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NOTES ON g SCATTERING. I
Joel Yellin

ILawrence Radiation Laboratory
University of California
Berkeley, California

November 21, 1968

These notes are detailed background material for a set of

Lectures given at Lawrence Radiation Laboratory in the Fall of 1968.

The final two parts of this series are contained in UCRL-1866& and

UCRL-18665.



I.A. Notation and Defiﬁitions
The précess is shown in Fig. 1.1.

The § matrix is, ignoring isospin,

s =1 -i%z0)" 8%(Tp) . e
Defining"
w o= sz f® = 6, (1.2)

where . F is a matrix element of the T matrix, the c.m. differential

cross section is

2 | .
o (1.3)

Blin"s

~ In the following, quantities with no channel label are s-channel

guantities. The Mandelstam variables are

o ' 2 o o

s=(p) +0p)7 = (py+1)75 b =(pp -Pg)" = (- 1)
2 2
u=(p; - )" = (py - Ps) (1.4)
The s-channel . c.m. scattering angle and spatial momentum are
q2 = 1512 =ﬂ%(s - hug); Z Ecos O =1 +—20 . - 20 .
s 2 2
s - by s - by

(1-5)



For convenience we define the parameter space

2 2 -2 2
x = (s, % w5 %507, p575 P)7)
with the dependence relation
b _ .
s+t +u = Z pi2 (For physical pions

= 22 mﬂe)

(1.6)

(1.7)

’(\
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I.B. Isospin, Crossing, Bose Statistics

The full amplitude is

dcba
M (x) = A(x) 8,8 4 + B(x) 8, B, +C(x) 8,48 . (1.10)

A, B, C are related by

A(s, t, u) = B(t, u, s) = C(u, s, t) (1.11)
and
v A(S:t)u) = A(S;u)t)5 B(S,t:u) = B(u:t)s)5 C(S)t,u) = C(t)syu)-
' . (1.12)
1

The isospin amplitudes in the various channels are

s AOS =.3A +B+C,
Al'S =B -C,
A% =B+
t AOt = 3B + C + A,
Alt =C-A,
Aet_= C + A3
u: Ao“ =30 + A+ B
A% =a-3,
A=A+ . (1.13)



h-

The amplitudes for definite charge states are

A(n+ﬂ+—>n+n+) = A2 = B+C,
' o 1 |
. A(non 4>ﬂono)' = = (PA,+A)) = A+B+Cy»
3 2 - 0
+ - R S l l l _ l l
A(TTJT -—)}ﬂﬁ) :,-B-AO+§A1_+8A2 = A+-§VB+-2-C,
+ - 00 1 ' |
Al t —»xw ) = E(AQ-AO) = -A,
40 40 1,
At 5. —»x x = 3 (A1+A2) = B (1.14)
The gnx crossing matrix Cst'z CSt-l can be written
1
1
c‘_:_ 5 (1.15)
1




I.C. Partial Wave Expansion, Unitarity

o0

' I
f(s,2) = ) 2l ai(e) By, (L
o=0 .- ‘ :
where the 2 arising from Bose statistics is shown explicitly, and
aJI(s) is nonvanishing if (-1)7* = 1.
T
U 2ip T
e sin 8 " (s) J
a I(S) _ ) J _ e -1 (l
J - q - 2iq '
Inverting (1.20)
T -
a; (s) = J/- dz PJ(z) fI(s, z) . (1.
' -1
Near’an'elastié resonance at s = Sy = MJ? s
I
r- M _
aJI(S) - '%" va tIl T (1.
J s - sJ:+ 1§'Pj'Mj
: ‘ "5
As we move away from the resonance we expect
I ~ I, 2J+1
The resonant phase shift is then
. I
r(s) M
I ~ J J
tan & (s) = P . (1.

J

20)

.21)

22)

23)

2k)

25)



. For hpe <s < l6p2, BJI(S) is real because of unitarity.
(Because of G conservation'only intermediate multipion states with
even numbers of pions occur.)

For the case when there is inelasticity, we rewrite (1.23) . =

aJI(s) > L J J J , - (1.232)

q _ .
Jd s sJ + 1 5 FJ MJ

where XJI. measures the amount of inelasticity. (0 < x <1.)

