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ABSTRACT OF THE DISSERTATION

Penrose limits and co dimension 2 defects in supergravity theories

by

Nicholas Klein

Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Michael Gutperle, Chair

In this dissertation, we will discuss two different holographic constructions. First, we

construct a Penrose limit for the type IIB AdS6 × S2 × Σ solutions of [1, 2, 3]. These

solutions are dual to 5d SCFT which can often be described in terms of long quiver gauge

theories. The resulting plane wave spacetime takes a universal form and the worldsheet

action of the Green-Schwarz string is quadratic in the light cone gauge allowing us to obtain

the spectrum of string excitation.

Next, we present a solution of d = 7 N = 4 gauged supergravity which is dual to co-

dimension 2 defect living in a six-dimensional SCFT. Regularity conditions are satisfied by

a one parameter family of solutions. We then uplift these to eleven dimensions where they

can be understood as Lin-Lunin-Maldacena solutions. Using their electrostatic formulation,

we find an infinite family of regular solutions describing holographic defects. We compute

holographic observables in both the seven-dimensional and eleven-dimensional theories.
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CHAPTER 1

Introduction: The AdS/CFT Correspondence

The AdS/CFT correspondence [7, 8, 9], the conjectured duality between certain theories of

gravity in (d+1)-dimensional asymptotically anti-de Sitter spaces (AdS) and non-gravitational,

conformal field theories (CFT) living on their d-dimensional boundaries, is one of the most

important developments of modern theoretical physics and since being formulated, has been

the impetus of much inquiry by (and an indispensable tool for) those looking to understand

the physics on either side of the duality. It is in this context that the research being pre-

sented in this thesis - having to do with the computation of field theory observables using

supergravity - was undertaken. While the computations in this thesis are restricted to the

gravity side, we should mention that it is also possible to perform precise checks of these

dualities with field theory calculations; the main tool here being supersymmetric localiza-

tion [10] which provides us with results that can be reliably extended to strong coupling and

compared against predictions from the gravity side.

In this introductory chapter, we will set the stage for the work described in the body of

this thesis by presenting a overview of the correspondence as it was first arrived at through

string theory. In the section 1.1, we will briefly review some aspects of perturbative string

theory and in section 1.2, we discuss Dp-branes - the solitonic objects of the theory. An

important aspect of these branes is that their low energy dynamics have two different de-

scriptions; one which uses the effective dynamics of the theory living on their worldvolume

and second which treats them as sources of the massless closed string fields in a low-energy

limit. In the latter, these branes will have a geometric description given by a classical, su-

pergravity solution of the low-energy field equations. It is precisely these two points of view

which - after taking care to control corrections from the stringy dynamics - will provide us
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with each side of the duality between gauge theory and gravity. In sections 1.3 and 1.4, we

will see the details of how this plays out in a few of the historically important cases in Type

IIB and M theory. In section 1.5, we will explore a plane wave limit of the aforementioned

duality in type IIB. This will give us computational tractability which so far is unavailable

in the string σ model on the AdS background with RR fields. Finally, in section 1.6, we will

explore holographic descriptions of field theories with conformal defects.

The rest of this thesis is comprised of three chapters, each of which is based on one of

the following publications [4, 5, 6]. In chapter 2, we will review another class of supergravity

models first proposed in [1, 2, 3] which are duals of 5 dimensional SCFTs. In these back-

grounds, we will take a similar limit to the one in 1.5 which will allow us to quantize the

superstring. In chapters 3 and 4, we will construct a new family of supergravity solutions

in 7 dimensions which are the holographic duals to co-dimension 2 defects in 6 dimensional

SCFTs. These solutions are related by analytic continuation to supersymmetric black hole

solutions. We will compute holographically renormalized gravitational observables in both

the original 7 dimensional supergravity as well as in the uplift to 11 dimensions where they

can be understood using M theory.

1.1 Pertubative String Theory

We will start this overview by reviewing the basic string theory components that will show

up in our effective descriptions in the next subsection.

A consistent quantization of gravity through string theory is obtained by replacing point

particles by extended objects whose worldvolume can be parameterized by the variables τ, σ

and are embedded in d dimensional spacetime with the coordinates Xµ(τ, σ). We start with

open strings, for which 0 < σ < π. In the conformal gauge, the action that must quantized

(though we will not reproduce the details here) is given by

1

4πα′

∫
M
d2σ∂aX

µ∂aXµ (1.1)

2



which can be extended to superstrings by adding worldsheet fermions.

S =
1

4π

∫
M
d2σ

{
α′−1∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

}
(1.2)

Enforcing the vanishing of the surface term in the resulting equations of motion allows for

two possible types of boundary conditions of the worldsheet fermions:

R : ψµ (0, τ) = ψ̃µ (0, τ) ψµ (π, τ) = ψ̃µ (π, τ) (1.3)

NS : ψµ (0, τ) = −ψ̃µ (0, τ) ψµ (π, τ) = ψ̃µ (π, τ) (1.4)

giving us the so-called Ramond (R) and Neveu-Schwarz (NS) sectors of the theory.

It is a well known fact that in order for the superstring worldsheet Weyl anomaly to cancel,

we must be at the the critical dimension d = 10. Massless states are therefore classified by

their SO(8) representations. The lowest lying states in the NS sector are the eight transverse

polarizations of the open string photon, Aµ which form the vector representation of SO(8)

labeled 8v. The Gliozzi-Scherk-Olive (GSO) projection [11] onto states with even fermion

number, (−1)F = 1, removes the open string tachyon which also appears in the bosonic

string spectrum.

In the Ramond sector, there is a degenerate vacuum forming a representation of the Dirac

algebra which can be decomposed into the 8s and 8c representations of SO(8). The GSO

projection picks out one of these two, however they are physically equivalent, differing by a

spacetime parity redefinition. Together these two open string sectors, 8v ⊕ 8s, give us the

spectrum of a massless vector multiplet with d = 10, N = 1 supersymmetry.

The closed string spectrum can be obtained using two copies of the open string spectrum

with left and right moving levels matched. The two choices of GSO projection therefore lead

to two choices of massless sectors:

Type IIA: (8v ⊕ 8s)⊗ (8v ⊕ 8c) (1.5)

Type IIB: (8v ⊕ 8s)⊗ (8v ⊕ 8s) (1.6)

The NS-NS sectors of either choice are the same, giving us a dilaton ϕ, graviton Gµν and

3



antisymmetric tensor Bµν :

(8v ⊕ 8s) = 1⊕ 28⊕ 35 (1.7)

however the R-R sectors decompose differently

(8s ⊕ 8c) = [1]⊕ [3] (1.8)

(8s ⊕ 8s) = [0]⊕ [2]⊕ [4]+ (1.9)

where [n] denotes the n-times antisymmetrized representation of SO(8) where [4]+ is self

dual. One can also show that the physical state conditions for these representations reduce

to the Bianchi identity and field equation for an antisymmetric tensor field. Duals of the [n]

representation can then be understood as the Hodge dual of the associated rank-(n+1) field

strengths. Together these NS-NS and R-R fields form the bosonic components of d = 10

type IIA or type IIB supergravity. We can write down the effective action of the latter (as it

will be most relevant to us throughout the rest of this thesis), which is fixed completely by

supersymmetry. The self-duality constraint is imposed as a supplementary field equation.

SIIB =
1

4κB

[ ∫
d10x

√
ge−2ϕ

(
2R + 8(∂ϕ)2 −H2

(3))

)
−
∫
d10x

√
g

(
F 2
(1) + F̃ 2

(3) +
F̃ 2
(5)

2

)
−
∫
A(4) ∧H(3) ∧ F(3)

]
+ fermions (1.10)

∗F̃5 = F̃5 (1.11)

HereH = dB, Fi = dCi−1 for the potentials C0, C2, C4 and F̃µ1...µp+1 = Fµ1...µp+1−B{µ1µ2F...µp+1}.

There are two parameters here that will control the perturbative expansion. The first is

α′ which controls the masses of the higher string modes and the strength of higher derivative

corrections and the other is string coupling constant gs = ⟨eϕ⟩ which controls stringy inter-

actions and quantum corrections. In principle, all of these corrections can be calculated in

string perturbation theory; at each order in the loop expansion, the Feynman graph - which

can be calculated using the worldsheet CFT - is represented by a Riemann surface for which

the genus is the number of loops.

4



1.2 D-Branes

The type II theories discussed above (both string theory and the supergravities) have ex-

tended charged objects called p-branes which generalize the 1 dimensional strings to p space-

like dimensions. They interact with gravity and gauge fields through couplings of the form

Sp = Tp

∫
dxp+1√g + µp

∫
dxp+1Ap+1 (1.12)

where, like for the string, we integrate over the worldvolume. The first term defines the

tension τ of the brane and the second term is the coupling to the Ap+1 antisymmetric field

where q is the brane charge. These charges obey a Dirac quantization condition which can

be derived by integrating the associated field strength over an S8−p in the space transverse

to the brane:

(2π)p−6(α′)
p−7
2

∫
S8−p

∗Fp+2 = 2πN (1.13)

1.2.1 Geometry

There exist classical solutions of type II supergravity (Equation 1.10 for type IIB) with

sources that correspond to these massive charged p-branes. They are called black p-branes

as they generalize charged black hole solutions. As in the charged black hole situation,

evasion of naked singularities leads to a bound on the mass/tension and charge which, when

saturated, lead to so-called ”extremal” p-branes. Such solutions are special since extremality

is equivalent to preserving half of the original 32 supersymmetries of the theory.

The geometry of an extremal p-brane with flux N parallel to the first p+ 1 directions is

given by:

ds2 = H−1/2(r)dx2µ +H1/2(r)dy2 (1.14)

A0···p = H(r) (1.15)

eϕ = gsH(r)(3−p)/4 (1.16)

H(r) = 1 +
cgsN (α′)(7−p)/2

r7−p
(1.17)

5



where c is some numberical constant, y are the transverse directions and r is the radial

distance from the brane. This solution can be generalized by replacing the harmonic function

H with the more general

H(yi) = 1 + cgs(α
′)(7−p)/2

N∑
a=1

1

|y − ya|7−p
(1.18)

This solution is still extremal and has flux N however it corresponds to N branes of unit

charge at various locations y⃗a. For obvious reasons, it is called the multi-center solution.

Extremality of this more general solution tells us that these p-branes can be moved around

at no energy cost. This is due to the exact cancellation of repulsive and attractive forces

resulting from the gauge and gravity interactions.

1.2.2 World Volume Theory

In perturbative string theory, the extremal p-branes of the previous section can be described

in terms of planes where open strings can end. It is for this reason that they are referred

to as D(irichlet)-branes after the boundary conditions with which the strings end. These

D-branes should, like strings, interact with the background fields of the theory. We will

briefly comment on the worldvolume theory that describes their dynamics.

Much like in the case of the Nambu-Goto action for the string, we can start by choosing a

set of embedding functionsXA(xa) where A = 1, ..., 10 and a = 1, ..., p+1 which parameterize

the fluctuations of the brane in transverse space. We can set Xa = xa for the first p + 1

directions along the worldvolume and letX i = ϕi for the remaining 9−p transverse directions.

This is called the ”static gauge”. The Nambu-Goto action becomes∫
dxp+1√g =

∫
dxp+1

√
detab(gab + gij∂aϕi∂bϕj) ≈

∫
dxp+1√g + 1

2

√
ggij∂aϕ

i∂bϕ
j + ..

(1.19)

for ϕi which vary slowly. We obtain the kinetic term for 9 − p transverse scalars living on

the worldvolume.

There are of course additional fields living on the brane than just these scalars. We

also have to take into account new couplings for the embedding coordinates (and the gauge

6



fields Aa(x) from strings ending on the brane) which result from other background fields

such as Bµν as well as the various R-R fields. Fortunately since D-branes are half-BPS, the

worldvolume theory should preserve 16 supersymmetries and so we know in advance that

the additional worldvolume fields must make up the rest of the vector supermultiplet; the

only supermultiplet with the right number of supercharges.

By quantizing open strings ending on these branes, one can obtain massless excitations

corresponding to exactly such a multiplet. The effective action for these fields can be deter-

mined by perturbation theory of open and closed strings:

1

(α′)(p+1)/2

∫
dxp+1

(
e−ϕ
√
det(g + (2πα′F +B2)) + e1πα

′F+B2 ∧
∑
k

Ck|p+1

)
(1.20)

where the first term, called the Dirac-Born-Infeld (DBI) action, includes the gauge fields

and their interactions with the bulk field Bµν and the second term, called the Wess-Zumino

term, generalizes the coupling to Ap in equation 1.12.

A crucial element of the dualities we will encounter in the following sections is the non-

abelian generalization of the above story. This arises from considering a set of N Dp-branes

such as those described by the supergravity solutions 1.14 and 1.18. We have already seen

that open strings ending on a single brane give rise to massless vector multiplets. However,

open strings which connect separated branes give rise to massive vector multiplets with

m ∼ |ϕ⃗1 − ϕ⃗2|/α′ since the string with tension 1/α′ has non-zero length. When the branes

coincide, these masses vanish and we obtain the N2 massless vector fields of an enhanced

U(N) symmetry. This can be thought of in the world volume field theory as a sort of inverse

Higgs mechanism where there is a direct correspondence between the set of vacua of the field

theory and the minimal energy configurations of the D branes in spacetime.

1.3 The D3-Brane System

We are now ready to combine all of the ingredients of the preceding section for the special

case of N coincident D3 branes in IIB string theory [12]. As we saw, the open strings ending

on such branes are described by the DBI part of the worldvolume theory given by 1.20 with

7



gauge group U(N).

We will now want to consider the low energy limit of this action such that only massless

excitations are taken into account. As we saw previously, this amounts to an expansion in

the parameter α′. The resulting action is

SDBI = − 1

2πgs
Tr

∫
d4x

(
1

2
FµνF

µν +
6∑
i=1

∂µϕi∂µϕ
i − πgs

6∑
i,j=1

[ϕi, ϕj]2

)
+ fermions +O(α′)

(1.21)

In the low energy limit α′ → 0, open strings decouple from from any closed string modes in

the full d = 10 spacetime. So what we are left with is the action 1.21 plus some free massless

gravity excitations about flat space coming from the decoupled closed strings. Notice that

this leaves us with the N = 4 Super Yang-Mills theory for the massless vector supermultiplet

as long as we identify 4πgs = g2YM . That is,

lim
α′→0

SDBI = SN=4 SYM|g2Y M=4πgs (1.22)

We must, however, be careful to perform this limit in a way that keeps field theory quantities

finite. The Higgs phase masses of the gauge bosons are given by ∆r/α′ so we take α′ → 0

while leaving the masses finite.

On the other hand, we may also view these N coincident D3 branes from the supergravity

point of view, 1.14, when gsN ≫ 1:

ds2 = H(r)−1/2dx2µ +H(r)1/2dy2 = H(r)−1/2dx2µ +H(r)1/2(dr2 + r2dΩ2
5) (1.23)

H(r) = 1 +
4πgsNα

′2

r4
= 1 +

g2YMNα
′2

r4
(1.24)

We can define the new variable U ≡ r/α′ and take the α′ → 0 limit keeping U fixed. The

resulting metric is

ds2 = α′
(

U2

√
4πgsN

dx2µ +
√

4πgsN
dU2

U2
+
√

4πgsNdΩ
2
5

)
(1.25)

which describes AdS5 × S5 where the radius of the sphere and AdS both equal to R2 =

L2
AdS = α′√4πgsN .
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By considering the massless modes in each of these two pictures we can formulate the

correspondence - In both, there is free gravity in d = 9+1 but in the first, we have d = 3+1

N = 4 SU(N) SYM and in the second, we have type IIB supergravity on AdS5 × S5. The

”strong” form of the correspondence proposes that this duality goes beyond the supergravity

approximation presented here.

We also note that the symmetries of these two side agree; the supersymmetry group of

AdS5 × S5 is the same as the superconformal group in 3 + 1 dimensions and the SL(2,Z)

symmetry of SYM matches that of type IIB string theory. Additionally, the correspondence

can be seen as an example of a strong-weak duality in the sense that as the effective coupling

gsN gets large, we can trust supergravity calculations but not perturbative SYM calculations.

1.4 AdS Solutions from M Theory

An important result [13, 14, 15] which helped kick off the Second Superstring Revolution was

the realization that all of the superstring theories are dual to each other at strong coupling.

This subsequently led people to consider the relationships between these string theories and

supergravity in one dimension higher (d = 11) in search of the overarching theory within

which they each appear. To see why, we can consider, for example, coincident D0 branes in

IIA string theory. Here one encounters infinitely many particle states of evenly spaced mass

m = n/(α′1/2gs) which depend on the number of D0 branes, n, making up the bound state.

As we go to strong coupling, these states all become light. Such a spectrum is reminiscent

of dimensionally reduced theories (say, on an S1 of radius R) which acquire an infinite tower

of Kaluza-Klein states with m = n/R that become a continuum as R → ∞. This argument

motivates us to consider d = 11 supergravity as the strong coupling limit of the type IIA

string. While we will not comment on the full UV theory, called ”M Theory”, presently we

will just need the low-energy effective theory.

In 11 dimensional supergravity, we have a graviton, antisymmetric 3-form tensor field

9



A(3) and their superpartners whose physics is governed by the following action:

S11d =
1

16πG11

∫
d11x

√
−G

(
R− 1

48
F 2
(4)

)
− 1

96πG11

∫
A(3) ∧ F(4) ∧ F(4)

+ fermions (1.26)

with the following supersymmetry transformations

δeaµ =
1

2
ϵ̄ΓaΨµ

δAµνρ = −3ϵ̄Γ[µνΨρ]

δΨµ = (∂µ −
i

2
ωµabΣ

ab)ϵ+
1

288
(Γνραβµ − 8δ[νµ Γ

ραβ])ϵFνραβ (1.27)

Just as in the other supergravities we have encountered so far, we can make extended objects

which couple to the antisymmetric tensor fields of the theory. In the present case we have

just the self dual A(3) so that gives us an electrically charged ”M2-brane” whose solution is

ds2 = f
−2/3
3 dx2M3

+ f
1/3
3 (dr2 + r2dΩ2

7)

f3 = 1 +
πNℓ3p
r3

A(3) = f−1
3 dt ∧ dx1 ∧ dx2 (1.28)

and a magnetically charged ”M5-brane”

ds2 = f
−2/3
5 dx2M6

+ f
1/3
5 (dr2 + r2dΩ2

4)

f3 = 1 +
32πNℓ6p
r6

A(6) = f−1
5 dt ∧ dx1 ∧ ... ∧ dx5 (1.29)

where dx2Md
= (−dt2 + ...+ dx2d−1) is the d-dimensional Minkowski metric.

Basically everything that was done in section 1.3 for the D3-brane can be reproduced for

these branes in M-theory allowing us to conjecture a few more holographic dualities.

For the M5 brane, the decoupling limit is now obtained by sending the Planck length ℓp

to zero while keeping U ≡ r/ℓ3p fixed. Applying this limit to the metric 1.29 we obtain

ds2 = ℓ2p

(
U2

(πN)1/3
dx2M6

+ 4(πN)2/3
dU2

U2
+ (πN)2/3dΩ2

4

)
(1.30)
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where now the radii of the sphere and AdS7 are R = LAdS/2 = ℓp(πN)1/3. The low energy

worldvolume theory realized on N coincident M5 branes is an N = (2, 0) theory the super-

conformal algebra of which has bosonic subgroup SO(2, 6)×SO(5); precisely the isometries

of the above AdS7 × S4 near-horizon geometry.

For the M2 brane1, we take the slightly different decoupling limit ℓp → 0 keeping U ≡

r/ℓ
3/2
p fixed. In this limit, we obtain AdS4 × S7 with R = 2LAdS = ℓp(32πN)1/6. As

in the previous cases, we can identify the SO(3, 2) × SO(8) isometry of the near horizon

geometry with the SO(3, 2) conformal group and SO(8) R-symmetry of the N = 8, d = 2+1

worldvolume theory on N M2 branes.

1.5 A Penrose Limit for type IIB AdS5 × S5

Having conjectured above that string theory on AdS5 × S5 is dual to a particular CFT in

d = 3+1, one may be tempted to find a dictionary between states by directly quantizing the

superstring in this background. Unfortunately, quantization in the presence of general R-R

flux is a very difficult problem; in the Ramond-Neveu-Schwarz (RNS) formalism [16, 17],

the resulting fields become non-local and in the Green-Schwarz (GS) formalism [18], explicit

quantization is only straightforward in the lightcone gauge and in general it is unknown how

to formulate the appropriate sigma model that will allow one to do this. There is, however,

a way to make some progress in this direction through a particular limit of this space which

arises from considering particles with large angular momentum on the S5.

In this section, we will summarize the developments - starting with the original paper of

Berenstein, Maldacena and Natase [19] - of a particular concrete realization of an AdS/CFT-

like duality relating type IIB superstrings in a maximally symmetric plane-wave background

to double scaling limit of 4d N = 4 SYM. One of the most important features of this plane

wave background is that in the lightcone gauge, the string sigma model reduces to a free

1The resulting duality could also be obtained by considering D2 branes in type IIA (since they are just
M2 branes transverse to X10) and subsequently taking the strong coupling limit to get the resulting CFT.
In that case we let α′ → 0 keeping g2YM ∼ gs/α

′ fixed.
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massive theory and therefore, as in the flat background, we can easily find its spectrum.

This is in sharp contrast to the seemingly intractable AdS5 × S5 string which has yet to

be quantized. Furthermore, unlike in the strong/weak couple duality of AdS/CFT, the

plane wave/gauge theory duality is perturbatively accessible from both sides and so we can

compare their respective spectra in a perturbative expansion from either point of view.

We will obtain these plane wave backgrounds by taking a so-called Penrose limit of the

original AdS5 × S5 background where we zoom in on a particular light-like geodesic which

wraps the S5. This limit corresponds, in the dual gauge theory language, to a ”double-

scaling” where we take not only the rank N of the gauge group to infinity but also only

consider correlation functions of operators with diverging R-charge J ∼
√
N .

