Lawrence Berkeley National Laboratory

Recent Work

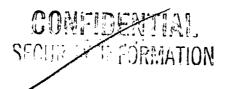
Title THE HEAT OF FORMATION OF THORIUM SESQUISULFIDE

Permalink https://escholarship.org/uc/item/4mn3j94b

Authors

Eyring, LeRoy Westrum, Edgar F.

Publication Date 1953-04-07


CONFIDENTIAL SECURITY INFORMATION

UCRL- 2175

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

RADIATION LABORATORY

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA Radiation Laboratory

Cover Sheet Do not remove INDEX NO. <u>UCR1-2175</u> This document contains <u>10</u> pages This is copy <u>97</u> of <u>123</u> series <u>B</u>

Issued to Information Division

CONEIDENTIAL

Classification

Each person who receives this document must sign the cover sheet in the space below.

Route to	Noted by	Date	Route to	. Noted by	Date
	1 ,	· · · · · · · · · · · · · · · · · · ·			
C. O. Lauren				· · ·	
	1		•		
				•	
·			· · ·		
		ATUR 2			
, , , , , , , , , , , , , , , , , , ,					
<u> </u>				++	<u></u>

CONFIDENTIAL SECURITY INFORMATION

UCRL-2175 Chemistry-General Distribution

UNIVERSITY OF CALIFORNIA

Radiation Laboratory

Contract No. W-7405-eng-48

THE HEAT OF FORMATION OF THORIUM SESQUISULFIDE

LeRoy Eyring and Edgar F. Westrum, Jr.

April 7, 1953

CONFIDENTIAL SECURITY INFORMATION

RESTRICTED DATA

This document contains restricted data as defined in the Atomic Energy Act of 1946. Its transmittal or disclosure of its contents in any manner to an unauthorized person is prohibited.

Berkeley, California

UCRL-2175 Chemistry-General Distribution

Standard Distribution: Series B	No. of Copies
American Cyanamid Company (Watertown)	l
Argonne National Laboratory	1 2-9
Armed Forces Special Weapons Project (Sandia)	10
Armed Forces Special Weapons Project, Washington	12
•	12 13-17
Atomic Energy Commission, Washington Battelle Memorial Institute	18
Brookhaven National Laboratory	
v v	19-21
California Research and Development Company	22-23
Carbide and Carbon Chemicals Company (C-31 Plant)	24-25
Carbide and Carbon Chemicals Company (K-25 Plant)	26-28
Carbide and Carbon Chemicals Company (ORNL)	29-36
Carbide and Carbon Chemicals Company (Y-12 Plant)	. 37-40
Catalytic Construction Company	41
Chicago Patent Group	42
Chief of Naval Research	43
Dow Chemical Company, Pittsburg	41 42 43 44 45
Dow Chemical Company (Rocky Flats)	
duPont Company	46-50
General Electric Company (ANPP)	51-53
General Electric Company, Richland	54-59
Hanford Operations Office	60
Idaho Operations Office	61-64
Iowa State College	65
Knolls Atomic Power Laboratory	66-69
Los Alamos Scientific Laboratory	70-72
Mallinckrodt Chemical Works	73
Massachusetts Institute of Technology (Kaufmann)	74
Mound Laboratory	75-77
National Advisory Committee for Aeronautics, Cleveland	78 70
National Bureau of Standards	79
National Lead Company of Ohio	80
Naval Medical Research Institute	81
Naval Research Laboratory	82
New Brunswick Laboratory	83 91. or
New York Operations Office	84-85
North American Aviation, Inc.	86-87 88
Patent Branch, Washington	89
RAND Corporation	-
Savannah River Operations Office, Augusta	90
Savannah River Operations Office, Wilmington	91 92
Sylvania Electric Products, Inc.	92
Tennessee Valley Authority U. S. Naval Radiological Defense Laboratory	93 94
UCLA Medical Research Laboratory (Warren)	94 95
University of California Radiation Laboratory	95-99
University of Rochester	100-101
Vitro Corporation of American	102-103
Western Reserve University (Friedell)	104
Westinghouse Electric Corporation	105-106
Wright Air Development Center	107-108
Technical Information Service, Oak Ridge	109-123
LEOLUTOAT TUTOLINGOTOUL DELATCE OGN UTURE	TO2=TC)

-2-

CONFIDENTIAL

-3-

UCRL-2175

THE HEAT OF FORMATION OF THORIUM SESQUISULFIDE

LeRoy Eyring² and Edgar F. Westrum, Jr.³ Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

April 7, 1953

¹This work was performed under Manhattan District Contract W-31-109 - Eng 38 in 1946 at the Radiation Laboratory, Berkeley.

²Department of Chemistry, State University of Iowa, Iowa City, Iowa.

³Department of Chemistry, University of Michigan, Ann Arbor, Michigan.