The unitarity condition
. . , _ _
s's = ss" - 1 (1.26)
yields the; T matrix conditions

_i(T+ -T) = (zn) E: T & (}:p) s | | (1.27)

where z:'_ indicates summation and integration over all states allowed
by energy momentum conservation.

In the c.m. system (1.27) yields

In F(s, 0) = 205 o % ear(8) (1.28)

On the other hand

do _ _|F(s, t)l2 _ 16x |M(s, t)[ '
W 16rs(s - b®) (s - W) (1-29)

so that

i



’ | [Re 7(s, 0)1° = 6hx 50® & (s, )| - ka” s

£=0 _
. ) o : : T o _ (1.30)

%t ota1 ()

We define the real inelasticity parameter Ny (0 < Ny < 1) by

ays) = Lo - | (1.31)

so that SJ is also real. The unitarity relation for aJ(s) is then

Tnay(s) = las)2+3 M- jJe(s)] . (1.32)

For hug <s < 16u2, nJ(s) = 1. Comparing (1.31) and (1.23%a),

at resonance,

x; = % 1+ nJ(sJ)] . (1.%33)



II. Model for gx Scattering - General Remarks5

We take, for the I =2, ¢ channel amplitude,

s G - a(t)) 1L - o) |
A2 (s, t, u) = g L TQ ?(O%%)P_ a(u%§ ) ) (2.1)
where
a(x) = a + bx , _ ~ (2.2)
and we choose
0<a<1l-W® b>0 .  (2.3)
We also défine, for convenhience,
\ K - x - :
.FK(X’- v) = P(F(K ‘)?‘FEKYJ o (2.4)
From (1.11) - (1.13),
AOS -%.Fo{a(t), a(uﬂ- + % Foﬁx(s), d(tﬂv'
+ 3 7olals), alw)
X = - g .
| A - Folals), )] - Fofals
1 _ o} 5/, - O‘[Cl(s)’ Oé(uﬁ)]
\ A, S v Fofolt), a(u)l . a
° ol ) / (2.5)

As we will discuss in. detail below, 'Foﬁl(t),va(u)]' has no

singularities for- s > hug.' Therefore the choice (2.1) implies there

e



are no I = 2 poles. The most general eigenfunction of the crossing

operator O,
0x® = X : . . (2.6)

if X is expressed as linear combinations of ¥, as), a(t)) ,

ro(als), aw) 5 (), a(w) |, 1s

[ei[3 Flats), aw) + 2 fo(a(s), b)) - 5w (alt), a(u))

+ el37,(al6), @) + xo(ale), a(w) + Fo(als), alt)]

(e) - e)mo(a(s), alv)) - Fo(als), afu)]

ey Fola(t), a(w)) + e lF(as), a(w)+ F fals), a(t)]
(2.7)

Equation (2.5) arises on choosing ¢, =0 and ¢, =1 in (2.7).
The function FO(X, v) is one of an infinite cléss which have

the properties:

(1) Tl ¥) = Flys %),
(ii) liT_am FO(;? v) = ¥ f&(y, ¥); ¢ = arg x| > 0.
fixed y '

(iii) For y fixed, the only singularities of Fo(x, y) in
x, excepting the behavior at infinity;'are simple poles at x = positive
definite integers. (There are no double poles at points where both

x and y are positive integers.)
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(iv)  The residue of a péle in Fo(x, y) at x =N,
r(N, y), is a polynomial in y of order <N.

The property: (i) enabies one to construct an eigenfunction of
the crossing operator as outlined above; (ii) is just Regge'asymptotic
behavior; (iii) will be referred to below as the narrow
resonance approximation_(NRA)fLand.will be seen to violate unitarity;
(iv) guarantees that any pole can be'written as a ‘sum
over a finite number of poles having definite angular m?mentum.

In Fig. 2.1, we show the possible places in the (N, L)

CN = a(s)) ‘plane where the integral -

+1
H(N, L) = ] dz PL(z)' TN, ¥) (2.8)
-1 '
can.be-nonzero. ' . It is assumed that. y is a linear function

of =z, and that (iv) holds.]

