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Abstract. Sequential quadratic programming (SQP) methods are a popular class of methods
for nonlinearly constrained optimization. They are particularly effective for solving a sequence of
related problems, such as those arising in mixed-integer nonlinear programming and the optimization
of functions subject to differential equation constraints.

Recently, there has been considerable interest in the formulation of stabilized SQP methods,
which are specifically designed to handle degenerate optimization problems. Existing stabilized
SQP methods are essentially local, in the sense that both the formulation and analysis focus on
the properties of the methods in a neighborhood of a solution. A new SQP method is proposed
that has favorable global convergence properties yet, under suitable assumptions, is equivalent to a
variant of the conventional stabilized SQP method in the neighborhood of a solution. The method
combines a primal-dual generalized augmented Lagrangian function with a flexible line search to
obtain a sequence of improving estimates of the solution. The method incorporates a convexification
algorithm that allows the use of exact second-derivatives to define a convex quadratic programming
(QP) subproblem without requiring that the Hessian of the Lagrangian be positive definite in the
neighborhood of a solution. This gives the potential for fast convergence in the neighborhood of a
solution. Additional benefits of the method are that each QP subproblem is regularized and the QP
subproblem always has a known feasible point. Numerical experiments are presented for a subset of
the problems from the CUTEr test collection.
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1. Introduction. This paper is concerned with methods for the solution of op-
timization problems of the form

(NP) minimize
x∈Rn

f(x) subject to c(x) = 0, x ≥ 0,

where c : Rn 7→ Rm and f : Rn 7→ R are twice-continuously differentiable. This prob-
lem formulation assumes that all general inequality constraints have been converted
to equalities by the use of slack variables. Methods for solving problem (NP) are easily
extended to the more general setting with l ≤ x ≤ u (see, e.g., Section 6).

Some of the most efficient algorithms for nonlinear optimization are sequential
quadratic programming (SQP) methods (for a survey, see, e.g., [1, 25]). Conventional
SQP methods find an approximate solution of a sequence of quadratic programming
(QP) subproblems in which a quadratic model of the objective function is minimized
subject to the linearized constraints. Convergence from any starting point is enforced
by requiring the improvement in some merit function at each step. The merit function
is usually a penalty or augmented Lagrangian function that defines some compromise
between reducing the objective function and satisfying the constraints. SQP methods
that solve the QP subproblem using an active-set method are able to capitalize on
a good initial starting point, which makes them particularly effective for solving a
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sequence of related problems, such as those arising in the optimization of functions
subject to differential equation constraints.

SQP methods have an inner/outer iteration structure, with the work for an inner
iteration being dominated by the cost of solving a system of symmetric indefinite
linear equations involving a subset of the variables and constraints. Some of the most
successful methods use sophisticated matrix factorization updating techniques that
exploit the fact that the linear equations change by only a single row and column at
each inner iteration. These updating techniques are often customized for the partic-
ular QP method being used and have the benefit of providing a uniform treatment
of ill-conditioning and singularity. On the negative side, it is difficult to implement
conventional SQP methods so that the second derivatives of f and c may be used
efficiently and reliably. Some of these difficulties stem from the theoretical proper-
ties of the QP subproblem, which can be nonconvex when second derivatives are used.
Nonconvex QP is NP-hard—even for the calculation of a local minimizer [11, 19]. The
complexity of the QP subproblem has been a major impediment to the formulation of
conventional second-derivative SQP methods (although methods based on indefinite
QP have been proposed [15, 16]). Over the years, algorithm developers have avoided
this difficulty by using a convex QP defined in terms of a positive semidefinite approx-
imate Hessian. In some cases, this QP is used to define the search direction directly
[33, 46, 48, 49, 22, 21]; in others, the QP is used to identify the constraints for an
equality constrained subproblem that uses second derivatives [30, 31, 42].

Recently, there has been considerable interest in the formulation of stabilized SQP

methods, which are specifically designed to improve the convergence rate for degener-
ate problems [51, 32, 52, 44, 14, 36]. Existing stabilized SQP methods are essentially
local, in the sense that both the formulation and analysis focus on the properties
of the methods in a neighborhood of a solution. In parallel with the development
of stabilized SQP methods, regularized methods have been proposed that reduce the
dependency on custom-built matrix factorization and updating methods for solving
the QP subproblem (see, e.g., [25, 40]). Regularized methods use a so-called regular-
ization parameter to define linear equations that are always nonsingular. This feature
obviates specialized software to detect rank deficiency and allows the application of
third-party linear system solvers.

A seemingly different approach from tackling problem (NP) directly is to replace
the constrained problem by a sequence of bound-constrained problems in which the
equality constraints are included in an augmented Lagrangian objective function [34,
45, 5, 8, 9, 10, 4]. These methods have strong global convergence properties that
require relatively weak assumptions on the problem.

In this paper we formulate and analyze a new SQP method that effectively com-
bines the use of a bound-constrained augmented Lagrangian function with the three el-
ements of conventional, regularized and stabilized SQP. In particular, the method has
favorable global convergence properties, yet, under suitable assumptions, the method
is equivalent to a conventional stabilized SQP method in the neighborhood of a so-
lution. The method pairs the primal-dual generalized augmented Lagrangian merit
function defined in [23] with a flexible line search to obtain a sequence of improving
estimates of the solution. A crucial feature of the method is that the QP subproblem
is based on the exact Hessian of the Lagrangian, yet has a unique bounded solution.
This gives the potential for fast convergence in the neighborhood of a solution. Ad-
ditional benefits of the method include: (i) each QP subproblem is regularized; and
(ii) the QP subproblem always has a known feasible point.
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The paper is organized in seven sections. Section 1.2 is a review of some of the
basic properties of SQP methods. In Section 2, the steps of the proposed primal-dual
SQP method are defined. Similarities with the conventional Hestenes-Powell aug-
mented Lagrangian method are discussed and equivalence to stabilized SQP under
certain assumptions is described. Global convergence results are established in Sec-
tion 3. In Section 4, a “convexification procedure” is proposed for obtaining a QP

subproblem with a bounded unique solution. In Section 5, the connection between the
QP subproblems associated with the bound-constrained augmented Lagrangian and
stabilized SQP is extended to show that a conventional active-set method generates
identical QP iterates on both problems. Finally, in Section 6 some numerical exper-
iments are presented for a simple Matlab implementation applied to a selection of
problems from the CUTEr test collection [29].

1.1. Notation and terminology. Unless explicitly indicated otherwise, ‖ · ‖
denotes the vector two-norm or its induced matrix norm. The inertia of a real sym-
metric matrix A, denoted by In(A), is the integer triple (a+, a−, a0) giving the number
of positive, negative and zero eigenvalues of A. Given vectors a and b with the same
dimension, the vector with ith component aibi is denoted by a · b. Similarly, min(a, b)
is a vector with components min(ai, bi). The vectors e and ej denote, respectively, the
column vector of ones and the jth column of the identity matrix I. The dimensions
of e, ei and I are defined by the context. Given vectors x and y, the long vector con-
sisting of the elements of x augmented by elements of y is denoted by (x, y). The ith
component of a vector labeled with a subscript will be denoted by [ · ]i, e.g., [ vF ]i is
the ith component of the vector vF . The subvector of components with indices in the
index set S is denoted by [ · ]S , e.g., [ v ]S is the vector with components vi for i ∈ S.
A local solution of an optimization problem is denoted by x∗. The vector g(x) is used
to denote ∇f(x), the gradient of f(x). The matrix J(x) denotes the m×n constraint
Jacobian, which has ith row ∇ci(x)T , the gradient of the ith constraint function ci(x).
The Lagrangian function associated with (NP) is L(x, y, z) = f(x) − c(x)Ty − zTx,
where y and z are m- and n-vectors of dual variables associated with the equality
constraints and bounds, respectively. The Hessian of the Lagrangian with respect to
x is denoted by H(x, y) = ∇2f(x)−

∑m
i=1 yi∇2ci(x).

1.2. Background. The vector-pair (x∗, y∗) is called a first-order solution to
problem (NP) if it satisfies

c(x∗) = 0 and min
(
x∗, g(x∗)− J(x∗)Ty∗

)
= 0, (1.1)

where y∗ are the Lagrange multipliers associated with the constraints c(x) = 0.
Given an estimate (xk, yk) of a primal-dual solution of (NP), a line-search SQP

method computes a search direction pk = x̂k − xk such that x̂k is the solution (when
it exists) of the quadratic program

minimize
x

gTk (x− xk) + 1
2 (x− xk)T Ĥk(x− xk)

subject to ck + Jk(x− xk) = 0, x ≥ 0,
(1.2)

where ck, gk and Jk denote the quantities c(x), g(x) and J(x) evaluated at xk, and

Ĥk is some approximation of the Lagrangian Hessian H(xk, yk). For the moment, it

is assumed that the approximate Hessian Ĥk is positive definite, in which case the QP

subproblem (1.2) is convex. (This assumption is not required for the method proposed
in Section 2.) If the Lagrange multiplier vector associated with the constraint ck +
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Jk(x − xk) = 0 is given by ŷk, then a solution (x̂k, ŷk) of the QP subproblem (1.2)
satisfies the optimality conditions

ck + Jk(x̂k − xk) = 0 and min
(
x̂k, gk + Ĥk(x̂k − xk)− JTk ŷk

)
= 0,

which are analogous to (1.1). Given any x ≥ 0, we define the index sets

A(x) = {i : xi = 0} and F(x) = {1, 2, . . . , n} \ A(x). (1.3)

If x is feasible for the constraints ck + Jk(x − xk) = 0, then A(x) is the index set of
active variables at x (the active set at x) and F(x) is the index set of free variables at
x. If the set A(x̂k) associated with a solution of the subproblem (1.2) is known, then
x̂k may be found by solving linear equations that represent the optimality conditions
for an equality-constrained QP with the inequalities x ≥ 0 replaced by xi = 0 for
i ∈ A(x̂k). In general, the optimal active set A(x̂k) is not known in advance, and
active-set QP methods generate a sequence of feasible estimates (x̂(j), ŷ(j)) of (x̂k, ŷk)
such that (x̂(j+1), ŷ(j+1)) = (x̂(j), ŷ(j)) + α(j)(p(j), q(j)), with

p
(j)
A = 0 and

(
ĤF JTF
JF 0

)(
p
(j)
F

−q(j)

)
= −

(
[ gk + Ĥk(x̂(j) − xk)− JTk ŷ(j) ]F

ck + Jk(x̂(j) − xk)

)
, (1.4)

where the quantities with subscripts “F” and “A” are defined in terms of the index
sets F(x̂(j)) and A(x̂(j)); i.e., ĤF is the matrix of free rows and columns of Ĥk, JF is

the matrix of free columns of Jk, and p
(j)
F and p

(j)
A are the free and fixed components

of p(j). The step length α(j) is chosen to ensure the feasibility of every element of
x̂(j+1).

