
UCLA
UCLA Electronic Theses and Dissertations

Title
Correctness of Software Tools under Weak Memory Models

Permalink
https://escholarship.org/uc/item/4mq098vr

Author
Liu, Shuyang

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mq098vr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Correctness of Software Tools under Weak Memory Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Shuyang Liu

2024

© Copyright by

Shuyang Liu

2024

ABSTRACT OF THE DISSERTATION

Correctness of Software Tools under Weak Memory Models

by

Shuyang Liu

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Jens Palsberg, Chair

Concurrent programming is often error-prone due to the non-deterministic nature of multi-

thread executions. Programmers typically reason about their concurrent programs in the context

of sequential consistency. Under sequential consistency, instructions in a concurrent program are

executed to generate memory events in a linear global order that is consistent with the order spec-

ified by the source program, i.e., the program order. However, the assumption of sequential con-

sistency is too strong in practice, given today’s processor designs. To achieve better performance,

processors today often adopt a weak memory model. Under a weak memory model, instructions

are not guaranteed to be executed consistently with the program order, due to optimizations such

as out-of-order execution and instruction reordering. As a result, previous correctness results of

software tools need to be re-visited with considerations of weak memory models. In this the-

sis, we demonstrate the issues of previous correctness results of software tools and provide new

methods for reasoning about their correctness under weak memory models.

ii

The dissertation of Shuyang Liu is approved.

Douglas Lea

Harry Guoqing Xu

Todd D. Milstein

Jens Palsberg, Committee Chair

University of California, Los Angeles

2024

iii

To everyone who has spent more than 15 minutes reading through the chapters.