Clearly, multiplying F by, for example, a properly chosen

0
rational function} need not conflict with (i) - (iv). We return to
this point below.

| We will always identify (x, y) with the Mandelstam variables

by setting, for example,

x = a+bs (sa(s)) (2.9)

‘so that

ot) = z[3@) - D) +a] - % (als) ~D) ,  (2.20)
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where, using A Erhpzb, we have introduced
a(s) + af(t) +alu) = % + uugb = 3a +x = D .. (2.11)

" (We will not attempt to define here a procedure for going off mass
2 2
)

shell with an external leg, so all P, =

-There is one important condition missing above, namely that
all the widths of the g5y resonances in the model are >0. As we shall

see this can be written as

‘(v) BN, L) >0 . '(all N, L) . (2.12)




r(i - x) r@ -y)
r(l - x-y) :

_III. PROPERTIES OF Fo(x, y) =

ITT.A. Pole Residues.

For y < 0, we can expand FO as5 . -

FO(X’ y) = 'ZE: ?Eg)ff%z) ” % K‘ 3 | (3.1)
K=1

explicitly exhibiting the residues

) < DLy )ty - 1)
(3.2)
We will define
T(y) = r®+y)/r(y) . (3.3)

The polynomials TK(y) have interesting properties. We can

" write
| & | :
(-1 () = ZAmm)xm‘ . (3.1)
with
Am(N) = ('l)m SN(m) | | . (55)

and the SN(m) are Stirling's_numbérs of the first kind, the sum of the
products of the negative integers -1,-2,---,-(N - 1), taken m at a

*time in all possible combinations.
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Defining
1,
x' = ;+§(m*-1) y (3.6)

- we have

Ty () = (e - 500 - 1) = (¢ - 50 - D) (x - 2 - 1) + 1)

c L L |
G Em-) | (3.7)
so that
' () = (DN o () (5.8)
N N ? N
and TN(X) is symmetric or antisymmetric about the point

X = -%(N - 1) depending on whether N 1is even or odd.

'TN(x) has N zeros at x = 0,-1,:-*-N + 1 and it oscillates
with linearly growing amplitude as |x'| increases. A plot of T8(x)
is shown in Fig. 3.1, where it can be seen that these polynomials are

s vl oe Lo o
essentially zero, for |x'| < E(N -1).

For N even and >0,

ane:%p(gN+l)-x>p<gN+1);w)¢mﬂx

i

Ty ()

L | BN CEI TP RO AL T SIS ) ISR C

For N odd,
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N-1 v
\TN(x) = (-1) 2 %I‘(N ; I, x’) I‘-QN ; 1, x’) sin 7 x'
= x' (xﬁ - 1)-.;; -‘(x’2 - %(N - 1)2) 5 (3.10) .
where we have used
r(z) r(1-2) = x/sin gz , ‘ (3.11)
1 1 :
p»(§.+ z) r(§ -2z) = gufcos nz (3.12)

Mz +1) = zr(z) . (5.13)
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III.BR. Asymptotic Behavior of Fo(x, V)

We want to compute lim FO(X, y), where larg x| > 0. To
. ) P b BT ,
~ : i - - fixed y
do this we will need the asymptotic expansion of the ratio of T

functions?

[o¢]

v‘Zl—%oo

Bop(z) = 0z +a)/r(z + 8) Ao e (a -8, 8)2" P, (3.10)

. n=0
where” (a, B) . are constant complex quantities, and where
z £ (-0, <& - 1,++3 =B, -p - 1,+++), while the complex z plane is
cut along any curve connecting 2z = 0 with 2z = .