If the equations (1.4) are to be used to define p(j) and q(j), then it is necessary
that JF has full rank, which is a crucial issue in the formulation of reliable methods.
Two remedies are available.

• Rank-enforcing active-set methods maintain a set of indices B associated with
a matrix of columns JB with rank m; i.e., the rows of JB are linearly inde-
pendent. The set B is the complement in {1, 2, . . . , n} of a “working set” N
of indices that estimates the set A at a solution x̂k of (1.2). If N is a subset
of A, then a system analogous to (1.4) may be solved with F replaced by B.
The system is nonsingular because of the linear independence of the rows of
JB.

• Regularized active-set methods include a nonzero diagonal regularization term
in the (2, 2) block of (1.4). The magnitude of the regularization term is
generally based on heuristic arguments.

Another important attribute associated with SQP methods is the rate of conver-
gence to a local minimizer. If the active set at the solution x̂k of the QP subproblem
(1.2), is the same as the active set at xk, i.e., A(x̂k) = A(xk) and F(x̂k) = F(xk),
then the QP solution (x̂k, ŷk) is obtained in a single iteration. Specifically, the QP

solution is given by (x̂k, ŷk) = (xk, yk) + (p(0), q(0)), with

p
(0)
A = 0 and

(
ĤF JTF

JF 0

)(
p
(0)
F

−q(0)

)
= −

(
[ gk − JTkyk ]F

ck

)
, (1.5)

where ĤF , JF , p
(0)
F , and p

(0)
A are as defined above, but with the index sets F(x̂k)

(= F(xk)) andA(x̂k) (= A(xk)). The conditions (1.5) represent the Newton equations
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for finding a stationary point of the equality constrained problem defined in terms of
the free variables. If Ĥk = H(xk, yk) and JF has full rank in a neighborhood of a
solution, then Newton’s method converges at a quadratic rate. However, if JF does
not have full rank, the equations (1.5) are singular with no unique solution. In this
case, one remedy is to use a stabilized SQP method in which the QP subproblem (1.2)
is replaced by

minimize
x,y

gTk(x− xk) + 1
2 (x− xk)TĤk(x− xk) + 1

2µk‖y‖
2

subject to ck + Jk(x− xk) + µk(y − yk) = 0, x ≥ 0,
(1.6)

where {µk} is a positive sequence such that µk → 0 as xk → x∗ (see, e.g., Wright [51],
Hager [32], Li and Qi [39], and Fernández and Solodov [14]). The QP (1.6) is of-
ten referred to as a stabilized subproblem because of its calming effect on multiplier
estimates for degenerate problems (see, e.g., [32, 51]). Under certain assumptions,
stabilized SQP methods exhibit fast local convergence. However, there is no guarantee
of convergence to a local solution for an arbitrary starting point. Under suitable as-
sumptions, the method proposed in this paper is guaranteed to be globally convergent
and is equivalent to stabilized SQP in the limit. Result 2.1 of Section 2.1 below de-
scribes the precise relationship between the QP subproblems of the proposed method
and stabilized SQP.

2. A Regularized Primal-Dual Line-Search SQP Algorithm. This section
defines a regularized SQP line-search method based on the primal-dual augmented
Lagrangian function

Mν(x, y ; yE , µ) = f(x)− c(x)TyE +
1

2µ
‖c(x)‖2 +

ν

2µ
‖c(x) + µ(y − yE)‖2, (2.1)

where ν is a scalar, µ is the penalty parameter, and yE is an estimate of an optimal
Lagrange multiplier vector y∗. (A trust-region-based method could also be given,
but we focus on line-search methods in this paper.) The function (2.1), proposed by
Robinson [47], and Gill and Robinson [23], may be derived by applying the primal-dual
penalty function of Forsgren and Gill [18] to a problem in which the constraints are
shifted by a constant vector (see Powell [45]). With the notation c = c(x), g = g(x),
and J = J(x), the gradient of Mν(x, y ; yE , µ) may be written as

∇Mν(x, y ; yE , µ) =

(
g − JT

(
(1 + ν)(yE − 1

µc)− νy
)

ν
(
c+ µ(y − yE)

) )
(2.2a)

=

(
g − JT

(
π + ν(π − y)

)
νµ(y − π)

)
, (2.2b)

where π = π(x ; yE , µ) denotes the vector-valued function

π(x ; yE , µ) = yE − 1

µ
c(x). (2.3)

Similarly, the Hessian of Mν(x, y ; yE , µ) may be written as

∇2Mν(x, y ; yE , µ) =

(
H
(
x, π + ν(π − y)

)
+ 1

µ (1 + ν)JTJ νJT

νJ νµI

)
. (2.4)
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Our approach is motivated by the following theorem, which shows that under
certain assumptions, minimizers of problem (NP) are also minimizers of the bound
constrained problem

minimize
x,y

Mν(x, y ; yE , µ) subject to x ≥ 0. (2.5)

Theorem 2.1 (Robinson [47, Theorem 4.6.1]). If (x∗, y∗) satisfies second-order
sufficient conditions for a solution of problem (NP), then there exists a positive µ̄
such that, for all 0 < µ < µ̄, ν > 0, and yE = y∗, the point (x∗, y∗) is a minimizer of
problem (2.5).

The reader may refer to Robinson [47] and Gill and Robinson [23] for additional
details. In this paper, however, Theorem 2.1 is used as motivation for the algorithm
described below.

2.1. Definition of the primal-dual search direction. Given the kth it-
erate vk = (xk, yk), a Lagrange multiplier estimate yE

k , and a positive regulariza-

tion parameter µR

k, a symmetric matrix Ĥ(xk, yk) ≈ H(xk, yk) is defined such that

Ĥ(xk, yk) + (1/µR

k)J(xk)TJ(xk) is positive definite. One may choose Ĥ(xk, yk) itself
to be positive definite, but we explore a more sophisticated strategy in Section 4 that
allows for an indefinite matrix Ĥ(xk, yk) that more faithfully approximates H(xk, yk).

With this assumption on the matrix Ĥ, part (i) of Lemma 2.2 given below may be

applied with the quantities H = Ĥ(xk, yk), J = J(xk), and µ = µR

k, to infer that the
matrix

Bν(xk, yk ;µR

k) =

(
Ĥ(xk, yk) + 1

µR
k

(1 + ν)J(xk)TJ(xk) νJ(xk)T

νJ(xk) νµR

kI

)
(2.6)

is a positive semidefinite approximation to the Hessian of Mν . Given an appropriate
matrix Bν(vk ;µR

k) ≡ Bν(xk, yk ;µR

k), the primal-dual search direction is given by

dk = v̂k − vk, (2.7)

where v̂k = (x̂k, ŷk) is a solution of the convex bound-constrained QP subproblem:

minimize
v

∇Mν(vk ; yE

k , µ
R

k)T (v − vk) + 1
2 (v − vk)TBν(vk ;µR

k)(v − vk)

subject to vi ≥ 0, i = 1, 2, . . . , n.
(2.8)

The following lemma provides the connections between the inertias of various matrices
(part (i) may be used to conclude that the subproblem (2.8) is convex).

Lemma 2.2. Let µ, ν be scalars such that µ > 0 and ν ≥ 0. Let H and J be
matrices such that H is symmetric n× n and J is m× n. If we define

Bν =

(
H + 1

µ (1 + ν)JTJ νJT

νJ νµIm

)
and K =

(
H JT

J −µIm

)
,

then the following properties hold.
(i) The matrix H + 1

µJ
TJ is positive definite if and only if

In(Bν) =

{
(n+m, 0, 0) for ν > 0;

(n, 0,m) for ν = 0.
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(ii) The matrix H + 1
µJ

TJ is positive definite if and only if In(K) = (n,m, 0).
Proof. It may be verified by direct multiplication that

LTBνL =

(
H + 1

µJ
TJ 0

0 νµIm

)
, where L =

(
In 0

− 1
µJ Im

)
.

The matrix L is nonsingular, and Sylvester’s law of inertia gives

In(Bν) = In(LTBνL) =

In
(
H + 1

µJ
TJ
)

+ (m, 0, 0) for ν > 0;

In
(
H + 1

µJ
TJ
)

+ (0, 0,m) for ν = 0,

which implies the result of part (i).
To prove part (ii), consider the identity

STKS =

(
H + 1

µJ
TJ 0

0 −µIm

)
, where S =

(
In 0
1
µJ Im

)
.