1.5.1 The Plane Wave Geometry as a Penrose Limit of AdS5 × S5

In global coordinates the AdS5 × S5 metric is given by

ds2AdS5×S5 = R2
[
−dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2

3 + dψ2 cos2 θ + dθ2 + sin2 θdΩ′2
3

]
(1.31)

To get the Penrose limit of this background, we will consider zooming in on a lightlike

trajectory parameterized by λ along ρ = 0, θ = 0, t = t(λ), ψ = ψ(λ). A massless, relativistic

particle moving along this trajectory is governed by the following action:

S =
1

2

∫
dλ
(
e−1gµν(x)ẋ

µẋν − em2
)
=
R2

2

∫
dλe−1

(
−ṫ2 + ψ̇2

)
(1.32)

If we introduce lightcone coordinates x̃± = 1
2
(t ± ψ), we find that the equations of motion

are solved by the lightlike trajectory x̃− = λ, x̃+ = const. To study the geometry near this

trajectory, we can rescale these coordinates by R in a convenient way and take R → ∞.

x+ =
x̃+

µ
, x− = µR2x̃−, ρ =

r

R
, θ =

y

R
(1.33)

where µ is a new mass parameter that we introduce to get the right length dimensions.

Rewritten in these new coordinates, the metric (1.31) becomes (to lowest order in R)

ds2 = −4dx+dx− −
(
r⃗2 + y⃗2

) (
dx+

)2
+ dy⃗2 + dr⃗2 (1.34)

= −4dx+dx− − µ2z⃗2
(
dx+

)2
+ dz⃗2 (1.35)
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and likewise, the non-vanishing self-dual five-form becomes

F+1234 = F+5678 = 4µ (1.36)

We notice that this breaks the transverse SO(8) invariance of the original metric to a SO(4)×

SO(4) subgroup.

We may now wonder how this R → ∞ limit manifests in the dual gauge theory. To

understand this, we will look at how the energy E = i∂t and angular momentum J = −i∂ψ

relate to the new light-cone quantities and their conjugate momenta:

Hlc := 2p− = i∂x+ = µi (∂t + ∂ψ) = µ(E − J)

2p+ = i∂x− =
1

µR2
i (∂t − ∂ψ) =

E + J

µR2

(1.37)

In the R → ∞ limit, we can see that generic excitations will have vanishing p+ unless

the angular momentum grows with R as J ∼ R2. In order to maintain a finite light-

cone momentum for such states, we must also require that J ∼ E. The nature of these

restrictions can be understood in to the N = 4 SYM language as follows: The energy E in

global coordinates is identified with the scaling dimension ∆ of a composite SYM operator.

On the other hand, the angular momentum J is identified to the charge of a U(1) subgroup

of the SO(6) R-symmetry. Therefore (1.37) can be rephrased as

Hlc

µ
= ∆− J (1.38)

The BPS condition ∆ ≥ |J | will guarantee that p± are non-negative. Given the well-known

AdS/CFT relation R4 = α
′2g2YMN , the limit R → ∞ with J ∼ R2 translates to the gauge

theory limit:

N → ∞, J ∼
√
N, gYM held fixed (1.39)

Note that gYM being held fixed in this limit corresponds to a finite value of the string coupling

gstring ∼ g2YM on the string theory side. Moreover, the finite light-cone energy tells us that

in the gauge theory, only SYM operators with ∆ ≈ J will survive.
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1.5.2 Light Cone Quantization of the Type IIB String in the Plane Wave

As we remarked above, one of the most important features of these plane wave NS (or RR)

backgrounds is that the string action becomes dramatically simplified in the light-cone gauge.

Letting x+ = τ (the worldsheet time), the action for the 8 transverse directions becomes the

action for eight massive bosons and the coupling to the RR background gives a mass to the 8

transverse fermions equal to the mass of the bosons. This is because the 16 supersymmetries

realized in the light-cone gauge commute with Hlc. Upon gauge-fixing, the action is

S =
1

2πα′

∫
dt

∫ 2πα′p+

0

dσ

[
1

2
ż2 − 1

2
z′2 − 1

2
µ2z2 + iS̄ (̸ ∂ + µΓ1234)S

]
(1.40)

where S is a Majorana spinor on the worldsheet and a positive chirality SO(8) spinor under

transverse rotations.

We quantize by expanding fields in Fourier modes on the circle labelled by σ just as in

the flat background and obtain bosonic and fermionic harmonic oscillators for each value of

n. The light cone Hamiltonian is

2p− = −p+ = Hlc =
+∞∑

n=−∞

Nn

√
µ2 +

n2

(α′p+)2
(1.41)

As usual, n > 0 label left-movers, n < 0 label right-movers and Nn denotes the total

occupation number of that mode. We also have the condition that the total momentum on

the string vanishes

P =
+∞∑

n=−∞

nNn = 0 (1.42)

It is illuminating to rewrite the spectrum (1.41) in terms of the original AdS5 × S5

variables. The contribution to 2p− = ∆− J for each oscillator is its frequency:

(∆− J)n = ωn =

√
1 +

4πgNn2

J2
(1.43)

Using the identifications in the previous section, we notice that N/J2 remains fixed in the

limit (1.39).
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1.5.3 The BMN sector of N = 4 SYM

The dual theory of the AdS5 × S5 superstring is the maximally supersymmetric (N = 4)

SYM theory in 4 dimensions. The field content is comprised of a gluon field, six scalars and

four Majorana gluoinos which can be written as a 16 component 10d Majorana-Weyl spinor.

All fields are in the adjoint of U(N). The action is uniquely determined be two parameters,

the coupling gYM and the rank N of the gauge group:

S =
2

g2YM

∫
d4xTr

{
1

4
(Fµν)

2 +
1

2
(Dµϕi)

2 − 1

4
[ϕi, ϕj] [ϕi, ϕj] +

1

2
χ̄ ̸ Dχ− i

2
χ̄Γi [ϕi, χ]

}
(1.44)

This theory has a global SO(6) R-symmetry acting as internal rotations on the six scalers

and four spinors. Also, due to the large amount of supersymmetry, the conformal invariance

of the classical field theory survives quantization (the β function for gYM is believed to vanish

to all orders in perturbation theory). Taking into account the 4d conformal group, the full

bosonic symmetry group of the theory is SO(2, 4) × SO(6)R (precisely the isometry group

of the AdS5 × S5 geometry).

The observables of interest to us in this theory are local, composite, gauge invariant

operators (i.e. traces of products of fundamental fields at a particular spacetime point). In

particular, an important class of such operators for a conformal theory are the conformal

primary operators with definite scaling dimension whose two-point functions are fixed by

symmetry to be

⟨OA(x)OB(y)⟩ =
δAB

(x− y)2∆OA

(1.45)

In the quantum theory, the scaling dimensions will generally receive radiative corrections

organized in an expansion in λ = g2YMN

∆ = ∆0 +
∞∑
l=1

λl
∞∑
g=0

1

N2g
∆l,g (1.46)

However, one feature of the N = 4 theory is the existence of a class of operators (called

”superconformal primaries”) whose scaling dimensions do not receive any corrections.
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Z Z̄ ϕi=1,2,3,4 Aµ ψA ψ̃Ȧ

∆0 1 1 1 1 3/2 3/2

J 1 −1 0 0 1/2 −1/2

∆0 − J 0 2 1 1 1 2

In order to identify the BMN limit of this model, we need to identify the U(1) charge J

corresponding to the angular momentum along the equator of the S5 on the string side. It

is given by the charge associated to the combination of two scalars, say ϕ5 and ϕ6

Z =
1√
2
(ϕ5 + iϕ6) (1.47)

The classical scaling dimensions and J charges of the fundamental fields are summarized in

the table above.

We are interested in the limit (1.39) which we stress is distict from the standart ’t Hooft

large N limit where one keeps λ fixed. This new limit, letting λ → ∞ seems disastrous

from the perturbation theory point of view however, we should remember that we are also

restricting our attention to the set of operators whose scaling dimensions are of the order of

J. These operators are made out of a long string of Z’s. For the protected conformal primary

operators, the strong coupling nature of our BMN limit is not visible. Examples of these

operators include

Tr[ZJ ] and Tr[ϕiZJ ] (1.48)

Another insight of [19] was to violate this protectedness by inserting a small number of

operators with ∆− J = 1

Tr[ϕiZ...ZϕjZ...ZDµZ...ZψαZ...Z] (1.49)

The authors showed that the two and three-point functions of these types of operators

receive quantum corrections through an effective loop counting parameter λ′ = g2YMN/J
2

which remains finite in the limit (1.39). Even though the scaling dimensions of genericN = 4

operators diverge, there remains a perturbatively accessible ”BMN sector”. Note, however,

that this effective weak coupling breaks down for higher point functions.
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1.5.4 The Plane Wave String State/Gauge Theory Operator Dictionary

Guided by the value of ∆ − J = Elc/µ, let’s identifying the gauge theory operators of the

previous section with plane wave string states. For the ground state |0, p+⟩ with vanishing

energy there is a unique single trace operator with ∆− J = 0, namely∣∣0, p+〉 = 1√
JNJ

Tr[ZJ ] (1.50)

Since this operator is protected, the scaling dimension will equal J to all orders in the full

quantum theory.

Moving on to ∆− J = 1, we have the following set of operators

Elc = µ α†
0
i
∣∣0, p+〉 = 1√

NJ
Tr[ϕiZJ ] (1.51)

Elc = µ α†
0
µ
∣∣0, p+〉 = 1√

NJ
Tr[DµZZ

J−1] (1.52)

Elc = µ θ†0A
∣∣0, p+〉 = 1√

NJ
Tr[ψAZ

J ] (1.53)

corresponding to the eight bosonic and eight fermionic excitations of the string. Note that

while the first of these is a conformal primary, the second is a descendent of the groundstate

operator (1.50). Similarly, the third state is a superconformal descendent of the groundstate.

All three operators are again protected and have ∆− J = 1 to all orders. Higher zero mode

excitations are obtained by symmetrized insertions of ϕi, DµZ and ψA. For example,

Elc = 2µ α†
0
iα†

0
j
∣∣0, p+〉 = 1√

JNJ

J∑
l=0

Tr[ϕiZ lϕjZJ−l] (1.54)

The challenge now lies in reproducing the string spectrum through the non-protected

SYM operators introduced above. At the first level we are searching for a gauge theory

object Oij
n with

Elc = 2µ

√
1 +

n2

(α′p+µ)2
αi−nα̃

i
−n
∣∣0, p+〉 = Oij

n (1.55)

The operator should carry two ϕ’s to reproduce the SO(4) index structure and should reduce

to (1.54) when n→ 0. It turns out that the correct answer is

Oij
n =

1√
JNJ

J∑
l=0

Tr[ϕiZ lϕjZJ−l]e2πinl/J (1.56)
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The scaling dimension of this operator to one loop is

∆Oij
n
= J + 2 +

g2YMN

J2
n2 + ... (1.57)

Note the appearance of the effective coupling λ′. Furthermore, after converting gauge theory

parameters into string parameters, we can write

λ′ =
g2YMN

J2
=

1

(α′p+µ)2
(1.58)

so that perturbation theory in λ′ corresponds to a µ → ∞ expansion on the string side. In

this regime, we precisely match the SYM result.

Elc
µ

= 2
√
1 + n2λ′ = 2 + λ′n2 + ... (1.59)

1.6 Holographic duals for conformal defects

In this section we will describe a slightly different type of holographic duality; one for which

the supergravity describes the degrees of freedom living on a lower dimensional conformal

defect. In such cases, these defects break the original conformal symmetry, say SO(d− 1, 2)

for a d-dimensional field theory, down to an SO(d − n − 1, 2) × SO(n) where n is the

codimension of the defect. The subgroup factors represent the conformal symmetry along

the defect and transverse rotations about the defect, respectively, and therefore can be

realized in the holographic dual as the isometries of AdSd−n and Sn−1.

Because of this, there are also local operators living on the defect itself which fuse ac-

cording to their own OPE. Bulk operators, O(x), can excite defect operators when brought

towards the defect and, in particular, can acquire a non-vanishing one-point function due to

OPE with the defect identity operator. For a planar defect, this takes the simple form

⟨O(x)⟩ = CO|x⊥|−∆ (1.60)

where x⊥ are the directions perpendicular to the defect.

One approach to constructing such holographic duals in ten or eleven dimensional super-

gravity is to start with an ansatz metric which is a warped product of these spaces whose
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isometries realize the unbroken defect symmetries and solve the equations of motion and

Killing spinor equations to find supersymmetric solutions. To illustrate this, we present the

simpler non-supersymmetric case of [20] which deforms the AdS5 × S5 solution of type IIB

by allowing the dilaton to take a non-trivial profile over a warping coordinate.

To see how this works, we start by noticing that in a particular choice of coordinates,

we can slice AdSd by AdSd−1 spaces. That is, if we define AdSd as the embedding of the

hyperboloid

X2
0 +X2

d −X2
1 − ...−X2

d−1 = 1 (1.61)

in R2,d−1, we can then parameterize Xd−1 = z and the remaining Xi by any coordinate

system of AdSd−1 with radius
√
1 + z2. The result is the following metric

ds2AdSd
=

dz2

1 + z2
+ (1 + z2)ds2AdSd−1

(1.62)

We can then redefine z = tanµ, and rewrite (1.62) as

ds2AdSd
= f(µ)(dµ2 + ds2AdSd−1

) (1.63)

where f(µ) = 1/ cos2 µ. Since z takes values over all of R, µ ∈ [−π/2, π/2].

To understand the boundary in these coordinates, we start by writing the AdSd−1 in

global coordinates

ds2AdSd
=

1

cos2µ cos2 λ
(−dτ 2 + cos2 λdµ2 + dλ2 + sin2 λdΩ2

d−3) (1.64)

where λ ∈ [0, π/2]. At fixed time, the metric is conformal to half of Sd−1 since µ only ranges

from [−π/2, π/2]. The boundary of this space consists of two parts, µ = ±π/2, which are

joined along the codimension one surface λ = π/2. These combine to make up an Sd−2.

We now consider a deformation of AdS5 × S5 with non-trivial dilaton given by the fol-

lowing ansatz inspired by (1.63)

ds2 = f(µ)(dµ2 + ds2AdS4
) + ds2S5

ϕ = ϕ(µ) (1.65)

F5 = 2f(µ)5/2dµ ∧ ωAdS4 + ωS5
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Figure 1.1: Constant time slice of the metric (1.65) for particular choice of c0. Each point

corresponds to an S2 and the boundary (bold) is an S3.

which is asymptotically AdS5 and where ωAdS4/S5 are the unit volume forms on either space.

One can show that the dilaton equation of motion and Einstein equations can be combined

to give the following simple, first order differential equation in terms of f(µ)

f ′f ′ = 4f 3 − 4f 2 +
c0
6f

(1.66)

for some constant c0 (c0 = 0 corresponding to ϕ(µ) = const., f(µ) = 1/ cos2 µ). This

equation can be solved numerically for different values of c0. One finds that at each value,

up to some critical value ccritical, µ is bounded by [−µ0, µ0] where µ0 > π/2 and increases

with c0. When c0 = ccritical, µ takes on values along the entire real line.

The boundary can be understood in global coordinates as we described above. As before,

it consists of two parts; one at µ = −µ0 and another at µ = µ0 which are joined through the

north and south poles (see Figure 1.1). The dilaton takes on two different values at either

half of the boundary; ϕ+
0 = ϕ(µ0) and ϕ

−
0 = ϕ(−µ0). Since only the dilaton and metric vary

non-trivially along the µ-direction, the field theory interpretation is simple; in the AdS/CFT

dictionary, the asymptotic value of ϕ is associated with the Yang-Mills coupling of the 4d

N = 4 theory on the boundary so therefore we interpret the solution (1.65) as describing
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a co-dimension one defect separating two half-spaces of different coupling. Solutions of this

type are called ”Janus” solutions, referring to the the Roman god with two faces. Since

this non-supersymmetric example was first worked out, there has been subsequent work

constructing supersymmetric Janus solutions [21, 22, 23, 24].

Briefly, we also note that it will also be useful for us to consider another slicing of AdSd,

this time by AdS spaces two dimensions lower. Similar to before, we can parameterize Xi

such that

ds2AdSd
= du2 + cosh2 uds2AdSd−2

+ sinh2 udϕ2 (1.67)

where ϕ parameterizes an S1. Inspired by the previous example, we may want to consider

supergravity solutions which are are asymptotically of the form 1.67 but have non-trivial

warping along u (or along other additional compact directions). Such solutions would now

correspond to codimension two conformal defects. In chapters 3 and 4, we will see just such

an example. There the solutions will describe four dimensional defects in six dimensional

field theories.
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CHAPTER 2

A Penrose limit for type IIB AdS6 solutions

2.1 Introduction

The quantization of superstrings in the presence of Ramond-Ramond fields is a technically

challenging problem and not solved in general. This constitutes a challenge to go beyond the

semi-classical supergravity approximation in many examples of AdS/CFT. Instead of solving

the general problem one approach is to consider limits or deformations of the supergravity

solution which may lead to a simpler quantization problem. One such limit is given by taking

the Penrose limit of an AdSp × Sq background. The Penrose limit [?] (see also [25, 26, 27])

corresponds to zooming in on the close vicinity of a null geodesic in the spacetime and

produces a plane wave geometry. In the case of the Penrose limit of the type IIB AdS5 × S5

solution, where the null geodesic sits at the center of AdS5 and on a great circle of S5,

one obtains a maximally supersymmetric plane wave [28, 29, 30]. It was proposed in [19]

that on the field theory side this limit corresponds to singling out a special subset of CFT

operators where both the conformal dimension ∆ and a U(1) R-charge J are taken to be

of order
√
N , with the difference ∆ − J finite, as N → ∞. One important feature of

this type IIB plane wave background is that the Green-Schwarz string can be quantized

exactly [31, 32, 33]. The world sheet theory in the light cone gauge corresponds to the

action of eight massive bosons and fermions. Furthermore the machinery of light-cone string

field theory can be used to calculate string interactions and compare the results to field

theory [34, 35, 36, 37]. For an incomplete list discussing Penrose limits of other supergravity

backgrounds see [38, 39, 40, 41, 42].

The aim of this chapter is to study the Penrose limit for a different AdS solution, namely
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the type IIB solutions found in [1, 2], which are realized as warped products of AdS6×S2 over

a Riemann surface Σ with boundary and provide duals of 5d SCFTs. These solutions are

supported by R-R and NS-NS three form fluxes. Indeed the data characterizing the solution

can be identified with the (p, q) five brane charges of semi-infinite five branes forming a five

brane web.

Unlike the type IIB AdS5 × S5 solution or the AdS4|7 × S7|4 solution of M-theory these

backgrounds are warped product geometries and preserve only sixteen of the thirty-two

supersymmetries of ten dimensional type IIB supergravity. This fact makes finding a suitable

Penrose limit more challenging, since the radii of the AdS6 and S2 vary with the location

on the Riemann surface Σ and therefore a general null geodesic will also have a nontrivial

dependence on the Riemann surface. There is a special point on the Riemann surface, namely

the critical point of a function G. At this point the metric factors of the AdS6 and S2 are

extremized with respect to the coordinates on Σ. We choose the null-geodesic on which the

Penrose limit is based to be localized at this critical point on Σ.

The structure of the chapter is as follows: In section 2.2 we review the type IIB super-

gravity solutions first found in [1, 2] which we use in the rest of the chapter. In section 2.3

we define the null geodesic on which the Penrose limit is based and present the resulting type

IIB plane wave background, including all the other bosonic supergravity fields. In section

2.4 we discuss the quantization of the Green-Schwarz superstring action in the light cone

gauge for this background. We discuss our results and possible directions for further research

in section 2.5. Some detailed calculations and supplementary materials are relegated to the

appendices after the discussion.

2.2 Type IIB AdS6 solutions

In this section, we will explore beyond the canonical early examples of holographic duality

mentioned in chapter 1 by introducing a family of supergravity solutions with AdS6 factors.

These solutions are candidates for duals of five dimensional superconformal field theories, or

SCFTs. Holography is a particularly useful tool for understanding these theories since they
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are the strongly interacting UV fixed points of 5d supersymmetric Yang-Mills and do not

possess a standard Lagrangian description. Furthermore, the Coulomb branch dynamics of

the Yang-Mills theories - which are realized by webs of five branes in Type IIB string theory

[43, 44] - do not give direct quantitative access to the SCFTs.

Since the unique superconformal algebra in five dimensions F (4) with an SO(2, 5) factor

has sixteen fermionic generators [45, 46, 47], the supergravity background preserves only 16

of the 32 supersymmetries of maximally symmetric type II or M-theory vacua. Furthermore

the solutions are all realized as warped products of the AdS6 over a base space. The first

such solution was obtained in massive type IIA [48]. In this chapter we will focus on type

IIB solutions first constructed in [1, 2], which is realized as a warped product of AdS6 × S2

over a two dimensional Riemann surface Σ with boundary.

ds2 = f 2
6 ds

2
AdS6

+ f 2
2 ds

2
S2 + 4ρ̂2 |dw|2 , (2.1)

where w is a complex coordinate on Σ and ds2AdS6
and ds2S2 are the line elements for

unit-radius AdS6 and S2, respectively1. One may, starting from this ansatz, solve the BPS

equations for preserving 16 supersymmetries. The solutions are defined in terms of locally

holomorphic functions A± on the Riemann surface Σ. The metric functions read

f 2
6 =

√
6GT , f 2

2 =
1

9

√
6GT−3

2 , ρ̂2 =
κ2√
6G

T
1
2 . (2.2)

and they are expressed in terms of the holomorphic functions A± as follows

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− − A−∂wA+ ,

G = |A+|2 − |A−|2 +B + B̄ , T 2 =

(
1 +R

1−R

)2

= 1 +
2|∂wG|2

3κ2G
. (2.3)

The other non vanishing type IIB supergravity fields of the solution are the complex

scalar B which is related to the axion dilaton τ = χ + ie−ϕ via B = (1 + iτ)/(1 − iτ) and

1We denote the metric factor of Σ by ρ̂ to avoid confusion with ρ which radial direction of Ads6 used
later.
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the complex two form antisymmetric tensor potential C(2)

B =
∂wA+ ∂w̄G−R∂w̄Ā−∂wG

R∂w̄Ā+∂wG− ∂wA−∂w̄G
, C(2) =

2i

3

(
∂w̄G∂wA+ + ∂wG∂w̄Ā−

3κ2T 2
− Ā− −A+

)
volS2 .

