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M A J O R A R T I C L E

Hepatitis C Viremia and the Risk of Chronic
Kidney Disease in HIV-Infected Individuals

Gregory M. Lucas,1 Yuezhou Jing,1 Mark Sulkowski,1 Alison G. Abraham,1 Michelle M. Estrella,1 Mohamed G. Atta,1

Derek M. Fine,1 Marina B. Klein,2 Michael J. Silverberg,3 M. John Gill,4 Richard D. Moore,1 Kelly A. Gebo,1

Timothy R. Sterling,5 and Adeel A. Butt,6,7 for the NA-ACCORD of the IeDEA
1Johns Hopkins University, Baltimore, Maryland; 2McGill University, Montreal, Quebec, Canada; 3Kaiser Permanente Northern California, Oakland,
California; 4University of Calgary, Alberta, Canada; 5Vanderbilt University, Nashville, Tennessee; 6University of Pittsburgh, Pennsylvania; and 7Sheikh
Khalifa Medical City, Abu Dhabi, United Arab Emirates

Background. The role of active hepatitis C virus (HCV) replication in chronic kidney disease (CKD) risk has
not been clarified.

Methods. We compared CKD incidence in a large cohort of HIV-infected subjects who were HCV seronegative,
HCV viremic (detectable HCV RNA), or HCV aviremic (HCV seropositive, undetectable HCV RNA). Stages 3 and
5 CKD were defined according to standard criteria. Progressive CKD was defined as a sustained 25% glomerular fil-
tration rate (GFR) decrease from baseline to a GFR < 60 mL/min/1.73 m2. We used Cox models to calculate adjusted
hazard ratios (HRs) and 95% confidence intervals (CIs).

Results. A total of 52 602 HCV seronegative, 9508 HCV viremic, and 913 HCV aviremic subjects were included.
Compared with HCV seronegative subjects, HCV viremic subjects were at increased risk for stage 3 CKD (adjusted
HR 1.36 [95% CI, 1.26, 1.46]), stage 5 CKD (1.95 [1.64, 2.31]), and progressive CKD (1.31 [1.19, 1.44]), while HCV
aviremic subjects were also at increased risk for stage 3 CKD (1.19 [0.98, 1.45]), stage 5 CKD (1.69 [1.07, 2.65]), and
progressive CKD (1.31 [1.02, 1.68]).

Conclusions. Compared with HIV-infected subjects who were HCV seronegative, both HCV viremic and HCV
aviremic individuals were at increased risk for moderate and advanced CKD.

Keywords. HIV; hepatitis C virus; chronic kidney disease; hepatitis C RNA; cohort study; glomerular filtration
rate; injection drug use.

Hepatitis C virus (HCV) coinfection is present in 25%
to 30% of HIV-infected persons in the United States [1].
Epidemiologic studies suggest that HCV seropositivity
is linked to increased risk for chronic kidney disease
(CKD) and end-stage renal disease (ESRD), in both the
general population [2, 3] and human immunodeficien-
cy virus (HIV)-infected individuals [4–6].

The association between HCV and CKD may be me-
diated by several potential mechanisms. First, HCV is

associated with immune activation and immune
complex glomerulonephritis [7–9]. Second, progressive
liver disease, associated with longstanding HCV, may
lead to hepatorenal syndrome. Third, HCV has been
associated with an increased risk for diabetes [10], a
leading cause of CKD and ESRD [11]. Additionally, the
observed relationship between HCV and CKD may be
confounded by heroin or cocaine use [12, 13], lower so-
cioeconomic status [14, 15], and other factors that are
associated with increased risk of CKD and ESRD.

Approximately 20% of individuals who are infected
with HCV clear the viremia, although the rate of HCV
clearance is lower in HIV-infected persons [16]. To
explore the contribution of persistent HCV viremia on
CKD risk, we compared CKD incidence in a large cohort
of HIV-infected subjects in North America according to
HCV exposure status: (1) HCV seronegative, (2) HCV
viremic (detectable HCV RNA) and (3) HCV aviremic
(HCV seropositive with undetectable HCV RNA).
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METHODS

Study Design and Population
Our analysis included HIV-infected individuals who were part
of the North American AIDS Cohort Collaboration on Re-
search and Design (NA-ACCORD), a multisite consortium of 8
interval and 14 clinical cohort studies, with sites in the United
States and Canada [17]. NA-ACCORD is part of the Interna-
tional Epidemiological Database to Evaluate AIDS project.
Local institutional review boards approved each cohort’s partic-
ipation in the consortium. Contributing cohorts, using stan-
dardized data collection and reporting protocols, submitted
demographic, behavioral, clinical, laboratory, treatment, and
vital status data to a central data repository.