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Background . 6

2.1 Execution Graphs . 6

2.2 Axiomatic Weak Memory Models . 9

2.3 The DRF-SC Guarantee . 10

2.4 Compilation, Prediction, and Transformation . 12

2.4.1 Compilation . 13

2.4.2 Predictive Analysis . 16

2.4.3 Transformations . 17

3 Compilation Correctness of Java Access Modes 22

3.1 The Problem of Compiling Volatile and How to Fix it 24

3.2 Formal Model . 29

3.2.1 Basic Syntax . 30

3.2.2 The Jam21 Model . 31

3.2.3 The Jam21’ Model . 36

3.3 Compilation Correctness: an Overview . 38

3.4 Compilation Correctness to Power . 40

3.4.1 The Power Memory Model . 40

3.4.2 Compilation Scheme . 41

3.4.3 Proof of Compilation Correctness . 43

v

3.5 Compilation Correctness to x86-TSO . 44

3.5.1 The x86-TSO Model . 44

3.5.2 Compilation Scheme . 45

3.5.3 Proof of Compilation Correctness . 45

3.6 Performance Implications . 46

4 Soundness of Predictive Analyses . 49

4.1 Introduction . 49

4.2 Motivation . 51

4.3 Preliminaries . 55

4.3.1 Programs . 55

4.3.2 Execution Graphs . 56

4.3.3 From Programs to Execution Graphs . 58

4.3.4 Bug Sequence . 61

4.4 Soundness . 62

4.4.1 Composability with bug sequences . 64

4.4.2 Well-formedness of Plain Execution . 65

4.4.3 Executability . 66

4.4.4 Memory Consistency . 68

4.5 A Recipe to Prove Soundness . 72

4.5.1 Constructing a Symbolic Plain Execution 73

4.5.2 Inserting Consistent Memory Orders . 75

4.5.3 Mapping to a Concrete Execution . 77

4.6 Proving Race Prediction Algorithms Sound . 77

vi

4.6.1 M2 . 77

4.6.2 RVPredict . 82

4.6.3 MCR-tso . 85

4.6.4 Happens-Before (HB) . 87

4.6.5 Schedulable Happens-before (SHB) . 89

4.6.6 SyncP . 90

4.7 Future Work . 92

5 Correctness of Transformations under Weak Memory Models 93

5.1 Sound Transformations for Java Access Modes . 94

5.1.1 Strengthening . 95

5.1.2 Sequentialization . 96

5.1.3 Reordering . 97

5.1.4 Merging . 99

5.1.5 Register Promotion for Non-shared Variable 106

5.1.6 Why are many transformations invalid for Volatile? 109

5.2 Sound Transformations for Predictive Analyses 111

5.2.1 Sound Transformation for x86-TSO . 112

5.2.2 Sound Transformation for ARMv8 . 113

5.2.3 Using Sound Transformations in Predictive Analyses 115

6 Conclusion . 126

A the Full JAM21 Model . 127

vii

B the Full JAM21’ Model . 129

C The Power Memory Model in Herd7 . 131

D Proof of Observational Equivalence . 134

E Proof of Compilation Correctness to Power . 139

F The x86 TSO Model in Herd7 . 144

G Proof of Compilation Correctness to x86-TSO 146

H Key Properties of the Jam21 Model . 150

H.1 Prior Theorems . 150

H.2 Volatile implies SC . 153

I The Standard DRF-SC Theorem . 157

J DRF-SC for Execution Graphs . 165

K Experimental Validation of Jam21 . 168

K.1 Methods supported by Java Architecture for Herd7 168

K.2 Experimental Results . 168

K.3 Compilation to Power . 174

K.4 Source Code of litmus tests . 174

K.5 Full Trace and Litmus Test the example in Section. 3.1 177

L Relationship with Existing Soundness Definitions 181

viii

M Language Semantics for Chapter 4 . 185

N Proofs for Soundness Properties in §4.4 . 188

O Proofs of §4.5 . 196

P Enhanced-MCR-tso . 201

Q A TSO Race Predictable from SC trace . 203

R TSO Race Discovered by Read Elimination . 206

S WRC-race: another example . 209

T Program Transformations . 211

T.1 Deordering and Reordering . 211

T.2 Merging . 214

T.2.1 Read-read Merging . 214

T.2.2 Write-write Merging . 216

T.2.3 Write/RMW-read Merging . 218

T.2.4 Write-RMW Merging . 223

T.2.5 RMW-RMW Merging . 224

T.3 Register Promotion for non-shared Variable . 225

References . 228

ix

LIST OF FIGURES

2.1 Store Buffering (SB) . 9

2.2 Store Buffering (SB) with Volatile mode accesses . 13

2.3 Relationships of Programs and Executions in Compilation, Prediction, and Transfor-

mation . 14

2.4 Store Buffering (SB) with MFENCE inserted . 15

2.5 Store Buffering (SB) with a data race . 18

2.6 A sequentially consistent execution after transformation witnessing the data race . . 20

3.1 volatile-non-sc.4 under the sequential consistency model, Forbidden 25

3.2 volatile-non-sc.4.ppc translated to Power by HotSpot C1, Allowed 27

3.3 volatile-non-sc.4.ppc translated to Power using the revised compilation scheme, For-