ABSTRACT

The heat of solution of thorium sesquisulfide was determined in 6.000 molar HCl at 25° C.to ascertain the stability of the thorium (III) halides. The molal heat of formation of Th₂S₃ from rhombic sulfur and crystalline thorium is calculated as 258.6 kcal.

CONFIDENTIAL

THE HEAT OF FORMATION OF THORIUM SESQUISULFIDE¹

LeRoy Eyring² and Edgar F. Westrum, Jr.³ Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

April 7, 1953

¹This work was performed under Manhattan District Contract W-31-109 - Eng 38 in 1946 at the Radiation Laboratory, Berkeley.

²Department of Chemistry, State University of Iowa, Iowa City, Iowa.

³Department of Chemistry, University of Michigan, Ann Arbor, Michigan.

The stability of the thorium (III) oxidation state is a matter of considerable interest in understanding the nature of the actinide elements. As a prelude to attempts to prepare a trihalide of thorium, we determined the heat of solution of thorium sesquisulfide (Th_2S_3) in aqueous hydrochloric acid and calculated its heat of formation. These quantities are of interest in considering the applicability of thorium sesquisulfide as a refractory material and in deducing the probable stabilities of thorium (III) halides.

Experimental

These measurements were made with a calorimeter, the calibration and operation of which are described elsewhere.⁴ ⁴E. F. Westrum, Jr., and H. P. Robinson, National Nuclear Energy Series, Plutonium Project Record, Vol. 14B, "The Transuranium Elements: Research Papers," McGraw-Hill Book Co., Inc., New York, 1949, Paper Nos. 6.50 and 6.51.

Frequent electrical calibrations were in complete accord with previous determinations of the heat capacity of the calorimeter.

A two gram sample of thorium sesquisulfide prepared by Dr. Leo Brewer and his co-workers⁵ was made available to us.

⁵E. D. Eastman, L. Brewer, L. A. Bromley, P. W. Gilles, and N. L. Lofgren, J. <u>Am. Chem. Soc.</u>, <u>72</u>, 4019 (1950).

Tests indicated that 96.95 \pm 0.2% of the thorium sesquisulfide sample dissolved in aqueous HCl, liberated H₂ and H₂S, gave a solution with a S/Th ratio of 1.500 \pm 0.005, and left 3.05 \pm 0.2% of an insoluble residue of ThOS or ThO₂.⁶ An accurately weighed

⁶L. Brewer, Manhattan Project Documents, MB-LB-123 and MB-LB-126 (1945).

quantity of thorium sesquisulfide was sealed into thin bottomed sample bulbs under an atmosphere of anhydrous nitrogen. In the calorimeter, each sample was reacted with 6.000 molar HCl which had been standardized against mercuric oxide and saturated with H_2 . The amount of thorium dissolved was determined by gravimetric analysis of the calorimeter solution after each run.

The quantity of H_2S which remained dissolved in the calorimeter was established in order that appropriate corrections could be made for it. The solution from the calorimeter was filtered rapidly and transferred to a sealed flask fitted with a delivery tube. Upon boiling the solution, the H_2S distilled over into a flask containing an excess of aqueous silver nitrate. The Ag_2S residue was filtered, washed with hot water, dissolved in concentrated nitric acid, and titrated with 0.1 M KSCN.

To determine thorium, the calorimeter solution was neutralized with 15 Mammonium hydroxide, heated to boiling, and the thorium precipitated as thorium oxalate upon very slow addition of an excess of aqueous oxalic acid solution. The precipitate was allowed to stand several hours and was then filtered, washed, and ignited to constant weight as ThO₂. A small, empirically determined correction was required to correct for the complexing action of the fluosilicate present in certain determinations. The six determinations of the heat of reaction of Th_2S_3 in acid solution are tabulated in Table I. Runs A, B and C were made with 6.000 molar HCl and in each the reaction lasted 10 to 12 minutes. Determinations D, E and F were made in precisely the same way except that the hydrochloric acid was 0.005 molar with respect to Na₂SiF₆. In these runs the reaction time was 6 to 8 minutes. The fluosilicate was added in order that the data could be compared without correction with heat of solution data of the metal dissolved in the fluosilicate

-6-

of 6.000 molar HCl at 25° C.										
Run Designation	А	В	С	D ^a	Ea	$\mathtt{F}^{\mathtt{a}}$				
$\begin{array}{c} \text{Millimoles of} \\ \text{Th}_2 S_3 \text{ weighed} \end{array}$	0.49106	0.60134	0.52416	0.70624	0.61456	0.29531				
Millimoles of Th ₂ S ₃ dissolved	0.4762	0.5820	0.5086	0.6850	0.5972	0.2864				
Millimoles of H ₂ S dissolved	1. 343	1,641	1.421	1.932	1.684	0.807				
Observed heat liberated (cal.)	62.75	76.86	67.06	90.46	78.71	37.74				
Corrected heat evolved ^b (cal.)	63.26	77.48	67.60	91.18	79.34	38.04				
Molal heat of solution of Th ₂ S ₃ ^C (kcal.)	132.8	133.1	132.9	133.1	132.9	132.8				

-7-

UCRL-2175

Table I .