(2.4)

As discussed in [2] the residues of A± can be identified with the charges of the (p, q) five

brane web which realizes the dual SCFT via

Z l
+ =

3

4
α′(pl + iql), l = 1, 2, · · · , L (2.5)

2.2.1 Solutions with and without D7 brane monodromy

In order to obtain regular and geodesically complete solutions one has to impose further

conditions; namely that G vanishes along the boundary of the Riemann surface, which

implies that the S2 shrinks to zero size and the spacetime closes off. In [2] a large class

of regular solutions were constructed by choosing Σ to be the upper half plane and the

holomorphic functions such that ∂wA± have L simple poles localized on the boundary which

is the real line.

A± = A0
± +

L∑
l=1

Z l
± ln(w − pl),

L∑
l=1

Z l
± = 0, Z l

± = −Z̄ l
∓ (2.6)

The regularity condition translates into L conditions [2]

A0
+Z

k
− − A0

−Z
k
+ +

L∑
l=1,l ̸=k

(Z l
+Z

k
− − Zk

+Z
l
−) ln |pl − pk| = 0, k = 1, 2, · · · , L (2.7)

These solutions have no monodromy but the procedure outlined above was later extended

in [3] to include solutions with monodromy. Subsequent sections will only deal with the

former solutions but for completeness, we will include the others here. The additional data

for the case with D7 brane punctures are the locations wi ∈ Σ of the punctures and, for each

puncture, a real number ni and phase γi specifying the the orientation of the branch cut.

The holomorphic functions are given by

25



A± = A0
± +

L∑
l=1

Z l
± ln(w − pl) +

∫ w

∞
dzf(z)

L∑
l=0

Y l

z − pl
(2.8)

where Y l ≡ Z l
+ − Z l

−, the relationship between the constants is A0
+ = −Ā0

−,

f(w) =
I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
(2.9)

and the contour of the above integral is chosen to not cross any branch cuts. The regularity

conditions outlined above constrain the parameters of the solution to satisty the following

0 = 2A0
+ − 2A0

− +
L∑
l=1

Y l ln |wi − pl|2 , i = 1, · · · , I, (2.10)

0 = 2A0
+Yk

− − 2A0
−Yk

+ +
∑
l ̸=k

Z [l,k] ln |pl − pk|2 + Y kJk, k = 1, · · · , L. (2.11)

where

Jk =
L∑
l=1

Y l

[∫ pk

∞
dxf ′(x) ln |x− pl|2 +

∑
i∈Sk

in2
i

2
ln |wi − pl|2

]
(2.12)

Y l
± = Z l

± + f(pl)Y
l (2.13)

where the L±’s are the residues of the poles of ∂wA±. The sum is taken over the set of

branch points for which the associated cut intersects (pk,∞)

2.2.2 Behavior near the branes and charge quantization

We can now explore the metric 2.1 and supergravity fields around the poles pl. (The residues

will be denoted, as in the non-monodromy case, by Z l
± but the expressions are the same for

the monodromy case making the replacement Z → Y). Near a pole pl, we can express things

in radial coordinates around the pole w = pl + reiθ:

f 2
6 ≈ 2 · 3

1
4κlr

1
2 | ln r|

3
4 , ρ2 ≈ κl

2 · 33/4
r−

3
2 | ln r|−

1
4 , f 2

2 ≈ 4r2 sin2 θρ2 (2.14)
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with κl a constant. The S2 and θ-circle combine to form an S3 around the pole. The three

form field strength takes the form

F3 =
8

3
Z l

+ sin2 θdθ ∧ volS2 (2.15)

For solutions with monodromy, we can additionally zoom in on the region near a puncture

wi. The metric and axion-dilaton scalar τ are given in terms of a coordinate z with the

puncture at z = 0:

ds2 ≈ ds2AdS6×S2 + Im(H)|dz|2 τ ≈ H + τ̄0 H = −in
2
i

2π
ln z (2.16)

In the papers [2, 3], the poles were identified with (p,q) 5-branes and the punctures with

7-branes. We will now briefly summarize the relationship between the charges and quantities

we have seen above.

The complex two form C2 has real and imaginary parts given by the NS-NS two form

B2 and R-R two form CRR
2 . Charge quantization is then derived from the coupling of

fundamental strings and D1-branes to B2 and C
RR
2 respectively. The quantization conditions

are

1

2πα′

∫
S3

dB2 = 2πNNS5 (2.17)

1

2πα′

∫
S3

dCRR
2 = 2πND5 (2.18)

where we integrate over the S3 surrounding the pole. Using the near-pole expressions for

the field strength (2.15), we find that

Z l
+ =

3

4
α′(NNS5 + iND5) (2.19)

In the (p,q) notation, p = NNS5 and q = ND5.

For the solutions with monodromy, we can again replace Z → Y in (2.19). We can also

note that around z = 0 in (2.16), the monodromy of the scalar τ is τ → τ + n2
i and so

ND7 = n2
i (2.20)

since for a single D7 brane we have τ → τ + 1.
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2.2.3 Explicit examples

For definiteness we consider two explicit examples of the regular supergravity solution for

which the dual SCFT are well studied, namely the TN theory and the +M,N theory where

the holomorphic functions A± are given by

ATN± =
3N

8π
[± ln(w − 1) + i ln(2w) + (∓1− i) ln(w + 1)] ,

A
+N,M

± =
3

8π
[iN (ln(2w − 1)− ln(w − 1))±M (ln(3w − 2)− lnw)] , (2.21)

The TN solution has three poles located at w = ±1, 0 whereas the +M,N has four poles

located at w = 0, 1
2
, 2
3
, 1. The relevant brane webs for the two theories are given by the

junction of N D5, N NS5 and N (1,1) 5-branes for the TN theory and the intersection of N

D5-branes and M NS5-branes for the +M,N theory.

Figure 2.1: Left: brane web for the TN theory. Right: brane web for the +M,N theory.

The quiver theories which at their conformal fixed points realize the SCFTs are given

by long linear quivers with SU(n) gauge nodes and bi-fundamental matter connecting them

and a fundamental matter node at the end. For the TN theories we have a linear quiver with

SU(k) nodes with increasing k along the quiver and fundamental representations attached

to the end of the quiver

TN : [2]− (2)− (3)− · · · − (N − 1)− [N ] (2.22)

For the +MN theory we have M − 1 SU(N) nodes with matter in the fundamental represen-

tation of the end nodes attached at the end of the quiver.

+MN : [N ]− (N)− (N)− · · · − (N)− [N ] (2.23)
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For the two example cases the function G defined in (2.3) takes the following compact form

GTN =
9

8π2
N2D

(
2w

w + 1

)
,

G+N,M
=

9

8π2
NM

[
D

(
3w − 2

w

)
+D

(
w

2− 3w

)]
(2.24)

where D is the Bloch-Wigner function given by

D(u) = Im [Li2(u) + ln(1− u) ln |u|] . (2.25)

where Li2 is the dilogarithm function.

2.3 Penrose limit and the plane wave background

The idea behind taking a Penrose limit of AdS5 × S5 solution of type IIB is to consider

the trajectory of a particle sitting at the center of AdS5 and moving very fast along a great

circle on S5, such that in the limit the trajectory becomes a null geodesic. Zooming in on the

vicinity of the null geodesic produces a pp-wave solution which preserves 32 supercharges.

For the AdS6 × S2 solutions presented in section 4.2, the geometry is more complicated

since the AdS6 and S2 are warped over the two dimensional surface Σ and in general a nice

Penrose limit does not exist for geodesics through a generic point on Σ. Furthermore as

discussed in appendix 2.B considering a geodesic with a nontrivial dependence on Σ looks

daunting due to the complicated form of the geodesic equation.

Fortunately, we can find a special point on the Riemann surface Σ by considering critical

points of the function G defined in (2.3), i.e wc ∈ Σ for which

∂wG |w=wc= 0 (2.26)

It was observed in [49] that in all known examples, G has a unique critical point on the

Riemann surface Σ. For our two examples the critical point on wc on Σ is located at

wc,TN =
i√
3
, wc,+M,N

=
3 + i

5
(2.27)
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In [49] it was shown that the critical point wc correspond to the location of BPS probe

D3-branes that realize surface defects in the dual SCFT. As we shall see in the following, the

existence of the critical point is essential for our construction of Penrose limit in the warped

spacetime.

We can examine our solution near the critical point by expanding w = wc+ ϵζ. The most

important expression, G, can be expanded in a power series in ϵ

G = G0 +G2ϵ
2|ζ|2 + o(ϵ3) (2.28)

Using (2.3) we find the following expansions for the other functions which appear in the

metric factors

κ2 = −G2 + o(ϵ)

T 2 = 1− 2

3

G2

G0

ϵ2|ζ|2 + o(ϵ3)

R = − G2

6G0

|ζ2|+ o(ϵ) (2.29)

Using the expressions for the metric factors (2.2) it is straightforward to show that the metric

factors of the AdS6 and S2 are extremized at w = wc.

For the TN and +N,M examples we find the following expressions for the expansion coef-

ficients G0 and G2

TN : G0 = Im(Li2(e
iπ/3)), G2 = − 81

√
3

128π2
N2

+N,M : G0 =
9CMN

4π2
, G2 = −225MN

16π2
(2.30)

where C is Catalan’s constant.
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2.3.1 Penrose limit

Using the expansions (2.28) and (2.29) the Einstein frame metric (2.1) can be expanded to

second order which corresponds to the metric close to the critical point w = wc.

ds2 =
√

6G0

{
(1 + ϵ2

G2

3G0

|ζ|2)(− cosh2 ρdt2 + dρ2 + sinh2 ρds2S4)

+
1

9
(1 + ϵ2

G2

G0

|ζ|2)(dθ2 + cos2 θdϕ2) +
2

3
ϵ2
|G2|
G0

|dζ|2
}
+ o(ϵ3) (2.31)

We can drop the expansion parameter ϵ in the following since it can be absorbed into a

redefinition of the coordinate ζ. The null geodesic which gives the proper Penrose limit is

defined by

ζ = 0, ρ = 0, θ = 0, t− ϕ

3
= const (2.32)

Note that ζ = 0 implies that the null geodesic is localized at the critical point w = wc on

the Riemann surface. We express the metric in terms of rescaled and relabelled coordinates

t = x+ +
x−

(6G0)
1
2

, ϕ = 3x+ − 3x−

(6G0)
1
2

ρ =
1

(6G0)
1
4

r, θ =
3

(6G0)
1
4

x6, ζ = ϵ

(
3G0

2|G2|

) 1
2 1

(6G0)
1
4

(x7 + ix8) (2.33)

The Penrose limit is obtained by taking G0 → ∞ , which corresponds to taking N → ∞

(for the TN case) and MN → ∞ (for the +N,M example) and keeping the finite terms in the

metric (2.31). All expressions involving the ratio G2/G0 are finite in this limit. Note that

the curvature radius of the AdS6 and S2 factors are controlled by G0 and hence the limit of

large G0 is precisely the one taken for a Penrose limit in AdSp×Sq spacetimes, i.e. zooming

in on a region close to the null geodesic, which is much smaller than the curvature radius of

the spacetime.

The resulting metric is given by

ds2 = −4dx+dx− + (dx+)2
(
− r2 − 9x26 − x27 − x28

)
+ dr2 + r2ds2S4 + dx26 + dx27 + dx28

(2.34)
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where r2 = x21 + x32 + x23 + x24 + x25. The only difference between this metric and the one

of the Penrose limit of AdS5 × S5 that the coordinate x6 is singled out and has a different

normalization in the (dx+)2 term in the metric, which in the world sheet action leads to a

different mass term for the field associated with x6.

The energy in global AdS is associated with i∂t whereas −i∂ϕ is related to a U(1) gen-

erator of the SU(2)R symmetry, which is realized as the group of isometries of the S2.

Hence using the argument of [19] for the Penrose limit (2.33) we can identify the light cone

momentum with the conformal dimension and the R-charge of a dual operator via

2p− = i∂+ = i(∂t + 3∂ϕ) = ∆− 3J

2p+ = i∂− =
i

R2
(∂t − 3∂ϕ) =

1

R2
(∆ + 3J) (2.35)

where we have identified the AdS radius with R2 =
√
6G0. Since we take R to be very large

in the Penrose limit excitations with finite p± correspond to states with large energy and

angular momentum which on the CFT side correspond to operators with large conformal

dimension ∆ and R-charge J , which are close to the BPS bound ∆ = 3J [50, 51].

2.3.2 Other supergravity fields

In the Penrose limit, the complex scalar field B of type IIB supergravity becomes a constant

B = −∂wA+

∂wA−
|w=wc +o(ϵ) (2.36)

Note that the standard RR axion χ and the dilaton ϕ is related to the complex scalar B via

B =
1 + iτ

1− iτ
, τ = χ+ ie−Φ (2.37)

Consequently, the axion dilaton has the following expression in terms of the holomorphic

functions at the critical point wc

τ = i
∂wA− + ∂wA+

∂wA− − ∂wA+

|w=wc (2.38)
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For the two examples we consider in this chapter one finds2

TN : χ =
1

2
, e−ϕ =

√
3

2
, +N,M : χ = 0, e−ϕ =

N

M
(2.39)

The complex rank two antisymmetric tensor potential C(2) is related to the NS-NS and R-R

two form potentials by

C(2) = BNSNS + iCRR

=
(
c0 − i

8

9

(
∂wA+ |w=wc ϵζ + ∂w̄Ā− |w=wc ϵζ̄

)
+ o(ϵ2)

)
cos θdθ ∧ dϕ (2.40)

Note that the constant term c0 is not important since in the bosonic part of the worldsheet

action, a constant NS-NS anti-symmetric tensor potential will be a total derivative. In the

fermionic worldsheet action only the field strength, which does not depend on c0, appears.

In the Penrose limit the finite part which survives (after using the rescaled variables)

C(2) = −4i
1

|G2|
1
2

(
∂wA+ |w=wc (x

7 + ix8) + ∂w̄Ā− |w=wc (x
7 − ix8)

)
dx6 ∧ dx+ (2.41)

Note that in the scaling limit which produces the Penrose limit discussed below (2.33) the

∂A± and |G2| scale in the same way and hence the term above is the expression which

survives the Penrose limit.

The NS-NS 3 form field strength H3
NS and the RR field strength F 3

RR are given by

H3
NS = Re

(
dC2

)
, F 3

RR = Im
(
dC2

)
, (2.42)

For the examples we get

TN : H3
NS = −4

√
2

3
1
4

dx8 ∧ dx6 ∧ dx+,

F 3
RR = −2

√
2

3
3
4

(
3dx7 +

√
3dx8) ∧ dx6 ∧ dx+ (2.43)

2In [1, 2] different normalization for the dilaton is used, we have translated the expression to the commonly
used one.
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and

+N,M : H3
NS = −4

5

√
M

N
(4dx7 + 3dx8) ∧ dx6 ∧ dx+,

F 3
RR =

4

5

√
N

M
(−3dx7 + 4dx8) ∧ dx6 ∧ dx+ (2.44)

It is important to mention that the supergravity solutions of section 4.2 are given in the

Einstein frame. In order to quantize the Green-Schwarz string in this background we have

to transform to the string frame

Gstring
µν = eϕ/2GEinstein

µν (2.45)

Note that the particular combinations of the anti-symmetric tensor field strength which

appear in the string frame supersymmetry transformations as well as the Green-Schwarz

action are H
(3)
NS and eϕ(F

(3)
R − χH

(3)
NS).

In the Penrose limit, the transformation to the Einstein frame is just a constant rescaling

of the metric. However, it is convenient for the string frame metric in to be the canonical

plane wave form (2.34). This can be accomplished by a rescaling of all coordinates (except

x+) by a factor of e−ϕ/4. This has the effect of introducing a factor of e−ϕ/2 in each of

the antisymmetric tensor fields. The end result is the following combination of fields which

appears in the string worldsheet:

TN : H3
NS,string = −4dx8 ∧ dx6 ∧ dx+,

eϕ(F 3
RR,string − χH3

NS,string) = −4dx7 ∧ dx6 ∧ dx+ (2.46)

+N,M : H3
NS,string = −4

5
(4dx7 + 3dx8) ∧ dx6 ∧ dx+,

eϕ(F 3
RR,string − χH3

NS,string) =
4

5
(−3dx7 + 4dx8) ∧ dx6 ∧ dx+ (2.47)

We will drop ”string” from the subscripts moving forward since we will always be working

in the string frame and there will be no confusion.

Note one interesting property of specific solutions (2.46) and (2.47): The orientation of

the forms in the 7, 8 directions can be parameterized as n7dx
7+n8dx

8, for both TN and +MN
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examples the na associated with the H
(3)
NS and eϕ(F

(3)
R − χH

(3)
NS) tensors are orthogonal to

each other and square to four. This means that we could rotate x7,8 so that the fields which

appear in the worldsheet action take exactly the same form in both TN and +MN theories

and therefore give the same string spectrum. In fact, this statement also holds for all other

solutions [52, 53] that we have checked. We conjecture that all global solutions (2.1) - (2.4)

share this property and in the quantization the follows, take our fields to have the form of

the TN example (2.46).

2.4 Light cone Green-Schwarz string spectrum

In this section we quantize the Green-Schwarz string the pp-wave spacetime obtained in the

previous section. As shown in [32, 31, 33, 54] the fermionic part of the Green-Schwarz string

becomes quadratic in fermionic fields for the pp-wave spacetimes in the light cone gauge,

which makes the free string spectrum exactly solvable.

2.4.1 Bosonic Spectrum

We will start by examining the bosonic spectrum for the Green-Schwarz string in the plane

wave background with NS-NS flux. The general action is given by

Sb = − 1

4πα′

∫
d2σ

√
h
(
hab∂aX

µ∂bX
νGµν + εab∂aX

µ∂bX
νBµν

)
(2.48)

As in the AdS5×S5 case, this action simplifies considerably after light cone gauge-fixing,

leaving us with a free theory which can be easily quantized following [55]. We set the target

space coordinate x+ = τ and worldsheet metric to hστ = 0, hσσ = −hττ = 1 and after

plugging in the background (2.34), (2.46), we are left with the following action for the eight

remaining transverse scalar fields
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Sb =
1

4πα′

∫ 2πα′p+

0

d2σ

(
8∑
I=1

((
∂τX

I
)2 − (∂σXI

)2 −m2
I

(
XI
)2)

+ 4X6∂σX
7 − 4X7∂σX

6

)
(2.49)

where m2
I = 1 for all I ̸= 6 in which case m2

6 = 9. The equations of motion deduced from

this action are given by

∂2τX
I − ∂2σX

I +XI = 0 I = 1, ..., 5, 8 (2.50)

∂2τX
6 − ∂2σX

6 + 9X6 − 4∂σX
7 = 0 (2.51)

∂2τX
7 − ∂2σX

7 +X7 + 4∂σX
6 = 0 (2.52)

Together with the periodicity condition XI(σ + 2πα′p+, τ) = XI(σ, τ), the first set of equa-

tions (2.50) lead to the following familiar solutions for I = 1, ..., 5, 8

xI(σ, τ) = xI0 cos τ +
pI0
p+

sin τ +

√
α′

2

∞∑
n=1

1√
ωIn

[αIne
− i

α′p+ (ω
I
nτ+nσ) + α̃Ine

− i
α′p+ (ω

I
nτ−nσ)+

αI†n e
i

α′p+ (ω
I
nτ+nσ) + α̃I†n e

i
α′p+ (ω

I
nτ−nσ)] (2.53)

where the frequencies will determine the energy of the string excitations

ωIn =
√
n2 + (α′p+)2 (2.54)

To solve the remaining two equations of motion (2.51) and (2.52) for I = 6, 7 we use an

ansatz of the following form

xI(σ, τ) =

√
α′

2
A0(τ) +

√
α′

2

∑
n>0

[AIn(τ, σ) + ÃIn(τ, σ)] (2.55)

where AIn and ÃIn for I = 6, 7 can be expressed in terms of eigenmodes

AIn(τ, σ) =
∑
J=6,7

1√
ωJn

{
(Vn)

I
Jα

J
ne

− i
α′p+ (ωJ

nτ+nσ) + (V̄n)
I
J(α

†)Jne
i

α′p+ (ωJ
nτ+nσ)

}
ÃIn(τ, σ) =

∑
J=6,7

1√
ωJn

{
(V−n)

I
Jα

J
ne

− i
α′p+ (ωJ

nτ−nσ) + (V̄−n)
I
J(α

†)Jne
i

α′p+ (ωJ
nτ−nσ)

}
(2.56)
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For the zero mode A0 there only one eigenfunction which can be obtained from AIn in (2.56)

by setting n = 0. The eigenfrequencies for J = 6, 7

ω6
n =

√
n2 + (α′p+)2 + 2α′p+

ω7
n =

∣∣∣√n2 + (α′p+)2 − 2α′p+
∣∣∣ (2.57)

and (Vn)
I
J , J = 6, 7 are the orthonormal set of vectors which satisfy

 −(ωJ
n)

2+n2

(α′p+)2
+ 9 − 4in

α′p+

+ 4in
α′p+

−(ωJ
n)

2+n2

(α′p+)2
+ 1

 (Vn)
6
J

(Vn)
7
J

 = 0, J = 6, 7 (2.58)

With this mode equation the the canonical quantization conditions

[xI(σ, τ), pJ(σ′, τ)] = iδIJδ(σ − σ′) (2.59)

where pI = 1
2πα′∂τx

I , yield the commutation relation for the creation and annihilation oper-

ators

[αIn, α
J†
m ] = [α̃In, α̃

J†
m ] = δIJδmn (2.60)

where now we allow the indices I, J to run through all eight transverse oscillators 1, 2, · · · , 8.

