further allows the transport coefficients to be constrained
to have the form

ηijkl =

6∑
n=1

λns
(n)
ijkl , (5)

γij = γ1δij + γ2εij , (6)

αij = α1δij + α2εij . (7)

This follows from a general representation theorem stat-
ing that any isotropic tensor can be expressed in a basis
consisting of contractions of Kronecker tensors δij and
Levi-Civita tensors εij and that, consequently, there ex-
ist no isotropic tensors of odd rank in two dimensions;
see Ref. [1] for a detailed discussion and Appendix Table

I for the definitions of tensors s
(n)
ijkl.

The coefficients γi and αi indicate the responses of the
stress and spin flux tensors to spin and spin gradients.
λ1 and λ2 are the typical bulk and shear viscosities. λ3
is the rotational viscosity indicating resistance to vor-
ticity and giving rise to an anti-symmetric stress, while
λ4 is the so-called odd viscosity quantifying response to
shear with a tension or compression in the orthogonal
direction. λ5 and λ6 correspond to an anti-symmetric
pressure from compression and isotropic pressure from
vorticity, respectively. Note that non-vanishing λ3 or λ6
violates objectivity (independence of stress from vortic-
ity), while non-vanishing λ3 or λ5 violates symmetry of
the stress tensor.

Using the conservation and constitutive equations (1)-
(2) and (5)-(7), Ref. [1] obtains a set of Green-Kubo re-
lations for γn and λn via invocation of the Onsager re-
gression hypothesis:

γ1 =
1

2ρ0ν
δijεklT ijkl, (8)

γ2 =
1

2ρ0ν
εijεklT ijkl, (9)

λ1 + 2λ2 + λ3 −
γ1π

2µ
+
γ2τ

2µ
=

1

2ρ0µ
δikδjlT ijkl, (10)

λ4 + λ5 + λ6 −
γ1τ

4µ
− γ2π

4µ
=

1

4ρ0µ
εikδjlT ijkl, (11)

λ5 −
γ2π

4µ
=

1

8ρ0µ
εijδklT ijkl, (12)

λ3 +
γ2τ

2µ
=

1

4ρ0µ
εijεklT ijkl . (13)

T ijkl is the integrated stress correlation function given

by

T ijkl =

∫ ∞
0

dt〈δTij(t)δTkl(0)〉. (14)

µ, ν, τ , and π are static correlation functions in the non-
equilibrium steady state given by

µδij =
1

L4

∫ 〈
δvi(x)δvj(y)

〉
d2x d2y , (15)

π =
1

L4

∫
(yi − xi)

〈
δvi(x)δm(y)

〉
d2x d2y , (16)

τ =
1

L4

∫
εkr(y

r − xr)
〈
δm(x)δvk(y)

〉
d2x d2y , (17)

ν =
1

L4

∫
〈δm(x)δm(y)〉 d2x d2y , (18)

respectively. In particular, µ and ν can also be regarded
as the effective translation and spin temperatures in the
steady state. For equilibrium systems, equipartition im-
plies µ = ν and π = τ = 0. Lastly, the above Green-Kubo
relations show that two of the transport coefficients λ3
and γ2 are related by 2λ3 = γ2(ν − τ)/µ. Note that the
stress tensor in (14) is defined as a spatial average, as in
the following section, unlike the velocity and spin fields
in (15)-(18).

For the chiral active dumbbell fluid, the situation is
further simplified. As we will show in the following
sections, the absence of alignment interactions between
dumbbells results in γ1 = γ2 = 0, effectively decoupling
the velocity from the spin field and also setting λ3 = 0.
Moreover, symmetry and objectivity of the stress tensor
sets two more of the viscosity coefficients to zero, leaving

ηijkl = λ1
(
δijδkl

)
+λ2

(
δikδjl − εikεjl

)
+ λ4

(
εikδjl + εjlδik

)
.