It now follows from the nonsingularity of S and Sylvester’s law of inertia that

In(K) = In(STKS) = In
(
H +

1

µ
JTJ

)
+ (0,m, 0),

from which part (ii) follows directly.
A proof similar to that used for Theorem 5.1 in Section 5 may be used to show that

the first-order optimality conditions for any primal-dual QP solution v̂k = (x̂k, ŷk) of
the bound-constrained QP (2.8) may be written in matrix form(

ĤF JTF

JF −µR

kI

)(
[ x̂k − xk ]F

−(ŷk − yk)

)
= −

(
[ gk + Ĥksk − JTkyk ]F

ck + Jksk + µR

k(yk − yE

k)

)
, (2.9)

where ck, gk and Jk denote the quantities c(x), g(x) and J(x) evaluated at xk, and

the quantities with suffix “F” are defined in terms of the index set F(x̂k); i.e., ĤF is

the matrix of free rows and columns of Ĥk = Ĥ(xk, yk), and JF is the matrix of free
columns of Jk. The vector sk is nonpositive with components

[ sk ]i =

{
−[xk ]i if i ∈ A(x̂k);

0 if i ∈ F(x̂k).

As Ĥk + (1/µR

k)JTkJk is positive definite by construction, it follows immediately that

the principal submatrix ĤF + (1/µR

k)JTF JF is also positive definite. We may then

apply part (ii) of Lemma 2.2 with values H = ĤF , J = JF , and µ = µR

k, to infer
that the matrix associated with the equations (2.9) is nonsingular. It follows that if
A(x̂k) = A(xk), then sk is zero and (x̂k, ŷk) satisfies the perturbed Newton equations(

ĤF JTF

JF −µR

kI

)(
[ x̂k − xk ]F

−(ŷk − yk)

)
= −

(
[ gk − JTkyk ]F

ck + µR

k(yk − yE

k)

)
. (2.10)

A key property is that if µR

k = 0 and JF has full rank, then this equation is identical
to the equation for the conventional SQP step given by (1.5). This provides the
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motivation to use a small penalty parameter µR

k for the step computation and a
different larger penalty parameter µk for the merit function. In this context, µR

k

plays the role of a regularization parameter rather than a penalty parameter, thereby
providing an O(µR

k) estimate of the conventional SQP direction. This approach is
nonstandard because a small “penalty parameter” µR

k is used by design, whereas
conventional augmented Lagrangian-based methods attempt to keep µ as large as
possible [6, 21].

The discussion above has established the relationship between the computation of
the primal-dual bound-constrained step and the solution of a regularized QP. The next
result formalizes the connection between the primal-dual step and the step associated
with a stabilized SQP method.

Result 2.1. Let ν and µR

k denote fixed scalars such that ν ≥ 0 and µR

k > 0.

Let vk = (xk, yk), gk = g(xk), ck = c(xk), and Jk = J(xk). Given a matrix Ĥk =

Ĥ(xk, yk) such that Ĥk + (1/µR

k)JTkJk is positive definite, consider the subproblem

minimize
x,y

gTk(x− xk) + 1
2 (x− xk)TĤk(x− xk) + 1

2µ
R

k‖y‖2

subject to ck + Jk(x− xk) + µR

k(y − yE

k) = 0, x ≥ 0,
(2.11)

which is the stabilized SQP subproblem (1.6) defined with µk = µR

k and yk = yE

k . The
following results hold.

(i) The stabilized QP (2.11) has a unique bounded primal-dual solution v̂k =
(x̂k, ŷk).

(ii) The unique solution v̂k = (x̂k, ŷk) of the stabilized QP (2.11) is a solution of
the bound-constrained QP (2.8) for all ν ≥ 0. If ν > 0, then the stabilized
solution v̂k = (x̂k, ŷk) is the unique solution of (2.8).

Proof. To simplify notation, the regularization parameter µR

k will be denoted by
µ. For part (i), given the particular feasible point v0 = (xk, πk) with πk = yE

k − ck/µ,
any feasible point v = (x, y) may be written as

v = v0 +Nw for some vector w ∈ Rn, where N =

(
µI

−Jk

)
.

The matrix N is (n+m)× n with rank n, and its columns form a basis for the null-
space of the constraint matrix

(
Jk µI

)
. Applying this equivalent form of v to (2.11)

gives the equivalent problem

minimize
w∈Rn

µ

2
wT
(
Ĥk +

1

µ
JTkJk

)
w + wT

(
gk − JTkπk

)
subject to µw ≥ −xk.

The matrix Ĥk +(1/µ)JTkJk is positive definite by assumption, and it follows that the
stabilized QP (2.11) is equivalent to a convex program with a strictly convex objective.
The existence of a unique bounded solution follows directly.

For part (ii), it is sufficient to show that the optimality conditions for the problems
(2.11) and (2.8) are equivalent. The first-order conditions for (x, y) to be a solution
of the stabilized QP (2.11) are:

ck + Jk(x− xk) + µ(y − yE

k) = 0, µy = µw,

gk + Ĥk(x− xk)− JTk w − z = 0, z ≥ 0,

z · x = 0, x ≥ 0,
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where w and z denote the dual variables for the equality and inequality constraints
of problem (2.11), respectively. Eliminating w using the equation w = y gives

ck + Jk(x− xk) + µ(y − yE

k) = 0, (2.12a)

gk + Ĥk(x− xk)− JTk y − z = 0, z ≥ 0, (2.12b)

z · x = 0, x ≥ 0. (2.12c)

First, part (ii) is established for the case ν > 0. The optimality conditions for the
bound-constrained QP (2.8) are

∇Mν(vk; yE

k , µ) +Bν(vk ;µ)(v − vk) =

(
z
0

)
, z ≥ 0, (2.13a)

z · x = 0, x ≥ 0. (2.13b)

Premultiplying the equality of (2.13a) by the nonsingular matrix T defined by

T =

(
In − 1+ν

νµ J
T
k

0 1
ν Im

)
,

and using the definitions (2.2) and (2.3) yields the equivalent conditions

gk + Ĥk(x− xk)− JTky − z = 0 and ck + Jk(x− xk) + µ(y − yE

k) = 0,

which are identical to the relevant equalities in (2.12). Thus, if ν > 0 the solutions of
(2.11) and (2.8) are identical.

It remains to consider the case ν = 0. In this situation, the objective function
of the QP (2.8) includes only the primal variables x, which implies that the problem
may be written as

minimize
x

(gk − JTkπk)T (x− xk) + 1
2 (x− xk)T

(
Ĥk +

1

µ
JTkJk

)
(x− xk)

subject to x ≥ 0,
(2.14)

with y an arbitrary vector. Although there are infinitely many solutions of (2.8) when
ν is zero, the vector x associated with a particular solution (x, y) is unique because

it is the solution of problem (2.14) for a positive-definite matrix Ĥk + 1
µJ

T
kJk. The

optimality conditions for (2.14) are

gk − JTkπk +
(
Ĥk +

1

µ
JTkJk

)
(x− xk) = z, z ≥ 0, (2.15)

z · x = 0, x ≥ 0.

For the given yk and optimal x, define the m-vector y such that

y− yk = − 1

µ

(
Jk(x− xk) + ck + µ(yk − yE

k)
)

= − 1

µ

(
Jk(x− xk) + µ(yk − πk)

)
. (2.16)

Equation (2.16) and the equality of (2.15) may be combined to give the matrix equa-
tion (

gk − JTkyk + 2JTk (yk − πk)

µ(yk − πk)

)
+

(
Ĥk + 2

µJ
T
kJk JTk

Jk µI

)(
x− xk
y − yk

)
=

(
z

0

)
.
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Applying the nonsingular matrix

(
In − 2

µJ
T
k

0 Im

)
to both sides of this equation yields

(
gk − JTkyk

ck + µ(yk − yE

k)

)
+

(
Ĥk −JTk
Jk µI

)(
x− xk
y − yk

)
=

(
z

0

)
.

These equations, together with the complementarity conditions z · x = 0 of (2.15),
are the optimality conditions for the stabilized QP (2.11) (cf. (2.12)). It follows that
if ν = 0, the unique solution of (2.11) is a solution of (2.8), which is what we wanted
to show.

If ν > 0, the uniqueness of the solution v = (x, y) follows from part (i) of
Lemma 2.2, which implies that the objective Hessian of the bound constrained QP

(2.8) is positive definite, thereby ensuring a strictly convex QP.

2.2. Definition of the new iterate. Once the search direction dk = x̂k − xk
has been determined, a “flexible” backtracking line search is performed on the primal-
dual augmented Lagrangian. A conventional backtracking line search defines vk+1 =
vk + αkdk, where αk = 2−j and j is the smallest nonnegative integer such that

Mν(vk + αkdk ; yE

k , µk) ≤Mν(vk ; yE

k , µk) + αkηSd
T
k∇Mν(vk ; yE

k , µk)

for a given ηS ∈ (0, 12 ). However, this approach would suffer from the Maratos ef-
fect [41] simply because the penalty parameter µk and the regularization parameter
µR

k used to compute the trial step have different values in general. This difficulty is
avoided by using an augmented Lagrangian version of the “flexible penalty function”
proposed by Curtis and Nocedal [12]. This method defines a step length of the form
αk = 2−j , where j is the smallest nonnegative integer satisfying

Mν(vk + αkdk ; yE

k , µ
F

k) ≤Mν(vk ; yE

k , µ
F

k) + αkηSδk (2.17)

for some value µF

k ∈ [µR

k, µk], and δk such that

δk = max
(
dTk∇Mν(vk ; yE

k , µ
R

k),−ηD‖dk‖2
)
≤ 0, (2.18)

with ηD a small positive constant. The use of the second term in the definition
of δk increases the chance that a step is accepted during the early iterations when
|dTk∇Mν(vk ; yE

k , µ
R

k)| is large. Once an appropriate value for αk is found, the new
primal-dual solution estimate is given by

xk+1 = xk + αk(x̂k − xk) and yk+1 = yk + αk(ŷk − yk).