The light-cone Hamiltonian can be expressed in terms of the creation and annihilation

operators (2.53) and (2.55)

Hb
l.c. =

1

α′p+

8∑
I=0

[
ωI0α

I†
0 α

I
0 +

∞∑
n=0

ωIn
(
αI†n α

I
n + α̃I†n α̃

I
n

)]
+ νbos (2.61)

Here νbos denotes a normal ordering constant for the bosonic creation and annihilation opera-

tors. The zero mode modes xI0, p
I
0, I = 1, 2, · · · , 5, 8 have been expressed in terms of creation

and annihilation operators

α̃I0 =
1√
2p+

pI0 − i

√
p+

2
xI0 (2.62)

to maintain consistent normalization. It will be convenient to write νbos in terms of the

oscillator frequencies:

νbos =
1

2α′p+

8∑
I=1

(
ωI0 + 2

∑
n

ωIn
)

(2.63)
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2.4.2 Fermionic Spectrum

We can now turn our attention to the fermionic part of the Green-Schwarz action for type

IIB strings, the term quadratic in the world sheet fermions is given by (see appendix 3.A for

details on the notation).

S
(2)
f =

i

4πα′

∫
d2σ

√
h
(
hijδab − εij (σ3)ab

)
∂ix

M θ̄aΓM (Dj)
b
c θ

c (2.64)

This Green-Schwarz action possesses a κ symmetry which is required to obtain spacetime

supersymmetry for the on-shell string modes [31]. To obtain these physical fermionic modes,

we can gauge fix (as in flat space) by choosing

Γ+θa = 0 (2.65)

where Γ± = 1√
2
(Γ0 ± Γ9). After enforcing the light cone gauge condition x+ = τ and

worldsheet metric to hστ = 0, hσσ = −hττ = 1, the fermionic part of the Green-Schwarz

action reduces to the quadratic one in the plane wave background [31, 32, 33] and takes the

following form

Sf =
i

4πα′

∫
d2σ

(
− (θa)T Γ+Γ+ (Dτ )

a
c θ

c − (θa)T Γ+Γ+σ
(3)
ab (Dσ)

b
c θ

c
)

(2.66)

after inserting the antisymmetric tensor fields (2.46) for the TN theory, the action becomes

Sf = − i

4πα′

∫
d2σ(θa)TΓ+Γ+

(
δab∂τ + (σ3)ab∂σ −

1

4
H+67Γ

67(σ3)ab +
1

4
F̃+68Γ

68(σ1)ab

)
θb

= − i

4πα′

∫
d2σ(θa)TΓ+Γ+

(
δab∂τ + (σ3)ab∂σ + Γ67(σ3)ab − Γ68 (σ1)ab

)
θb (2.67)

where we have used the fact that Γ+Γ+ = 1 + Γ09 and hence (Γ+Γ+)
2 = 2Γ+Γ+. The

chirality condition Γ11θa = θa together with the light cone gauge condition (2.65) projects

a general thirty-two component spinor onto an eight dimensional subspace. It is possible to

find a representation of the Gamma matrices in this subspace and combine them with the σ

matrices encoding the two chiral spinors such that the action can be written as

Sf = − i

2πα′

∫
d2σθT14 ⊗

(
12 ⊗ 12 ∂τ + 12 ⊗ σ3 ∂σ + σ3 ⊗ σ3 − σ1 ⊗ σ1

)
θ (2.68)
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Due to the common 14 factor in all the terms it follows that there is a fourfold degeneracy

and equation of motion for each degenerate spinor component is given by

(
12 ⊗ 12 ∂τ + 12 ⊗ σ3 ∂σ + iσ3 ⊗ σ3 − iσ1 ⊗ σ1

)
θα = 0 (2.69)

where α = 1, ..., 4 labels four degenerate spinor components acting on the first 14 factor in

the tensor product. We can proceed just as in the bosonic case with an ansatz of the form

θα(σ, τ) =
1√
2p+

∞∑
n=0

(
θα,+n (τ, σ) + θα,−n (τ, σ)

)
(2.70)

Where

θα,±n = V ±
n e

− i
α′p+ (ω±

n τ+nσ)βα,±n + V ±
−ne

i
α′p+ (ω±

n τ+nσ)(βα,±n )†

+ V ±
−ne

− i
α′p+ (ω±

n τ−nσ)β̃α,±n + V ±
n e

i
α′p+ (ω±

n τ−nσ)(̃βα,±n )† (2.71)

the positive eigenfrequencies are given by

ω+
n =

√
(α′p+)2 + n2 + α′p+

ω−
n =

√
(α′p+)2 + n2 − α′p+ (2.72)

The vectors V ±
n satisfy the following equation(

− ω±
n 12 ⊗ 12 − n 12 ⊗ σ3 + σ3 ⊗ σ3 − σ1 ⊗ σ1

)
V ±
n = 0 (2.73)

ensuring that the mode expansion of θ (2.71) satisfies the equation of motion (2.69). For each

n > 0 the four vectors V ±
n , V

±
−n can be chosen to form a orthonormal basis. The canonical

anti-commutation relations following from the action (2.68)

{θT (τ, σ), θ(τ, σ′)} = i2πα′δ(σ − σ′)116×16 (2.74)

imply the following algebra for the fermionic creation and annihilation operators

{βα,±n , (βγ,±m )†} = {β̃α,±n , (β̃γ,±m )†} = δαγδm,n (2.75)
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with all other anti commutators vanishing.

Interestingly, we can see from (2.72) that our spectrum contains eight fermionic zero

modes with ω−
n = 0 when n = 0. The zero modes are associated with θ in the original

fermionic action (2.67) for which

(
Γ67σ(3) − Γ68σ(1)

)
θ = Γ67σ(3)

(
1− iΓ78σ2

)
θ = 0 (2.76)

where we have dropped the index a for notational simplicity. Notice that (1− iΓ78σ2) is

a projector and hence has an eight dimensional eigenspace with eigenvalue zero, matching

precisely with the eight zero modes found above.

Lastly, we can write the fermionic light cone Hamiltonian

Hf
l.c. =

1

α′p+

∑
α

[
ω+
0 (β

α,+
0 )†βα,+0 +

∞∑
n=0

∑
γ=±

ωα,γn

(
(βα,γn )†βα+n + (β̃α,γn )†β̃α,γn

)]
+ νf (2.77)

Where νf is the constant obtained by normal ordering the fermionic creation and anilhilation

operators.

νf = − 1

2α′p+

(
4ω+

0 + 8
∑
n>0

(ω+
n + ω−

n )
)

2.4.3 Light cone spectrum

The Hamiltonian of the light cone string is the sum of the bosonic (2.61) and fermionic (2.77)

parts

Hl.c. =
1

α′p+

(
8∑
I=0

[
ωI0α

I†
0 α

I
0 +

∞∑
n=1

ωIn
(
αI†n α

I
n + α̃I†n α̃

I
n

)]

+
∑
α

[
ω+
0 (β

α,+
0 )†βα,+0 +

∞∑
n=1

∑
γ=±

ωα,γn

(
(βα,γn )†βα+n + (β̃α,γn )†β̃α,γn

)])
+ ν (2.78)

The normal ordering constant is the sum of the bosonic (2.63) and fermionic (2.78) contri-

bution and the bosonic and fermionic normal ordering contributions cancel up to a finite
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number of terms

ν = νb + νf

=
1

α′p+

(
2α′p+ + 4

∑
0<n<

√
3α′p+

(
2α′p+ −

√
n2 + (α′p+)2

))
(2.79)

It is interesting to note that in the limit of vanishing α′p+ the finite normal ordering constant

goes to zero, in agreement with the zero normal ordering constant for the light cone string in

flat space. On the other hand for large α′p+, a large but finite number of modes contribute

to the normal ordering constant3.

In the light cone gauge the level matching constraint is obtained by considering the

variation of the action with respect to hτσ in terms of the bosonic and fermionic modes one

finds the constraint

∞∑
n=1

ωIn
(
αI†n α

I
n − α̃I†n α̃

I
n

)
+

∞∑
n=1

∑
γ=±

ωα,γn

(
(βα,γn )†βα+n − (β̃α,γn )†β̃α,γn

)
= 0 (2.80)

The spectrum of the light cone string has several features which distinguish it from the

Penrose limit of AdS5 × S5 discussed in [19]. First due to the absence of world sheet super-

symmetry the bosonic and fermionic worldsheet energies ωIn and ωα,±n are not the same. As

discussed in appendix 2.A.1 this is a consequence of the fact that there are no ”supernumer-

ary” [56] supersymmetries in the pp-wave background we consider. A second difference is

the presence of fermionic zero modes associated with the βα,−0 , (βα,−0 )† modes. These modes

imply that even though the bosonic and fermionic oscillators have different energies that

there are an equal number of bosonic and fermionic states at each energy level due to the

8 bosonic and 8 fermionic states created by (βα,−0 )†, α = 1, 2, 3, 4. The third feature is

the presence of a normal ordering constant and the dependence on α′p+. We discuss some

possible reasons for the different properties of the lightcone string action in the next section.

Presently, we have not been able to find an identification of the string spectrum with BMN

like operators on the field theory side.

3The fact that the normal ordering constant is not divergent can be understood from the one loop
ultraviolet finiteness of the Green-Schwarz string.
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2.5 Discussion

In this chapter we have constructed a Penrose limit for type IIB warped AdS6×S2 solutions.

We have constructed the limit by zooming in on a null geodesic at the center of the AdS6

and along a great circle of the S2. This construction only works if the geodesic is localized at

the critical point w = wc of the function G on the two dimensional Riemann surface Σ. We

constructed the pp-wave supergravity solution one obtains from taking the Penrose limit.

After appropriate coordinate transformation the resulting pp-wave background is universal

for all the cases we have considered. It would be interesting to consider a more general

class of examples, such as the solutions including seven branes [3] or O7-branes [57] and

confirm that the behavior of the pp-wave at the critical point is of the same form. Another

observation is that all known regular solutions have a unique critical point wc on the Riemann

surface. This statement has not been proven but checked in all cases constructed in [58].

It is interesting that this critical point wc is also relevant for supersymmetric embedding of

D3-branes in the AdS6 × S2 solutions which realizes BPS co-dimension two defects in the

dual SCFT [49].

We presented the quadratic bosonic and fermionic world sheet actions of the Green-

Schwarz string in this background and calculated the spectrum of bosonic and fermionic

excitations of the string in the light cone gauge. The spectrum has some interesting features

which are different from other cases such as the Penrose limit of AdS5×S5. Namely that the

frequencies associated with the bosonic and fermionic creation and annihilation operators do

not coincide, which is a consequence of the absence of any ”extra” supersymmetries which

would be associated with linearly realized supersymmetries. An additional new feature is the

presence of fermionic zero modes, which makes sure that there are equal number of fermions

and bosons at each level of the light cone hamiltonian.

One of the exciting features of the BMN correspondence was the identification of the

light cone vacuum with a special class of BPS operators in the N=4 SYM theory, which can

be viewed as a long spin chain. Furthermore, the action of creation operators on the string

vacuum can be related to the insertion of impurities into the spin chain and diagonalizing
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the Hamiltonian. It is an interesting question whether a similar identification can be found

for the light cone vacuum and excited states of the Green-Schwarz string in this plane wave

background. This identification is more challenging for two reasons. While the Penrose limit

identifies the light cone string vacuum with BPS states which satisfy ∆ = 3J , where J is

a U(1) inside the SU(2)R symmetry of the SCFT and therefore related to protected BPS

multiplet, these theories are realized as conformal fixed points of long quiver theories and

hence strongly coupled. For d = 4, N = 4 SYM the identification of these operators was

possible in terms of the scalar fields of the SYM theory. For long quiver theories it is not

clear how to construct these operators from the fundamental fields of the nodes of the quiver

and the bi-fundamental matter. A class of such operators corresponding to ”stringy” long

meson and baryon operators was given in [52] which are constructed by taking products of

the bi-fundamental hyper multiplets, from one end of the quiver to the other4. Since our

null geodesic is at a fixed location on Σ is is natural to speculate that the BMN like operator

would be associated with a single node in the quiver unlike the string like operators in [52]

which stretch across the Riemann surface Σ. It would be interesting to investigate what

mechanism on the field theory side singles out a specific node in the quiver theory. One

could also investigate more general null geodesics which are not at a fixed point on Σ and

consider the their Penrose limits. A very preliminary discussion of this issue can be found

in appendix 2.B.

In [60, 61, 62] sphere partition functions and expectation values of BPS Wilson line

operators for five dimensional SCFTs were calculated using localization techniques. For long

quivers in the limit of large number of nodes and large gauge groups, the eigenvalues for

the nodes where replaced by a continuous distribution and the saddle point of the path

integral was reduced to an analogue electrostatic problem. It would be interesting to see

whether these methods could be adapted to identify the BMN operators or whether the two

dimensional electrostatic problem can be related to the light cone world sheet in some way

and explain some of the curious properties of the light cone spectrum described in section

2.4.3.

4See [59] for a related construction in theories dual to six dimensional SCFTs.
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2.A Supersymmetry of the plane wave background

The fermionic supersymmetry transformations in the string frame can be expressed in terms

of the following two operators [63], that are also used to construct the part of the Green-

Schwarz string action which is quadratic in space time fermions.

Da
b = − 1

4 · 3!
HmnpΓ

mnp(σ3)ba −
1

4 · 3!
eϕ(Fmnp − χHmnp)Γ

mnp(σ1)ba

(DM)ab = ∂M +
1

4
ωmn,MΓmnδba −

1

8
emMHmnpΓ

np(σ3)ba +
1

8 · 3!
eϕ(Fnpq − χHnpq)Γ

npqΓM(σ1)ba

(2.81)

Here σa, a = 1, 3 are the Pauli matrices which act on two component Majorna-Weyl

spinors5. The supersymmetry transformations in the two component formalism are given by

δλa = Da
bϵ
b, δψaM = (DM)abϵ

b (2.82)

The susy transformations for the gravitino in the string frame are is different from the one in

the Einstein frame given in [64], this is because the transformation gMN → eϕ/2gMN induces

a mixing of the dilatino supersymmetry transformation with the gravitino supersymmetry

transformation [65]. The supersymmetry transformations (2.82) are given in the string frame.

The string world sheet action which is quadratic in fermions is given by

S
(2)
RR =

1

4πα′

∫
d2σ

√
h
(
hijδab − ϵij(σ3)ab

)
∂ix

M θ̄aΓM(Dj)
b
cθ
c (2.83)

where θa, a = 1, 2 are the two ten dimensional Weyl-Majorana spinor world sheet fields

with the same chirality as the supersymmetry transformation parameters ϵa in (2.82) . The

operator (Dj)
b
c is the pullback of the covariant derivative to the world sheet is related to

5The dictionary to go from the two component (with the matrices σ to formulation of using complex
Weyl spinors spinor is given by ϵ = ϵ1 + iϵ2 and σ1ϵ → iϵ∗, iσ2 → −iϵ, σ3ϵ → ϵ∗.
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(2.81) by

(Dj)
b
c = ∂jδ

a
b + ∂jx

M
(1
4
ωmn,MΓmnδba −

1

8
emMHmnpΓ

np(σ3)ba

+
1

8 · 3!
eϕ(Fnpq − χHnpq)Γ

npqΓM(σ1)ba

)
(2.84)

2.A.1 Integrability of supersymmetry transformations

To examine the supersymmetries of of the background (2.34), (2.46), we will first need to

work out the spin connection.

X± =
1

2
(T ±X), g+− = g−+ = −2, g+− = g−+ = −1

2
(2.85)

The frame forms fields are given by

eiµdx
µ = dxi, e+µ dx

µ = dx+, e−µ dx
µ = dx− +

1

4

∑
k

mkx
2
kdx

+ (2.86)

where mk = 1 for all xk except for k = 6 for which m6 = 3. We can calculate the spin

connection using the Cartan structure equations

dea + ωab ∧ eb = 0 (2.87)

The the frame forms given above the only nontrivial one is

de− =
1

2

∑
k

mkxkdx
k ∧ dx+ (2.88)

which implies that the connection 1-form is given by

ω−
k =

1

2
mkx

kdx+ (2.89)

and we find that the only non vanishing components of the spin connection are given by

ω+k,+ = −mkx
k (2.90)

Note that because (2.90) has two legs along the x+ directions, the spin connection will not

contribute to the fermion action (2.83), since the light-cone gauge Γ+θa = 0 condition will

make it vanish.
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In the following we will present the explicit form of the supersymmetry transformations

in the string frame two component formalism following from (2.82). For the antisymmetric

tensor fields of the TN example (2.46) the dilatino variation takes the form6.

δλa =
(
Γ67(σ3)ab + Γ68(σ1)ab

)
Γ+ϵb (2.91)

and the gravitino variations are given by

δψa+ = ∂+ϵ
a +

1

2

∑
k

mkx
kΓk+ϵa + Γ67(σ3)abϵ

b − 1

2
Γ68Γ+Γ+(σ

1)abϵ
b

δψai = ∂iϵ
a − 1

2
Γ68+Γi(σ

1)abϵ
b, i = 1, 2, 3, 4, 5

δψa6 = ∂6ϵ
a + Γ7+(σ3)abϵ

b − 1

2
Γ8+(σ1)abϵ

b

δψa7 = ∂7ϵ
a − Γ6+(σ3)abϵ

b − 1

2
Γ678+(σ1)abϵ

b

δψa8 = ∂8ϵ
a +

1

2
Γ6+(σ1)abϵ

b (2.92)

It was pointed out in [56] that pp waves have 16+Nsup Killing spinors; 16 of which must occur

in any background while the remaining 0 ≤ Nsup ≤ 16 so-called ”supernumerary” Killing

spinors occur only in special backgrounds. After light-cone gauge fixing, only these extra

spinors give rise to linearly-realized supersymmetries. Such linearly realized supersymmetries

also act as two dimensional world sheet supersymmetries implying a degeneracy of the world

sheet energies of bosonic and fermionic excitations. In our case, the sixteen ϵ which satisfy

Γ+ϵ = 0 are the ”automatic” supersymmetries. It’s easy to check that for those the conditions

(2.92) are integrable as only δψ+ is not automatically vanishing and can easily be integrated.

For the ”supernumerary” Killing spinors the vanishing of the dilatino variation (2.91)

imposes a projection condition on the supersymmetry transformation parameters ϵ. The

integrability condition in the i,+ directions of δψM = 0 becomes

(∂+∂i − ∂i∂+)ϵ
a =

1

2
Γi+
(
1− 1

2
Γ+Γ

+
)
ϵa

=
1

4
Γi+Γ+Γ+ϵ

a

= 0 (2.93)

6As discussed in section 4.3 any Penrose limit can be brought into the TN form by a simple rotation in
the 7-8 plane.
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Where we used the identities

Γ+Γ+ = 1 + Γ09, Γ+Γ
+ = 1− Γ09 (2.94)

Using the dilatino projection condition the +, 7 and +, 8 integrability conditions are also

satisfied. However the +, 6 condition takes the following form

(∂+∂6 − ∂6∂+)ϵ
a =

1

2
Γ6+
((
3 +

1

2
Γ+Γ

+
)
δab − 2iΓ78

(
1 +

1

2
Γ+Γ

+
)
(σ2)ab

)
ϵb (2.95)

Where the factor in parenthesis is not a projector and consequently there are no ”supernu-

merary” Killing spinors in our background. This is to be contrasted with the Penrose limit

of AdS5 × S5 where there are 16 additional supersymmetries [29].

2.B Null geodesics

In this appendix we consider null geodesics in the warped AdS6 × S2 metric

ds2 = f 2
6 (− cosh ρ2dt+ dρ2 + sinh ρ2ds2S4) + f 2

2 (dθ
2 + sin2 θdϕ2) + 4ρ̂2 |dw|2 , (2.96)

We consider geodesics which are located at the center of AdS6 at ρ = 0 and at the equator

of the two sphere at θ = π
2
. These choices preserve the U(1) of the two-sphere which we

identify with a U(1) inside the SU(2)R symmetry of the dual SCFT as well as the symmetries

of the four-sphere of AdS6, which means that the dual state has no angular momentum.

We consider however the possibility that the geodesic moves along the Riemann surface

Σ, i.e. the coordinates t, ϕ, w and w̄ depend on an affine parameter λ and the geodesic

equation and null condition. With these choices the geodesic equation

d2xµ

dλ2
+ Γµνρ

dxν

dλ

dxρ

dλ
= 0 (2.97)
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takes the following form

d

dλ

( dt
dλ
f 2
6 (w, w̄)

)
= 0 (2.98)

d

dλ

(dϕ
dλ
f 2
2 (w, w̄)

)
= 0 (2.99)

d2w

dλ2
−
(
dt

dλ

)2
∂w̄f

2
6

4ρ̂2
+

(
dϕ

dλ

)2
∂w̄f

2
2

4ρ̂2
+

(
dw

dλ

)2
∂wρ̂

2

ρ̂2
= 0 (2.100)

d2w̄

dλ2
−
(
dt

dλ

)2
∂wf

2
6

4ρ̂2
+

(
dϕ

dλ

)2
∂wf

2
2

4ρ̂2
+

(
dw̄

dλ

)2
∂w̄ρ̂

2

ρ̂2
= 0 (2.101)

Equations (2.98) and (2.99) can be integrated once

dt

dλ
=
c6
f 2
6

,
dϕ

dλ
=
c2
f 2
2

(2.102)

The condition that the geodesic is null gµν
dxµ

dλ
dxν

dλ
= 0, becomes

4ρ̂2
dw

dλ

dw̄

dλ
+
c22
f 2
2

− c26
f 2
6

= 0 (2.103)

As discussed in section 2.3.1 our goal is to describe dual operators close to the BPS bound

∆ = 3J which leads to a condition on the coordinates t and ϕ

∂ϕ

∂t
= 3 (2.104)

by identifying the generators of t and ϕ translations with the scaling and R symmetry

generators. Using (2.102) this condition implies

3 =
c2
c6

f 2
6

f 2
2

= 9
c2
c6
T 2 (2.105)

Where (2.2) was used. It is easily confirmed that the choice used in the body of the chapter,

where w is independent of λ and fixed at the critical point w = wc, is indeed a null geodesic

satisfying (2.104) for c6 = 3c2, due to the fact that T |w=wc = 1 and ∂wf2|w=wc = ∂wf6|w=wc =

0.