Specifically, the c; are

c, = 1,

ey = %—(oc -p)(a+p - 1),

I 2
C2 = E [5((1 + B -l) -+ B - l],

| (3.15)
Y -nmn .
e = 1) ( > STl ISR I
N S = R C TS

where 71

1]
Q
1
w
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Now

}O(XJ Y)

xI{x + ) {sin o(x +y) J

r(x) r'(y) |sin nx sin ny

i

7 B-l(x; y){cot xx + cot ny]. . (3.17)
, Supﬁose we take Xx — +w. Then (3.1k) tells usv

e Y Iy f

B (x,y) ~ x/ry) +o(x" ") . _ (3.18)

However, cot X ‘oscillates, so we must go slightlyvoff the

real axis,
X = +o + il, and then cot nx ~ -1 ,
I+ « faster than logarithmically, giving

o -iny .
LF(x, ¥) e S & (3.29)

xohoti] SV T{y)

Because‘the poles lie on the positive real axis,,jﬁst where we
would like to go, this asymptotic behavior is true in an average sense
only. Without making an effort to go past‘the narrow resonance approxi-
mation this problem is unavoidable.

The other Mandelstam variable, w = a(u), satisfies

XxX+y+w = D . : - (3.20)
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We can therefore rewrite FO as
r(1 -x)r@a - D+ x + W)
Folx, ¥v) = T D W) . (3.21)

Equation (3.20) gives, just as before,

v : X

. W A

ol TN Wt 22
fixed x :

However, for fixed w,

w+1-D

F (xv ) I X R (faster than
0 ¥ ;:;:T:Z; sin 7ix T(w +1 - D) any power)
fixed W ' (3.23)

Another'equivalent way ofstatingthis average asymptotic
behavior is that Im a(s) > 0, but =0 for finite s, and as
S se, Im a(é) — o faster than /4n s, so that any power growth is
overcome by the Im a(s) piece, in the fixed w(u) direction.

The asymptotic behavior of ‘FO(a(S)’ a(t)) is shown in

Fig. 3.2. TFor large Zy, We also have the following gxpressions

1im - | FO (d(s)‘, oz(t)) ~. 1"(1 - a(t))vzfa(t)—D ei“(a(t)"D>
fzxéd a(t) .'._' . V, . S (3.24) ’
lim fb a(s); a(u))v ~ 0 ‘, . (3.25)
Zt—->oo ' v

fixed a(t)
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lim ro(a(t), o) ~ 1@ - a(e)) 2, %D , (5.26)

Z,=> 00

t
fixed o(t)

where we have used (2.10).;
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III.C. Poles and Zeros of Fo(x, v)

The zeros of Fo(x, v) 'occur aloﬁg the lines
1-%x-y = 0,-1,-2,-++. Excepting the line x +y = 1, each line of
zeros passes through the region (X, y) > 0 and cancels the double |
poles fhat would otherwise appear, as shown in Fig. 3.3.

Lovelacérhas noticed that if af(s =~ u2> is near‘l/?, then a
zero appears in all the isospin amplitudes hear threshéld. Lovelace
identifies this zero with the zero of the Adler comsistency condition,

which makes the off-shell statement8

A(x,) = B(gA) = ¢(x) = 0, (3.30)
where
| L2 2 2 2 2 2
"VXA=(H’I~1:H5O;H)'U-)P~)- v (551)
Actﬁally, if one requires a zero in all the isospin amplitudes
one has

Fol2(s0)» oc(to)) = Folalsg)s oz(uo)) - FO@(‘GO), oz(uo)) . (3.32)

‘Intersections between the zeros of all three fuhctions occur as shown

in Fig. 3.4, 3
The only triple zero close to threshold lies on
a(s) + a(t) = 1. If all isospin amplitudes are £6 have their zeros

there, ‘then D = 3/2 = 3a + hpeb is required,vwhich is in the

neighborhood of the phenomenological values
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1.5 < D < 1.9 . _ (3.32)

This argument is nof terribly convincing, because, as we will
see bélow; the zero along x +y =1 can always be moved by multiplying
and dividing by polynomials in x and VY.

It is amuéing tovnote that the beta functions have no such

extraneous line of zeros. In fact

Il

Folxs ) = F(%(i f)xrglys o 5 Bl )

(3.33)

explicitly exhibiting the fact that we have destroyed two lines of

polés at x =0 and y = 0, at the same time as removing the zero
= 0.7

along x +y = 0.