HCV Exposure Status and Covariate Definitions
The eligible population included HIV-infected adults who had
(1) available sex, race (black vs nonblack), and age data; (2) an
HCV antibody or HCV RNA test; and (3) 2 or more serum
creatinine measurements after 1 January 1996. We used 4
domains to define HCV exposure status: HCV diagnosis code
(either present or absent), HCV antibody assays, HCV RNA
assays, and HCV recombinant immunoblot assays (RIBA)
(Table 1). Individuals who could be categorized into an HCV
exposure group were included in the analysis and those who
could not be categorized were excluded.

Some, but not all, cohorts had HCV diagnosis codes that
were collected by manual medical record review. While we did
not require HCV diagnosis code data for inclusion in the analy-
sis, we considered a positive HCV diagnosis code to be an ex-
clusion criterion for the HCV seronegative group. Individual
HCV antibody and RIBA results were reported by the cohorts
as positive, negative, or indeterminate. Individual HCV RNA
values were classified by the cohorts as undetectable or detect-
able, depending on the dynamic range of the assay being used.
We ignored indeterminate HCV antibody, RIBA, and HCV
RNA results (which occurred in <0.1% of subjects) in HCV ex-
posure classification.

We categorized longitudinal HCV antibody and RIBA results
as always negative or always positive and categorized longitudinal
HCV RNA results as always undetectable or always detectable.
We excluded individuals who had mixed negative and positive
HCV antibody or RIBA results or who had mixed undetectable
and detectable HCV RNA results in order to exclude instances
that might reflect new HCV infections, HCV treatment, or data
errors. We required subjects included in the HCV aviremic
group to have at least 1 undetectable HCV RNA result after a
positive HCV antibody result (Table 1).

We estimated glomerular filtration rate (GFR) with the chronic
kidney disease epidemiology collaboration (CKD-EPI) equation
that uses serum creatinine concentration, age, race, and sex [18].
CKD stages were defined as 2 or more GFR values below a

threshold for >90 days or last available GFR below a threshold,
with thresholds of 60 mL/min/1.73 m2 for stage 3 CKD and 15
mL/min/1.73 m2 for stage 5 CKD [19]. Similar to other groups
[20, 21], we defined progressive CKD as a ≥25% GFR decline
from baseline to a GFR < 60 mL/min/1.73 m2 that persisted for
>90 days. As defined, progressive CKD avoids counting out-
comes in which a threshold is reached, but the relative change in
GFR is small. We defined diabetes as use of insulin or oral hypo-
glycemic medication, diagnostic code for diabetes, blood glucose
>200 mg/dL, or glycosylated hemoglobin >6.5%. We defined hy-
pertension as use of antihypertensive medication, diagnostic
codes for hypertension, 2 or more systolic blood pressure read-
ings >140 mmHg, or 2 or more diastolic blood pressure readings
>100 mm Hg. Cohorts provided data on history of injection
drug use, although different methods of ascertainment were
used, including self-report in a standardized questionnaire, self-
report at an initial clinician visit, and an International Classifica-
tion of Diseases coding algorithm.

Statistical Analysis
We compared baseline characteristics between included and ex-
cluded NA-ACCORD subjects and between HCV exposure
groups using χ² test for categorical variables and Wilcoxon rank
sum test for continuous variables. In order to control for the an-
ticipated strong association of age with duration of HCV infec-
tion and CKD incidence [22], we used chronological age as the
time scale, with an arbitrary origin (onset of risk) at age 25 years.
Baseline was defined as the latest of 3 events: 25th birthday, 1
January 1996, or date of earliest serum creatinine measurement
in the cohort. Subject follow-up time was censored at CKD
events, death, or last available serum creatinine measurement.