(19)

These simplifications also allow us to write simplified
Green-Kubo expressions for the shear and odd viscosi-
ties

λ2 =
1

4ρ0µ

∫ ∞
0

dt 〈(δT22(t)− δT11(t))

(δT22(0)− δT11(0))〉 ,
(20)

and

λ4 =
1

4ρ0µ

∫ ∞
0

dt
[
〈δT11(t)δT21(0)〉 − 〈δT11(0)δT21(t)〉

+ 〈δT12(t)δT22(0)〉 − 〈δT12(0)δT22(t)〉
]
,

(21)

(see Appendix II for separating the coefficient λ2 from
(10)). Equation (21) shows that non-vanishing odd vis-
cosity, i.e., λ4 6= 0 requires breaking time reversal sym-
metry at the level of stress correlation functions, thus
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breaking the Onsager reciprocal relations [1, 5]. Note
that (20) is not the typical Green-Kubo expression used
to calculate the shear viscosity. However, it can also be
rewritten for isotropic systems in the typical form, which
are invariant under rotation as

λ2 =
1

ρ0µ

∫ ∞
0

dt 〈δT ′12(t)δT ′12(0)〉 , (22)

using a transformation T ′ = RTTR corresponding to a
rotation tensor R of angle π/4, for which T ′12 = 1

2 (T22 −
T11). The form in (20) is a result of the theory for the
choice of the representation theorem for viscous transport

coefficients using the basis s
(n)
ijkl.

In what follows, we evaluate the shear and odd vis-
cosity Green-Kubo expressions at various densities and
driving forces by using molecular simulations of chiral
active dumbbells in a non-equilibrium steady state. We
then subject the dumbbell system to imposed periodic-
Poiseulle simulations [16] resulting in non-uniform shear-
ing flows, and evaluate the shear and viscous coefficients
independently. Such an analysis will provide support to
both the application of Onsager’s regression hypothesis
to fluctuations in active non-equilibrium steady states
and the ensuing Green-Kubo relations for viscous behav-
iors of active systems.

f

FIG. 1. A two-dimensional fluid composed of chiral active
dumbbells. In addition to interacting with its neighbors, each
dumbbell is rotated counterclockwise by equal and opposite
active forces fαi .

Microscopic model–Chiral active dumbbells. We
consider a fluid composed of dumbbells subject to ac-
tive torques [17], as shown in Fig. 1. Each dumbbell is
composed of two particles of unit mass connected by a
harmonic spring. The system evolves according to un-
derdamped Langevin dynamics

ẋαi = vαi ,

v̇αi =
∑
jβ

F αβ
ij + fαi + gαi − γvαi

+
√

2γkBT
dW α

i

dt
,

(23)

with indices i, j ∈ [1, N ] and α, β ∈ {1, 2} running over
dumbbells and particles, respectively. Variables xαi and
vαi represent atom positions and velocities. γ is the dis-
sipative substrate friction and T the substrate temper-
ature determining the variance of the thermal fluctua-

tions
dWα

i

dt , modeled as Gaussian white noise. Particles
in different dumbbells interact through a pairwise WCA
potential [18], resulting in interaction forces F αβ

ij . The
particles in a dumbbell are subjected to equal and op-
posite non-conservative active forces fαi , which satisfy
f1i = −f2i := fi, and are always perpendicular to the
bond vector di = x1

i −x2
i . This imposes an active torque

at the level of individual dumbbells. Finally, gαi = g(xαi )
is an optional externally imposed body force, and will be
employed later in Poisueille flow simulations to test the
Green-Kubo relations.

Previous work [17] used the Irving-Kirkwood proce-
dure to coarse-grain the microscopic equations (23) and
derive the equations of hydrodynamics, including balance
of mass, linear momentum and angular momentum, as
also employed in the context of measuring odd viscosity
by [14]. This coarse-graining procedure yields expres-
sions for the stress tensor in terms of molecular variables
and active forces. In particular, it is found that apply-
ing active couple forces at the microscale results in an
asymmetric stress tensor given by

T = TK + TV + TA , (24)

where

TK = − 1

A

∑
i,α

mα
i v

α
i ⊗ vαi , (25)

TV = − 1

2A

∑
i,j,α,β

F αβ
ij ⊗ xαβij , (26)

TA = − 1

A

∑
i

fi ⊗ di , (27)

denote the kinetic, virial, and active contributions, re-
spectively.