bidden . 28

3.4 The relationship of programs and executions . 39

3.5 Compilation to Power . 42

3.6 Compilation to x86-TSO . 45

4.1 Various Criteria for a Sound Witness from Past Work 51

4.2 Hierarchy of Existing Sound Definitions under Sequential Consistency 53

4.3 Instructions of the Language . 56

4.4 Symbolic Expressions . 59

4.5 Predictive Analyses . 62

4.6 Similar State Transitions . 67

4.7 Race Reporting Criterion of Various Race Prediction Algorithms 78

x

5.1 The relationship between programs and executions with transformations 94

5.2 Compiler Transformations in C/C++11 and Java . 95

5.3 Allowed Deordering Pairs in Jam21 . 98

5.4 Mergable Pairs in C/C++11 [LVK17] and Java . 100

5.5 Before Register Promotion on Volatile access (Forbidden) 109

5.6 After Register Promotion on Volatile access (Allowed) 110

5.7 Example from Fig. 8 in [Pav20] . 117

5.8 Transformed SC Execution . 119

5.9 A transformation sequence that removes two read events 122

D.1 Cycle Structure caused by Full Fences with Communications 137

K.1 Methods supported by the Java Architecture . 169

K.2 volatile-non-sc Experimental Results . 170

K.3 Litmus Test Comparisons . 171

K.4 IRIW-acq-sc . 172

K.5 Z6.U . 172

K.6 IRIW-seq-rlx . 172

K.7 volatile-non-sc on Power with the incorrect compilation scheme 174

Q.1 Example from Fig. 8 in [Pav20] . 204

R.1 A TSO Race Captured by Race Predictor after Read Elimination 207

S.1 A Data Race under the ARMv8 model . 210

T.1 Execution Graph before read-read merge on Volatile (Forbidden) 216

xi

T.2 Execution Graph after read-read merge on Volatile (Allowed) 216

T.3 Execution graph before write-write merge on Volatile (Forbidden) 219

T.4 Execution graph after write-write merge on Volatile (Allowed) 219

T.5 Execution Graph before Write-read Merge Transformation (Forbidden) 222

T.6 Execution Graph after Write-read Merge Transformation (Allowed) 222

xii

VITA

2018 B.S. (Computer Science), University of Rochester.

2019–2024 Teaching Assistant, Computer Science Department, UCLA. Compiler Con-

struction course under direction of Professor Jens Palsberg.

2022-2023 Intern, Java Efficiency Team, Meta Inc.

2024 Part-time Faculty Lecturer, Computer Science Department, LMU. Program-

ming Language Semantics course

2018–2024 PhD Student, Computer Science Department, UCLA.

2024–present Research Scientist, X-Sec Detect and Respond Team, Meta Inc.

xiii

CHAPTER 1

Introduction

Concurrent programs have become popular since the multi-thread revolution. Shared-memory

concurrent programming, among the concurrent programming paradigms, is a programming

style such that threads communicate via a shared memory. Reasoning about shared-memory

concurrent programs, however, is notoriously hard due to the non-deterministic nature of multi-

thread executions. In a shared-memory concurrent program, instructions from different threads

may take effect in many different orders. Programmers without advanced knowledge of the un-

derlying hardware systems typically reason about their concurrent programs relying on an im-

plicit assumption of sequential consistency [Lam79]. Under sequential consistency, each memory

event generated from the instructions takes effect immediately in the order specified by the source

program. In other words, the instructions are executed in a global linear order that is consistent

with the order specified in the program.

To see an example, consider the program

initially x == y == 0

Thread 1 Thread 2

x := 1 y := 1

r1 := y r2 := x

In this program, there are two threads, each executing two instructions. The memory loca-

tions x and y are shared between the two threads whereas r1 and r2 are local registers. Thread

1 performs a store to a memory location x with a value of 1 and then load the value of another

memory location y to a local register r1; Thread 2 performs a store to a memory location y with

1

a value of 1 and then load the value of another memory location x to a local register r2. Under

sequential consistency, one can see that at least one of the two registers will receive a value of

1 after the program finishes. Indeed, r1 receives a value of 0 when loading y, then it must be

executed before the store of y on Thread 2. By that time, the store of x is already executed by

Thread 1 with a value of 1. Therefore, at the time when Thread 2 executes the load of x, which

occurs after the store of y, x is set to 1 and r2 would receive 1. Similarly, we can follow the same

reasoning process symmetrically to see that if r2 receives a 0, then r1 must get a value of 1. As

a conclusion, at least one of the two registers has a value of 1 after this program is finished.

However, the assumption of sequential consistency is quite strong in practice. To achieve bet-

ter performance, hardware and compilers today typically apply many types of optimizations, such

as out-of-order execution and instruction reordering. As a result, instructions are not guaranteed

to take effect in an order consistent with the program order. In other words, the assumption that

there is a global linear order consistent with the program order of which the events are generated

by executing instructions no longer holds in modern multiprocessor systems. In the previous ex-

ample, it is actually possible for both of the registers to receive 0 values after the program finishes

its execution on a hardware system with Intel or AMD x86 processors. This can result from the

effect of write buffering in the x86 architecture. Effectively, each x86 processor has a FIFO buffer

of pending stores to the main memory. When Thread 1 executes the load instruction r1 := y,

its store instruction x := 1 may still be pending in the write buffer of Thread 1’s processor. As a

result, when Thread 2 executes the load instruction r2 := x, if the store of x still has not propa-

gated to the main memory, r2 would receive a value of 0. As we have seen, the previous property

that "at least one of the registers would get a value of 1" does not necessarily holds for programs

executing on x86 processors. In fact, more counter-intuitive behaviors can be observed on today’s

hardware systems, such as mobile devices with the ARM chips and server infrastructures with

the PowerPC architecture.