We calculated incidence rates (events/1000 person-years) for
stage 3 CKD, stage 5 CKD, and progressive CKD. Subjects were
included in the analyses for these 3 outcomes if their baseline
GFR was >60 mL/min/1.73 m2, >15 mL/min/1.73 m2, and
>30 mL/min/1.73 m2, respectively. We used Cox proportional
hazard models to calculate unadjusted and adjusted hazard
ratios (HRs) and 95% confidence intervals (CI) for the 3 HCV
exposure groups. Since age was used as the time scale, both un-
adjusted and adjusted HRs controlled for age. In the adjusted
model, we included race, sex, baseline GFR, history of injection
drug use, hepatitis B surface antigenemia, and time-varying co-
variates, including calendar year, CD4 cell count, HIV RNA,
diabetes, hypertension, antiretroviral therapy use, tenofovir use,
indinavir use, lopinavir/ritonavir use, and atazanavir use.
Time-varying covariates were updated every 6 months after
baseline, with last observation carried forward if new values
were not available. Hypertension and diabetes were structured
as monotonically increasing binary variables.

We conducted several supplementary analyses. First, to
assess for a dose–response relationship between HCV RNA and
CKD risk, we stratified the HCV viremic group at the median
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HCV RNA value and calculated adjusted HR for those above
and below the median. Second, we repeated the Cox models for
CKD events using a more rigorous definition for the HCV
aviremic group, requiring 2 or more undetectable HCV RNA
values (rather than 1 or more values) separated by more than
60 days and following the earliest positive HCV antibody.
Third, we repeated time-to-event analyses using cohort entry as
the time origin and adjusting for age, rather than using age as
the time scale. Fourth, we assessed whether race modified the
observed associations between HCV status and CKD by testing
interaction terms in the models and inspecting associations
stratified by race. Fifth, we conducted a sensitivity analysis in
which stages 3 and 5 CKD were defined only by 2 GFR values
below the respective thresholds for at least 90 days (ie, exclud-
ing events defined only by last available GFR below threshold).

RESULTS

Study Participants
A total of 93 495 individuals met the data requirements to be
considered for the analysis. Of these, 63 023 met criteria for 1
of the 3 HCV exposure groups and were included in the analy-
sis and 30 472 were excluded because HCV status could not be
categorized according to the specified criteria (Figure 1).
Among subjects included in the analysis, 52 602 were catego-
rized as HCV seronegative, 9508 as HCV viremic, and 913 as
HCV aviremic. Baseline characteristics of excluded subjects and
included subjects, stratified by HCV status, are shown in
Table 2. Excluded subjects were qualitatively similar to included
subjects for most variables, although many differences were
statistically significant due to large numbers of subjects.
However, compared with included subjects, excluded subjects
were more likely to have a history of injection drug use and a

hepatitis C diagnosis. The patterns of HCV test results in the 3
HCV exposure groups and in included and excluded subjects
are shown in Supplementary Table 1. Compared with included
subjects, excluded individuals were more likely to be missing
HCV antibody test results. Consistent with the inclusion crite-
ria, no subjects included in the analysis had mixed positive and
negative results for HCV antibody, HCV RNA, or HCV RIBA,
while 7.4%, 4.7%, and 0.1% of excluded subjects, respectively,
had mixed results for these tests.

Compared with HCV seronegative subjects, both HCV
viremic and HCV aviremic subjects were older and were sub-
stantially more likely to have a history of injection drug use
(Table 2). Compared with HCV seronegative subjects, HCV
viremic subjects (but not HCV aviremic subjects) were more
likely to be male and black and had earlier baseline dates and
higher serum concentrations of alanine aminotransferase. Base-
line serum creatinine concentrations, median GFR, and distri-
bution within GFR categories were qualitatively similar in the 3
HCV exposure groups.