We briefly discuss the possibility of more general geodesics where w, w̄ depend on the

affine parameter λ. The condition (2.105) implies that T should be constant along such a

geodesic. We have numerically searched for such geodesics for some examples and found

that T varies along the null geodesics. This provides evidence that one has to drop either
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the condition (2.104), which may make the field theory identification of the Penrose limit

challenging or consider more general trajectories on S2. It would be very interesting to

investigate the geodesics further and determine whether they are integrable. This is a quite

challenging problem due to the complicated dependence of all the metric factors on the

coordinates of Σ

2.C Plane wave limit for AdS6 solution of massive type IIA

In [48] a solution of massive type IIA was found which is a warped product of AdS6 over part

of a four sphere S4. This background was constructed by taking a near horizon limit of a

D4-D8 semi-localized brane solution. In this appendix we briefly compare the Penrose limit

for this supergravity background [66] to the one for the type IIB AdS6 solutions described

in the body of this chapter. The metric and four form antisymmetric tensor field strength

of the solution are given by

ds2 =
9

2
W (ξ)

(
− cosh2 ρdt2 + dρ2 + sinh2 ρds2S4 +

4

9

(
dξ2 + sin2 ξds2S3

))
F4 =

20
√
2

3
(cos ξ)

1
3 sin ξ3dξ ∧ ωS3 , eϕ = (cos ξ)−

5
6 (2.106)

Here the warp factor is given by W (ξ) =
(
cos ξ

) 1
6 in the string frame. The range of the

warping coordinate ξ ∈ [0, π/2] means that the three sphere warped over ξ produces only half

of a four-sphere. The critical point of the warp factor of the three sphere is at ξ = π/2 and this

corresponds to a Penrose limit considered in [66], which is analogous to the one discussed

in this chapter. There is however one important difference since ξ = π/2 corresponds to

the S3 along the equator of the S4 and therefore to the strong coupling region where the

supergravity approximation breaks down. In contrast, the critical point in the type IIB

AdS6 is a regular point where the supergravity approximation is valid for large N . The same

conclusion can be drawn from considering the T-dual of the Brandhuber-Oz solution [67] for

which the holomorphic functions A± and G are [1]

A± =
a

2
w2 ∓ bw, G =

ab

3

(
1 + (w + w̄)3

)
(2.107)
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Here the condition ∂wG = 0 is solved by Im(w) = 0 which under T-duality is mapped to

ξ = π/2 on the type IIA side.
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CHAPTER 3

Co-dimension 2 defect solutions in N=4, d=7 gauged

supergravity

3.1 Introduction

The construction and study of extended conformal defects is an important subject in the

investigation of superconformal field theories (SCFT). Defects are characterized by the bro-

ken and preserved symmetries. In a d-dimensional SCFT, a p-dimensional conformal defect

preserves a SO(p, 2)×SO(d− p) subgroup of the SO(d, 2) conformal group. The first factor

is the conformal symmetry acting on the world volume of the defect and the second factor

is the rotational symmetry in the transverse directions, which acts like a global symmetry

on the degrees of freedom localized on the defect.

If the SCFT has a holographic dual it is interesting to look for the holographic description

of such defects, which fall into two categories: First, a brane is placed in the bulk spacetime

which ends on the boundary at the p dimensional defect [68, 69]. In a probe approximation

the gravitational back reaction of such the brane is neglected, but the embedding is deter-

mined by solving the world volume equations of motion or the BPS-condition following from

world volume kappa symmetry [70]. Second, a fully back reacted solution of the supergrav-

ity can be constructed using an ansatz of AdS and sphere factors warped over a base space

(which can be a line or a Riemann surface with boundary). Solutions can either be con-

structed in lower dimensional gauged supergravities [71, 72] and in favorable circumstances

be uplifted ten or eleven dimensions, or alternatively solutions can be constructed in ten or

eleven dimensions [20, 22, 73, 74]. The former solutions are easier to obtain but the later are

more general and in many cases give a top down understanding of the defects as backreacted
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solutions of intersecting brane systems, which allow us to identify the gauge theories, often

of quiver type, which flow to the SCFTs.

In this note we consider the holographic description of p = 4 dimensional defects in

d = 6 dimensional SCFTs. We construct solutions in a truncation of maximal SO(5) gauged

supergravity in seven dimensions with U(1) × U(1) gauge symmetry. These solutions are

related by a double analytic continuation to supersymmetric black hole solutions. They are

also closely related to compactifications of the seven dimensional theory on spindles - two

dimensional compact surfaces with conical deficits which have been studied extensively in

the past two years (see e.g.[75, 76, 77, 78, 79, 80]). Both constructions start with a ansatz

AdS5 × S1 warped over a real coordinate. Whereas the spindle solution the real coordinate

takes values on a compact interval and the circle closes off at either end of the interval, in our

case the real coordinate takes values on a real half-line and the geometry decompactifies to

an asymptotic AdS7 space. The solution therefore describes conformal a defect living inside

a higher dimensional SCFT.

The structure of this note is as follows. In section 3.2 we describe the seven dimensional

gauged supergravity and the relevant solutions which are obtained from double analytic

continuation of black hole solutions. In section 3.3 we perform a regularity analysis based

on the absence of conical singularities in the bulk and boundary and obtain a one parameter

family of regular solutions, as well as solutions with conical singularities in the bulk related

to spindles which have been actively investigated recently. In section 3.4 we perform some

holographic calculations using the regular solutions, in particular we calculate the on-shell

action of the solution, as well as the expectation value of the stress tensor and conserved

R-symmetry currents. In section 3.5 we briefly discuss the uplift of the solution to eleven

dimensions which is used to identify the R-symmetry currents of the six dimensional SCFT

to which the seven dimensional gauge fields are dual. We close with a discussion of our

results and leave some details of calculations to an appendix.
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3.2 7-dim gauged supergravity

We consider a truncation of maximal N = 4, SO(5) gauged supergravity in seven dimen-

sions [81] with U(1) × U(1) gauge symmetry and two scalars [82, 83, 84]. There exists a

consistent uplift of the seven dimensional solutions to eleven dimensional supergravity [82].

The solutions we consider are double analytic solutions of charged non-rotating black hole

solutions [84, 83], where the S5 factor is replaced by a AdS5 factor and the time coordinate

is replaced by a space-like compact circle coordinate. The black hole solution depends on

a non-extremality parameter and two charges. The extremal solution preserves either half

or a quarter of the thirty-two supersymmetries of the gauged supergravity theory for one or

two nonzero charges respectively [84]. It was shown in [76] that the analytically continued

extremal solutions also preserve the same amount of supersymmetry.

We follow the conventions of [76] to facilitate a comparison with their analysis. The

action for the bosonic fields of U(1)×U(1) gauged supergravity in seven dimensions is given

by

S = − 1

16πGN

∫
d7x

√
−g
(
R− g2cV (ϕ)− 1

2

2∑
i=1

∂µϕi∂
µϕi −

1

4
e
√
2ϕ1+

√
2
5
ϕ2F 2

1

− 1

4
e−

√
2ϕ1+

√
2
5ϕ2F

2
2

)
(3.1)

where Fi = dAi, i = 1, 2 and the potential for the scalar fields is given by

V (ϕ) = 2g2ce
−
√

2
5
ϕ2
(
− 8 + e

√
10ϕ2 − 8e

√
5
2
ϕ2 cosh

ϕ1√
2

)
(3.2)

The solution given in [76] can be expressed in term of the following functions

hi(y) = y2 + qi, i = 1, 2

P (y) = h1(y)h2(y)

Q(y) = −y3 − µy + g2ch1(y)h2(y) (3.3)
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and is given by

ds2 =
(
yP (y)

) 1
5
{
ds2AdS5

+
y

4Q(y)
dy2 +

Q(y)

P (y)
dz2
}

Ai =


√

1− µ
qi
qi

hi(y)

 dz, i = 1, 2

eϕ1 =

(
h1(y)

h2(y)

) 1√
2

, eϕ2 =
(h1(y)h2(y))

1√
10

y2
√

2
5

(3.4)

It is easy to verify that the equations of motion following from the variation of the action

(3.1) are satisfied for such a solution. Here q1, q2 are related to the charges and µ is a non-

extremality parameter which we set to µ = 0. This choice corresponds to a supersymmetric

solution. We will also set gc = 1 for simplicity. For these choices the solution with q1 = q2 = 0

corresponds to a unit radius AdS7, using AdS5 × S1 slicing coordinates.

3.3 Regularity analysis

In this section we present the conditions that regularity imposes on the solution. The analysis

follows the general strategy employed in other cases of holographic description of defects.

[85, 86, 87]. It is also closely related to the construction of holographic calculations of Renyi-

entropies [88, 89], compactifications on spindles [76, 75, 77, 78] and related constructions

[90, 91].

In [76] the solution presented in section 3.2 was used to construct a AdS5 compactification

of seven dimensional supergravity on a two dimensional compact space, a so-called spindle.

A spindle is topologically a two sphere with two conical deficits at the north and south poles

respectively. A spindle exists if the function Q(y), defined in (3.3) has two real zeros and

in between the zeros both Q(y) and P (y) are positive. The regularity, supersymmetry and

the quantization of the deficit angle coming from a consistent interpretation of the uplift to

eleven dimensions impose conditions on the parameters of the solution which were worked

out in [76].

In our case the two dimensional space will be non-compact and we will look at the region
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from the largest positive zero of Q(y) to infinity, which is a region where Q is positive.

In the following we will investigate the regularity conditions imposed on the solution. For

convenience we write out the functions which determined the regularity (recall we have set

µ = 0).

Q(y) = −y3 + (y2 + q1)(y
2 + q2) = y4 − y3 + (q1 + q2)y

2 + q1q2

P (y) = (y2 + q1)(y
2 + q2) (3.5)

As y → ∞ we approach an asymptotic AdS7 region, with a six dimensional boundary.

In this limit the metric takes the form

lim
y→∞

ds2 = yds2AdS5
+ ydz2 +

1

4y2
dy2 + · · ·

=
dρ2

4ρ2
+

1

ρ

(
ds2AdS5

+ dz2
)
+ · · · (3.6)

where we defined the Fefferman-Graham coordinate ζ as y = 1/ρ and the dots denote sub-

leading terms in y and ρ, which are determined in appendix 3.A. The metric is asymptotic to

AdS7, Since the z direction parameterizes a circle, the holographic boundary of the asymp-

totic AdS space is of the form AdS5 × S1. The six dimensional metric on the boundary is

given by

ds26 =
dr2 − dt2 −

∑3
i=1 dx

2
i

r2
+ dz2

=
1

r2

(
dζ2 − dt2 −

3∑
i=1

dx2I + r2dz2
)

(3.7)

which is conformal to R1,5 if the coordinate z has periodicity 2π. For a different periodicity of

z the boundary has a conical singularity at r = 0. In the standard formulation of AdS/CFT

the boundary theory does not have dynamical gravity and hence a co-dimension two defect

does not induce a conical deficit, as a cosmic string would in a gravitational theory. Conse-

quently the condition of the absence of a conical deficit on the boundary fixes the periodicity

of the S1 coordinate z to be 2π.

We now seek conditions on q1, q2 such that there is at least one positive zero and that it

is not a double zero. Once we have such a y+, we can guarantee that in the range [y+,∞)
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Figure 3.1: Sign of the discriminant (3.8) of the polynomial Q(y) in the (q1, q2) plane

both metric functions Q(y) > 0 and P (y) > y3 > 0 are positive and the metric is regular.

An important quantity for the nature of the zeros of Q is the discriminant

D = q1q2

(
16(q41 + q42)− 4(q31 + q32)− 64(q31q2 + q1q

3
2) + 96q21q

2
2 + 132(q21q2 + q1q

2
2)− 27q1q2

)
(3.8)

Note that the vanishing of the discriminant implies the presence of a real double zero

and for D > 0 we have either four or no real zeros whereas for D < 0 we have two real and

two complex conjugate roots. We show a plot of the sign of the discriminant as a function

of q1, q2 in figure 3.1, where locus of vanishing discriminant is represented by the blue curve

and regions of positive discriminant are shaded grey.

We can use Descartes’ rule of signs to show that in the region with either one or both

q1 and q2 negative, we have two real roots in the (white) region where D < 0 and four real

roots in the (grey) region where D > 0. In the region where both q1, q2 are positive we have

two real zeros in the white region where D < 0 and no real zeros in the (dark grey) region,

where D > 0. This implies that the dark grey region of charges is excluded since Q(y) is

never zero here and we will produce a naked singularity when y goes to zero and the Ricci
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scalar diverges.

Note that if y = y0 is a double zero the metric will approach the following form near

y = y0 + ρ

ds2 ∼ (y0P (y0)
1
5

(
ds2AdS5

+
y0
γρ2

dρ2 +
γρ2

P (y0)
dz2
)

(3.9)

where γ = 1
2
Q′′(y) |y=y0 . This produces a singularity at ρ = 0. (We will see that we will

never have to worry about this case for q1, q2 which satisfy the other regularity conditions)

Now we assume that we are in the allowed region of the q1, q2 plane and consider the

y → y+ limit where y+ is the largest positive zero of the function Q(y). Letting y = y+ + ρ,

we have that

Q(y) ≈ Q′(y+)ρ

P (y) ≈ P (y+) = (Q(y+) + y3+) = y3+ (3.10)

Plugging these into the metric (3.4) and defining the new radial coordinate r = ρ
1
2 , we obtain

(
yP (y)

) 1
5
( y

4Q(y)
dy2 +

Q(y)

P (y)
dz2
)
∼ y

9
5
+

Q′(y+)

(
dr2 +

(
Q′(y+)

y2+

)
r2dz2

)
(3.11)

As discussed above the absence of a conical deficit on the boundary fixes the periodicity of

z to be 2π.

Q′(y+)

y2+
=

1

n
(3.12)

gives us the metric on a half spindle which is regular everywhere except at y = y+ where

there is a conical deficit angle 2π(1− 1
n
).

Using the explict form of Q, we obtain the following constraint on the charges:

y+

(
4y2+ − (3 +

1

n
)y+ + 2(q1 + q2)

)
= 0 (3.13)

Note that the value of the largest root y+ also depends on the charges q1, q2 and the resulting

expression does not have a compact explicit expression. It is however clear that the condition

will constrain the charges q1, q2 to lie on a on dimensional curve, which depends on the value

of the conical deficit near the ”half-spindle”. In figure 3.2 we illustrate the curves of allowed
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Figure 3.2: Allowed charges for different values of conical deficits: n = 1 (red) is the com-

pletely regular solution and two half-spindles with n = 2 (green) and n = 3 (orange)

charges for the case n = 1 which corresponds to a completely nonsingular spacetime, and

n = 2, 3 which corresponds to spaces with conical deficits π and 2
3
π respectively.

We note that there is no completely regular solution with one of the q1 and q2 charges

set to zero. Hence all completely regular solutions preserve eight of the thirty two super-

symmetries of the AdS7 vacuum of the gauged supergravity. Consequently, the dual four

dimensional defect preserves N = 1, d = 4 superconformal symmetry.

3.4 Holographic calculations

The solutions describe holographic co-dimension two defects in the six dimensional SCFT. In

this section we calculate some holographic observables and discuss the implications for the

defects imposed by regularity constraints. As discussed in section 3.3 the solution approaches

AdS7 asymptotically where the six dimensional boundary is AdS5×S1. While the boundary

is conformal to R1,5, it is simpler to work with the AdS5×S1 form of the boundary which is
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natural given the metric (3.4). All holographic calculations can be mapped to a flat boundary

using the conformal mapping described in section 3.3.

3.4.1 On shell action

To evaluate the on shell action we have to add a Gibbons-Hawking term to the action (3.1)

which is needed for a good variational principle. Using the trace of the Einstein equation

the on-shell action can be expressed as

Son−shell = − 1

16πGN

∫
M

√
−g
(2
5
V − 1

10
e
√
2ϕ1+

√
2
5
ϕ2F 2

1 − 1

10
e−

√
2ϕ1+

√
2
5
ϕ2F 2

2

)
+

1

8πGN

∫
∂M

√
−hΘ (3.14)

The Gibbons-Hawking term is obtained from the trace of the second fundamental form

Θµν = −1

2

(
∇µnν +∇νnµ

)
(3.15)

Here hab is the induced metric and nµ is the outward pointing normal vector at the the cut-

off surface. For the solution discussed in this chapter we choose the cutoff surface at large

y = yc. Furthermore since the spacetime closes off at the larges zero y+ of Q(y), the integral

of the coordinate y in the action (3.14) is on y ∈ [y+, yc]. The on-shell action becomes

Son−shell =
V olAdS5

16πGN

(
− 10y3c + 10y2c − 6(q1 + q2)yc −

4

5
(q1 + q2)

− 2q1q2
5y+

− 6(q1 + q2)y+
5

− 2y3+ +
4

5

q21
q1 + y2+

+
4

5

q22
q2 + y2+

)
+ o(y−1

c ) (3.16)

Here V olAdS5 is the regularized volume of AdS5. The regularized on shell action is divergent

in the limit yc → ∞ which removes the cutoff. In order to get a finite renormalized action

we have to add covariant counter terms at the cutoff surface [92, 93, 94, 95]

Sct =
1

8πGN

∫
y=yc

√
−h
(
W (ϕ1, ϕ2) +

1

8
R[h] +

1

64
(R[h]abR[h]

ab − 3

10
R[h]2)

)
=
V olAdS5

16πGN

(
10y3c − 10y2c + 6(q1 + q2)yc +

5

8

)
+ o(y−1

c ) (3.17)

Here R[h]ab, R[h] are the Ricci tensor and scalar respectively calculated from the induced

metric at the cutoff surface. W (ϕ) is the superpotential

W (ϕ1, ϕ2) = e2
√

2
5
ϕ2 + 2e

− 1√
2
ϕ1+

1√
10
ϕ2 + 2e

− 1√
2
ϕ1− 1√

10
ϕ2 (3.18)
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Which is related to the scalar potential defined in (3.2) by

V = 2
∑
i=1,2

(
∂W

∂ϕi

)2

− 6

5
W 2 (3.19)

The renormalized action is the given by

Sren = lim
yc→∞

(
Son−shell + Sct

)
=
V olAdS5

16πGN

(5
8
− 4

5
(q1 + q2)−

2

5

q1q2
y+

− 6

5
(q1 + q2)y+ − 2y3+ +

4

5

q21
q1 + y2+

+
4

5

q22
q2 + y2+

)
(3.20)

and when we include the relationship between the qi’s and y+ implied by Q(y+) = 0, we

obtain a remarkably simple result:

Sren =
V olAdS5

16πGN

(5
8
− 2y2+

)
(3.21)

As discussed above, our solutions describe holographic co-dimension 2 defects. In partic-

ular, when q1, q2 = 0 (y+ = 1), we just obtain the AdS7 vacuum which must be subtracted

in order to identify the quantity above with the expectation value of the defect.

Sren − Sren|q1,q2=0 =
V olAdS5

8πGN

(
1− y2+

)
(3.22)

Note that the volume of AdS5 has to be regularized and will contain a scheme independent

logarithmic divergent term. We interpret the coefficient (3.22) as the a central charge [96]

associated with the four dimensional defect.

3.4.2 Stress tensor and currents

The expectation value of the renormalized holographic stress tensor was derived in [92, 94, 97]

and can be obtained from the renormalized action

⟨Tab⟩ren =
2√

det(g(0))

∂Sren
∂gab(0)

(3.23)

Where g(0) is the asymptotic boundary metric in Fefferman-Graham coordinates.

ds2 =
dρ2

4ρ2
+

1

ρ
gab(x, ρ)dx

adxb (3.24)
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with

gab(x, ρ) = g(0),ab + ρg(2),ab + ρ2g(2),ab + ρ3g(3),ab + h(3),abρ
3 log ρ+ · · · (3.25)

Here the asymptotic boundary is at ρ = 0. We defer the details of the calculation to the

appendix 3.A but note one of the features of the expansion (3.25) is the absence of the

logarithmic term, i.e. we find h(3),ab vanishes. The final result for the expectation value of

the stress tensor is

⟨Tab⟩rendxadxb = hDdsAdS2
5
− 5hDds

2
S1 , hD =

( 1

18
− 2

15
(q1 + q2)

)
(3.26)

which is traceless, indicating a vanishing six dimensional trace anomaly, which is in accor-

dance with the absence of a logarithmic term in (3.25). The coefficient hD can be called the

defect’s conformal dimension in analogy with other defects such as surface defects in four

dimensions [98, 99, 100]1.

The gauge fields are dual to conserved currents and from the asymptotic behavior of Ai

given in (3.4), we can read off the source and expectation value using the standard AdS/CFT

dictionary.

lim
ρ→0

Ai =
(
qiρ

4 + · · ·
)
dz, i = 1, 2 (3.27)

which implies that there is no source for the conserved currents and the expectation value

of the currents is given by

⟨Ji⟩ = qidz (3.28)

Since the currents are dual to the a U(1) × U(1) R-symmetry, we have a non-vanishing

holonomy around the S1. Recall that the regularity conditions derived in section 3.3 constrain

the charges and hence the holonomies to a one parameter family.

Another holographic observable which can be calculated is the entanglement entropy in

the presence of a defect (see e.g.[102, 103, 104, 105]). General arguments relate this quantity

to the ones already calculated in this section. [106].

1See [101] for an in depth discussion of anomalies for co-dimension two conformal defects.
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3.5 Uplift to 11 dimensions

The seven dimensional solutions presented in section 3.2 can be uplifted to solutions of eleven

dimensional supergravity [82, 76]

ds211 = Ω
1
3ds27 + Ω− 2

3

(
e−

√
8
5
ϕ2dµ2

0 + e
ϕ1√
2
+

ϕ2√
10 (dµ2

1 + µ2
1(dϕ1 + A1)

2)

+ e
− ϕ1√

2
+

ϕ2√
10 (dµ2

2 + µ2
2(dϕ2 + A2)

2)
)

(3.29)

Where Ω is defined as

Ω = e
√

8
5
ϕ2µ2

0 + e
− ϕ1√

2
− ϕ2√

10µ2
1 + e

ϕ1√
2
− ϕ2√

10µ2
2 (3.30)

The coordinates ϕi, i = 1, 2 are angular coordinates with periodicity 2π and the coordinates

µi satisfy the constraint
∑2

i=0 µ
2
i = 1. The four form antisymmetric tensor flux is given by

∗11F4 =
(
2

2∑
a=0

(X2
aµ

2
a − ΩXa) + ΩXa

)
vol7 +

1

2

2∑
a=0

1

Xa

(∗7dXa) ∧ d(µ2
a)

+
1

2

2∑
a=1

1

X2
a

d(µ2
a) ∧ (dϕa + Aa) ∧ ∗7Fa (3.31)

Here ∗11 is the Hodge dual with respect to the eleven dimensional metric (4.19) whereas

∗7 and vol7 are the Hodge dual and volume with of to the seven dimensional metric (3.4)

respectively. Note that the AdS7 vacuum solution q1 = q2 = 0 gives the AdS7 × S4 solution

of eleven dimensional supergravity, dual to the vacuum of the six dimensional SCFT. Since

the gauge fields Ai, i = 1, 2 twist the two angular coordinates ϕi in the metric (4.19) we

can identify the gauge fields as dual to U(1)× U(1) R-symmetry currents inside the SO(5)

R-symmetry of the N = (0, 2) six dimensional SCFT.