In the presence of various optimizations, it becomes critical to specify the instruction se-

mantics to accommodate the execution behaviors that are not included under sequential consis-

2

tency. Traditionally, these are informally documented in the architecture manuals of the proces-

sors [Cor08, Dev07, Cor03]. Since compilers apply optimizations to programs as well, program-

ming language manuals [Lea18, ISO98] also document in English the language semantics in the

presence of the potential optimizations.

On the other hand, there have been efforts and success to formalize the program semantics

in the presence of possible optimizations [PFD18, ADG21, AFI09, SSO10, SSA11, ML21, BMO12,

BP19, MPA05, LVK17] in recent research community. A formal specification for concurrent pro-

grams with shared memory, called a weak memory model, rigorously describes what behaviors a

concurrent program may exhibit in the presence of the possible optimizations.

At the same time, however, many software tools are still implemented by either assuming

sequential consistency for simplicity or referring to the informal descriptions from the instruction

manuals due to the complexity of the formal weak memory models. Consequently, there is gap

between their correctness results and the semantics specified by the formal weak memory models.

To close this gap, it is necessary to use the formal weak memory models to show the correctness

of software tools. In particular, I focus on three issues in software tooling.

1. The Correctness of Compilation. What does it mean to implement a compiler correctly

in the presence of a weak memory model? Intuitively, a correct compiler should not intro-

duce any new behavior that is unexpected by the programmers who write the source code.

That is, all possible behaviors of the target code after compilation should be expected at

the source level. Under sequential consistency, this can be ensured by series of local rea-

soning on each thread separately. However, under weak memory models, global reasoning

is needed since some unexpected program behavior may only be observable when threads

are composed together. In addition, programming languages at the source level often adopt

different memory models than the architecture at the target level to be multi-platform. En-

suring compilation correctness with respect to the source and target level memory models

is not trivial.

3

2. The Correctness of Predictive Program Analyses. A predictive analysis takes an exe-

cution trace as input and analyzes the trace without accessing any program source code to

predict potential concurrency bugs. Recent work in the area of predictive analysis [MPV21,

HMR14, CYW21, Pav20, KP18, TAC23, SWY11, SRA05, SCR13, GRX19] typically use sound-

ness as their correctness criteria. A sound predictive analysis yields no false positive, which

means every bug that is reported is a real bug of the program. To ensure soundness, exist-

ing works have used a wide variety of soundness criterion that characterize correct traces

and then prove that the algorithms always produce traces that satisfy the respective sound-

ness criteria. For simple predictive analyses under sequential consistency, this tends to be

sufficient to convince a reader about soundness. However, these trace-based approaches fit

poorly under weak memory models and have implicit assumptions on the program seman-

tics.

3. The Correctness of Program Transformations. Lastly, program transformations are

commonly seen in compilers. Compilers transforms program to achieve better performance

of the target code. In addition, transformations can be applied to explain some weak mem-

ory semantics in sequential consistency [LV16]. Which transformations will maintain the

correctness of compilers and predictive analyses? While there has been extensive research

on correct transformations under the C/C++11 memory model [LVK17, VBC15], the orig-

inal Java Memory Model (JMM) [Še08, MPA05], and common hardware models [LV16],

none focuses on the memory model of the Java Access Modes (JAM), which is introduced

since Java 9. Despite the similarities between JAM and the C/C++11 atomic operations,

there are subtle differences in their semantics with respect to transformations. But these

subtle differences are only informally documented [Lea11a, Lea18]. Moreover, to the best of

our knowledge, transformations in predictive analyses have not been not formally studied

in existing works.

All three types of software tools described above can be seen as functions of executions,

which are abstract structures that capture the run-time semantics of concurrent programs. More

4

precisely, a compiler takes an input program written in a source language A and produce a new

program in the target language B. From the perspective of executions, it can be seen as a function

that maps a set of executions of the input program that are consistent under the memory model of

A to a set of executions with the same observable behaviors that are consistent under the memory

model of B. In the case of transformations, each transformation can be seen as a function that

maps a set of executions consistent under the memory model of a language A to another set of

executions with the same behaviors that are consistent under the same language A. Predictive

analyses, on the other hand, focus on a single execution each time. A predictive analysis takes

a single execution of the program that is consistent under sequential consistency and predicts

a bug-revealing execution of the same program that is consistent under the memory model of

some language A (which may be sequential consistency as well). Therefore, we can study their

correctness properties under weak memory models at the level of execution graphs, which is a

data structure used in the weak memory research field to formally represent executions.