The active force vector fi is related to the unit bond
vector d̂i by a rotation matrix R of angle π/2, i.e.,

fi = fRd̂i (28)

For positive (negative) f , the dumbbells rotate counter-
clockwise (clockwise). We find that the steady state time
average of TA is

〈TA〉 = −ρ0〈f ⊗ d〉

= −ρ0fd〈Rd̂⊗ d̂〉 =
ρ0fd

2

[
0 1
-1 0

]
,

(29)

where d = 〈|d|〉 is the average bond length. Because
the dumbbells rotate with no preferred alignment, the
antisymmetry of 〈TA〉 follows from replacing the time
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average with a uniformly weighted average over angles of
rotation θ. For example,

〈Rd̂⊗ d̂〉21 = 〈d̂1d̂1〉 =
1

2π

∫ 2π

0

dθ cos2(θ) =
1

2
(30)

while the diagonal elements are zero. This shows that
the antisymmetric hydrostatic-like term p∗ introduced in
(3) arises in a non-equilibrium steady state of the active
dumbbell model due to the presence of active rotational
forces, and has the magnitude p∗ = ρ0fd/2. We further
relate p∗ to a non-dimensional Péclet number describing
the ratio of active rotational forces to thermal fluctua-
tions due to the substrate bath

Pe =
2fd

ρ0µ
=

4p∗

µρ20
. (31)

We use Pe as defined in (31) to vary the activity in the
system when evaluating the transport coeffcients.

Green-Kubo calculations. Steady-state molecular dy-
namics simulations allow direct measurement of the in-
tegrated stress correlation functions Tijkl defined in (14),
which are required for evaluation of the viscous transport
coefficients using the Green-Kubo equations (8)-(13). We
find that several of these coefficients vanish in the non-
equilibrium steady states at all simulated activities and
densities due to cancellations of the correlation functions
(see Appendix Fig. 5). In particular,

εijεklTijkl = δijεklTijkl = εijδklTijkl = 0 . (32)

This immediately implies γ1 = γ2 = λ3 = λ5 = λ6 = 0,
so that the stress tensor is symmetric and objective. It
now remains to evaluate the two non-trivial transport
coefficients λ2 and λ4 using (20) and (21).

Figure 2 shows the stress correlators 〈δT11(t)δT21(0)〉
and 〈δT11(0)δT21(t)〉 for various Pe. These are typically
zero for systems in equilibrium, and become non-zero
whenever Pe 6= 0. In particular, we find these correla-
tion functions to be equal and opposite, and therefore
add constructively yielding a non-vanishing odd viscos-
ity from the Green-Kubo relation (21). In general, for
the chiral active dumbbell fluid, we find

〈δT11(t)δT21(0)〉 = −〈δT11(0)δT21(t)〉
= −〈δT11(-t)δT21(0)〉 ,

(33)

where the final equality is due to stationarity. The anal-
ogous equations are satisfied by 〈δT12(t)δT22(0)〉.

Figure 4 shows the Green-Kubo estimates for λ2 and
λ4 for various activities and for a range of low to high
densities. We find that the shear viscosity increases with
density as well as with activity. The dependence of the
odd viscosity on activity, while apparently linear at low
density, becomes increasingly sigmoidal at high density.
Note that the odd viscosity, as a non-dissipative trans-
port coefficient, may be negative without introducing an
inconsistency with the second law of thermodynamics.

FIG. 2. Stress correlation functions contributing to the odd
viscosity (ρ0 = 0.4). For Pe 6= 0 these correlation functions
add constructively, yielding a nonzero odd viscosity.

Poiseuille flow NEMD simulations. To verify the
values computed from the Green-Kubo formulas, (20)
and (21), we measure λ2 and λ4 independently via non-
equilibrium molecular dynamics simulations. To this
end, we simulate plane Poiseuille-like flow via the inclu-
sion of a nonzero body force g in (23) according to the
periodic Poiseuille method [16]. We apply equal and op-
posite body forces as shown in Fig. 3, of magnitude g1
in the x1 direction compatible with periodic boundary
conditions.