Incident CKD
Incidence rates with unadjusted and adjusted HRs for stage 3
CKD, stage 5 CKD, and progressive CKD are shown in Table 3.
Compared with HCV seronegative subjects, HCV viremic sub-
jects were at increased risk for stage 3 CKD (adjusted HR 1.36
[95% CI, 1.26, 1.46]), stage 5 CKD (1.94 [1.64, 2.30]), and pro-
gressive CKD (1.30 [1.18, 1.43]), while HCV aviremic subjects
were also at increased risk for stage 3 CKD (1.19 [0.98, 1.45]),
stage 5 CKD (1.68 [1.07, 2.65]) and progressive CKD (1.31
[1.02, 1.69]). Compared with HCV aviremic subjects, the risks
of stage 3 CKD, stage 5 CKD, and progressive CKD were
similar in HCV viremic subjects, adjusted HR 1.14 (95% CI,
.94, 1.39), 1.16 (.74, 1.81), and 0.99 (.77, 1.28), respectively.

Table 1. Hepatitis C Virus Exposure Group Definitions

Group Pattern
Hepatitis C

Diagnosis Codea
Hepatitis C
Antibodyb

Hepatitis C RNA
Levelc

Hepatitis C
Recombinant

Immunoblot Assayb Other Factors

HCV
seronegative

(. . .) Absent All results
negative

All results
undetectable or no
results available

All results negative or
no results available

HCV viremic A Present or absent All results
positive

All results detectable All results positive or
no results available

B Present No results
available

All results detectable All results positive or
no results available

HCV aviremic (. . .) Present or absent All results
positive

All results
undetectable

All results positive or
no results available

At least 1 undetectable HCV
RNAwas measured after the
earliest positive HCV antibody
test

Abbreviation: HCV, hepatitis C virus.
a Hepatitis C diagnosis code was either present or absent, based on information abstracted from clinical records.
b Longitudinal patterns of test results categorized as (1) all results negative, (2) all results positive, (3) no results available, or (4) mixed positive and negative results.
c Longitudinal patterns of test results categorized as (1) all results undetectable, (2) all results detectable, (3) no results available, or (4) mixed detectable and
undetectable results.
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Figure 1. Disposition of human immunodeficiency virus–infected NA-ACCORD subjects who met the data requirements to be considered for the analy-
sis, stratified by whether a hepatitis C diagnosis code was present (A ) or absent (B ). Rectangular and oval cells designate subjects who continued in the
algorithm or were excluded from the analytic cohort, respectively. “Other” represents any pattern of results for a given factor that differs from those speci-
fied in sister cells. Abbreviations: RIBA, recombinant immunoblot assay; HCV, hepatitis C virus.
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Table 2. Baseline Characteristics of Human Immunodeficiency Virus-Infected Subjects From NA-ACCORD According to Hepatitis C Exposure Group and Inclusion/Exclusion Status

Characteristic

Analytic Cohort (n = 63 023)

Included in Analysis
(n = 63 023)

Excluded from Analysis
(n = 30 472)

HCV Seronegative
(n = 52 602) HCV Viremic (n = 9508) HCVAviremic (n = 913)

Male, n (%) 42 883 (81.5) 8419 (88.5)a 722 (79.1) 52 024 (82.5) 26 086 (85.6)b

Age, years, median (P25, P75) 41 (34, 48) 47 (43, 52)a 47 (40, 51)a 42 (35, 49) 45 (38, 52)b

Black, n (%) 19 903 (37.8) 5511 (58.0)a 342 (37.5) 25 756 (40.9) 13 657 (44.8)b

Baseline date, median (P25, P75) 01/17/2003
(02/22/2000, 08/15/2006)

11/25/2000
(12/02/1999, 05/24/

2004)a

01/27/2003
(04/18/2000, 08/09/

2006)

09/05/2002
(01/31/2000, 05/08/2006)

08/24/2001
(12/15/1999, 07/14/2005)b

CD4 count, cells/mm3, median (P25, P75) 342 (160, 538) 334 (172, 536)c 353 (170, 563) 340 (162, 538) 335 (161, 533)d

HIV RNA, log10 copies/mL, median (P25, P75) 3.8 (2.3, 4.8) 3.5 (2.5, 4.6)a 3.6 (2.3, 4.7)c 3.8 (2.3, 4.8) 3.5 (2.3, 4.7)b

HIV RNA <500 copies/mL, n (%) 15 686 (34.3) 2939 (38.0)a 295 (38.6)c 18 920 (34.9) 9145 (38.0)b

History of AIDS-defining illness, n (%) 7223 (14) 1082 (11)a 118 (13) 8423 (13) 4096 (13)