The Heat of Solution of Th_2S_3 in 212.29 grams

^aRuns D, E and F contain 0.005 molar concentration of Na_2SiF_6 .

^bIncludes correction for H_2O vaporized by escape of H_2S and H_2 and for the reaction $H_2S(aq) \longrightarrow H_2S(g)$.

^cReaction (2) text.

HCl solvent.⁷ The experiments were performed at 25.00^o C. The

⁷L. Eyring and E. F. Westrum, Jr., <u>J. Am. Chem. Soc.</u>, 72, 5555 (1950).

molecular weights of Th_2S_3 and ThO_2 are taken as 560.42 and 264.12, respectively.

The Heat of Formation of Th_2S_3

The series of reactions represented in Table II are the basis for the calculation of the heat of formation. The **sm**all concentration of fluosilicate in the 6.0 molar HCl is understood to be present.

Table II

(1)
$$\operatorname{Th}(c) + [aHC1 \cdot bH_2O] = [ThC1_4, (a-4)HC1, bH_2O] + 2H_2(c)$$

(2) $\operatorname{Th}_2S_{3(c)} + [aHC1, bH_2O] = [2ThC1_4, (a-8)HC1, bH_2O, 3H_2S] (aq)$
 $+ H_{2(g)}$

(3)
$$3H_{2(g)} + 3S_{(R)} + [2ThCl_4, (a-8)HCl, bH_2O] = [2ThCl_4, (a-8)HCl, bH_2O, 3H_2S]$$

(4)
$$2 \left[\text{ThCl}_4(a-4)\text{HCl}, \text{bH}_2 O \right] = \left[a\text{HCl} \cdot b\text{H}_2 O \right] + \left[2\text{ThCl}_4(a-8)\text{HCl}, b\text{H}_2 O \right]$$

(5) $2Th_{(c)} + 3S_{(R)} = Th_2S_{3(c)}$

Reaction (1) is evaluated from the heat of solution of thorium metal. Reaction (2) represents the heat of solution of thorium sesquisulfide from this work. The apparent heat of formation of hydrogen sulfide in 6.0 molar aqueous HCl is not available; however, the heat of formation of H_2S in the hypothetical standard state of unit molarity in aqueous solution⁸ is given as -9.4 kcal. mole⁻¹. The enthalpy

⁸Selected Values of Chemical Thermodynamic Properties, National Bureau of Standards, Circular 500, Washington, D.C. (1952).

change for the reaction $H_2S_{(aq)} = H_2S_{(g)}$ is given as 4.6 kcal. mole⁻¹. Furthermore, the hydrogen and the hydrogen sulfide leaving the solution will be saturated with water and a correction must be applied for the water vaporized. Because the solution had been saturated with hydrogen at the beginning of the experiments, it was assumed that this condition prevailed at the end. The thermal effect of equation (4) is negligible under the experimental conditions.

The heat of formation, Reaction (5), at 25° C is therefore:

 $\Delta H_5 = 2\Delta H_1 - \Delta H_2 + \Delta H_3 + \Delta H_4 = -258.6$ kcal. mole⁻¹ from thorium and rhombic sulfur. If gaseous sulfur is used as the reference state, the heat of formation of the thorium sesquisulfide is -303.4 kcal. mole⁻¹.

Comparison of this value with the corresponding heat of formation of Ce_2S_3 leads to limiting values for the heat of formation of thorium (III) halides. The argument has already been presented⁹

⁹L. Brewer, U.S. Atomic Energy Commission Declassified Document. AECD-1911 (1948).

-9-

CONFIDENTIAL

and need not be repeated here. An attempt by Warf to prepare the trivalent thorium fluoride was not successful¹⁰ although

¹⁰J. C. Warf, U.S. Atomic Energy Commission Declassified Document. AECD-2654 (1947).

Hayek and Rehner^{11, 12} and Anderson and D'Eye¹³ claim to have

¹¹E. Hayek and Th. Rehner, <u>Experientia S</u> 114 (1949).

¹²E. Hayek and Th. Rehner, <u>Monatsheften fur Chemie</u>,
82, 575 (1951).

¹³J. S. Anderson and R. W. M. D'Eye, <u>J. Chem. Soc.</u>, Supplement 2 - 244 (1949).

prepared thorium (III) iodide.

The technical assistance of Winifred Heppler and the motivating influence of Dr. Leo Brewer are gratefully acknowledged.

CONFIDENTIAL