Now we anticipate a piece of a result below, by remarking

Fo(x, y) could be changed by a factor

Rl ) = FEEw (x y) (3.3%)

without affecting any of its basic properties. More generally, we

can take

»FO"(X: y) = Pw +lg_(-xx+_y3)r ~Z Fo(x’ y) (535) Y

so that the line of zeros x +y ~ 1 =0 1is replaced by a curve

pxy + q(x +y) + r = O. .We return to this point below.
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ITI.D. Positivity of Resonance Widths™®

Define the sx width of an s channel pole at a(s) = N by

r(N, L). vThen, from (1.22) and (1.23%a)

- +1
T, 1) =y 2ele) gy [ (o) #e, o)

Using (1.2), (2.5), and (i.lO)

| 2 +1'P
om T (N, 1) = 5 qN> -1 f dz ()[a()-N]

\ 1y o
3 [Fo<oz(é), oz(t‘_))+v_ Fo<oz(s')‘,’fo¢(u>] }s:sN’
| - (3.37)
for L even, I =0, and
B 2q +1 P ( )
EMNF(N, L) = g -M—NK bt . [ dz ng [a(s) - W]
~1 ‘ . :

oc(s oc(t)) - F (oc( 8), oc(u)]}S es 2

(3.38)

for L odd, I =1. (The factor EqN/MN = \/l - Mpg/sN = 1.)

From (3.1) and (3.2), and the definition (2.8),
. P, 1) = R b‘l(i- w?2/s )2 H(N, 1) (3.39)
MN J - I 8 2 N ) b4 3'39

= 1.

where Ry =3/2, Ry =



2o

Working out the first few H(N, L) we have

H(0,0) = 0O , (3.40a)
H(1,0) = D -1 , ‘ (3.40b)
H(1,1) = -%—(1 +2a ~D) , | (3.40c)
H(2,0) = %(1 +a-Dp/2F+D(D/2-1), (3.404)
H.(2,'}l) = %(D -1)(1 +a -Dp/2) |, (3.k40e)
H(2,2) - -:-%(1 +a-D/2)° . (5.10¢)
If we write, using (2.10); with a(s) = N,
' N
(@) = raw w) rGw) = Y rm £, G
| : K=0
we have the expliclt expressions
rN(N) = E_N(N - D+ Ea)N ; | (3.42)
T (M) = oy - 1) -p + 28V, (3.43)
oM = 2™ NN -1 (v -p+2a)20f -6p+2-1) .

(3.4h)
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Now we see from (3.40c) and (3.4%) that H(l, 1) > 0. implies

H(N, N) > 0, for all 'N. This condition is just
l1+22~D = 1-a-x>» 0 , (3.45)

| as in (2.3). It is also the statement that the N =1 =1 state}

(the p) not be bound,

m? o mE o, (3.46)

a(mpz) = a+b mp2 = 1 & a+n . (3.47)

From (3%.43) we see H(N, N - 1) »> O if (3.45) holds and if
D-1x»0. - It turns out that H(N, N - 2) » H(2,0) > O then
assures H(N, L) > 0 for all N and L. From (3.40d4) this can be

written

- % xg + o(xh)'--. | (3.48)

el oy

a

We will show here that H(2,0) » O implies H(N,0) » O,if N 3 2 and
eveny and H(N,0) » O, if D - 1.3 0, and N » 1 and odd.

‘Again using (2.10), we see the physical region in o(t) is
-N +2a +aga(t)ga , ' - (3.49)
so that, changing“ﬁariables,

H(Y,0) = 33y / () &y . - G0)

-N+2a+\,
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Since we insist that H(1,1) > O we need consider the integral

a . .
- [ mw e, (5.50)

\ ~N+2a+)\

“only. As shown above, TN(y) is odd about y = -%(N - 1) for odd .

N, and we have
i = [ wm) , woea, (52

implying

_H(N,0) > O for odd N if 3@ +A-1=D-130

(3.53)
For even N, %hings are mdre complicated. We have
-N+2 -1 _ ' a
n(yN) = / dy T (y) + / dy T (y) + / dy T, (v)
~N+2a+)\ ~N+2 -1 '

= LW + L,(N) + I,() (N even) . | (3.54)
‘Since TN(y) is now symmetric about y = -%(N’- 1)
 1-2a-) '

nw - [ nwe, o (3.55)

-1
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L |
Lo -2 [ nee  (55)

L(n-1)

' However, we know the oscillations of -TN(y) increase as |y + %(N - 1)
increases, and therefore IE(N) >0 for N>»2 (N even)..