This setup represents a non-trivial boundary value
problem, which not only yields non-uniform flows and
non-uniform stresses, but also provides a stringent test
for the expected constitutive behaviors of the active
dumbbell fluid and the estimates of the transport coef-
ficients obtained from Green-Kubo formulas. The veloc-
ity profile and pressure profiles for such an applied body

FIG. 3. A schematic of the periodic Poiseuille non-equilibrium
molecular dynamics (NEMD) simulation method. The top
half of the system is subjected to a uniform body force to
the left, and the bottom half to a uniform body force of equal
magnitude to the right. This yields a parabolic velocity profile
and, for odd viscous fluids, an atypical normal stress.
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FIG. 4. Comparison of shear viscosity (λ2) and odd viscosity (λ4) values obtained from the Green-Kubo relations with those
obtained from periodic Poiseuille NEMD simulations, showing agreement across a range of activities and densities.

force can be solved analytically and are given by

v1(x2) =
ρ0g1
2λ2

x2(L− x2) , (34)

and

p(x2) =
λ4
λ2
ρ0g1x2 + p0 , (35)

respectively, where p0 is an arbitrary reference pressure
(see Appendix IV for the solution to the correspond-
ing boundary value problem). Our simulations of ac-
tive dumbbell fluids are consistent with these profiles for
various densities and activities. Given the velocity and
pressure profiles in (34) and (35), the shear and odd vis-
cosities can be computed from the expressions

λ2 =
ρ0g1L

2

12v̄
, (36)

λ4 =
T11,2
2v1,22

= −λ2T11,2
2ρ0g1

, (37)

respectively, where v̄ =
1

L

∫ L
0
dx2 v1(x2); see Appendix

IV. The slope of the stress component T11 can be identi-
fied in molecular simulations using the Irving-Kirkwood
expression (24)-(27).

The shear and odd viscosities calculated using this
NEMD approach are in excellent agreement with the
Green-Kubo predictions for a wide range of densities and
Péclet numbers, see Fig. 4.

Discussion. In this work, we have validated the non-
equilibrium Green-Kubo formulas derived in [1], showing
that the odd viscosity results directly from the breaking
of time reversal symmetry at the level of stress fluctua-
tions in the steady state. In doing so, we also provide
support for the application of the Onsager regression hy-
pothesis to fluctuations about the non-equilibrium steady

state, which was used to derive these equations. Future
work entails understanding the microscopic origins of the
functional dependence of the viscosities with density and
activity.

Acknowledgements. C.H. is supported by the National
Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE 1752814. K.K.M is sup-
ported by Director, Office of Science, Office of Basic En-
ergy Sciences, of the U.S. Department of Energy under
contract No. DEAC02-05CH11231.

∗ hargus@berkeley.edu
† kranthi@berkeley.edu

[1] J. M. Epstein and K. K. Mandadapu, arXiv:1907.10041
(2019).

[2] S. R. de Groot, Thermodynamics of Irreversible Processes
(Interscience Publishers Inc., New York, 1951).

[3] S. R. de Groot and P. Mazur, Non-Equilibrium Thermo-
dynamics (Dover, New York, 1984).

[4] L. Onsager, Physical review 37, 405 (1931).
[5] L. Onsager, Physical review 38, 2265 (1931).
[6] I. Prigogine, Introduction to Thermodynamics of Irre-

versible Processes (Wiley-Interscience, New York, 1967).
[7] R. Kubo, M. Yokota, and S. Nakajima, Journal of phys-

ical society of Japan 12, 1203 (1957).
[8] M. Han, M. Fruchart, C. Scheibner, S. Vaikuntanathan,

W. Irvine, J. de Pablo, and V. Vitelli, arXiv preprint
arXiv:2002.07679 (2020).

[9] J. Tailleur and M. E. Cates, Physical review letters 100,
218103 (2008).

[10] M. E. Cates and J. Tailleur, Annual reviews of condense
matter physics 6, 219 (2015).

[11] D. Banerjee, A. Souslov, A. G. Abanov, and V. Vitelli,
Nature communications 8, 1573 (2017).

[12] S. Ganeshan and A. G. Abanov, Physical review fluids 2,
094101 (2017).

[13] A. Souslov, K. Dasbiswas, M. Fruchart, S. Vaikun-

mailto:hargus@berkeley.edu
mailto:kranthi@berkeley.edu
http://arxiv.org/abs/1907.10041 (2019)
http://arxiv.org/abs/1907.10041 (2019)


6

tanathan, and V. Vitelli, Physical review letters 122,
128001 (2019).