3.6 Discussion

In this note we constructed holographic solutions of N = 4, d = 7 gauged supergravity which

describe four dimensional defects living inside a six-dimensional SCFT. The solutions are

closely related to AdS5 compactifications on spindles of the same theory [76]. The main
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difference lies in the fact that the two dimensional space transverse to the AdS5 factor is

compact in the spindle case, whereas in our case the space is noncompact and the solution

has an asymptotic AdS7 boundary. For the spindle [76] the two dimensional space is a sphere

with two conical singularities at the north and south pole. The main result of the present

chapter is that for the two charge extremal solutions it is possible to find completely regular

solutions without any conical deficits in the bulk or on the asymptotic boundary. These

solutions form a one parameter family in the space of extremal solutions. Another class of

solutions are the ”half-spindle” solutions of [90, 91] where the two dimensional space has the

topology of the disk with one conical singularity in the center and M5-brane sources. It is

possible to generalize our solutions to include a conical singularity in the bulk and in some

sense this solution corresponds to a half-spindle on a plane instead of a disk since we have a

non-compact space. It would be interesting to investigate whether a relation to the solutions

[90, 91] exists. More generally speaking it would be interesting to see whether its possible

to modify other holographic solutions of M-theory which describe AdS5 compactifications,

such as [107, 108, 109] to include a noncompact direction leading to an asymptotic AdS7

boundary and hence describing a defect embedded in a higher dimensional theory.

The asymptotic boundary of the spacetime is AdS5×S1 which is conformal to R1,5 under

this map the circle parameterizes the angular direction of the transverse R2. Since our

solution have a non-vanishing expectation value of the U(1)×U(1) R-symmetry currents we

can interpret the defect as a homolomy defect for the R-symmetry currents. Examples of

such defects have been constructed for free field theories [110, 111, 112, 113, 114]. For surface

defects in four dimensional N = 4 SYM such defects can be are related to probe brane and

fully back reacted LLM geometries [115, 116, 117] and some observables were matched in

[100]. It would be interesting to see whether such a relation exist for four dimensional defects

in the six dimensional SCFT, in particular whether there is a field theory analogue of the

regularity condition relating the two charges or holonomies that we found.

63



3.A Calculation of holographic stress tensor

In this section we calculate the expectation value of the holographic stress tensor following

[94]. The metric (3.4) has the following large y expansion

ds2 =
( 1

y2
+

1

y3
+

5− 4(q1 + q2)

5y4
+ · · ·

)dy2
4

+
(
y +

q1 + q2
5y

+
−2q21 − 2q22 + q1q2

25y3
+ · · ·

)
ds2AdS5

+
(
y +

q1 + q2
5y

+
4q1 + 4q2

5y2
+

−2q21 − 2q22 + q1q2
25y3

+ · · ·
)
dz2 (3.32)

where the dots denote terms which go faster to zero in the limit y → ∞. The following

coordinate transformation bring the metric into Fefferman-Graham form

y =
1

ρ
+

1

2
+

5− 16(q1 + q2)

80
ρ− q1 + q2

30
ρ2 + o(ρ3) (3.33)

Which takes the following form

ds2 =
dρ2

4ρ2
+

1

ρ
gab(x, ρ)dx

adxb

gab(x, ρ) = g(0),ab + ρg(2),ab + ρ2g(4),ab + ρ3g(6),ab + h(6),abρ
3 log ρ+ · · · (3.34)

The gab the takes the following form in Fefferman-Graham coordinates

gab(x, ρ)dx
adxb =

(
1 +

1

2
ρ+

1

16
ρ2 − 2q1 + 2q2

15
ρ3 + · · ·

)
ds2AdS5

+
(
1− 1

2
ρ+

1

16
ρ2 +

2(q1 + q2)

3
ρ3 + · · ·

)
dz2 (3.35)

From which we can read off the g(i),ab, i = 0, 2, 4, 5. Note that there is no term logarithmic

in ρ and hence h(6),ab = 0 for the solution considered in this chapter. The expectation value

of the holographic stress tensor is then given by

⟨Tab⟩ = g(6),ab − A(6),ab +
1

24
Sab (3.36)

Where A6 and S are expressed in terms of g(0), g(2), g(4) and their derivatives. Explict ex-

pressions can be found in [94] and evaluating them for our background gives

⟨Tab⟩rendxadxb =
( 1

18
− 2

15
(q1 + q2)

)
dsAdS2

5
+
(
− 5

18
+

2

3
(q1 + q2)

)
dz2 (3.37)
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CHAPTER 4

Holographic 6d co-dimension 2 defect solutions in

M-theory

4.1 Introduction

In this chapter, we will discuss the uplift of solutions of seven dimensional gauged supergrav-

ity of [5] to eleven dimensions. These solutions describe holographic duals of co-dimension

two defects in six dimensional SCFTs. The defects preserve four dimensional conformal

symmetry as well as transverse rotational symmetry.

There are several approaches to constructing holographic duals of such defects. First,

probe branes can be placed inside the AdS vacuum of the ten or eleven dimensional theory

[68, 69]. The resulting embedding realizes the unbroken symmetries of the defect, which

is localized at the intersection of the probe brane and the boundary of AdS. Second, one

can construct solutions of the ten or eleven dimensional supergravity with the ansatz of a

warped product of AdS and sphere factors which realize the defect symmetries and solve the

supergravity Killing spinor equations to obtain a half-BPS solution. The second approach is

generally quite involved and leads to “bubbling” solutions, see e.g. [115, 116, 118, 117, 73,

22, 23, 74, 119].

A more pedestrian approach is to consider a truncation of the ten or eleven dimensional

theory to a lower dimensional gauged supergravity and construct solutions there. Generally,

the ansatz and the BPS conditions following from the vanishing of the supersymmetry trans-

formations are easier to solve in the lower dimensions than in higher dimensions. In many

cases, such a lower dimensional solution can then be uplifted to the ten or eleven-dimensional

65



supergravity and given a microscopic understanding by relating it to bubbling solutions.

In this chapter we will perform an uplift of the solutions found in [5] and embed it

into a class of LLM solutions of M-theory [115, 108]. The seven dimensional solutions are

constructed by warping AdS5 × S1 over an interval with U(1) × U(1) gauge fields along

the circle direction. They are related to hyperbolic (topological) black hole solutions by a

double analytic continuation. These solutions have been used recently to construct spindle

compactifications [75, 77, 76, 78, 79, 80, 120, 121, 122]1. In this case, the warping coordinate

takes values on a finite interval and the S1 closes off at the ends of the interval. One ends up

with a topological two sphere with two conical deficits 2π(1− 1
nn/s

), nn/s ∈ Z at the north and

south pole of the sphere. In our solution, the warping coordinate is a semi-infinite interval

and the solution describes a co-dimension two defect in a six-dimensional SCFT. We note

that the bulk gauge fields are dual to conserved currents in the CFT and the supergravity

solution corresponds to turning on a source for these currents in the plane transverse to the

defect. This means that these defects are twist/disorder defects where fields charged under

these currents are picking up a phase when going around the defect. We list some examples

of holographic co-dimension two defect solutions in supergravities in various dimensions

[125, 86, 87].

The structure of the present chapter is as follows: In section 4.2, we review the defect

solution of [5], in particular, the conditions for a completely non-singular solution with

two non-vanishing gauge fields and a solution with a conical singularity in the bulk with

only one gauge field turned on. In section 4.3 we use the formulas from [82] to lift the seven

dimensional solution to eleven dimensions and investigate the nature of the conical singularity

of the one charge solution. In section 4.4 we bring the uplifted one charge solution into

canonical LLM form. Since our solution has an extra rotational symmetry the LLM solution

can be described by an electrostatic potential by a change of variables and we determine the

line charge distribution associated with the one charge solution. This allows us to identify the

conical singularity with a “regular puncture” which was previously discussed in the context

1The hyperbolic black holes where also used to calculate charged Rényi entropies in holography, see e.g.
[123, 124, 89].
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of the LLM construction of duals of d = 4, N = 2 SCFTs by Gaiotto and Maldacena [108].

In addition, it allows us to construct generalized solutions with more complicated line charge

distributions, some of which are completely regular. We calculate holographic observables

namely the on-shell action and the vacuum-subtracted defect central charge. In an appendix

4.A, we construct a simple example for a co-dimension two defect in a d = 6, N = (2, 0)

SCFT using the six dimensional free tensor multiplet.

4.2 Seven dimensional solution

The seven dimensional supergravity theory is a truncation of the maximal d = 7 SO(5)

gauged supergravity, where we keep two scalars and two U(1) gauge fields. The theory is

defined by the Lagrangian [82]

S =

∫
d7x

√
−g
(
R− 1

2

2∑
i=1

∂µφi∂
µφi − g2V − 1

4

2∑
i=1

ea⃗iϕ⃗F 2
(i)

)
, (4.1)

where we use

α⃗1 = (
√
2,

√
2

5
), α⃗2 = (−

√
2,

√
2

5
) (4.2)

to define

X1 = e−
1
2
α⃗1φ⃗, X2 = e−

1
2
α⃗2φ⃗, X0 = (X1X2)

−2, (4.3)

and the potential V can the be expressed as

V = −4X1X2 − 2X0X1 − 2X0X2 +
1

2
X2

0 . (4.4)

We consider the following solution of the gauged supergravity which can be obtained

by a double analytic continuation of charged black hole solutions [82, 126, 84]. These have

been used to describe M5 branes wrapped on spindles [76], duals of d = 4, N = 2 Argyres-

Douglass theories [90, 91], and co-dimension 2 defects [5] in this theory.

ds27 =
(
yP (y)

) 1
5
ds2AdS5

+
y

6
5P (y)

1
5

4Q(y)
dy2 +

y
1
5Q(y)

P (y)
4
5

dz2,

P (y) = h1(y)h2(y), Q(y) = −y3 + µy2 +
1

4
g2h1(y)h2(y). (4.5)
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The functions hi, i = 1, 2 are given by

h1 = y2 + q1, h2 = y2 + q2. (4.6)

The scalar fields are expressed in terms of hi as follows

X1 = y
2
5
h2(y)

2
5

h1(y)
3
5

, X2 = y
2
5
h1(y)

2
5

h2(y)
3
5

, (4.7)

and the two U(1) gauge fields are given by

A1 =

√
1− µ

q1
q1

h1(y)
dz + a1dz, A2 =

√
1− µ

q2
q2

h2(y)
dz + a2dz. (4.8)

The constant µ is an extremality parameter and supersymmetric solutions are obtained

by setting µ = 0. A solution with both q1, q2 nonzero will preserve one-quarter of the

supersymmetry and, as we shall review in the next section, completely nonsingular solutions

are possible. Setting q2 = 0 produces a solution that preserves half the supersymmetry of the

seven dimensional gauged supergravity but such a solution suffers from conical singularities.

For the gauge field to be non-singular at the location y = y+, where the space closes off, we

have to choose a1 and a2 such that

A1(y+) = A2(y+) = 0. (4.9)

In the following we set the coupling g = 2. As discussed below, this implies that the

asymptotic boundary AdS5×S1 is conformal to R1,5 without a conical deficit provided z has

standard periodicity 2π.

4.2.1 Regular two charge solution

The case of completely regular solutions was analyzed in [5]. These solutions were con-

structed by allowing the warping coordinate y to take values in the semi-infinite interval

[y+,∞] where y+ is the largest zero of Q(y) defined in (4.5). The existence of such a positive

y+, which produces no double zero and a regular metric everywhere, is guaranteed as long

as we place conditions (discussed in [5]) on the signs of the charges q1, q2 as well as the

discriminant of the polynomial Q(y).
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Figure 4.1: Regular two charge solutions. Allowed charges for different values of conical

deficits: n = 1 (red) is completely regular. n = 2 (green), n = 3 (orange) correspond to the

first two half-spindle solutions. The dark grey portion is the disallowed region where Q(y)

has no real zeros.

This interval produces a non-compact space and therefore, unlike in the spindle construc-

tion, we approach the asymptotic AdS7 region as y → ∞. In this limit the metric (4.5) takes

the form

lim
y→∞

ds27 = yds2AdS5
+ ydz2 +

1

4y2
dy2 + ...

=
dρ2

4ρ2
+

1

ρ

(
ds2AdS5

+ dz2
)
+ ..., (4.10)

where we make the change of coordinates y = 1/ρ and the dots denote subleading terms.

Note that the boundary of this space is of the form AdS5 × S1 which is conformal to R1,5

with no conical defect as long as the coordinate z parameterizing the S1 has periodicity 2π.

Having fixed the periodicity of z, we can look at the metric in the region y → y+. Letting

y = y+ + ρ, we have that Q(y) ≈ Q′(y+)ρ and P (y) ≈ P (y+) = y3+ so that the metric (4.5)

takes the form
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(yP (y))1/5
(

y

4Q(y)
dy2 +

Q(y)

P (y)
dz2
)

≈ y9/5

Q′(y+)

(
dr2 +

(
Q′(y+)

y2+

)
r2dz2

)
, (4.11)

where we define the new radial coordinate r = ρ1/2. Notice that at r = 0 (y = y+) the

z-circle shrinks to zero size and the space closes off. At this location, we may fix the values

of q1, q2 such that we either have a regular solution or a R2/Zk singularity by setting:

Q′(y+)

y2+
=

1

k
. (4.12)

The values k > 1 give the metric with deficit angle 2π(1−1/k) at y = y+. Using the explicit

form of the function Q(y), we can express the constraint (4.12) as

y+
(
4y2+ − (3 + 1/k)y+ + 2(q1 + q2)

)
= 0. (4.13)

Note that the root y+ itself depends on the charges q1, q2 however we can clearly see that the

above condition will constrain them to lie along a different one dimensional curve for each

choice of k. In figure 4.1, we have plotted the first three of these families of solutions in the

q1, q2-plane.

4.2.2 One charge solution

The solution with two nonzero charges is quarter BPS, i.e. preserves eight of the original

thirty-two supersymmetries of the d = 7 gauged supergravity. Our goal is to obtain solutions

which fit into the LLM solutions in 11 dimensions, which preserve sixteen supersymmetries.

We will have to set one of the two charges to zero in order to produce a half BPS solution. In

the following we will set q2 to zero. The metric components of (4.5) in the y and z direction

become (recall that we have set g = 2)

ds27 =
(y2 + q1)

1
5

4y
2
5

(
y2 + q1 − y

)dy2 + y3/5
(
y2 + q1 − y

)
(y2 + q1)

4
5

dz2 + · · · . (4.14)
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The larger zero of y is located at

yc =
1

2

(
1 +

√
1− 4q1

)
. (4.15)

With the following change of variable

y = yc +
1

4
r2, (4.16)

the metric near y ∼ yc, i.e. r ∼ 0 behaves as follows

ds2 ∼ 1

2
9
5
√
1− 4q1(1 +

√
1− 4q1)

1
5

(
dr2 + (1− 4q1)r

2dz2
)
+ · · · . (4.17)

Consequently, for nonzero q1 there is a conical singularity in the bulk of the spacetime,

whereas q1 = 0 corresponds to the AdS7 vacuum. For a R2/Zk conical singularity with

deficit 2π(1− 1
k
), the charge q1 is given by

1

k
=
√

1− 4q1. (4.18)

In seven dimensions a conical singularity in the bulk is problematic. In some cases uplifting

a singular solution of lower dimensional supergravity to ten or eleven dimensions leads to a

non-singular solution, in other cases the solution may have a well defined interpretation in

terms of branes.

4.3 Uplift to eleven dimensions

A solution of seven dimensional gauged supergravity can be uplifted to eleven dimensional

supergravity [82], the metric and the four-form antisymmetric tensor field strength take the

following form

ds211 = Ω
1
3ds27 +

1

g2Ω
2
3

{dµ2
0

X0

+
2∑
i=1

1

Xi

(
dµ2

i + µ2
i (dϕi + gAi)

2
)}
,

∗11F4 = 2g
2∑

α=0

(
X2
αµ

2
α − ΩXα

)
ϵ7 + gΩX0ϵ7 +

1

2g

2∑
α=0

∗7d lnXα ∧ d(µ2
α) (4.19)

+
1

2g2

2∑
i=1

1

X2
i

d(µ2
i ) ∧ (dϕi + gAi) ∧ ∗7Fi,
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where Fi = dAi and ∗7 is the Hodge dual with respect to the seven dimensional metric (4.5)

and ∗11 the Hodge dual with respect to the eleven dimensional metric (4.19). ϕi, i = 1, 2 are

two angular coordinates with period 2π and the variables µα, α = 0, 1, 2 parametrize a two

sphere

µ2
0 + µ2

1 + µ2
2 = 1 (4.20)

and the warp factor Ω is given by

Ω = X0µ
2
0 +X1µ

2
1 +X2µ

2
2. (4.21)

We will parameterize the µi in the following way

µ0 = sinα cos θ, µ1 = sin θ, µ2 = cosα cos θ. (4.22)

4.3.1 Two charge solution

With our µi parameterization, the warp factor Ω becomes

Ω =
(y2 + q1)

2
5 (y2 + q2 sin

2 α) cos2 θ

y
8
5 (y2 + q2)

3
5

+
y

2
5 (y2 + q2)

2
5 sin2 θ

(y2 + q1)
3
5

. (4.23)

As discussed in section 4.2.1, y2 + q1 > 0 and y2 + q2 > 0 for y ≥ yc for the solutions

which satisfy the regularity conditions. Hence, if the seven dimensional metric is regular

then the eleven dimensional metric is also regular and describes a quarter-BPS co-dimension

two defect in M-theory.

4.3.2 One charge solution

The uplift of the q2 = 0 solution given in section 4.2.2 and the eleven dimensional metric for

the defect solution takes the following form

ds211 = κ
2
3

{
y

1
3 (y2 + q1 cos

2 θ)
1
3ds2AdS5

+
y

4
3 cos2 θ

4(y2 + q1 cos2 θ)
2
3

ds2S2
+

(y2 + q1 cos
2 θ)

1
3

4y
2
3

dθ2

+
(y2 + q1 cos

2 θ)
1
3

4y
2
3 (y2 − y + q1)

dy2 +
y

1
3 (y2 + q1 cos

2 θ)
1
3

(
y2 − y + q1

)
(y2 + q1)

dz2 (4.24)

+
(y2 + q1) sin

2 θ

4y
2
3 (y2 + q1 cos2 θ)

2
3

(dϕ1 +
2q1

y2 + q1
dz + 2a1dz)

2
}
,
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where we used the parameterization (4.22) for µα, α = 0, 1, 2. The coordinates α and ϕ2 will

parameterize the round two sphere

ds2S2
= dα + sin2 α dϕ2

2. (4.25)

The uplifted metric therefore geometrically realizes an SU(2) symmetry, which will be inter-

preted as an R-symmetry from the perspective of the four dimensional N = 2 defect theory.

Using the uplift formula (4.19), one obtains for the four form

F4 = κ
{
vol(S2) ∧ (fϕ1dϕ1 + fzdz) ∧ dθ + vol(S2) ∧ (gϕ1dϕ1 + gzdz) ∧ dy

}
(4.26)

with

fϕ1 =
(y2 + q1)(3y

2 + q1 cos
2 θ) cos2 θ sin θ

8(y2 + q1 cos2 θ)2
,

fz =

(
q1 + a1(y

2 + q1)
)
(3y2 + q1 cos

2 θ) cos2 θ sin θ

4(y2 + q1 cos2 θ)2
,

gϕ1 =
q1y cos

3 θ sin2 θ

4(y2 + q1 cos2 θ)2
, (4.27)

gz =
q1y(1 + a1 sin

2 θ) cos3 θ

2(y2 + q1 cos2 θ)2
.

Note that in contrast to solutions where y takes values on a compact interval, in our case

the region y → ∞ is part of the spacetime and corresponds to the asymptotic AdS7 × S4

region. In this limit, the metric and the four form behave as follows

ds2 ∼ κ
2
3

(
ydsAdS5 +

1

4
cos2 θds2S2 +

1

4
dθ2 +

1

4y2
dy2 + ydz2 +

1

4
sin2 θ(dϕ1 + 2a1dz)

2 +O(1/y),

F4 ∼ κ
3

8
cos2 θ sin θ vol(S2) ∧ (dϕ1 + 2a1dz) ∧ dθ +O(1/y). (4.28)

The angular coordinates z, ϕ1 have period 2π. We can define a new angular coordinate

ϕ̃ = ϕ1 + 2a1z, which has standard period 2π for a1 = k/2, k ∈ Z. The flux of the four form

on the S4 is given by ∫
F4 = κ

3

8

∫
S2

vol(S2)

∫ π

0

dθ cos2 θ sin θ

∫ 2π

0

dϕ̃

= 2π2κ =
16

g3
π2κ (4.29)
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where we restored the gauge coupling g. The condition for charge quantization for the four

form F4 in M-theory is given by

1

(2π)3ℓ3p

∫
F4 = N, N ∈ Z, (4.30)

where N can be interpreted as the number of fivebranes leading to the AdS7 × S4 vacuum

in the near horizon limit and hence, the constant κ in the uplift formula is

κ =
π

2
g3N ℓ3p. (4.31)

Recall that the seven dimensional metric for the one charge solution has a conical singularity

at y = yc (4.15). Defining y = yc + r2 and expanding around r = 0, the eleven dimensional

metric takes the following form

ds2 ∼ (y2c + q1 cos
2 θ)

1
3

y
2
3
c

{
ycds

2
AdS5

+
y2c cos

2 θ

4(y2c + q1 cos2 θ)
ds2S2 +

dθ2

4
+

dr2√
1− 4q1

+
√

1− 4q1r
2dz2 +

√
1− 4q1 sin

2 θ

1 +
√
1− 4q1 − 2q1 sin

2 θ

(
dϕ1 + (1−

√
1− 4q1 + 2a1)dz

)2}
+O(r2)

(4.32)

There are three potential conical singularities in the θ, z, r, ϕ1 part of the metric. At θ = π/2

the two sphere shrinks to zero size in a smooth way, and at r = 0 there is a R2/Zk conical

singularity if 1/k =
√
1− 4q1 which is inherited from the seven dimensional metric. At θ = 0

we can define a new angular variable

ϕ̂ = ϕ1 +
(
1 + 2a1 −

1

k

)
z. (4.33)

As argued above from the regularity in the asymptotic AdS7 × S4 limit, 2a1 is an integer

and both ϕ1 and z have period 2π. Hence the new angular variable ϕ̂ has period 2π/n and

the metric displays a R4/Zk singularity near the point r = 0, θ = 0.