Taking antiretroviral therapy n (%) 22 591 (42.9) 4227 (44.5)c 383 (41.9) 27 201 (43.2) 13 980 (45.9)b

Tenofovir, n (%) 5743 (10.9) 590 (6.2)a 86 (9.4) 6419 (10.2) 2907 (9.5)d

Indinavir, n (%) 565 (1.1) 66 (0.7)c 13 (1.4) 644 (1.0) 229 (0.8)b

Lopinavir/ritonavir, n (%) 5863 (11.1) 1581 (16.6)a 112 (12.3) 7556 (12.0) 4562 (15.0)b

Atazanavir, n (%) 1111 (2.1) 121 (1.3)a 19 (2.1) 1251 (2.0) 661 (2.2)

History of injection drug use, n (%) 5063 (9.6) 5667 (59.6)a 464 (50.8)b 11 194 (17.8) 9476 (31.1)b

Hypertension, n (%) 13 161 (25.0) 2374 (25.0) 204 (22.3) 15 739 (25.0) 7114 (23.3)b

Diabetes, n (%) 2346 (4.5) 737 (7.8)a 49 (5.4) 3132 (5.0) 2347 (7.7)b

Alanine aminotransferase, U/L, median
(P25, P75)

26 (18, 40) 48 (31, 75)a 25 (17, 44) 28 (19,44) 31 (20, 49)b

Hepatitis B surface antigen positive, n (%) 1406 (2.7) 94 (1.0)a 33 (3.6) 1533 (2.4) 485 (1.6)b

Creatinine, mg/dL, median (P25, P75) 0.9 (0.8, 1.1) 0.9 (0.8, 1.1)a 0.9 (0.8, 1.1)c 0.9 (0.8, 1.1) 1.0 (0.8, 1.1)b

GFR, mL/min/1.73 m2, median (P25, P75) 102 (86, 115) 103 (88, 116)a 100 (83, 112) 102 (86 115) 99 (82 112)b

GFR category, mL/min/1.73 m2, n (%)

>90 35 894 (69.4) 6754 (71.3) 619 (68.1) 43 267 (69.7) 19 344 (64)

60–89 13 535 (26.2) 2193 (23.1) 241 (26.5) 15 969 (25.7) 8894 (29.4)
30–59 1742 (3.4) 353 (3.7) 36 (4.0) 2131 (3.4) 1490 (4.9)

15–29 218 (0.4) 56 (0.6) 5 (0.6) 279 (0.4) 184 (0.6)

<15 305 (0.6) 120 (1.3)a 7 (0.8) 432 (0.7) 327 (1.1)b

Abbreviations: GFR, glomerular filtration rate; HCV, hepatitis C virus; HIV, human immunodeficiency virus; P25, 25th percentile; P75, 75th percentile.
a P < .001 compared with HCV seronegative subjects.
b P < .001 compared with included subjects.
c 0.05 > P≥ .001 compared with HCV seronegative subjects.
d 0.05 > P≥ .001 compared with included subjects.
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Supplementary Analyses
First, we assessed for a dose–response relationship between HCV
viremia level and CKD risk by stratifying the HCV viremic group
into those above and below the median HCV RNA level
(1 060 000 IU/mL). Compared with those with HCV RNAvalues
below the median, those with HCV RNA values above the
median were at similar risk for stage 3 CKD (HR 0.93; 95% CI,
.84, 1.05), stage 5 CKD (HR 0.90; 95% CI, .71, 1.15), and progres-
sive CKD (HR 1.05; 95% CI, .91, 1.21). Figure 2 shows adjusted
HRs for CKD outcomes in HCV aviremic subjects and in HCV
viremic subjects, stratified at the median HCV RNA level relative
to HCV seronegative subjects. Second, we conducted a supple-
mentary analysis using a rigorous definition of HCV aviremia, in
which subject were required to have 2 or more undetectable
HCV RNA measurements, separated by 60 or more days, occur-
ring after a positive HCV antibody result. Compared with the
definition used in the primary analysis, the rigorous definition
reduced the number of subjects in the HCV aviremic group from
913 to 329. Although the CIs were wider, risk estimates with the
rigorously defined HCV aviremic group were similar to those in
the primary analysis. Specifically, compared with HCV seronega-
tive subjects, the adjusted HRs (95% CI) for HCV aviremic sub-
jects (rigorous definition) were 1.18 (.88, 1.58), 1.87 (.99, 3.54),
and 1.38 (.96, 1.98) for stage 3 CKD, stage 5 CKD, and progres-
sive CKD, respectively.