In a practical algorithm, the step is reduced until the Armijo condition (2.17) is
satisfied for one of the values µF

k = µk or µF

k = µR

k (where the condition for µF

k = µk
is tried first). The following simple argument shows that the acceptance criterion
(2.17) is well-defined; i.e., the sequence {2−j} must terminate with an acceptable
αk. As v = vk is feasible for the strictly convex problem (2.8), the search direction
dk = (x̂k−xk, ŷk−yk) is a feasible descent direction for Mν(v ; yE

k , µ
R

k) at vk = (xk, yk).
If follows from standard theory that the weakened Armijo condition (2.17) will be
satisfied for µF

k = µR

k and all αk > 0 sufficiently small.
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2.3. Updating the multiplier estimate. The QP equivalence established in
Result 2.1, together with the definition of the stabilized SQP subproblem (1.6) imply
that setting yE

k = yk in the definition of the subproblem (2.11) (or, equivalently,
in the bound-constrained QP (2.8)) makes the proposed trial step identical to that
of the stabilized SQP method. This motivates an update strategy that allows the
definition yE

k = yk as often as possible. (The validity of this strategy is supported by
the numerical results of Section 6.) The idea is to define yE

k+1 = yk+1 for the next
subproblem if the line search gives an (xk+1, yk+1) that improves at least one of two
merit functions that measure the accuracy of (xk+1, yk+1) as an estimate of (x∗, y∗).
Let β denote a small positive parameter and consider the merit functions

φV (x, y) = η(x) + βω(x, y), and φO(x, y) = βη(x) + ω(x, y), (2.19)

where η(x) and ω(x, y) are the feasibility violation and optimality measures

η(x) = ‖c(x)‖ and ω(x, y) =
∥∥min

(
x, g(x)− J(x)Ty

)∥∥ . (2.20)

These functions provide two alternative weighted measures of the accuracy of (x, y)
as an approximate solution of problem (NP) rather than as an approximate minimizer
of Mν . Both measures are bounded below by zero, and are equal to zero if v is a
first-order solution to problem (NP).

Given these definitions, the estimate yE

k is updated when any iterate vk = (xk, yk)
satisfies either φV (vk) ≤ 1

2φ
max
V or φO(vk) ≤ 1

2φ
max
O , where φmax

V and φmax
O are bounds

that are updated throughout the solution process. To ensure global convergence, an
update to yE

k forces a decrease in either φmax
V or φmax

O . The idea is to choose the
parameter β of (2.20) to be relatively small, say β = 10−5. This allows frequent
updates to yE

k , as shown in the numerical results of Section 6.

Finally, yE

k is also updated if an approximate first-order solution to problem (2.5)
has been found for the values yE = yE

k and µ = µR

k. The test for optimality is

‖∇yMν(vk+1 ; yE

k , µ
R

k)‖ ≤ τk and
∥∥min

(
xk+1,∇xMν(vk+1 ; yE

k , µ
R

k)
)∥∥ ≤ τk (2.21)

for some small tolerance τk > 0. This condition is rarely triggered in practice, but
the test is needed to ensure global convergence (see Section 6 for statistics on the
frequency of this test being satisfied). Nonetheless, if condition (2.21) is satisfied, yE

k

is updated with the safeguarded estimate

yE

k+1 = max
(
− ymaxe, min(yk+1, ymaxe)

)
,

for some large positive scalar constant ymax.

2.4. Updating the penalty parameters. The following definition is designed
to decrease µR

k only in the neighborhood of an optimal point (assuming that the
problem is not locally infeasible):

µR

k+1 =

{
min

(
1
2µ

R

k, ‖ropt(vk+1)‖3/2
)
, if (2.21) is satisfied;

min
(
µR

k, ‖ropt(vk+1)‖3/2
)
, otherwise,

(2.22)

where ropt is the vector-valued function

ropt(v) =

(
c(x)

min
(
x, g(x)− J(x)Ty

)) . (2.23)
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The update to µk is motivated by a different goal. Namely, µk should be decreased
only when the trial step indicates that the merit function defined with penalty pa-
rameter µk increases. This motivates the definition

µk+1 =

{
µk, if Mν(vk+1 ; yE

k , µk) ≤Mν(vk ; yE

k , µk) + α̂kηSδk;

max
(
1
2µk, µ

R

k+1

)
, otherwise,

(2.24)
where α̂k = min(αmin, αk) for some positive αmin, and δk is defined by (2.18). The
use of the scalar αmin increases the likelihood that µk will not be decreased.

2.5. Formal statement of the algorithm. This section provides a formal
statement of the proposed method as Algorithm 2.1, and includes some additional
details. During each iteration, the trial step is computed as described in Section 2.1,
the solution estimate is updated as in Section 2.2, the multiplier estimate yE

k is updated
as in Section 2.3, and the penalty parameters are updated as in Section 2.4. It is clear
from Theorem 2.1 that it is advantageous to update the value of yE

k as often as possible
in order to promote global convergence, and (from Result 2.1) to recover a stabilized
SQP subproblem. There are three possibilities. First, yE

k is set to yk+1 if (xk+1, yk+1)
is acceptable to either of the merit functions φV or φO given by (2.19). These iterates
are referred to as “V-iterates” and “O-iterates”, respectively. The numerical results in
Section 6 show that yE

k is updated this way most of the time. Second, if (xk+1, yk+1)
is not acceptable to either of the merit functions φV or φO, then conditions (2.21) are
used to determine if (xk+1, yk+1) is an approximate first-order solution of the bound-
constrained problem (2.5). If conditions (2.21) are satisfied, the iterate is called an
“M-iterate”. In this case, the regularization parameter µR

k and subproblem tolerance
τk are decreased and yE

k is updated by π(xk ; yE

k , µ
R

k) as in (2.3). Finally, if neither of
the first two cases occur, the multiplier estimate yE

k is fixed at its current value and
the associated iterate is designated an “F-iterate”.

Algorithm 2.1. Regularized primal-dual SQP algorithm (pdSQP)
Input (x0, y0);
Set control parameters αmin > 0, ηS ∈ (0, 1), ηD ∈ (0, 1), τstop > 0, kmax > 0,

0 < β � 1, ymax � 1, and ν > 0;
Initialize yE

0 = y0, τ0 > 0, µR
0 > 0, µ0 ∈ [µR

0 ,∞), and k = 0;
Compute f(x0), c(x0), g(x0), J(x0), and H(x0, y0);
for k = 0, 1, 2, . . . , kmax do

Define Ĥ(xk, yk) ≈ H(xk, yk) such that Ĥ(xk, yk)+(1/µR

k)JTkJk is positive definite;

Solve the QP (2.11) (which is equivalent to solving (2.8)) for (x̂k, ŷk);
Find an αk satisfying condition (2.17) for either µF

k = µk or µF

k = µR

k;

Update the primal-dual estimate (xk+1, yk+1) = (xk, yk) + αk(x̂k − xk, ŷk − yk);
Compute f(xk+1), c(xk+1), g(xk+1), J(xk+1), and H(xk+1, yk+1);
if φV (xk+1, yk+1) ≤ 1

2φ
max
V then [V-iterate]

φmax
V = 1

2φ
max
V ;

yE

k+1 = yk+1; τk+1 = τk;

else if φO(xk+1, yk+1) ≤ 1
2φ

max
O then [O-iterate]

φmax
O = 1

2φ
max
O ;

yE

k+1 = yk+1; τk+1 = τk;

else if vk+1 = (xk+1, yk+1) satisfies (2.21) then [M-iterate]
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yE

k+1 = max
(
− ymaxe, min(yk+1, ymaxe)

)
; τk+1 = 1

2τk;

else [F-iterate]
yE

k+1 = yE

k ; τk+1 = τk;

end if
Update µR

k+1 and µk+1 according to (2.22) and (2.24), respectively;

if ‖ropt(vk+1)‖ ≤ τstop then exit ;

end (for)

3. Convergence. The convergence of Algorithm 2.1 is discussed under the fol-
lowing assumptions.

Assumption 3.1. Each Ĥ(xk, yk) is chosen so that the sequence {Ĥ(xk, yk)}k≥0
is bounded, with {Ĥ(xk, yk) + (1/µR

k)J(xk)TJ(xk)}k≥0 uniformly positive definite.
Assumption 3.2. The functions f and c are twice continuously differentiable.
Assumption 3.3. The sequence {xk}k≥0 is contained in a compact set.
In the “worst” case, i.e., when all iterates are eventually M-iterates or F-iterates,

Algorithm 2.1 emulates a primal-dual augmented Lagrangian method [7, 8, 47]. Con-
sequently, it is possible that yE

k and µR

k will remain fixed over a sequence of iterations,
although this has been uncommon in our preliminary numerical results. The following
result concerns this situation.

Theorem 3.1. Let Assumptions 3.1–3.3 hold. If there exists an integer k̂ such
that µR

k ≡ µR > 0 and k is an F-iterate for all k ≥ k̂, then the following hold for the
search directions dk = (x̂k − xk, ŷk − yk), where (x̂k, ŷk) is the solution of subprob-
lem (2.8);

(i) {dk}k≥k̂ are uniformly bounded;

(ii) {dk}k≥k̂ are bounded away from zero; and

(iii) there exists a constant ε > 0 such that

∇Mν(vk ; yE

k , µ
R

k)Tdk ≤ −ε for all k ≥ k̂.