4.4 Lin-Lunin-Maldacena solutions

The M-theory LLM solutions [115] are examples of “bubbling” supergravity solutions which

holographically are the deformation of the d = 6, N = 2 SCFT by half-BPS states of
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dimension ∆ ∼ N2. In the same paper a double analytic continuation related these solu-

tions to a general solution of eleven dimensional supergravity with SO(2, 4)×SU(2)×U(1)

symmetry. These solutions have been used to find holographic duals [108] of a large class

of d = 4, N = 2 SCFTs constructed in [127]. The goal of the present section is to show

that our uplifted solution can be written in the LLM form. We briefly review the salient

features of the LLM solution [108]. The metric is given by an AdS5 ×S2 warped over a four

dimensional space, which is a U(1) fibration over a three dimensional base space spanned by

coordinates ξ, x1, x2

ds211,LLM = κ
2
3
11e

2λ
{
4ds2AdS5

+ ξ2e−6λds2S2 +
4

1− ξ∂ξD
(dχ− 1

2
vidx

i)2

− ∂ξD

ξ

(
dξ2 + eD(dx21 + dx22)

)}
. (4.34)

The four form field strength takes the following form

F4 = 2κ11vol(S2) ∧
(
dχ+ v) ∧ d(ξ3e−6λ) + (ξ − ξ3e−6λ)dv − 1

2
∂ξe

Ddx1 ∧ dx2
)
. (4.35)

The dimensionful quantity κ11 =
π
2
ℓ3p is the standard choice, note that our κ has both N

and g in it, this way we have to absorb the charges to D which makes the comparison easier

to [108]. Therefore, we identify κ = g3Nκ11.

The solution is completely determined in terms of a single function D(ξ, x1, x2)

e−6λ =
−∂ξD

ξ(1− ξ∂ξD)
, dv =

∑
i

vidx
i, v1 = −∂x2D, v2 = ∂x1D. (4.36)

The function D(ξ, x1, x2) satisfies the partial differential equation of Toda type(
∂2x1 + ∂2x2

)
D + ∂2ξ e

D = 0. (4.37)

Our goal is to find the LLM form of our uplifted solution (4.24). We note that our solution

has an additional rotational symmetry in the x1, x2 plane which allows us to write the metric

as

ds211,LLM = κ
2
3
11e

2λ
{
4ds2AdS5

+ ξ2e−6λds2S2 +
4

1− ξ∂ξD
(dχ− ρ

2
∂ρD dβ)2

− ∂ξDξ
(
dξ2 + eD(dρ2 + ρ2dβ2)

)}
. (4.38)
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As we will review in section 4.4.2, this additional symmetry allows for a reformulation in

terms of an electrostatic problem [108, 128, 129, 130, 131] which replaces the Toda equation

with a linear Laplace equation.

4.4.1 Map to LLM

In order to find the map of the metric (4.24) to an LLM form (4.38), we note that the metric

(4.24) depends on the two coordinates y, θ while the LLM metric with the additional U(1)

isometry also depends on two coordinates ξ, ρ. In addition there are two angular coordinates

ϕ, z which have to be related to χ, β.

By comparing the AdS5 and S2 parts of the two metrics, we can determine the radial

coordinate ξ in terms of y, θ as well as an expression for λ in (4.38)

ξ = Ny cos θ, e6λ = N2 y(y2 + q1 cos
2 θ), (4.39)

and we can choose an ansatz for the second radial coordinate ρ

ρ = sin θ g(y) (4.40)

for some function g(y). Using these relations, the gξξ, gρρ and the gξρ components of (4.38)

can be expressed in terms of the y, θ coordinates and be matched to the uplifted metric

(4.24). This gives us a differential equation for the function g(y)

d

dy
ln g(y) =

y

y2 − y + q1
, (4.41)

which can be integrated to obtain

g(y) =
(
y − 1

2
(1 +

√
1− 4q1)

) 1
2

(
1+ 1√

1−4q1

)(
y − 1

2
(1−

√
1− 4q1)

) 1
2

(
1− 1√

1−4q1

)
(4.42)

as well as an expression for the function D expressed as a function of y

eD = N2

(
y2 − y + q1

)
g(y)2

. (4.43)

The function D satisfies the Toda equation (4.37), which can be verified using the mapping

(4.39). The mapping is complete by finding the identification of angular variables

z = c1χ+ c2β, ϕ = c3χ+ c4β. (4.44)

76



Matching the angular components of the metric gives the following relations for ci, i =

1, · · · , 4

c1 = ±1, c2 = 0, c3 = ∓2(1 + a1), c4 = ∓1. (4.45)

To match the metric components, both signs in (4.45) are possible, however, matching the

four form components (4.26) and (4.35) selects the upper signs.

For the choice of the upper signs in (4.45), the relations for the angular variables become

z = χ, ϕ = −β − 2(1 + a1)χ, (4.46)

which means that the periodicity of both sets of angular variables is 2π.

4.4.2 U(1) symmetric solutions

The LLM metric (4.38) has an additional U(1) symmetry associated with shifts of the angle

β. For such geometries, it is possible to find an implicit change of variables that turns the

nonlinear Toda equation (4.37) into a linear Laplace equation. This idea goes back to the

paper by Ward [132] and has been applied to the LLM solution in [108, 128, 129, 130, ?].

Note that in some of these papers the U(1) circle is compactified to obtain a type IIA solution

from the M-theory one.

We map the LLM coordinates ξ, ρ to the new ones r, η and relate the function D to an

electrostatic potential

ρ2eD(ξ,ρ) = r2, ξ = r∂rV ≡ V̇ , ln ρ = ∂ηV ≡ V ′. (4.47)

The function V (r, η) satisfies the Laplace equation in cylindrical coordinates

1

r
∂r(r∂rV ) + ∂2ηV = 0. (4.48)

77



The four dimensional metric and the three form potential are given by

ds211 = κ
2
3
11

(
V̇∆

2V ′′

) 1
3 {

4ds2AdS5
+

2V ′′V̇

∆
ds2S2

+
2V ′′

V̇

(
dr2 +

2V̇

2V̇ − V̈
r2dχ2 + dη2

)
+

2(2V̇ − V̈ )

V̇∆

(
dβ +

2V̇ V̇ ′

2V̇ − V̈
dχ
)2}

,

C3 = 2κ11

(
−2

V̇ 2V ′′

∆
dχ+

( V̇ V̇ ′

∆
− η
)
dβ

)
∧ dΩS2 (4.49)

where dΩS2 is the volume form on S2 and ∆ is defined as

∆ = (2V̇ − V̈ )V ′′ + (V̇ ′)2. (4.50)

To determine the mapping to electrostatic coordinates we are following appendix C in [131].

The relation (4.47) gives r = r(ξ, ρ) and the expression for the other variable η = η(ξ, ρ)

implies the exact differential

dη =
∂η

∂ξ
dξ +

∂η

∂ρ
dρ =

ρ

r
∂ρrdξ −

r

ρ
∂ξrdρ. (4.51)

The electrostatic potential can be obtained from the exact differential

dV =

(
−r
ρ
∂ξr ln ρ+

ξ

r
∂ρr

)
dρ+

(
ξ

r
∂ξr +

ρ

r
∂ρr ln ρ

)
dξ. (4.52)

The boundary condition that the sphere closes at ξ = 0 implies

∂rV |η=0= 0. (4.53)

The rotational symmetric solution corresponds to a conducting disk at η = 0, which is

equivalent to (4.53) since ∂rV is the electrical field in the r direction which vanishes for a

conductor at η = 0.

The potential V is determined by a line charge λ(η) localized at r = 0

λ(η) = r∂rV |r=0= ξ(r = 0, η). (4.54)

Hence determining the change of variables gives the line charge density. The potential can

then be obtained via the Green’s function

V = −1

2

∫
dη′G(r, η, η′)λ(η′) (4.55)
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where the Green’s function can be obtained by the method of images (adding a line charge

at negative η)

G(r, η, η′) =
1√

r2 + (η − η′)2
− 1√

r2 + (η + η′)2
. (4.56)

A set of rules for the charge distributions λ(η) which leads to regular solutions (or those

with only Ak singularities) was found in [108]. The line charges must be piecewise linear and

convex with integer slopes. Furthermore, the slopes can only change at integer values of η.

We will say more about these conditions later, but a final point that we want to explore in

this subsection is the relationship between the intercepts of these line segments and the flux

of the four form field strength F4.

To do this, we first note that at r = 0 the χ circle shrinks to zero size and at η = 0 the

S2 shrinks. This means that we can form a closed four-cycle by considering the χ circle, the

S2 and an arc in the r, η-plane which intercepts the η-axis near a region of constant slope

(see Figure 4.2). Note that at this point, V̇ ′ is the constant slope of this segment and the

C3 field (4.49) takes the following form:

C3 ≈ 2κ11

[
(−V̇ + ηV̇ ′)dχ+

(
V̇ V̇ ′

∆̃
− η

)
(dβ + V̇ ′dχ)

]
∧ dΩS2 . (4.57)

We may now find the flux of F4 on this cycle by using (4.57) to calculate the difference

between C3 at the two endpoints of the arc. If λ(η) takes the form siη+λi along the segment

under consideration, we find that Q4 = 2λi. We can therefore interpret these intercepts as

counting the number of fivebranes at each location where the slope changes.

4.4.3 Electrostatic solution for uplifted solution

Using the map of our original coordinates y, θ to LLM coordinates ξ, ρ, we can express the

electrostatic variables in terms of y, θ. The first relation in (4.47) gives

r = N
√
y2 − y + q1 sin θ. (4.58)
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Figure 4.2: Left: An arc in the r, η-plane that can be combined with S1
χ, S

2 to form a four

cycle which measures flux N in the uplifted solution. Right: A generic solution with many

kinks in the line charge. There are more choices of four cycles that can be used to count the

number of fivebranes creating each kink.

The exact differential dη (4.51) expressed in terms of the y, θ variables is given by

dη = N(
1

2
− y) sin θdθ +N cos θdy (4.59)

which can be integrated to give the map from y, θ to η, ξ

η = N(y − 1

2
) cos θ, ξ = Ny cos θ. (4.60)

It follows from (4.58) that r = 0 corresponds to either y = yc or θ = 0. Plugging this relation

into (4.54) determines the line charge

λ(η) =


yc

yc− 1
2

η 0 < η < N(yc − 1
2
)

η + N
2

η > N(yc − 1
2
).

(4.61)

Using the relation of the charge q1 (4.18) and yc (4.15) for a R4/Zk conical singularity with

n = 2, 3, · · · then gives

λ(η) =

 (k + 1)η 0 < η < N
2k

η + N
2

η > N
2k
.

(4.62)
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We note that k = 1 corresponds to q1 = 0 and hence the AdS7 × S4 vacuum. We have

λ(η = 0) = N/2 which corresponds to a four form flux of N . Note that at y = yc = N/(2k)

the slope of the line charge density λ(η) changes from 1 to k + 1.

4.4.4 Generalization of electrostatic solution

We showed in the previous section that the uplifted defect solution corresponds to a spe-

cific line charge in electrostatic formulation. In [108] general conditions on the line charge

distribution which are imposed by charge conservation and regularity, which we will briefly

review.

First, we previously remarked upon the relationship between the F4 flux and the inter-

cepts of the line charge. Imposing charge quantization therefore quantizes these intercepts.

Next, in order to find constraints on the slopes, we zoom into a region of constant charge

density near r = 0 where (4.49) takes the form

ds2 ≈ κ
2/3
11

(
V̇ ∆̃

2V ′′

)1/3(
4d2AdS5

+
2V ′′V̇

∆̃
ds2S2 +

2V ′′

V̇
(dr2 + r2dχ2 + dη2) +

4

∆̃
(dβ + V̇ ′dχ)2

)
,

∆̃ ≈ 2V̇ V ′′ + (V̇ ′)2. (4.63)

As we mentioned previously, at r = 0 the χ-circle is shrinking however the circle β+ V̇ ′χ

is not and so we can use it to define a new periodic coordinate provided that V̇ ′ takes integer

values there. Since V̇ ′(r = 0, η) is just the slope of the constant line segment, we find that

regularity imposes our next quantization condition on λ(η).

There are further constraints on the changes in slope which we can deduce by zooming

in on the region η = ηi where two slopes meet. Here V ′′ has a delta function source which

means that

V ′′ ≈ k

2

1√
r2 + (η − ηi)2

(4.64)

where k is the change in slope. When we insert this into the metric (4.63), we find that

the r, η and circle directions give us a space that is locally R4/Zk. Imposing regularity,
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therefore, quantizes the change in slope so that it takes on (positive) integer values. It can

be shown that these Ak−1 (k > 1) singularities give rise to non-abelian gauge fields in AdS5

corresponding to global symmetries [108].

Finally, we can consider the geometry of our solution along the η-axis between two points

ηi, ηi+1 at which the slope of λ changes. Along any of these segments, we can form a closed

four cycle by considering the segment [ηi, ηi+1], the S
2, and the circle β + V̇ ′χ. Notice that

at either endpoint, V ′′ and hence ∆̃ blows up causing the circle to shrink. One can then use

(4.57) to find that the flux of F4 on this cycle is ηi+1 − ηi. This can also be done for the first

segment [0, η1] since the S2 (but not the circle) shrinks at η = 0. Flux quantization thus

constrains all ηi’s to take on integer values.

In summary, we find that charge distributions give rise to regular (or withAk singularities)

solutions provided that they are piecewise linear, have (decreasing) integer slopes and half-

integer intercepts, and change slope only at integer values of η. Putting these together, we

can write a multi-kink generalization of the uplifted flux N solution:

λ(η) =



s1η η ∈ [0, η1]

s2η + λ2 η ∈ [η1, η2]

s3η + λ3 η ∈ [η2, η3]

... ...

η +N/2 η ∈ [ηnkink
,∞).

(4.65)

Note that the continuity of λ(η) alone is enough to determine the ηi’s in terms of the

slope and intercept data. That is, ηi = (λi+1 − λi)/(si− si+1) which can be written in terms

of the slope changes ki ∈ Z and the number of fivebranes creating the punctures Ni to give

ηi = Ni/2ki ∈ Z. Substituting these into (4.65) gives
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λ(η) =



(1 +
∑nkink

i=1 ki) η η ∈ [0, N1/2k1]

(1 +
∑nkink

i=2 ki) η +N1/2 η ∈ [N1/2k1, N2/2k2]

(1 +
∑nkink

i=3 ki) η + (N1 +N2)/2 η ∈ [N2/2k2, N3/2k3]

... ...

η +N/2 η ∈ [Nnkink
/2knkink

,∞).

(4.66)

where N =
∑nkinks

i=1 Ni is the total F4 flux. One can plug this general solution into (4.49) and

find that it produces the same asymptotic AdS7 × S4 region (4.28) as the original uplifted

solution.

4.5 Holographic observables

The supergravity solutions presented in the previous section can be used to calculate holo-

graphic observables. Examples of such observables are the entanglement entropy of a surface

around the defect and the on-shell action. Due to the infinite volume of the asymptotic

AdS7 ×S4 region, the holographic observables are divergent and have to be regularized. We

can define a general cutoff surface

η(ϵ, θ) = yc(ϵ, θ) sin θ, r(ϵ, θ) = yc(ϵ, θ) cos θ, (4.67)

where

yc(ϵ, θ) =
1

ϵ
+ f0(θ) + f1(θ)ϵ+ f2(θ)ϵ

2 (4.68)

and fi(θ) are arbitrary bounded functions of the angle θ ∈ [0, π
2
]. The observables which we

will consider here turn out to be integrals of total derivatives and become integrals over the

boundary of the integration regions which is given by the integral along the η and r axis as

well as the cutoff surface at large yc. The cutoff of the integral along the η and r axis is

given by setting θ = π/2 and θ = 0 in (4.67) respectively. The simplest choice for a cutoff

surface would be given by setting all fi = 0 which corresponds to a circular quarter arc in

the η, r plane whose radius will go to infinity as ϵ→ 0.
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Figure 4.3: Integration region in the η, r-plane. We consider observables which reduce to

integrals over the boundary comprised of the η-axis, r-axis, and a generic θ-dependent cutoff

surface.

In order to obtain finite results we use vacuum subtraction, i.e. we subtract the regular-

ized result by the result for the AdS7×S4 vacuum using the same cutoff surface. We use this

prescription since a full set of covariant counterterms is not known for the eleven-dimensional

supergravity and the standard method of holographic renormalization [94, 97] which can be

used for AdS solutions of gauged supergravities in lower dimensions is not available.

The contributions from the cutoff surface can all be expressed in terms of moments of

the large yc expansion of derivatives of the potential V̇ , V ′′ (4.55)

V̇ = yc sin θ +m1 sin θ −m3
cos2 θ sin θ

2y2c
+O

(
1

y4c

)
,

V ′′ = m1
sin θ

y2c
−m3

sin θ(1 + 5 cos 2θ)

4y4c
+O

(
1

y6c

)
. (4.69)
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The moments m1 and m3 can be expressed in terms of line charge (4.66)

m1 =

nkinks∑
i=1

(si − si+1)ηi =
1

2

nkinks∑
i=1

Ni =
N

2
, (4.70)

m3 =

nkinks∑
i=1

(si − si+1)η
3
i =

1

8

nkinks∑
i=1

N3
i

k2i
, (4.71)

where snkinks+1
= 1. When it is unambiguous, we will just write mi but when we refer to

a particular or multiple solutions at once (as in the case of vacuum subtraction), we will

denote the moments with a superscript, e.g. m
(nkinks)
i or m

(vac)
i .

4.5.1 Central charge

It was argued in [133, ?] that the holographic dual of the a central charge of a d = 4 SCFT

coming from the 11 dimensional metric

ds211 = κ
2/3
11

(
V̇∆

2V ′′

)1/3

[4ds2AdS5
+ ds2M6

] (4.72)

is give by the following expression

a =
25π3κ311
(2πℓp)9

∫
M6

(
V̇∆

2V ′′

)3/2

dΩM6 , (4.73)

where ℓp is the 11 dimensional Planck length and dΩM6 is the volume form of ds2M6
. For

holographic duals of d = 4, N = 2 SCFTs the six dimensional space is compact and one

obtains a finite result for the integral. As discussed above, for the defect solutions the integral

will be taken over a non-compact space and will be divergent.

dΩM6 =
8
√
2r(V ′′)5/2

V̇ 1/2∆3/2
dΩS2 ∧ dη ∧ dr ∧ dχ ∧ dβ. (4.74)

The central charge is therefore equal to

a =
27π3κ311
(2πℓp)9

∫
rV̇ V ′′dΩS2 ∧ dη ∧ dr ∧ dχ ∧ dβ. (4.75)
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We can now use the cylindrical Laplace equation (4.48) to write rV̇ V ′′ = −∂r(V̇ 2)/2 and

the fact that χ and β are 2π periodic, as well as κ11 =
π
2
ℓ3p to write the central charge as

a =
1

4

∫
−∂r(V̇ 2)dr ∧ dη

=
1

4

∫ yc(ϵ,π/2)

0

dη λ(η)2 − 1

4

∫ θ=π/2

θ=0

(V̇ )2d
(
yc(ϵ, θ) sin θ

)
(4.76)

=
1

4

∫ ηnkink

0

dη λ(η)2 +
1

4

∫ yc(ϵ,π/2)

ηnkink

dη (η +m1)
2 − 1

4

∫ θ=π/2

θ=0

(V̇ )2d
(
yc(ϵ, θ) sin θ

)
,

where we obtain the final line by noticing that λ(η) has a universal form in the region beyond

the final kink ηnkink
. Notice above that the first integral in the third line is finite. Inserting

the generic cutoff surface (4.68) into this expression and integrating over θ gives us following:

a =
m1/3 + f0(π/2)

4ϵ2
+

2m2
1/3 + 2m1f0(π/2) + f0(π/2)

2 + f1(π/2)

4ϵ

+
1

4

∫ ηnkink

0

dη λ(η)2 +
1

60

[
2m3 + 15m2

1(−ηnkink
+ f0(π/2)) + 15m1(−η2nkink

+ f0(π/2)
2)

+ 5(−η3nkink
+ f0(π/2)

3) + 30(m1 + f0(π/2))f1(π/2) + 15f2(π/2)
]

+

∫ π/2

0

Im1,fi(ϵ, θ)dθ +O(ϵ), (4.77)

where in the final line, Im1,fi(ϵ, θ) is an expression that depends on the cutoff surface functions

fi but only m1 and therefore, since this is the same for all solutions, it will be eliminated by

subtracting the contribution from the AdS7 × S4 vacuum solution:

a(vac) =
m1/3 + f0(π/2)

4ϵ2
+

2m2
1/3 + 2m1f0(π/2) + f0(π/2)

2 + f1(π/2)

4ϵ

+
1

60

[
− 13m3

1 + 15m2
1f0(π/2) + 15m1f0(π/2)

2

+ 5f0(π/2)
3 + 30(m1 + f0(π/2))f1(π/2) + 15f2(π/2)

]
+

∫ π/2

0

Im1,fi(ϵ, θ)dθ +O(ϵ). (4.78)

This expression can be obtained from (4.77) by noticing that m
(vac)
3 = m3

1 and η
(vac)
nkink =

η
(vac)
1 = m1. All of the divergent terms depend only on m1. Furthermore, the cutoff surface

functions, fi, only appear in the finite term with m1 (and no higher moments) so after

vacuum subtraction we will be left with something finite and independent of the choice of
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cutoff:

a− a(vac) =
1

4

∫ ηnkink

0

dη λ(η)2 +
1

60
(13m3

1 + 2m3 − 15m2
1ηnkink

− 15m1η
2
nkink

− 5η3nkink
).