Furthermore

T,(x) = r(@ +x)/r(x) = T, (x + 1) 7, (x)

(3.57)

TN-M(X + b) is monotonic and positive for -1< x € +1, while Th(x)

is monotonic and passes through O at x = 0. Therefore, for N 2 4

5 1-2a-) ;
I,(w) > / C Ty (x) ax | (3.58)
._l ’
a ) ) ' .
LM > / T, (x) a&x (3-59)
-1 _

and doing the integfalsvexplicitly we discover Il(N) + IB(N) >0
. 1 2 .2 '
if a )—2 - 3 A

If we se£ x=0-= pe, a = %, D=

PO

, the first few widths,

from (3.39), are, in units of M r(L,1), and 1(1,1),
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Table I.l.
(w, 1) M (N, L) r(w,L)
(O:O) . 0 | 0
(1,1) 1 1
(1,0) 9/2 9/2
(2,2) 27/20 91/3720
(2,1). 3/2\ V3/2
(2,0) 0 - 0
where
Mo /My = L@ - 1)/(an - DT
Usingll
N | SR -5 rE + L
J[ P, () ax - (-1) lr(K - 5M) r(gl A) ’
5 | 2r(-z) T(K + 3 + 3)

for Re \ > -1

1 1

(-1)% r(x - Sh o+ %) f(l + %%);

j; xﬁagm(xj ix =

1 1 1
2r(§ - 5%) r(K + 2 + Ex)
for Re A > =2

we have

2

(3.60)

(3.61)

(3.62)

H(N,N) = r (W)/r(w) - SN+ —) r(§ +1)/r(w + —) , (3 63)
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BUE-L) < T 0/r) G M@ DO 0 G.6)
so that, for. a=1/2=D/3, p=0,

1 _ON 1.N
5 Rl\ln 2 (N - 5)

N
N = T (.6
M, I (W, ) | o %) 3 3.65)
Lr 7 2w - )
wr,n-1) = 2 Al =7 G66)

1
r(y +3)
where we have used the:doubling formula

- 2z-1 . :
r(2zz) = =—r(z) r(z +3) . (3.67)

We note, for future reference, that inserting Fpﬂﬂ = 112 MeV

and Mp = 764 MeV, with b -1 Gev'gj yieldsféguznl.o.

The integrals over TN(X) may be related to the generalized

Bernoulli polynomials, Bn(z)(z), by

=y+1

! dx TN(X)' = ()" BN(N> (v) > (3.68)

(Cf. Ref. 1k [19.7(51)])'
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IITI.E. Behavior of nx Resonance widths, [I'(N,L), as

Functions of (N,L)¢

The behavior of TI(N,L) as a function of (N,L) is contained

in H(N,L) defined as in (2.8), .

+1

H(N,L) = _/f dz P (z) %%%jif%%j dz :

-] :

where, using (2.10),
; . L
y = z<§(1\l - D) + a) - -2—(1\T - D)

As remarked above, in Section III.A. (see Fig. 3.1),

(2.8)

(3.70)

TN(y) = I(N + y)/T(y) essentially consists of a huge forward peak,

between

2a

Ogyga or l'ﬁ"

AN
N
INA
'_l
.

for
SN >> D, a, and A :
We will therefore approximate H(N,L) by

1

P (z) r(¥ + )
| / S T I €
‘ 2a, : ‘ :

s | '

H(N,L)

(3.71)

(3.72)

We will work here with N,L large,.and will consider the

following regions:
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(1) 1<<V¥,
(1) 12Vm ,
(i11) 1> V¥ .