Proof. The assumptions of this theorem imply that

τk ≡ τ > 0, µR

k = µR, and yE

k = yE for all k ≥ k̂. (3.1)

First we prove part (i). As discussed in the proof of Result 2.1, it is known that the
solution (x̂k, ŷk) of (2.8) satisfies

dk =

(
x̂k − xk
ŷk − yk

)
=

(
0

πk − yk

)
+Nkw

∗, where Nk =

(
µRI
−Jk

)
,

and w∗ is the unique solution of

minimize
w∈Rn

1
2µ

RwT
(
Ĥk +

1

µR
JTkJk

)
w + wT

(
gk − JTkπk

)
subject to xk + µRw ≥ 0,

for all k ≥ k̂. It follows from Assumption 3.1 that {dk}k≥k̂ is uniformly bounded

provided that the quantities gk − JTkπk, Nk, πk, and yk are all uniformly bounded

for k ≥ k̂. The boundedness of gk − JTkπk, πk and Nk follow from Assumption 3.2,
Assumption 3.3, (3.1), and (2.3). It remains to prove that the set of multipliers

{yk}k≥k̂ is bounded. As µR

k = µR for all k ≥ k̂, the update to µk given by (2.24)
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implies that µk ≡ µ ≥ µR for some µ and all k sufficiently large. For all sub-
sequent iterations the primal-dual merit function is monotonically decreasing; i.e.,
Mν(xk+1, yk+1 ; yE , µ) ≤Mν(xk, yk ; yE , µ). It follows that {yk}k≥k̂ must be bounded,

since if there were a subsequence such that ‖yk‖ went to infinity, then for the same
subsequence Mν would also go to infinity because both {fk − cTk yE + 1

2µ‖ck‖
2}k≥k̂

and {ck}k≥k̂ are bounded from Assumptions 3.2 and 3.3. This completes the proof of

part (i).
Part (ii) is established by showing that {‖dk‖}k≥k̂ is bounded away from zero. If

this were not the case, there would exist a subsequence S1 ⊆ {k : k ≥ k̂} such that
limk∈S1 dk = 0, where dk = (x̂k − xk, ŷk − yk) and (x̂k, ŷk) is a solution of problem
(2.8). It follows that dk satisfies(

ẑk
0

)
= Bν(vk ;µR)dk +∇Mν(vk ; yE , µR) and 0 = min(x̂k, ẑk),

for all k ∈ S1. It may then be inferred from the definition of Bν(vk ;µR), Assump-
tions 3.1–3.3, and the definitions (3.1) of τk, µR

k and yE

k that for k ∈ S1 sufficiently
large, the iterate vk satisfies the definition (2.21) of an M-iterate, and as a conse-
quence, µR

k will be decreased. This contradicts the assumption that µR

k ≡ µR for all

k ≥ k̂. It follows that {‖dk‖}k≥k̂ is bounded away from zero and part (ii) holds.

The proof of part (iii) is also by contradiction. Assume that there exists a subse-

quence S2 of {k : k ≥ k̂} such that

lim
k∈S2

∇Mν(vk ; yE , µR)Tdk = 0, (3.2)

where we have used (3.1) and dk is defined as above. As the vector vk = (xk, yk) is
feasible for the convex problem (2.8), and (x̂k, ŷk) is the solution of problem (2.8) for
ν > 0 chosen in Algorithm 2.1, it must hold that

−∇Mν(vk ; yE , µR)Tdk ≥ 1
2d
T
kB

ν(vk ;µR)dk

= 1
2d
T
k L
−T
k LTkB

ν(vk ;µR)LkL
−1
k dk

= 1
2d
T
k L
−T
k

(
Ĥk + 1

µR
JTk Jk 0

0 νµR

)
L−1k dk,

where Lk denotes the nonsingular matrix

Lk =

(
I 0

− 1

µR
Jk I

)
, with L−1k dk =

(
pk

qk + 1

µR
Jkpk

)
,

with pk = x̂k − xk and qk = ŷk − yk. Assumption 3.1 yields

−∇Mν(vk ; yE , µR)Tdk ≥ 1
2p
T
k

(
Ĥk +

1

µR
JTk Jk

)
pk + 1

2νµ
R‖qk + (1/µR)Jkpk‖2

≥ λmin‖pk‖2 + 1
2νµ

R‖qk + (1/µR)Jkpk‖2,

for some λmin > 0. Combining this inequality with (3.2) gives the limit

lim
k∈S2

pk = lim
k∈S2

(
qk +

1

µR
Jkpk

)
= 0,
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in which case limk∈S2 qk = 0 follows from Assumptions 3.2 and 3.3. This contradicts
the result of part (ii) and so part (iii) must hold.

The following theorem states the main convergence result for Algorithm 2.1.
Theorem 3.2. Let Assumptions 3.1–3.3 hold. If vk denotes the kth iterate

generated by Algorithm 2.1, then either:
(i) Algorithm 2.1 terminates with an approximate primal-dual first-order solution

vk satisfying ‖ropt(vk)‖ ≤ τstop, where ropt is defined by (2.23); or
(ii) there exists a subsequence S such that limk∈S µ

R

k = 0, {yE

k}k∈S is bounded,
limk∈S τk = 0, and for each k ∈ S the vector vk+1 is an approximate first-
order solution of (2.5) with the choice yE = yE

k and µ = µR

k that satis-
fies (2.21).

Proof. If there exists a subsequence of {‖ropt(vk)‖}k≥0 that converges to zero,
then clearly case (i) holds. Therefore, for the remainder of the proof, it is assumed
that the sequence {‖ropt(vk)‖}k≥0 is bounded away from zero.

From the definitions of a V-iterate and O-iterate, the functions φV and φO, and the
update strategies for φmax

V and φmax
O , we conclude that the number of V-iterates and

O-iterates must be finite. We claim that there must be an infinite number of M-
iterates. To prove this, assume to the contrary that the number of M-iterates is finite,
so that all iterates are F-iterates for k sufficiently large. It follows from the form of the
update to µR

k (2.22) and the assumption made in this case, that eventually µR

k remains
constant. In this case, the update to µk given by (2.24) implies that eventually, µk
also remains constant. These arguments imply the existence of an integer k̂ such that

µR

k ≡ µR ≤ µ ≡ µk, yE

k ≡ yE , τk ≡ τ > 0, and k is an F-iterate for all k ≥ k̂.

It follows from (2.24) that

Mν(vk+1 ; yE , µ) ≤Mν(vk ; yE , µ) + min(αmin, αk)ηSδk for all k ≥ k̂, (3.3)

where δk is defined by (2.18). Moreover, parts (ii) and (iii) of Theorem 3.1 ensure that
{δk}k≥k̂ is a negative sequence bounded away from zero. In addition, it must hold

that {αk}k≥k̂ is bounded away from zero. To see this, note that parts (i) and (iii) of

Theorem 3.1 and Assumption 3.2 ensure that {αk}k≥k̂ is bounded away from zero if a

conventional Armijo line search is used; i.e., if µF

k = µR and δk = dTk∇Mν(vk ; yE , µR)
in (2.17). However, the computed value of αk can be no smaller because the definition
of δk is less restrictive, and the use of a flexible line search makes the acceptance of a
step more likely. Combining these results with (3.3), yields

Mν(vk+1 ; yE , µ) ≤Mν(vk ; yE , µ)− κ for all k ≥ k̂ and some κ > 0,

so that limk→∞Mν(vk ; yE , µ) = −∞. However, Assumptions 3.2 and 3.3 ensure that
this is not possible. This contradiction implies that there must exist infinitely many
M-iterations, and every iterate is an M-iterate or F-iterate for k sufficiently large.
Part (ii) now follows from (2.22) and the properties of the updates to τk and yE

k used
for M-iterates and F-iterates in Algorithm 2.1.

The “ideal” scenario is that Algorithm 2.1 generates many V-iterates/O-iterates
that converge to an approximate solution of (NP). This corresponds to the result of
part (i) of Theorem 3.2. The scenario considered in part (ii) of Theorem 3.2, i.e., the
generation of infinitely many M-iterates, is the “fall-back” position for Algorithm 2.1.
This result would appear to be the best that can be expected without additional as-
sumptions, such as the satisfaction of a constraint qualification at x∗. In particular,
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Assumptions 3.1–3.3 do not preclude the possibility that problem (NP) is infeasible.
Recent work indicates that the iterates of the stabilized SQP subproblem exhibit su-
perlinear convergence under mild conditions (see, e.g., [14, 36, 37, 13]). In particular,
neither strict complementarity nor a constraint qualification are required. However,
further analysis is required to determine the conditions under which a V- or O-iterate
is always generated in the limit, which is a necessary requirement for the proposed
method to inherit the superlinear convergence rate associated with conventional sta-
bilized SQP.

The following corollary illustrates how part (ii) of Theorem 3.2 relates to the
original nonlinear problem (NP) with the assumption that the linear independence
constraint qualification is satisfied (see, e.g., [43]).

Corollary 3.3. Suppose that the linear independence constraint qualification
holds at all limit points generated by Algorithm 2.1. Then, Algorithm 2.1 terminates
with an approximate primal-dual first-order solution vk satisfying

‖ropt(vk)‖ ≤ τstop, (3.4)

where ropt is defined by (2.23).
Proof. The result is satisfied trivially if part (i) of Theorem 3.2 holds. Thus, it

may be assumed that part (ii) of Theorem 3.2 holds, which ensures the existence of a
subsequence S of M-iterates such that limk∈S µ

R

k = 0, the set of multipliers estimates
{yE

k}k∈S is bounded, limk∈S τk = 0, and that for each k ∈ S, the vector vk+1 is an
approximate first-order solution of (2.5) with values yE = yE

k and µ = µR

k satisfying
(2.21). Under Assumption 3.3 it may be assumed without loss of generality that
limk∈S xk = x∗ for some vector x∗. Consider the definition

y∗ = argmin
y
‖ [ g(x∗)− J(x∗)T y ]F ‖2,

where the “F” denotes the components corresponding to the free variables at x∗.
It now follows from [47, Lemma 4.3.1] that (x∗, y∗) is a first-order solution of prob-
lem (NP), and that

lim
k∈S

(xk, yk) = (x∗, y∗).