(4.79)

It is useful to rewrite these expressions in terms of the more physical parameters ki and

Ni. For one and two kinks these become

a(2) − a(vac) =
(−3 + k1(−10 + 13k1)− 5k2)N

3
1

480k21
+

39N2
1N2

480

+
3(−5 + 13k2)N1N

2
2

480k2
+

(−1 + k2)(3 + 13k2)N
3
2

480k22
(4.80)

and

a(1) − a(vac) =
(k − 1)(3 + 13k)N3

480k2
. (4.81)

4.5.2 On-shell action

For holographic defect solutions, among the simplest observables is the vacuum subtracted

on-shell action which gives the defect partition function in the semi-classical approxima-

tion. Other observables, which we will not discuss here, include one-point functions of bulk

operators in the presence of the defect or the entanglement entropy in the presence of the

defect.

The action of eleven dimensional supergravity is given by

S =
1

2k211

∫
M

√
−g
(
R− 1

48
FµνρλF

µνρλ
)
+

1

2k211

∫
∂M

√
h 2K + SCS. (4.82)

Here SCS is the Chern-Simons term which vanishes for the LLM solutions and is dropped

in the following. The second term is the Gibbons-Hawking term which is needed for a good

variational principle for spacetimes with boundary. Here hab is the induced metric on the

boundary and K is the trace of the second fundamental form Kµν = −1
2
(∇µnν + ∇νnµ)

where nµ is the outward pointing normal vector to the boundary ∂M . Using the equations

of motion for the metric and the three form potential, it is easy to show that the bulk part
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of the on-shell action is a total derivative and the total action is given by a boundary term

Son shell =
1

2k211

∫
∂M

(
−1

3

)
C3 ∧ ∗F4 +

1

2k211

∫
∂M

√
h 2K. (4.83)

Presently, we will compute this for the simple cutoff (fi = 0 for all i) and later comment

on generic cutoff-dependence. To start, we notice that the boundary region η = 0 gives no

contribution since here the S2 shrinks to zero volume. The contribution coming from the

cutoff surface has a universal form for all solutions in terms of moments m1 and m3:

Sbulk,cutoff =
V ol(AdS5)V ol(S

2)

2k211

(
−64(−2m1 + 5m3)

15m1ϵ
− 128(m3

1 + 2m3)

15

)
(4.84)

and

SGH,cutoff =
V ol(AdS5)V ol(S

2)

2k211

(
128

ϵ3
+

512m1

3ϵ2
+

512m2
1

15ϵ
+

128(m3
1 − 3m3)

15

)
. (4.85)

This is not unexpected since we take this boundary to be at a distance far away from the

region where the slopes of λ(η) are changing (yc(ϵ, θ) ≫ ηnkink
).

The final contribution comes from the region along the η-axis. Since this involves an

integral over 0 < η < yc(ϵ, π/2), it will be sensitive to line charge data beyond just the

moments. These integrals quickly become unwieldy for more complicated λ(η) so in lieu of

a generic expression, we can write down the answer for nkink = 2 from which the nkink = 1

case can be easily derived by setting N1 → 0 and N2 → N . We have that

S
(2)
bulk,r=0 =

V ol(AdS5)V ol(S
2)

2k211

(
− 64

3ϵ3
− 64m1

ϵ2
− 64(4m3

1 −m
(2)
3 )

3m1ϵ
+ S

(2),finite
bulk,r=0

)
, (4.86)

S
(2),finite
bulk,r=0 =

64

3

[
(1 + 4s1 − 2s2)(s1 − s2)η

3
1 + 6(s1 − s2)(s2 − 1)η1η

2
2 + (s2 − 1)(4s2 − 1)η22

]
,

S
(2)
GH,r=0 =

V ol(AdS5)V ol(S
2)

2k211

(
128

2ϵ3
+

128m1

ϵ2
+

128m2
1

ϵ
+ S

(2),finite
GH,r=0

)
, (4.87)

S
(2),finite
GH,r=0 =

−128

3

[
m

(2)
3 (2s1 − s2) + (s2 − 1)(3m1 − 2(s1 − 1))η22

]
.

One can quickly inspect that the ϵ−3 and ϵ−2 divergences only depend on m1 and so will

cancel once we subtract the vacuum contribution. There are m3’s which appear in the ϵ−1

divergent term, however they cancel between (4.84) and (4.86). Combining all of the terms,

we obtain the following

S
(2)
on shell =

2πV ol(AdS5)

k211

(
448

3ϵ3
+

704m1

3ϵ2
+

256m2
1

3ϵ
− 64

3
m

(2)
3

)
(4.88)

88



and after subtracting the AdS7 × S4 vacuum, we are left with

S
(2)
on shell − S

(vac)
on shell =

−2πV ol(AdS5)

k211

64

3
(m

(2)
3 −m

(vac)
3 )

=
16πV ol(AdS5)

3k211

(
(N1 +N2)

3 − N3
1

k21
+
N3

2

k22

)
. (4.89)

From this, we can set N1 = 0, N2 = N and k2 = k to obtain the expression for one kink:

S
(1)
on shell − S

(vac)
on shell =

16V ol(AdS5)

3k211
N3

(
1− 1

k2

)
=

−2πV ol(AdS5)

k211

64

3
(m

(1)
3 −m

(vac)
3 ). (4.90)

The terms with 1
ϵ2n

divergences cancel out of the vacuum subtracted on shell action. How-

ever, the result still has a divergence due to the infinite volume of AdS5. For a more complete

treatment one should introduce a Fefferman-Graham like cutoff which regularizes all diver-

gences, see e.g. [103, 134] for discussions of such cutoffs in other holographic defect theories.

Another possible related feature of the vacuum subtracted on shell action is that the

detailed form of finite terms depend on the choice of the cutoff surface. This is analogous

to the possibility of finite counter terms in a covariant regularization procedure in lower

dimensional supergravity. Such ambiguities can often be fixed by demanding the finite

counter terms preserve supersymmetry, but how this implemented in the vacuum subtraction

is not clear to us at this moment. While the results for a simple cutoff we have presented

in this section are compellingly simple, it is not clear at the moment whether they are

unambiguous.

4.6 Discussion

In this chapter we constructed solutions of eleven dimensional supergravity, which are holo-

graphic duals of co-dimension two defects in six dimensional SCFTs. The solutions preserve

sixteen of the thirty two supersymmetries. In the classification given in [135], the solution

preserves the SU(2, 2|2) superconformal algebra of the original OSp(8|2) of the AdS7 × S4

vacuum.

89



While it is possible to construct completely regular quarter-BPS solutions which carry

two nonzero charges, the seven dimensional half-BPS solution with only one nonzero charge

turned on suffers from a conical singularity in the bulk. Upon uplifting to eleven dimensions

we showed that the singularity is also present in eleven dimensions. The uplift allows us to

identify this type of singularity with a regular puncture which is locally R4/Zk and was

discussed already in the original paper of Gaiotto and Maldacena [108] that constructs

holographic duals of d = 4, N = 2 SCFTs.

One of the main results in the present chapter is to use the electrostatic formulation

of the LLM solution to construct new defect solutions based on more general linear charge

densities. It is possible to obey all the conditions that charge quantization and periodicity of

the angular coordinates impose. The generic solutions have singularities corresponding to a

finite number of regular punctures, associated with the kinks in the linear charge density. It

is however possible to construct solutions which can be completely regular. It is interesting

to contrast these holographic solutions with the ones used to describe d = 4, N = 2 SCFTs

[108, 129, 130, 131] as well as more recent ones constructing duals of Argyres-Douglas theories

[90, 91, 136]. In the former, the η, r is compact and will be related to Maldacena-Nunez

[107] solutions and class S N = 2, d = 4 theory [127] coming from compactifying a d =

6, N = (2, 0) theory on a Riemann surface with (regular) punctures. In the latter, one

considers a disk in the η, r plane with 5-brane source smeared on the boundary of the disk.

This behavior is to be contrasted to our solutions where the η, r space is non-compact and

the solutions are asymptotically AdS7 × S4 in the limit where η, r go to infinity. Hence the

supergravity solutions are holographically dual to co-dimension 2 defects in d = 6, N = (2, 0)

SCFTs. Since the superconformal symmetry preserved by the defect is the same as the one of

d = 4, N = 2 SCFTs it is natural that these SCFTs describe the defect degrees of freedom.

As discussed in appendix 4.A the defects can be interpreted as disorder type defects. It would

be interesting to determine the exact identification of the defect theory, the calculation of

some holographic observables given in this chapter is a first step in this direction. It may

be possible to check the identification by matching holographic calculation with calculations

on the field theory side using localization.
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We note that the electromagnetic formulation involves an approximation where we con-

sider a rotationally symmetric distribution of sources for the Toda equation and smear

them. It would be interesting to consider solutions of the Toda equation corresponding

to co-dimension two defect solutions. This would involve placing line sources in the three

dimensional half space spanned by ξ, x1, x2. The holographic defects would correspond to

solutions where this space is non-compact and the large ξ, xi limit corresponds to the asymp-

totic AdS7 × S4 region. The nonlinear nature of the Toda equation which determines the

solution makes the construction of such solutions very challenging, however. It would also

be interesting to find generalizations of the uplifts of the quarter-BPS defect solutions which

are completely regular already in 7 dimensions however no general “bubbling” solution à la

LLM is known for eight instead of sixteen preserved supersymmetries.

4.A Defects for the d = 6, N = (2, 0) tensor multiplet

In this appendix we construct a conformal co-dimension two defect for the free d = 6, N =

(2, 0) tensor multiplet. The field content of the multiplet is a rank 2 antisymmetric tensor

field Bµν with self-dual field strength Hµνρ, five scalars Φi, i = 1, · · · , 5 which transform as a

5 under the SO(5) R-symmetry and four symplectic Majorana-Weyl spinors ψa, a = 1, · · · , 4

which transform as 4 under the USp(4) ≡ SO(5).

The super(conformal) symmetry transformations are given by [137]

δψ =
1

2
γµ∂µϕiΓ

iϵ− 1

6
Hµνργ

µνρϵ+ 2ϕiΓ
iη0,

δϕi = −2ϵ̄(Γi)ψ,

δBµν = −2ϵ̄γµνλ. (4.91)

Here Γi, i = 1, 2, · · · , 5 are SO(5) gamma matrices and γµ are six dimensions gamma-

matrices. The spinors are contracted using the symplectic metric Ωab. The supersymmetry

transformation parameter ϵ is given by

ϵ = ϵ0 + γµx
µη0, (4.92)
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where ϵ0 is a left handed constant symplectic Majorana spinor parameterizing the Poincare

supersymmetries annd η0 is a constant right handed symplectic Majorana spinor, parameter-

izing the superconformal transformations. We are constructing a co-dimension two defect in

this six dimensional theory, which preserves some part of the superconformal symmetry. The

simplest set-up is to consider a flat defect with a four dimensional world-volume directions,

on which all fields do not depend. The two directions transverse to the defect are spanned

by x1, x2 and we choose the defect to be located at x1 = x2 = 0. From the symmetries we

can deduce that the antisymmetric tensor field is vanishing and hence only the scalars are

turned on. It is useful to introduce complex coordinates z = x1 + ix2 and gamma matrices

γz =
1√
2

(
γ1 + iγ2

)
, γ z̄ =

1√
2

(
γ1 − iγ2

)
. (4.93)

From the supergravity solutions it follows that for a defect that preserves half the super-

symmetries the SO(5) R-symmetry is broken to SU(2), hence we make the following ansatz

for the scalar fields. The following complex combination of the scalar fields is nontrivial

ϕω =
1√
2

(
ϕ1 + iϕ2

)
=
α + iβ

z
. (4.94)

Unbroken supersymmetries satisfy δψ = 0, it is easy to see that the supersymmetry trans-

formation rules (4.91) lead to the condition on the Poincare supersymmetry

γaΓωϵ0 = 0 ⇔ γ12Γ12ϵ0 = ϵ0. (4.95)

The second condition is a projection which implies that half the Poincare supersymmetries

are preserved. It is also easy to verify that for an η0 satisfying the same projection condition

(4.95) and the z dependence of the scalar (4.94) half of the superconformal symmetries are

preserved and hence the defect is half BPS.

For a defect preserving a quarter of the supersymmetry we have a nontrivial profile for

four scalars, breaking the SO(5) R-symmetry to U(1)× U(1).

ϕω1 =
1√
2

(
ϕ1 + iϕ2

)
=
α1 + iβ1

z
, ϕω2 =

1√
2

(
ϕ3 + iϕ4

)
=
α2 + iβ2

z
, (4.96)
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which leads to two projectors

γ12Γ12ϵ0 = ϵ0, γ12Γ34ϵ0 = ϵ0. (4.97)

Hence a quarter of the supersymmetries are preserved (as well as a quarter of the super-

conformal symmetries). The free tensor multiplet can be used to construct the N = (2, 0)

superconformal current multiplet which contains the SO(5) R-symmetry current and the

stress tensor [138]. The free tensor multiplet corresponds to the “center of mass” degrees

of freedom and the construction of the defect solution for the strongly coupled interacting

d = 6, N = (2, 0) theory is beyond the scope of this appendix.

93



REFERENCES

[1] Eric D’Hoker, Michael Gutperle, Andreas Karch, and Christoph F. Uhlemann. Warped
AdS6 × S2 in Type IIB supergravity I: Local solutions. JHEP, 08:046, 2016.

[2] Eric D’Hoker, Michael Gutperle, and Christoph F. Uhlemann. Warped AdS6 × S2 in
Type IIB supergravity II: Global solutions and five-brane webs. JHEP, 05:131, 2017.

[3] Eric D’Hoker, Michael Gutperle, and Christoph F. Uhlemann. Warped AdS6 × S2 in
Type IIB supergravity III: Global solutions with seven-branes. JHEP, 11:200, 2017.

[4] Michael Gutperle and Nicholas Klein. A Penrose limit for type IIB AdS6 solutions.
JHEP, 07:073, 2021.

[5] Michael Gutperle and Nicholas Klein. A note on co-dimension 2 defects in N=4,d=7
gauged supergravity. Nucl. Phys. B, 984:115969, 2022.

[6] Michael Gutperle, Nicholas Klein, and Dikshant Rathore. Holographic 6d co-dimension
2 defect solutions in M-theory. 4 2023.

[7] Juan Martin Maldacena. The Large N limit of superconformal field theories and su-
pergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.

[8] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators
from noncritical string theory. Phys. Lett. B, 428:105–114, 1998.

[9] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253–
291, 1998.

[10] Vasily Pestun. Localization of gauge theory on a four-sphere and supersymmetric
Wilson loops. Commun. Math. Phys., 313:71–129, 2012.

[11] F. Gliozzi, Joel Scherk, and David I. Olive. Supersymmetry, Supergravity Theories
and the Dual Spinor Model. Nucl. Phys. B, 122:253–290, 1977.

[12] Ofer Aharony, Steven S. Gubser, Juan Martin Maldacena, Hirosi Ooguri, and Yaron
Oz. Large N field theories, string theory and gravity. Phys. Rept., 323:183–386, 2000.

[13] C. M. Hull and P. K. Townsend. Unity of superstring dualities. Nucl. Phys. B, 438:109–
137, 1995.

[14] P. K. Townsend. The eleven-dimensional supermembrane revisited. Phys. Lett. B,
350:184–187, 1995.

[15] C. M. Hull. String dynamics at strong coupling. Nucl. Phys. B, 468:113–154, 1996.

[16] Pierre Ramond. Dual Theory for Free Fermions. Phys. Rev. D, 3:2415–2418, 1971.

[17] A. Neveu and J. H. Schwarz. Tachyon-free dual model with a positive-intercept tra-
jectory. Phys. Lett. B, 34:517–518, 1971.

94



[18] Michael B. Green and John H. Schwarz. Supersymmetrical Dual String Theory. Nucl.
Phys. B, 181:502–530, 1981.

[19] David Eliecer Berenstein, Juan Martin Maldacena, and Horatiu Stefan Nastase. Strings
in flat space and pp waves from N=4 superYang-Mills. JHEP, 04:013, 2002.

[20] Dongsu Bak, Michael Gutperle, and Shinji Hirano. A Dilatonic deformation of AdS(5)
and its field theory dual. JHEP, 05:072, 2003.

[21] Eric D’Hoker, John Estes, and Michael Gutperle. Ten-dimensional supersymmetric
Janus solutions. Nucl. Phys. B, 757:79–116, 2006.

[22] Eric D’Hoker, John Estes, and Michael Gutperle. Exact half-BPS Type IIB interface
solutions. I. Local solution and supersymmetric Janus. JHEP, 06:021, 2007.

[23] Eric D’Hoker, John Estes, and Michael Gutperle. Exact half-BPS Type IIB interface
solutions. II. Flux solutions and multi-Janus. JHEP, 06:022, 2007.

[24] Eric D’Hoker, John Estes, and Michael Gutperle. Interface Yang-Mills, supersymmetry,
and Janus. Nucl. Phys. B, 753:16–41, 2006.

[25] Rahmi Gueven. Plane Waves in Effective Field Theories of Superstrings. Phys. Lett.
B, 191:275–281, 1987.

[26] Konstadinos Sfetsos. Gauging a nonsemisimple WZW model. Phys. Lett. B, 324:335–
344, 1994.

[27] Konstadinos Sfetsos and Arkady A. Tseytlin. Four-dimensional plane wave string
solutions with coset CFT description. Nucl. Phys. B, 427:245–272, 1994.

[28] Jose M. Figueroa-O’Farrill and George Papadopoulos. Homogeneous fluxes, branes
and a maximally supersymmetric solution of M theory. JHEP, 08:036, 2001.

[29] Matthias Blau, Jose M. Figueroa-O’Farrill, Christopher Hull, and George Papadopou-
los. Penrose limits and maximal supersymmetry. Class. Quant. Grav., 19:L87–L95,
2002.

[30] Matthias Blau, Jose M. Figueroa-O’Farrill, Christopher Hull, and George Papadopou-
los. A New maximally supersymmetric background of IIB superstring theory. JHEP,
01:047, 2002.

[31] R. R. Metsaev. Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond
background. Nucl. Phys. B, 625:70–96, 2002.

[32] R. R. Metsaev and Arkady A. Tseytlin. Exactly solvable model of superstring in
Ramond-Ramond plane wave background. Phys. Rev. D, 65:126004, 2002.

[33] Shun’ya Mizoguchi, Takeshi Mogami, and Yuji Satoh. Penrose limits and Green-
Schwarz strings. Class. Quant. Grav., 20:1489–1502, 2003.

95



[34] Neil R. Constable, Daniel Z. Freedman, Matthew Headrick, Shiraz Minwalla, Lubos
Motl, Alexander Postnikov, and Witold Skiba. PP wave string interactions from per-
turbative Yang-Mills theory. JHEP, 07:017, 2002.

[35] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudacher. BMN cor-
relators and operator mixing in N=4 superYang-Mills theory. Nucl. Phys. B, 650:125–
161, 2003.

[36] Marcus Spradlin and Anastasia Volovich. Superstring interactions in a p p wave back-
ground. Phys. Rev. D, 66:086004, 2002.

[37] Neil R. Constable, Daniel Z. Freedman, Matthew Headrick, and Shiraz Minwalla.
Operator mixing and the BMN correspondence. JHEP, 10:068, 2002.

[38] Tatsuma Nishioka and Tadashi Takayanagi. On Type IIA Penrose Limit and N=6
Chern-Simons Theories. JHEP, 08:001, 2008.

[39] Jaume Gomis and Hirosi Ooguri. Penrose limit of N = 1 gauge theories. Nucl. Phys.
B, 635:106–126, 2002.

[40] Mirjam Cvetic, Hong Lu, and C. N. Pope. M theory p p waves, Penrose limits and
supernumerary supersymmetries. Nucl. Phys. B, 644:65–84, 2002.

[41] Mirjam Cvetic, Hong Lu, and C. N. Pope. Penrose limits, PP waves and deformed M2
branes. Phys. Rev. D, 69:046003, 2004.

[42] Umut Gursoy, Carlos Nunez, and Martin Schvellinger. RG flows from spin(7), CY 4
fold and HK manifolds to AdS, Penrose limits and pp waves. JHEP, 06:015, 2002.

[43] Ofer Aharony, Amihay Hanany, and Barak Kol. Webs of (p,q) five-branes, five-
dimensional field theories and grid diagrams. JHEP, 01:002, 1998.

[44] Ofer Aharony and Amihay Hanany. Branes, superpotentials and superconformal fixed
points. Nucl. Phys. B, 504:239–271, 1997.

[45] V. G. Kac. Lie Superalgebras. Adv. Math., 26:8–96, 1977.

[46] W. Nahm. Supersymmetries and their Representations. Nucl. Phys. B, 135:149, 1978.

[47] S. Shnider. THE SUPERCONFORMAL ALGEBRA IN HIGHER DIMENSIONS.
Lett. Math. Phys., 16:377–383, 1988.

[48] Andreas Brandhuber and Yaron Oz. The D-4 - D-8 brane system and five-dimensional
fixed points. Phys. Lett. B, 460:307–312, 1999.

[49] Michael Gutperle and Christoph F. Uhlemann. Surface defects in holographic 5d
SCFTs. JHEP, 04:134, 2021.

[50] Shiraz Minwalla. Restrictions imposed by superconformal invariance on quantum field
theories. Adv. Theor. Math. Phys., 2:783–851, 1998.

96



[51] Clay Cordova, Thomas T. Dumitrescu, and Kenneth Intriligator. Multiplets of Super-
conformal Symmetry in Diverse Dimensions. JHEP, 03:163, 2019.
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