[14] Z. Liao, M. Han, M. Fruchart, V. Vitelli, and S. Vaikun-
tanathan, The Journal of chemical physics 151, 194108
(2019).

[15] J. Dahler and L. Scriven, Nature 192, 36 (1961).
[16] J. A. Backer, C. P. Lowe, H. C. Hoefsloot, and P. D.

Iedema, The journal of chemical physics 122 (2005).
[17] K. Klymko, D. Mandal, and K. K. Mandadapu, The

Journal of chemical physics 147, 194109 (2017).
[18] J. D. Weeks, D. Chandler, and H. C. Andersen, The

journal of chemical physics 54, 5237 (1971).
[19] S. J. Plimpton, J. Comp. Phys. 117, 1 (1995), see also

http://lammps.sandia.gov/.



7

Appendix

I. Simulation Details

To investigate the viscous behavior of a fluid composed of self-spinning dumbbells, we perform molecular dynamics
simulations in LAMMPS [19], implementing our own modifications 1 to impose microscopic driving forces and compute
the active stress TA. Particles interact with their non-bonded neighbors through a Weeks-Chandler-Andersen [18]
potential defined by

VWCA
ij (r) =

4ε

[(
σ/r

)12 − (σ/r)6]+ ε r < 21/6σ

0 r ≥ 21/6σ .

Here, σ, ε and particle mass m are the characteristic length, energy, and mass scales, which are used to define the
Lennard-Jones units system. All numerical settings and results in this Communication are reported in Lennard-Jones
units. The two particles in a single dumbbell are held together by a harmonic potential V (r) = 1

2k(r − r0)2 with
spring constant k = 100 and reference length r0 = 1.

Dynamics are evolved according to underdamped Langevin dynamics (23) with bath temperature T = 1.0 and
friction γ = 0.5. We apply the Langevin bath interactions only along the x2 direction, so as not to impede flow
in the x1 direction, and employ these conditions in both Green-Kubo and periodic Poiseuille simulations. We note
that imposing bath interactions selectively along x2 may lead to a violation of isotropy by aligning dumbbells along
a preferred axis. In all simulations, however, we check that dumbbells have no preferred alignment by measuring the
departure of the bond angle of a dumbbell projected onto [0, π/2] from the reference value of π/4:

δθ+i = arctan

(
|di · e2|
|di · e1|

)
− π

4
. (38)

We find that in all simulations, max(|〈δθ+i 〉|) < 0.01 radians, where angle brackets indicate averaging in time and
the maximum is over all dumbbells. We also confirm that the density is indeed uniform in all periodic Poiseuille

calculations. The relative spatial variation in the density is bounded in all simulations by
(
〈(δρ)2〉/〈ρ2〉

)1/2
< 0.1%.

II. Green-Kubo Formula for Shear Viscosity

In Table I, we provide the basis for the 2D viscosity tensor ηijkl derived in [1]. We also perform a derivation to
obtain separate expressions for the shear and bulk viscosities. To this end, we begin with the following equation (also
equation (127) in SI of [1] in the absence of internal spin):

kjklηijkl =
1

ρ0µ
kjkl

∫ ∞
0

dt 〈δT ijk (t)δT kl−k(0)〉 =
1

ρ0µ
kjklT k

ijkl , (39)

where

T k
ijkl =

∫ ∞
0

dt 〈δT ijk (t)δT kl−k(0)〉 . (40)

Following [1], we can obtain an equation for λ1 and λ2

λ1 + 2λ2 =
1

2ρ0µ
δikδjkT k

ijkl , (41)

in the limit of k→ 0.

1Our simulation and analysis code is publicly available at
https://github.com/mandadapu-group/active-matter
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Basis Tensor Components i↔ j k ↔ l ij ↔ kl P

s(1) δijδkl + + + +

s(2) δikδjl − εikεjl + + + +

s(3) εijεkl - - + +

s(4) εikδjl + εjlδik + + - -

s(5) εikδjl − εjlδik + εijδkl + εklδij - + N/A -

s(6) εikδjl − εjlδik − εijδkl − εklδij + - N/A -

TABLE I. Basis for the isotropic rank four tensors in two dimensions corresponding to viscous transport coefficients ηijkl. We
also indicate the nature of the tensors under index permutations (A) i ↔ j indicating the symmetry of the stress tensor, (B)
k ↔ l indicating objectivity, (C) i ↔ k, j ↔ l, indicating symmetry with respect to Onsager reciprocal relations, and finally
(D) the mirror transformation x1 7→ −x1, x2 7→ x2, also known as parity transformation (P). Reproduced from [1].