Moreover, it follows from Assumption 3.2 and the definition of ropt that (3.4) will be
satisfied for all k ∈ S sufficiently large.

4. Convexification of the Bound-Constrained Subproblem. An impor-
tant aspect of the proposed method is the definition of Ĥ(xk, yk), which is used to
ensure that the bound constrained QP subproblem (2.8) is convex. A conventional QP

subproblem defined with the Hessian of the Lagrangian is not convex, in general. To
avoid solving an indefinite subproblem, most existing methods are based on solving
a convex QP based on a positive-semidefinite approximation Ĥ(xk, yk) of the Hes-
sian H(xk, yk). This convex subproblem is used to either define the search direction
directly, or identify the constraints for an equality-constrained QP subproblem that
uses the exact Hessian (see, e.g., [21, 3, 30]).

Here we take a different approach and define a convexified QP subproblem in terms
of the exact Hessian of the Lagrangian. The convex problem is defined in such a way
that if the inner iterations do not alter the active set, then the computed direction is
equivalent to a second-derivative stabilized SQP direction, provided that yE

k = yk. The

method is based on defining a symmetric matrix Ĥ(xk, yk) (not necessarily positive
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definite) as a modification of H(xk, yk) that gives a bounded convex primal-dual
subproblem (2.8).

The remainder of this section focuses on the solution of a single QP subproblem,
and the notation is simplified so that vk = (xk, yk) = (x, y), J = Jk, H = H(xk, yk),

Ĥ = Ĥ(xk, yk), Bν = Bν(xk, yk ;µR

k), and µ = µR

k. Similarly, JF and JA denote the
columns of J associated with the index sets F(x) and A(x) of free and fixed variables
at x. Throughout this section, if M is a symmetric matrix, then MF and MA denote
the symmetric matrices with elements mij for i, j in F and A respectively. The

definition of Ĥ involves certain projections defined in terms of the gradients of the
bound constraints. If PA is the matrix whose (unit) columns are the subset of columns
of the identify matrix with indices in A(x), then PAP

T
A x is the orthogonal projection

of x onto the bounds in A(x). The complementary projection may be defined in terms
of the matrix PF with (unit) columns orthogonal to PA. With these definitions, the
matrix P =

(
PF PA

)
defines a permutation matrix such that JP =

(
JF JA

)
.

At any given x, the proposed convexification gives a matrix Ĥ of the form

Ĥ = H + E +D, (4.1)

where E is a symmetric positive semidefinite matrix, and D is a positive-semidefinite
diagonal. It must be emphasized that Ĥ itself is not necessarily positive definite.

First, we consider the definition of E. Let K and KF denote the matrices

K =

(
H + E JT

J −µI

)
and KF =

(
HF + EF JTF

JF −µI

)
. (4.2)

We are particularly interested in matrices E that endow KF with the property of
second-order consistency.

Definition 4.1. If G is a symmetric matrix of order r and C is m× r, then the

matrix

(
G CT

C −µIm

)
is said to be second-order consistent if it has inertia (r,m, 0).

The idea is to define EF so that the matrix KF of (4.2) is second-order consistent.
Once EF has been defined, the full matrix E is given by

E = PFEFP
T
F . (4.3)

A suitable modification EF may be based on some variant of the symmetric indefinite
factorization of the matrix (

HF JTF
JF −µI

)
. (4.4)

Appropriate methods include: (i) the inertia controlling LBLT factorization (Fors-
gren [17], Forsgren and Gill [18]); (ii) an LBLT factorization with pivot modification
(Gould [28]); (iii) tile preordering in conjunction with pivot modification (Gill and
Wong [26]); and (iv) a conventional LBLT factorization of HF +σIF for some nonneg-
ative scalar σ (Wächter and Biegler [50]). In each case, the modification E is zero if
the matrix (4.4) is second-order consistent.

The following lemma establishes the main property of the matrix H + E.
Lemma 4.2. Given the matrix KF of (4.2), let H̄F denote the symmetric matrix

HF + EF with EF positive semidefinite. If KF is second-order consistent, then the
matrix (

H̄F + 1
µ (1 + ν)JTF JF νJTF
νJF νµI

)
, (4.5)
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is positive definite for ν > 0 and positive semidefinite for ν = 0.
Proof. Since KF is second-order consistent, it follows from part (ii) of Lemma 2.2

with the choice H = H̄F and J = JF that H̄F + (1/µ)JTF JF is positive definite. The
result now follows from part (i) of Lemma 2.2.

The second modification D is a positive-semidefinite diagonal matrix defined in
terms of the gradients of the constraints with indices in A(x). In particular,

D =
1

µA

PAP
T
A , (4.6)

where µA is a small positive scalar. The properties of the matrix Ĥ = H +E +D are
established in Theorem 4.5 below, which requires two auxiliary results.

Lemma 4.3. Let KA denote the matrix

KA =

H̄ + 1
µ (1 + ν)JTJ νJT PA

νJ νµI 0
PTA 0 0

 , where H̄ = H + E,

and the nA rows of PTA comprise the gradients of the bounds in A(x). Then

In(KA) = (nA, nA, 0) + In

(
H̄F + 1

µ (1 + ν)JTF JF νJTF
νJF νµI

)
.

Proof. Applying the column permutation P =
(
PF PA

)
yields

PT 0 0
0 Im 0
0 0 IA

KA

P 0 0
0 Im 0
0 0 IA

 =


H̃F H̃O νJTF 0

H̃O H̃A νJTA IA
νJF νJA νµI 0
0 IA 0 0

 , (4.7)

where H̃F , H̃A, and H̃O are the diagonal and off-diagonal blocks of the partition

H̃ ≡ PT
(
H̄ +

1

µ
(1 + ν)JTJ

)
P =

(
H̃F H̃O

H̃T
O H̃A

)
.

Note that H̃F = H̄F + 1
µ (1 + ν)JTF JF . The matrix of (4.7) is similar (via symmetric

permutations) to
0 IA 0 0

IA H̃A H̃T
O νJTA

0 H̃O H̃F νJTF
0 νJA νJF νµI

 = L


0 IA 0 0

IA H̃A 0 0

0 0 H̃F νJTF
0 0 νJF νµI

LT ,

where L is the nonsingular matrix

L =


IA 0 0 0
0 IA 0 0

H̃O 0 IF 0
νJA 0 0 I

 .
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Sylvester’s law of inertia gives

In(KA) = In

(
0 IA
IA H̃A

)
+ In

(
H̃F νJTF
νJF νµI

)
= (nA, nA, 0) + In

(
H̄F + 1

µ (1 + ν)JTF JF νJTF
νJF νµI

)
,

as required.
For a proof of the following lemma, see, e.g., Gill and Robinson [23, Theorem 3.1].
Lemma 4.4. Let G be a symmetric matrix of order r. Let C be an m× r matrix

with rank m. If the matrix

(
G CT

C 0

)
has inertia (r,m, 0), then G+ 1

µC
TC is positive

definite for all µ > 0 sufficiently small.
Theorem 4.5. If the KKT matrix KF (4.2) is second-order consistent, then the

matrix

Bν =

(
Ĥ + 1

µ (1 + ν)JTJ νJT

νJ νµI

)
, with Ĥ = H + E +D, and ν > 0,

is positive definite for all sufficiently small positive µA, where D is defined by (4.6).
Proof. Consider the matrix

KA =

H̄ + 1
µ (1 + ν)JTJ νJT PA

νJ νµI 0
PTA 0 0

 , where H̄ = H + E,

and PA contains the unit vectors associated with the active bounds. Then, it follows
from Lemma 4.3 and Lemma 4.2 that

In(KA) = (nA, nA, 0) + In

(
H̄F + 1

µ (1 + ν)JTF JF νJTF
νJF νµI

)
= (nA, nA, 0) + (nF +m, 0, 0)

= (n+m,nA, 0).

This identity implies that KA satisfies the conditions of Lemma 4.4 with

G =

(
H̄ + 1

µ (1 + ν)JTJ νJT

νJ νµI

)
and CT =

(
PA

0

)
,

in which case, the matrix

G+
1

µA

CTC =

(
H̄ + 1

µ (1 + ν)JTJ νJT

νJ νµI

)
+

1

µA

(
PA

0

)(
PTA 0

)
= Bν

is positive definite for µA > 0 sufficiently small, which completes the proof.
Theorem 4.5 implies that

Bν =

(
Ĥ + 1

µ (1 + ν)JTJ νJT

νJ νµI

)
with Ĥ = H + E +D,

is an appropriate positive-definite Hessian for the convexified QP. The final result
of this section shows that if the final QP active set is the same as the active set at
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xk, and the perturbed KKT matrix defined with the Hessian H(xk, yk) and Jacobian
J(xk) is second-order consistent (which will hold near a solution satisfying the strong
second-order conditions for optimality), then the QP step is the solution of the QP

subproblem defined in terms of H(xk, yk) and J(xk).
Theorem 4.6. Let v̂k = (x̂k, ŷk) denote the unique solution of the QP subproblem

(2.8) defined at vk = (xk, yk). Let HF denote the matrix of rows and columns of
H(xk, yk) corresponding to the set of free variables F(xk). Similarly, let JF denote
the matrix of free columns of J(xk). If the matrix(

HF JTF

JF −µR

kI

)
(4.8)

is second-order consistent, and A(x̂k) = A(xk), then (x̂k, ŷk) satisfies the perturbed
Newton equations(

HF JTF

JF −µR

kI

)(
[ x̂k − xk ]F

−(ŷk − yk)

)
= −

(
[ g(xk)− J(xk)Tyk ]F

c(xk) + µR

k(yk − yE

k)

)
.