Overall, the thesis statement is the following.

It is possible to formally show the correctness of software tools under weak memory

models.

The rest of this thesis is organized in the following way. In Chapter 2 we introduce the key

concepts that are essential in this thesis; in Chapter 3, we present a bug in the Java compiler

and show how to fix the bug to ensure compilation correctness under memory model of the Java

Access Modes; in Chapter 4, we propose a new soundness definition that can be used under

weak memory models and provide a recipe to construct a proof for such a soundness theorem; in

Chapter 5, we prove a set of program transformations correct for the Java compiler with respect to

the memory model of the Java Access Modes and a show a set of provably sound transformations

one can use to predict concurrent bugs under weak memory models. Lastly, Chapter 6 concludes

the thesis.

5

CHAPTER 2

Background

In this chapter, we introduce some of the key concepts that are commonly used in concurrency

literature. While we defer the formal definitions to later chapters, the goal of this chapter is to

introduce the terminologies and provide a foundation for later chapters.

2.1 Execution Graphs

An execution graph is a data structure that describes a concurrent execution with sets and

relations. Each execution graph consists of the following basic components:

· An event set (Evts). An event can be seen as an effect of executing an instruction. Depending

on the specific semantics of the instruction, different types of event can be generated. Typically,

in the context of concurrency, each store instruction generates a single write event and each

load instruction generates a single read event. Instruction sets of modern architectures such as

x86 or ARM also include synchronization mechanisms such as fence instructions and atomic

instructions. These instructions typically generate their own types of events or read or write

events with special attributes. For programming languages, it is possible for a statement or an

expression to generate multiple events in a specified evaluation order.

· Program order (po). Events generated on the same thread are linearly ordered by the program

order. Program order on each thread represents the local control flow unfolded by executing

each instruction in the order specified by the source program.

6

· Reads-from order (rf). For each read event in the event set, its value is determined by a write

event accessing the same memory location. Note that this write event can be originated from

a thread other than the thread of the read event. The rf order relates such a write to a read

event. While there may be multiple read events relate to the same write event by rf, each read

event is related to a unique write event. In addition, the semantics of rf requires that each pair

of write and read events related by rf access the same memory location with the same value.

· Coherence order (co). For each memory location, due to cache coherence protocols, there

is a global consensus on the order of writes to this location. The co order is a union of total

orders that relate each pair of write events accessing the same location.

· From-reads order (fr). If a read event reads from a write event that is co-ordered before

another write, then the read must have been executed before the latter write. The fr order

captures this notion by relating this read to the latter write.

· Dependencies. Modern architectures such as x86 [SSO10], ARM [AFI09, ADG21], and Pow-

erPC [AFI09, SSA11] respect syntactic dependencies imposed by the instructions. If the mem-

ory location that an instruction accesses is determined by the result of executing a previous

load instruction on the same thread, then there is an address dependency between the events

generated by the two instructions; if the value of a store instruction is determined by the result

of executing a previous load instruction, then there is a data dependency between the events

generated by the two instructions; lastly, if the control flow of which an event is generated on

is determined by the result of executing a previous load instruction, then there is control de-

pendency between the read event generated by the load instruction and the events generated

on this control flow after the read. Note that syntactic dependencies may not be respected by

compilers due to optimizations such as common sub-expression elimination. However, distin-

guishing syntactic dependencies and semantic dependencies requires complex global reason-

ing about the program, which is hard to specify in a programming language model. This issue

leads to the famous out-of-thin-air problem, which remains a challenge in the research field.

7

In addition, there are additional types relations among events specific to the instruction set

architecture and the programming language. In Chapter 3, we will formally introduce above

relations and the additional relations defined for Java, x86, and PowerPC.

Each program is mapped to multiple execution graphs due to the non-determinism of con-

currency. We will explain the formal relationship between a program and the set of its execution

graphs in Chapter 4.