To separate λ1 from λ2 we return to (39) and contract both sides with kikk to obtain

kikjkkklηijkl =
1

ρ0µ
kikjkkklT k

ijkl . (42)

The resulting equation holds independently for any choice of k in the limit k → 0. Now, we set k = k(e1 + e2) and
k = k(e1 − e2) in (42) and sum the resulting equations to obtain

4λ1 + 4λ2 =
1

ρ0µ

(
T k
1111 + T k

1122 + T k
1212 + T k

1221 + T k
2112 + T k

2121 + T k
2211 + T k

2222

)
, (43)

which cannot be written in compact form as a contraction of Kronecker and Levi-Civita tensors with T k
ijkl. Subtracting

(43) from twice (41) and invoking the symmetry of the stress fluctuations gives

λ2 =
1

4ρ0µ
(T k

1111 − T k
1122 − T k

2211 + T k
2222 + T k

1212 − T k
1221 − T k

2112 + T k
2121)

=
1

4ρ0µ
(T k

1111 − T k
1122 − T k

2211 + T k
2222) .

(44)

FIG. 5. The sixteen stress correlation functions computed at ρ0 = 0.4, Pe = 12. Due to symmetries present in the chiral active
dumbbell model, many of the correlation functions are identical, and are grouped as such. From this grouping, it is possible to
ascertain that certain viscosity coefficients defined in (8)-(13) will vanish. For example, λ3 depends on a sum of the correlation
functions T1212 − T1221 − T2112 + T2121. Here we see that these four correlation functions are identical, hence their sum will be
zero. We further observe that the correlation functions contributing to the odd viscosity λ4 go to zero in the static limit t→ 0,
a consequence of the antisymmetry identified in (33).
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Finally, returning to the definition of T k
ijkl in (39), and taking the zero wavevector limit k→ 0 yields

λ2 =
1

4ρ0µ

∫ ∞
0

dt 〈(δT22(t)− δT11(t))(δT22(0)− δT11(0))〉

=
1

ρ0µ

∫ ∞
0

dt 〈δT12(t)δT12(0)〉 ,
(45)

where, in obtaining the last equality, we use material isotropy to make the stress transformation T ′ = RTTR
corresponding to a two-dimensional rotation tensor R of angle π/4, for which T ′12 = 1

2 (T22 − T11). The last equality
in (45) is the standard Green-Kubo relation for the shear viscosity. One may evaluate either of these expressions to
compute the shear viscosity λ2.

III. Decomposed contributions to the viscosity coefficients from the Irving-Kirkwood stress tensor

FIG. 6. Components of the stress contributing to Green-Kubo and Poiseuille calculations of the shear and odd viscosity at
ρ0 = 0.4 as a function of Pe. Figures (a) and (b) are the component-wise contributions to λ2 and λ4, respectively, from
Green-Kubo calculations according to the decompositions in (46) and (47). Here, λA∗ = λAK + λAV + λAA and similarly
λ∗A = λKA + λVA + λAA. Figures (c) and (d) are the component-wise contributions to the λ2 and λ4, respectively, in periodic
Poiseuille calculations. The solid black line indicates the total viscosity coefficient, obtained by adding the shaded areas above
y = 0 and subtracting those below y = 0.

The Irving-Kirkwood procedure provides a natural decomposition of the stress tensor into kinetic, virial, and active
molecular contributions (24). In Fig. 6, we examine the component-wise stress contributions to the shear and odd
viscosity in both Green-Kubo and periodic Poiseuille calculations. The stress appears twice in the correlation functions
entering the Green-Kubo equations via (14), thus there are nine components contributing to the Green-Kubo viscosity
coefficients, which we label λKK, λKV, λKA, λVK, λVV, λVA, λAK, λAV and λAA.