Proof. As A(x̂k) = A(xk), it follows from (2.10) that the QP solution (x̂k, ŷk)
satisfies the equations(

ĤF JTF

JF −µR

kI

)(
[ x̂k − xk ]F

−(ŷk − yk)

)
= −

(
[ g(xk)− J(xk)Tyk ]F

c(xk) + µR

k(yk − yE

k)

)
.

If Ek and Dk denote the modifications (4.3) and (4.6) associated with H(xk, yk), then

ĤF = PTF Ĥ(xk, yk)PF = PTF
(
H(xk, yk) + Ek +Dk

)
PF = HF + EF .

As the perturbed Newton KKT matrix (4.8) is second-order consistent it holds that

EF = 0 and ĤF = HF , as required.

5. Equivalence of the iterates of an active-set method. This section dis-
cusses additional connections between the bound constrained QP subproblem (2.8)
and the stabilized SQP subproblem (2.11). Result 2.1 implies that if ν > 0 then the
solutions of subproblems (2.8) and (2.11) are unique and identical. Under the con-
ditions of Result 2.1, x̂k is a unique solution of (2.8) when ν = 0, even though the
solution pair (x̂k, ŷk) is not unique. In this case, there is a particular solution pair
that is identical to the unique solution of (2.11). This analysis is extended below to
establish the relationship between the iterates when an active-set method is applied
to each problem.

In all that follows, the indices associated with the SQP iteration are omitted and
it will be assumed that the constraints of the QP involve the constraints linearized at
the point x̄. In all cases, the suffix j will be reserved for the iteration index of the QP

algorithm.

5.1. An active-set method. Both the bound constrained QP subproblem and
stabilized SQP subproblem may be considered in terms of a “conventional” active-
set method on a generic convex QP with constraints written in standard form. The
problem format is

minimize
x

Q(x) = gT (x− x̄) + 1
2 (x− x̄)TH(x− x̄)

subject to c+A(x− x̄) = 0, x ≥ 0,
(5.1)
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where x̄, c, A, g and H are constant. Throughout, we assume that the constraints
are feasible; i.e., there exists at least one nonnegative x such that c+A(x− x̄) = 0.

Given a feasible x0, active-set methods generate a feasible sequence {xj} such
that Q(xj+1) ≤ Q(xj) with xj+1 = xj +αjpj . Let the index sets A and F be defined
as in (1.3). At the start of the jth QP iteration, given primal-dual iterates (xj , wj),
new estimates (xj + pj , wj + qj) are defined by solving a QP formed by fixing the
variables with indices in A(xj) and defining pj such that xj +pj minimizes Q(x) with
respect to the free variables, subject to the equality constraints. With this definition,
the quantities wj + qj are the Lagrange multipliers at the minimizer xj + pj . The
components of pj with indices in A(xj) are zero, and the free components pF = [ pj ]F
are determined from the equations(

HF −ATF
AF 0

)(
pF

qj

)
= −

(
[ g +H(xj − x̄)−ATwj ]F

c+A(xj − x̄)

)
, (5.2)

where [ · ]F denotes the subvector of components with indices in F(xj). The choice of
step length αj is based on remaining feasible with respect to the satisfied bounds. If
xj + pj is feasible; i.e., xj + pj ≥ 0, then αj will be taken as unity. Otherwise, α is set
to αM , the largest feasible step along pj . Finally, the iteration index j is incremented
by one and the iteration is repeated.

It must be emphasized that this active-set method is not well defined unless the
equations (5.2) have a solution at every (xj , wj).

5.2. Solution of the bound-constrained subproblem. Next, the active-set
method is applied to a bound constrained QP of the form

min
v
∇MT (v − v̄) + 1

2 (v − v̄)TBν(v − v̄) subject to vi ≥ 0, i = 1, 2, . . . , n, (5.3)

where v is the vector of n + m primal-dual variables v = (x, y), v̄ is the constant
vector v̄ = (x̄, ȳ), and

∇M =

(
g − JT

(
π + ν(π − ȳ)

)
ν
(
c+ µ(ȳ − yE)

) )
, Bν =

(
Ĥ + 1

µ (1 + ν)JTJ νJT

νJ νµI

)
,

where Ĥ is chosen so that Ĥ+ 1
µJ

TJ is positive definite. (See Section 4 for additional

details.) It follows from Lemma 2.2 that the bound constrained problem (5.3) is a
convex QP that may be solved using the conventional active-set method of Section 5.1.
At the jth iterate vj = (xj , yj), the index sets of active and free variables are given

by Â(vj) and F̂(vj), where

Â(v) = A(x) =
{
i : xi = 0

}
and F̂(v) = {1, 2, . . . , n+m} \ Â(v)

(cf. (1.3)). (As the dual variables are not subject to bounds, the vector of free com-
ponents of any v = (x, y) has the form vF̂ = (xF , y) with xF defined in terms of F .)
Given vj = (xj , yj), the next QP iterate is defined as vj+1 = vj +αjdj , where the free
components of the vector dj = (pj , qj) satisfy the equations

BνF̂ dF̂ = −[∇M +Bν(vj − v̄) ]F̂ , (5.4)

with dF̂ = (pF , qj). The equations (5.4) appear to be ill-conditioned for small µ
because of the O(1/µ) term in the (1, 1) block of the matrix Bν . However, this ill-
conditioning is superficial. The next result shows that dF may be determined by
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solving an equivalent nonsingular primal-dual system with conditioning dependent on
that of the original problem.

Theorem 5.1. Consider the application of the active-set method to the bound
constrained QP (5.3). Then, for every ν ≥ 0, the free components of the QP search
direction (pj , qj) satisfy the nonsingular primal-dual system(

ĤF −JTF
JF µI

)(
pF

qj

)
= −

(
[ g + Ĥ(xj − x̄)− JTyj ]F
c+ µ(yj − yE) + J(xj − x̄)

)
. (5.5)

Proof. Consider the definition of the search direction when ν > 0. In this case
it suffices to show that the linear systems (5.4) and (5.5) are equivalent. For any
positive ν, we may define the matrix

T =

(
I − 1+ν

νµ J
T
F

0 1
ν Im

)
,

where the identity matrix I has dimension nF , the column dimension of JF . The
matrix T is nonsingular with nF +m rows and columns. It follows that the equations

TBνF̂ dF̂ = −T [∇M +Bν(vj − v̄) ]F̂

have the same solution as those of (5.4). The primal-dual equations (5.5) follow
by direct multiplication. The nonsingularity of the equations (5.5) follows from the
nonsingularity of T , and the fact that Bν is positive definite (as are all symmetric
submatrices formed from its rows and columns).

The resulting equations (5.5) are independent of ν, but the proof above is not
applicable when ν = 0 because T is undefined in this case. For ν = 0, the QP objective
includes only the primal variables x, which implies that problem (5.3) may be written
as

minimize
x≥0

(
g − JTπ

)T (
x− x̄

)
+ 1

2

(
x− x̄

)T(
Ĥ +

1

µ
JTJ

)(
x− x̄

)
,

with y arbitrary. The active-set equations analogous to (5.4) are then(
ĤF +

1

µ
JTF JF

)
pF = −

[
g +

(
Ĥ +

1

µ
JTJ

)(
xj − x̄

)
− JTπ

]
F

. (5.6)

For any choice of yj , define the m-vector qj such that

qj = − 1

µ

(
JFpF + µ(yj − π) + J(xj − x̄)

)
, (5.7)

where π = yE − c/µ (see (2.3)). Equations (5.6) and (5.7) may be combined to give
equations KdF̂ = −r, where dF̂ = (pF , qj),

K =

(
ĤF + 2

µJ
T
F JF JTF

JF µI

)
and the right-hand side is

r =

(
[ g + Ĥ(xj − x̄) ]F + 2

µJ
T
F J(xj − x̄)− JTF yj + 2JTF (yj − π)

µ(yj − π) + J(xj − x̄)

)
.



Stabilized Sequential Quadratic Programming 23

Forming the equations TKdF̂ = −Tr, where T is the nonsingular matrix

T =

(
I − 2

µJ
T
F

0 Im

)
,

gives the equivalent system(
ĤF −JTF
JF µI

)(
pF

qj

)
= −

(
[ g + Ĥ(xj − x̄)− JTyj ]F
c+ µ(yj − yE) + J(xj − x̄)

)
,

which is identical to the system (5.5).

5.3. Solution of the stabilized SQP subproblem. Consider the application
of the conventional active-set method of Section 5.1 to the stabilized QP:

minimize
x,y

gT(x− x̄) + 1
2 (x− x̄)TĤ(x− x̄) + 1

2µ‖y‖
2

subject to c+ J(x− x̄) + µ(y − yE) = 0, x ≥ 0.
(5.8)

In terms of the data “(x, x̄,H, g,A, c)” for the generic QP (5.1), the variables are
“x” = (x, y), with “x̄” = (x̄, ȳ),

“H” =

(
Ĥ 0
0 µI

)
, “g” =

(
g
µȳ

)
, “A” =

(
J µI

)
, and “c” = c+ µ(ȳ − yE).