Third, we repeated the analysis using time from enrollment
as the time scale (rather than age), with adjustment for age as a
time-dependent covariate in the adjusted analysis. Compared
with HCV seronegative subjects, the adjusted HR (95% CI) for
HCV viremic and HCV aviremic subjects were similar for stage
3 CKD (1.48 [1.38, 1.58] and 1.46 [1.20, 1.78], respectively),
stage 5 CKD (2.04 [1.75, 2.38] and 2.86 [1.82, 4.50], respective-
ly), and progressive CKD (1.28 [1.16, 1.41] and 1.41 [1.10,
1.82], respectively). Fourth, to assess whether racial differences
in cohorts might explain different findings in NA-ACCORD
and Eurosyndrome de inmuno-deficiencia Adquirida (SIDA),
we assessed for effect modification of HCV associations with
CKD by race. The P values for interactions between race and
HCV status were 0.17, 0.08, and 0.002 for stage 3 CKD, stage 5
CKD, and progressive CKD, respectively. However, confidence
intervals were wide and racial differences were inconsistent
across outcomes when adjusted HR estimates were stratified by
race (Supplementary Table 2).

Fifth, we conducted sensitivity analyses in which stage 3 and
stage 5 CKD were defined only by 2 GFR values below the re-
spective thresholds for at least 90 days (ie, excluding events
defined only by the last available GFR below threshold). A total
of 4708 of 6878 (68%) stage 3 CKD events and 710 of 1098
(65%) stage 5 CKD events were defined by 2 GFR values below
the respective thresholds. The results of this sensitivity analysis

Table 3. Incidence Rates and Relative Hazards of Chronic Kidney Disease Among Human Immunodeficiency Virus –Infected Individuals
According to Hepatitis C Exposure Group

Outcome
Exposure Group Number of Events Person-Years

Rate per 1000
Person-Years (95% CI)

Hazard Ratios (95% CI)

Unadjusteda Adjusteda,b

Stage 3 CKDc

HCV seronegative 5090 269 805 18.9 (18.4, 19.4) 1.0 1.0

HCV viremic 1666 57 854 28.8 (27.5, 30.2) 1.22 (1.16, 1.30) 1.36 (1.26, 1.46)

HCV aviremic 122 4769 25.6 (21.4, 30.6) 1.14 (.96, 1.37) 1.19 (.98, 1.45)
Stage 5 CKDc

HCV seronegative 699 287 386 2.4 (2.3, 2.6) 1.0 1.0

HCV viremic 376 61 833 6.1 (5.5, 6.7) 2.30 (2.02, 2.63) 1.95 (1.64, 2.31)
HCV aviremic 23 5139 4.4 (2.9, 6.7) 1.74 (1.15, 2.64) 1.69 (1.07, 2.65)

Progressive CKDd

HCV seronegative 2885 279 096 10.3 (9.9, 10.7) 1.0 1.0
HCV viremic 984 59 892 16.4 (15.4, 17.5) 1.32 (1.22, 1.42) 1.31 (1.19, 1.44)

HCV aviremic 76 4952 15.4 (12.3, 19.2) 1.29 (1.02, 1.62) 1.31 (1.02, 1.68)

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; HCV, hepatitis C virus.
a Age used as analysis time, so estimates account for age.
b Adjusted for sex, race, history of injection drug use, hepatitis B surface antigen positivity, baseline glomerular filtration rate, and time-updated covariates including,
calendar year, CD4 cell count, human immunodeficiency virus RNA, antiretroviral therapy use, tenofovir use, indinavir use, lopinavir/ritonavir use, atazanavir use,
hypertension, and diabetes.
c Stage 3 and stage 5 CKD were defined as glomerular filtration rates (GFR) that persisted below the threshold (60 mL/min/1.73 m2 and 15 mL/min/1.73 m2,
respectively) for at least 90 days or last available GFR below the respective threshold among subjects with baseline GFR above the respective threshold.
d Progressive CKD was defined as a ≥25% GFR decline from baseline to a GFR < 60 mL/min/1.73 m2 that persisted for at least 90 days among subjects with
baseline GFR≥ 30 mL/min/1.73 m2.
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(Supplementary Table 3) showed trends that were similar to
those in the primary analysis, although with wider CIs due to
fewer events, particularly for stage 5 CKD.