For large L, and small 1 - z,;i

| | — 7, (n)
PL(z.) = I ((EL +1) L ; z) + (l Z){ éﬂ - JQ(TI) + g JB(W)]

+ O((Vl - z)2> = o L ; 2 - (3.73)

roba

1l

oy
B\"]

=

[n=@L+ 1)«/ (1-z)/27.
The first zero of Jo(x) occurs at x = 2.41. Therefore, the first

zero of PL(Z), by (%.73) occurs near

L = 1.2VN/a . . | (3.74)

For L <«< "\[1-\1_, ﬁ(N,L) ~will thus be roughly constant, sl-owly decreasing
with inqreaéing L, since the entire forward peak in TN(y) is
included, as shown in Fig. 3.5.12
As I gets larger than LO; H(N,L) will begin to drop
sharp_ly. A numerical computation for N = 50 is shown in Fig. 3.6..

Taking N >> y and expanding I‘fl(y) in a power series about ¥ = a,
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H(N,L)

dz J <2LV 2 I‘(y)

on® fdx N(logN 2L'\/—) Z o (M), 3

J::

1- 2a/N

e

e

[o0]
. : 2
a Z (N) {3 +1) ( -L
2N c. : FAj +1; 1) =
e = J (N log N)J+l 171 N log N

[o0)

o 2 ,
= 2N Z cj(N) r{(j + 1)(N log I\T)-‘J“:L e b /N log N
J=0 . 5 :
L
K - y Lj<m> , o (3.75)

: 1
where Lj(x). is a Laguerre polynomial. . Now

ﬁ-——y : l N = r 1l ~a + ?%}‘(‘> Sin.j’( a(l - gx
v roa(l -3 ' -
» (3.76)
Since we care about O < x < 2/N, we can set
1 - . Nx
: < - - a2
T S r(l - a) sin #a<l 5
_ & 25 o 2541 ;
N . - s -
= I‘(l»Ia.) Sln_“azr2j+l cos“aZI‘23+2 (-1)
' : J=0 J=0

Wae@E%NL ' | (3.77)
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. 5 .
Fejer's formula for Lj(z) glves,l’ for fixed z,

| | 1, | -1/
lim L.(z) = W/n e2? 4 l/&‘cos[Q Viz - w/4] + 0(J / )
s Y ' ‘ L

| (3.78)

From (3.77) and (%3.78) we see that the series (3.75) converges

for fixed and large L,N. For L << N, the argﬁment of the Laguerre
‘polynomial becomes small and (3.78) is no longer applicable. Instead

we have

7 1)~ 5y(12023 ¢ 102B) w0l (5.79)

and (3.75) still clearly converges, with each term dying exponentially.

o .
e'L /N ng N and, as we have mentioned above,

For L << ‘\/'ﬁ, H(N,L) ~
is relatively inseﬁsitive to L.

| Finally, for L >>-1[EZ a much more complicated set of
arguments15 leads once more to the conclusion:that.the series (3.75)

converges, and the sum dfops.off exponentially. as .L “increases,

From (3.75), note that the first term in the series gives

a-1

H(N,L) ~ %EI\T for large N.

From (3.75), [see Fig. 3.6 also] we see that for large, fixed,
N, I(N, L) is a monotonically decreasing function of L. This means
that the positivity of T(N, 1) and r(N, 0) guarantees I(N, L) > 0,

for large 'N.
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III.F. Threshold Behavior of Fo(x,y) '

At threshold (s = huz, t = u = 0), our amplitude (2.5)

becomes v . . bt

1 .
$ Folaa) + Fyla + 3, 2)
= g o

Fo(a,a)
- (3.80)

The s-wave scattering lengths are related to the amplitude by

a; = -AIS/EM . . (3.81)

The two quantities of interest are

' 1 . -
b = g(gao' - 532)}1 = g['FO(a’a)+ EO(a + N, a)]
- (3.82)
and
. : o 1 o : |
R = a,o/a.2 = -§+75F0(a + )\, a)/FO(a.,a) . (5-85)
For .a = 1/2, Ezﬂa,a) ~ Toy = O,vand a, = 0. We set
D :_1'Gév'2 'so that A = 0.08. For |a -'%l >n REZ 5/2, which

is also the value AO/AE has at the symmetry point s =t = u = h/} pg.