(The discussion of the properties of the stabilized QP relative to the generic form (5.1)
is not affected by the nonnegativity constraints being applied to only a subset of the
variables in (5.8).) After some simplification, the equations analogous to (5.2) may
be written asĤF 0 −JTF

0 µI −µI
JF µI 0

pF

p̄F

qj

 = −

 [ g + Ĥ(xj − x̄)− JTwj ]F
µyj − µwj

c+ µ(yj − yE) + J(xj − x̄)

 , (5.9)

where pF and p̄F denote the free components of the search directions for the x and y
variables respectively. (Observe that the right-hand side of (5.9) is independent of ȳ.)
The second block of equations gives p̄F = qj − yj + wj , which implies that

yj+1 = yj + p̄F = yj + qj − yj + wj = wj + qj = wj+1,

so that the primal y-variables and dual variables of the stabilized QP are identical.
Similarly, substituting for p̄F in the third block of equations in (5.10), and using

the primal-dual equivalence wj = yj gives(
ĤF −JTF
JF µI

)(
pF

qj

)
= −

(
[ g + Ĥ(xj − x̄)− JTyj ]F
c+ µ(yj − yE) + J(xj − x̄)

)
, (5.10)

which are identical to the equations associated with those for the QP subproblem
(5.3).

The preceding discussion constitutes a proof of the following result.
Theorem 5.2. Consider the application of the active-set method to the bound

constrained QP (5.3) and stabilized QP (5.8) defined with the same quantities c, g,

J and Ĥ. Consider any x0 and y0 such that (x0, y0) is feasible for the stabilized QP

(5.8). Then, for every ν ≥ 0, the active-set method generates identical primal-dual
iterates {(xj , yj)}j≥0 .
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6. Numerical Results. Numerical results from a simple Matlab implementa-
tion of pdSQP (Algorithm 2.1) were obtained for 158 problems from the CUTEr test
collection (see Bongartz et al. [2], and Gould, Orban and Toint [29]). The problems
tested were 111 of the 126 nonlinearly constrained problems from the Hock and Schit-
tkowski [35] test suite, and the 47 CUTEr equality constrained problems considered
in [23]. A total of 15 problems were excluded from the Hock and Schittkowski set.
Problems hs1, hs2, hs3, hs3mod, hs4, hs5, hs25, hs38, hs45 and hs110 have no gen-
eral constraints; problems hs67, hs85 and hs87 are nonsmooth; the objective function
of hs84 is unbounded in the feasible region; and problem hs99exp is poorly scaled.

Each CUTEr problem may be written in the form

minimize
x

f(x) subject to

(
xl
cl

)
≤
(

x
C(x)

)
≤
(
xu
cu

)
, (6.1)

where C : Rn 7→ Rm, f : Rn 7→ R, and (xl, cl) and (xu, cu) are constant vectors of
lower and upper bounds. In this format, a fixed variable or equality constraint has
the same value for its upper and lower bound. For pdSQP, each problem was converted
to the equivalent form

minimize
x,s

f(x) subject to c(x, s) = C(x)− s = 0,

(
xl
cl

)
≤
(
x
s

)
≤
(
xu
cu

)
, (6.2)

where s is a vector of slack variables. With this formulation, the bound constrained
and stabilized QP subproblems involve simple upper and lower bounds instead of non-
negativity constraints. The Matlab implementation was initialized with parameter
values given in Table 1. The primal-dual vector (x0, y0) was the default values sup-
plied by CUTEr, although the code immediately projects x0 to ensure feasibility with
respect to the simple bounds on x. The sequence of iterates was terminated at a point
satisfying the condition

‖ropt(vk)‖∞ < τstop, (6.3)

where ropt(vk) is the optimality measure (2.23) defined in terms of the problem format
(6.2).

Table 1
Control parameters and initial values for Algorithm pdSQP.

Parameter Value Parameter Value Parameter Value

ν 1.0 αmin 1.0e-3 µR
0 1.0e-4

ymax 1.0e+6 τstop 1.0e-6 µ0 1.0

ηS 1.0e-2 kmax 600 τ0 1.0e-2

ηD 1.0e-3 β 1.0e-5 φmax
V , φmax

O 1.0e+3

Algorithm pdSQP solves the bound constrained QP subproblem (2.8) using a Mat-
lab version of the inertia-controlling QP solver of Gill and Wong [27], which solves
a sequence of regularized KKT systems of the form (2.9). At the start of each sub-
problem, an initial QP working set is defined that contains the indices of all the fixed
variables and variables within εA = 10−6 of their upper or lower bounds. This set is
used to compute the matrix HF and the (possibly) modified Hessian Ĥ = H +E +D
used in (2.6). In some situations, it is possible to guarantee that both E and D are
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zero; i.e., no convexification is needed. If the problem (6.1) is a convex program then

it can be shown that the matrix Bν is positive definite with Ĥ = H (see Kungurt-
sev [38]). Similarly, the elements of H corresponding to fixed variables need not be
modified because the corresponding elements of d are always zero. This implies that
D ≡ 0 for problems with only equality constraints (i.e., problems such that cl = cu
for the bound constraints of (6.2)). In pdSQP, the matrix Ĥ is defined as described
in Section 4, where the matrix EF of (4.2) is determined using the inertia control-
ling LBLT factorization (see, [17, 18] for more details). For the calculation of the
modification D = (1/µA)PAP

T
A , we consider the properties of the matrix

KFA =

(
HFA + EFA JTFA

JFA −µAIm

)
,

where HFA and EFA denote the nFA × nFA rows and columns of H and E associated
with the union of the index sets of free variables and active bound constraints (i.e.,
fixed variables are not included). A similar definition holds for the matrix JFA formed
from a subset of the columns of J . Given the value

σ = min
(
10−1, 1/max(1, ‖E‖)

)
,

the parameter µA is then the first member of the sequence σ, σ/10, σ/102, . . . , for
which KFA has inertia (nFA,m, 0). (Theorem 4.5 implies that this sequence must ter-
minate.) This method is clearly impractical for any serious implementation. The
discussion of more efficient methods that compute the modified matrix during the so-
lution of the QP subproblem are beyond the scope of this paper (see Kungurtsev [38]).

We recognize that other definitions of Ĥ are possible, including a positive-definite
quasi-Newton approximations based on the BFGS update (see, e.g., [21, 43]).

Detailed results of running the Matlab pdSQP on the 158 CUTEr test problems
may be found in Gill and Robinson [24]. These results include a problem-by-problem
listing of the percentage number of iterations for which the Hessian modifications E
and D of (4.1) were nonzero. In addition, the results give the percentages of V- or
O-iterates and F-iterates required for each problem (see Algorithm 2.1), as well as the
total number of M-iterates. (M-iterates generally constitute significantly less than 1%
of the total iterations.)

For brevity, only a summary of the main results is presented here. The Matlab
pdSQP was able to satisfy the optimality measure for 150 of the 158 test problems. A
run was considered to have failed if the optimality condition (6.3) could not be satisfied
in kmax = 600 iterations. Of the 8 “failures”, the six problems: dixchlng, hs106,
hs109, hs116, lukvle6, and lukvle14 terminated at infeasible local minimizers of the
merit function, as measured by the optimality conditions for the infeasibility problem

minimize
x,s

1
2‖c(x, s)‖

2 subject to

(
xl
cl

)
≤
(
x
s

)
≤
(
xu
cu

)
.

The final point for problem lukvle8 satisfied the complementarity measure but gave a
maximum constraint violation of 1.1×10−4. This problem can be solved successfully in
771 iterations, of which 22% are V- or O-iterates, 76% are F-iterates, and 8 iterations
are M-iterates. Problem mss1 can be solved in 2872 iterations with F-iterates forming
92% of the total iterations. In this case, 99% of the iterations required some form of
convexification.
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Overall, the results indicate that the algorithm of pdSQP is robust, and that
the primal-dual augmented Lagrangian provides an effective way of ensuring global
convergence. For the 150 problems that were solved successfully, a grand total of 94%
of the iterations computed a V- or O-iterate, and 5% of the iterations computed an
F-iterate. An M-iterate was computed in only 26 of the iterations needed to solve the
150 problems.

The results also illustrate the importance of an effective convexification strategy.
Overall, 77 of the 158 problems required some form of convexification. Of these 77
problems, a grand total of 44% of the iterations required the computation of a nonzero
E, and 23% of the iterations required a nonzero D.

7. Summary and Future Work. This paper considers the formulation and
analysis of an SQP method for solving general nonlinear optimization problems. An
algorithm is proposed that combines the favorable properties of augmented Lagrangian
methods, conventional SQP methods and stabilized SQP methods. Numerical results
given in Section 6 for a simple Matlab implementation indicate that the proposed
method is robust and often exhibits fast local convergence. However, further analysis
is required to determine the conditions under which the method inherits the super-
linear convergence rate associated with stabilized SQP on degenerate problems.

The use of exact second-derivatives presents a significant challenge to the for-
mulation of robust and efficient SQP methods. A key contribution of this paper is
a convexification procedure that provides a convex QP subproblem based on exact
second derivatives. This approach provides a first step towards an effective and effi-
cient way of incorporating exact second derivatives in the inequality constrained QP

subproblem of an SQP method.

One possible extension of the method is the use of additional regularization in the
form of explicit bounds on the dual variables in the QP subproblem. For reasons of
brevity, this refinement is not considered here. However, explicit temporary bounds
on the dual variables are easily incorporated in the primal-dual QP subproblem (see,
e.g., Robinson [47], and Gill and Robinson [23]). The formulation of improved update
strategies for the regularization parameter µR is the focus of current research. It
is anticipated that such strategies will allow the use of projected gradient methods
for the computation of an approximate solution of each QP subproblem when far
from a solution (see Friedlander and Leyffer [20]). Approaches such as this should
allow future implementations to solve problems that are larger than those that can be
solved by current SQP methods. In addition, reliable techniques that allow the rapid
decrease of µR near a solution should give superlinear convergence under the standard
assumptions.
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