DISCUSSION

In this consortium of HIV cohorts from the United States and
Canada, we found that, compared with HCV seronegative indi-
viduals, prior HCV infection was associated with increased risk
for stage 3 CKD, stage 5 CKD, and progressive CKD. Unexpect-
edly, we found that prior HCV infection was associated with
excess CKD risk irrespective of the presence or absence of HCV
viremia. Compared with HCV seronegative subjects, HCV
viremic individuals were at significantly increased risk for all 3
CKD outcomes, while HCV aviremic subjects were at signifi-
cantly increased risk for stage 5 CKD and progressive CKD,
with a nonsignificant trend toward increased risk for stage 3
CKD. Moreover, there were no significant differences in risk

between HCV viremic and HCV aviremic subjects for any of
the CKD outcomes.

An observed difference in CKD risk between HCV viremic
and HCV aviremic individuals would be expected to reflect the
role of ongoing HCV replication in CKD risk independent of
behavioral or other characteristics that HCV-exposed individu-
als might share. Our results suggest that chronic HCV viremia
is not the primary factor mediating increased CKD risk in
HIV-infected persons with prior HCV exposure. However, our
data do not rule out a small independent effect of HCV
viremia, as HR point estimates were slightly higher in HCV
viremic compared with HCV aviremic subjects for stage 3 and
stage 5 CKD and CIs for the HCV aviremic group were relative-
ly wide.

In our cohort, HCV viremic subjects were more likely to be
male and black than HCV aviremic subjects. These differences
are consistent with data that men and black individuals are less
likely to clear HCV than women or nonblacks, respectively
[23]. Racial differences in HCV clearance appear to be largely

Figure 2. Adjusted hazard ratio point estimates and 95% confidence intervals (CIs) for stage 3 chronic kidney disease (CKD), stage 5 CKD, and progres-
sive CKD, according to hepatitis C virus (HCV) exposure groups in human immunodeficiency virus (HIV)-infected subjects from NA-ACCORD. Low and high
HCV RNA represent values below and above, respectively, the median value (1 060 000 IU/mL) for the subjects with detectable HCV viremia. Estimates
were adjusted for age, sex, race, history of injection drug use, hepatitis B surface antigen positivity, baseline glomerular filtration rate, and time-updated
variables including calendar year, CD4 cell count, HIV RNA, antiretroviral therapy use, tenofovir use, indinavir use, lopinavir/ritonavir use, atazanavir use,
hypertension, and diabetes.
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or wholly explained by differences in the IL28B haplotypes
[24]. We controlled for sex and race in adjusted models.

Several factors distinct from HCV viremia may mediate the ob-
served association between HCV seropositivity and CKD. Heroin
and cocaine use are major risk factors for HCV infection and have
been implicated in the pathogenesis of kidney disease [25].
Cocaine has established mechanisms of vascular toxicity [26], is
linked to cardiovascular disease [27], and has been associated with
arterial intimal fibrosis and arteriosclerosis on kidney pathology
[12, 28]. Although we adjusted for history of injection drug use,
this variable was not collected systematically by the various
cohorts, is subject to underreporting bias, does not include nonin-
jection drug use, and does not distinguish between active and in-
active use. Consequently, residual confounding from drug use
behaviors is possible. Additionally, HCV seropositivity has been
associated with antiretroviral therapy nonadherence and lower
rates of HIV RNA suppression [29], and uncontrolled HIV in-
creases the risk of CKD [30]. However, we controlled for time-
updated antiretroviral therapy use, HIV RNA level, and CD4 cell
count in our adjusted models. Finally, injection drug use and
HCV coinfection are associated with lower socioeconomic status
in HIV-infected individuals [31], and lower socioeconomic status
has consistently been found to be a risk factor for kidney disease
outcomes in the general population [14, 15]. Unfortunately, socio-
economic data were not available in NA-ACCORD, preventing us
from examining this factor.