From (20), we define a decomposed shear viscosity as

λXY2 =
1

ρ0µ

∫ ∞
0

dt 〈δTX12(t)δTY12(0)〉 , (46)

where X,Y ∈ {K,V,A} indicate the kinetic, virial and active parts. Similarly, the odd viscosity from (21) may be
decomposed as

λXY4 =
1

4ρ0µ

∫ ∞
0

dt 〈δTXij (t)δTYkl (0)〉εikδjl . (47)
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For periodic Poiseuille calculations, the decompositions contributing to the viscous coefficients simply involve the
choice of whether to use TK, TV, or TA in (36) and (37), corresponding to λK, λV, and λA, respectively. We observe
that the active stress TA plays a small but not insignificant role in both λ2 and λ4 at Pe 6= 0. Notably, the dominant
Green-Kubo contributions to λ2 are λKK and λVV while the cross correlations λKV and λVK are dominant in λ4.

IV. Periodic Poiseuille Simulation

Non-equilibrium molecular dynamics simulations allow measurement of viscosity coefficients in direct analogy to
experimental viscometry. For the chiral active dumbbell fluid, γ1 = γ2 = λ3 = λ5 = λ6 = 0, resulting in decoupling
of the linear and angular momentum balances and leading to modified Navier-Stokes equations

ρv̇i = λ1vk,ki + λ2vi,jj + λ4εikvk,jj − p,i + εijp
∗
,j + ρgi , (48)

with bulk viscosity λ1, shear viscosity λ2, odd viscosity λ4, pressure p, and body force gi.
In the periodic Poiseuille simulations, we subject the system to equal and opposite body forces along the x2 direction

as shown in Fig. 3. In this case, we verify that the density ρ is well-approximated as constant for small shear rates,
as described in Appendix I. Therefore, we assume incompressible flow,

vi,i = 0 . (49)

and obtain the simplified constitutive and Navier-Stokes equations:

Tij = λ2
(
vi,j + vj,i

)
+ λ4

(
εikvk,j + εjkvi,k

)
− pδij + p∗εij , (50)

and

ρ0vi,jvj = λ2vi,jj + λ4εikvk,jj − p,i + εijp
∗
,j + ρ0gi . (51)

where ρ0 is the uniform reference density.
We now seek a steady state analytical solution for the velocity and pressure profiles of a fluid between two plates

separated by a distance L, subjected to a body force g = (g1, 0), where g1 is uniform in space. The solution is
analogous to that of a planar Poiseuille flow, with boundary conditions vi = 0 at x2 = 0 and x2 = L. Using the ansatz
v1 = v1(x2), v2 = 0, p = p(x2), and p∗ = const, one may find the steady state solution to be

v1(x2) =
ρ0g1
2λ2

x2(L− x2) , (52)

and

p(x2) =
λ4
λ2
ρ0g1x2 + p0 , (53)

where p0 is an arbitrary reference pressure.
We see that the steady state velocity profile is identical to the usual solution for planar Poiseuille flow, remaining

unaffected by odd viscosity. In fact it is always true that odd viscosity does not appear in the velocity profile in
incompressible flows with no-slip boundary conditions [12]. The odd viscosity does appear, however, in a pressure
gradient arising in the x2-direction to maintain the no-penetration condition at the walls, i.e. to prevent flow in the
x2-direction. Our active dumbbell fluid simulations show parabolic velocity profiles consistent with (52) and (53)
when subjected to equal and opposite body forces as shown in Fig. 3.

Integrating the velocity profile to get an average velocity v̄ =
1

L

∫ L
0

v1(x2)dx2, we obtain a convenient expression

for computing the shear viscosity λ2 in molecular simulations:

λ2 =
ρ0g1L

2

12v̄
. (54)

As noted above, λ4 does not appear in the velocity but in the stress (50). For the velocity profile (52),

T11 = −p+ λ4v1,2 , (55)
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which results in

T11,2 = −p,2 + λ4v1,22 . (56)

Using (51) in the x2-direction, one may reduce (56) to

T11,2 = 2λ4v1,22 = −2λ4
ρ0g1
λ2

. (57)

Finally, rearranging (57), λ4 is obtained in terms of the slope of T11 as

λ4 =
T11,2
2v1,22

= −λ2T11,2
2ρ0g1

. (58)

where T11 can be calculated using the Irving-Kirkwood formula (24) for the active dumbbell fluid.
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