764 MeV

Il
e

Teking a = 1/2, we have, if we use Ppﬁﬂ.; 112 MeV, and Mp

to fix g = 1, as in Sect. III.D,
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o
1l

o = -3E(1/2 + 2, 1/2)/2u

5r(l/§%_§§lé§ =Nz ;o.u/u , (3.84)

and therefore L, which is relatively insensitive to the zero, is
L = 0.13/u . : (3.85)

16

(We will return to L and its relation to the Adler . sum rule
below.) If the ampiitude is reasonable, the partial-wave amplitudes
aJ(s) should have a threshold behavior like qu.-;Recalling (1.22),

we have

+1
aJI(s) - Jf dz P(2) £.(s,2) . (1.22)

-1

As long as a < 1l - )\ our amplitudes have no singularities at
threshold and they are also invariant functions of (s,t). This
. I, 2J ‘ 2 .
automatically means & (s) ~a or faster as q — 0. Said
another way, fI(s,z) is expansible in a power series in
q2 = %(s - hpg) around _qg = 0;

b

‘00

£ (s,z) =-Z'cp<z> 2. (5.86)
p=0 '
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The threshold behavior is right if e (2)

K

Cele) =) e, (3.87)

Jj=

can be’expanded in a power series in 2z whose highest power. is K.
This is' always true if there is no singularity in t at threshold,

‘because z always appears in the combination qu.

A
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IIT.G. Angular Behavior at'High»Energies

As shown in Section III.B? the average asymptotic behavior

of Fo(x,y) as |x| > for fixed y is

g x) e Y

Folx,y) ~ STy Y B - (3.88)

We want to relate this to the statements in Section‘III.A

- about the forward and backward peaking of the pole .residues.

~ From (1.3), (1.2). (3.88), and (1.29),

22, oa(t) |, 2f x -2
. do, + - 00 g (bs) (t) sin <:§ a(ti) blixs
lim a%(ﬂ T ST N ~ 5 5 .
S— 00 r (’oc(t)) sin” wo(t)
(3.89)
, . Parameterizing this in the usual way; as

do c+dt
~ e

at ’ - | (3.90)

~ 2 2

. : . ~ - ~ . - . 2
we have, for a = 1/2 and b =1 GeV —, d:= 12 GeV at s = 30 GeV

which is in the reasonable range. (Slopes range from - =5 GeV-? for

K p S0 to 12 GeVTS for WN charge exchange,l7 ] > 0.2 GeVg.) :

The author has benefited from discussions with G. F. Chew,

S. Mandelstam, and J. Shapiro.

2
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FIGURE CAPTIQNS
n  scattering With»momenta.and isospin labels.
The plane (N, L), (N=a(s) , L= o?bital angular - o
ﬁomentum in fﬁé?s chénnel) showing pbssible nonzero  mgu | |
?ouplings arising from_funé@ions of the type discussed in
the text. Note the absence. of states ‘at N - L - 0,
(a possible "ghost" state) and in the "ancestor" region
L > N.
Plot . éf TN<X) = I(x + N>/r(x) for N = 8. This is propor-
tional to the residue of the ;pole at a(s) =8 i.n
Fo[a(s), a(t)]. .Curve. b is a blowup of the central

portion of curve a. The scale on the left is for a, the

‘one on the right for b. The range of integration indicated

is the ph&sical region for a = 0.48 and the physical =«
and o  masses. Notice the strong forward peaking, and the
growing size of the oscillations as one goes away from

X = =3.5.

*Avefage asymptofic behavior of Fo[a(u), a(t)] on the

Mandelstam ?lot, showing zgros and poles. _

Poles and zeros of Fo(x,y)'= r(l - x) r(1 —”y)/F(l -X -y).
?oles are solid lines,_zeros»dbtted lineé. |
Intersections of Iines of zerosiin Fb[a(s), agt)];

Folals), o) 13 Fola(t), aw)l.

Tu(y) Vs Ph(g),‘Pl(z),_and PO(Z).

r(s0, L) as function of L.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any perso‘n' acting on
behalf of the Commission: ‘ .

A. Makes any warranty or representation, expressed-or implied, with

respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or "

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, method, or
" process disclosed in this report.

As used in the above, “person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, bany information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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