The results from the present study should be considered in
context with other studies that examined the association of
HCV viremia with CKD. Our findings are consistent with a
study of more than 40 000 HCV seropositive and seronegative
US male veterans, all of whom were HIV negative [2]. In this
study, HCV seropositive patients were at 30% higher risk for
stage 3 CKD than seronegative individuals, with similarly in-
creased risk in HCV seropositive persons with detectable and
undetectable HCV RNA levels.

However, our findings contrast with a recent analysis from
the EuroSIDA cohort [21]. In an analysis of 8235 HIV-infected
subjects, the investigators found no significant difference in the
risk of CKD between HCV seronegative subjects and HCV
aviremic subjects. In contrast, HCV viremic subjects had a stat-
istically significant 2-fold increased risk of CKD compared with
HCV seronegative subjects. However, the EuroSIDA study in-
cluded fewer than 200 HCV aviremic individuals and the CIs
around the point estimate for this group were wide. One diffe-
rence between the 2 studies is that only 6% of subjects in the
EuroSIDA study were black, whereas approximately 40% of
subjects in NA-ACCORD were black. Black individuals are at
increased risk for CKD compared with white individuals [32,
33]. When we stratified our outcome analyses by race, we could
find no consistent evidence that HCV associations with CKD
differed by race, although CIs were wide. A second study, by
Mocroft and colleagues, analyzed data from 2 HIV clinical

trials and reported a marginally statistically significant trend for
increased CKD risk with increasing HCV RNA levels [20]. In
contrast, we found no association between HCV RNA magni-
tude and CKD risk. Compared with our cohort, the population
in the Mocroft study was less likely to have a history of injection
drug use, less likely to be black, more likely to be receiving anti-
retroviral therapy at baseline, and had higher CD4 cell counts
and lower HIV RNA levels at baseline. It is possible that the
greater participant homogeneity and uniformity of treatment
experience in the clinical trials cohort allowed a small HCV
viremia association with CKD to be identified.

Our study has strengths, including centralized data mapping
and harmonization and a large sample size that is representative
of individuals receiving care for HIV in North America [34]. Our
study also has several limitations. First, we did not have data on
proteinuria, which is an independent predictor of clinical out-
comes in CKD [19]. Second, individuals in the HCV aviremic
group may have become reinfected with HCV, which may, in
turn, have increased their risk for CKD. While reinfection has
been documented in individuals who have previously cleared
HCV, it appears that such individuals are also likely to clear rein-
fections [23, 35]. Additionally, we conducted a sensitivity analysis,
using a more rigorous definition of HCV aviremia that required 2
undetectable HCV RNA measurements separated in time, in
which inferences were unchanged. Third, we had minimal data on
HCV treatment. However, we excluded subjects who had both un-
detectable and detectable HCV RNA values, as might be seen in
the context of treatment, with the goal of selecting an HCV avire-
mic group composed primarily of subjects with prior immune
clearance. Fourth, a large number of individuals in NA-ACCORD
were excluded because insufficient data were available to catego-
rize them into HCV exposure groups. If excluded subjects differed
systematically from included subjects in ways relevant to the asso-
ciation between HCV status and CKD, our findings could be
biased. However, we have no reason to suspect this is the case, and
we have shown detailed comparisons of included and excluded
subjects in Table 2 and Supplementary Table 1.

In summary, we found that HIV-infected individuals with
prior HCV coinfection were at increased risk for moderate and
advanced CKD, regardless of the presence HCV viremia. We
found no significant differences in CKD risk in HCV viremic
and aviremic subjects, although our data cannot rule out a
small independent effect of HCV viremia for CKD. The mecha-
nism behind increased CKD risk in HCV aviremic subjects is
unclear but may include confounding effects from drug use,
poorer control of HIV infection, lower socioeconomic status, or
other unidentified factors.

Supplementary Data

Supplementary materials are available at The Journal of Infectious Diseases
online (http://jid.oxfordjournals.org/). Supplementary materials consist of
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data provided by the author that are published to benefit the reader. The
posted materials are not copyedited. The contents of all supplementary data
are the sole responsibility of the authors. Questions or messages regarding
errors should be addressed to the author.
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