Example To see an example, consider the execution graph in Fig. 2.1, which demonstrates an

execution with the write buffering effect described in the previous chapter and is often called

Store Buffering in many weak memory literature. In this execution graph, we use Wx = n to

denote a write event storing to a memory location x with a value of n ∈ N and Rx = n to denote

a read event reading from a memory location x that receives a value of n ∈ N. The event set of

this execution graph is {Wx = 0, Wx = 1, Wy = 0, Wy = 1, Rx = 0, Ry = 0}. Events stem from

the same thread are ordered by po. In this execution graph, po = {⟨Wx = 1, Ry = 0⟩, ⟨Wy =

1, Rx = 0⟩}. Each memory location is initialized to 0 by the initial write events Wx = 0 and

Wy = 0, which are co-ordered before the other write event of the same memory location. Since

both read events get a value of 0, they read from the initial write events, respectively. Hence

we have Wx = 0 rf−−→ Rx = 0 and Wy = 0 rf−−→ Ry = 0. Since other write events are co-

ordered after the initial write events, the read events are fr-ordered before these write events.

Hence, we have Rx = 0 fr−−→ Wx = 1 and Ry = 0 fr−−→ Wy = 1. Note that there is a cycle

formed by fr and po orders in the execution graph (highlighted with thick edges in Fig. 2.1):

Wx = 1 po−−→ Ry = 0 fr−−→ Wy = 1 po−−→ Rx = 0 fr−−→ Wx = 1. Lastly, there is no dependency

present in this execution graph.

8

Wx = 1 Wy = 1

Wx = 0 Wy = 0

Rx = 0Ry = 0

po po

co co

rfrf

fr

Figure 2.1: Store Buffering (SB)

2.2 Axiomatic Weak Memory Models

Traditionally, program semantics under weak memory are defined in an operational style. For

example, to formally describe the write buffering effect that we have seen previously on x86

architecture, the operational semantics for the x86 architecture [SSO10] defines a state machine

consists of multiple processors with a write buffer on each processor and a main shared memory.

To execute an instruction, the state machine has to go through multiple transitions from fetching

the instruction to complete the instruction. Similarly, the Flat model [PFD18] is an operational

model that describes the program behaviors on ARMv8 machines with a state machine and a set

of transitions.

However, these operational models often lead to complex reasoning process when determin-

ing which program behaviors are observable. Moreover, it is hard to compare different opera-

tional models for weak memory systems in terms of the program behaviors that they allow. In

recent years, using axiomatic [AMS12] models has become a more popular approach to for-

mally specify the program behaviors in weak memory systems. An axiomatic memory model is

a set of assertions over complete execution graphs. An execution graph is called consistent, if all

assertions specified by the axiomatic memory model hold. In this case, it means the execution

presented in the graph may be observable under the memory model. Otherwise, the execution

is said to be inconsistent, which means it is guaranteed to be unobservable under the memory

9

model. Comparing to the operational memory models, axiomatic memory models allow simpler

reasoning process to determine whether certain behaviors is observable and they are recently

formalized in the language of Kleen Algebra with Test (KAT) [KLV23].

Example Among all the axiomatic memory models, the simplest model is sequential consis-

tency (SC). Under sequential consistency, each event takes effect atomically and there is a total

order in which the events occur. Hence, orders shown in the execution graph should be acyclic.

In Fig 2.1, we see that there is a cycle formed the fr and po orders. Therefore, the execution

shown in Fig 2.1 is said to be forbidden under SC. In other words, such an execution is never

observable on machines that guarantee SC. Note that this is consistent with the explanation from

the previous chapter: under SC, at least one of the read events gets a value of 1. On the other

hand, weak memory models such as the x86-TSO [OSS09] model allows such cycle to occur in

an execution graph. This is achieved by excluding the po orders between a write event and a

read event accessing different memory location from the set of orders that need to be acyclic. In

Fig. 2.1, both of the po orders are excluded and there is no cycle formed after excluding them.

Therefore, the execution shown in Fig.2.1 is allowed under x86-TSO. In other words, it may be

observed on x86-TSO machines.

2.3 The DRF-SC Guarantee

Despite all the counter-intuitive program behavior that a weak memory model allows, all archi-

tectures adopting weak memory models should provide sufficient synchronization mechanisms

for programmers to restore sequential consistency. Modern architectures achieve this by provid-

ing synchronization instructions that enforce orders among events. On x86 architecture, fence

instructions, such as the MFENCE instruction, can be used to make sure the instructions before

a fence are completed before the instructions after the fence start. Effectively, the po orders be-

tween the two groups of instructions are preserved. Similarly, the ARMv8 instruction set provides

10

DMB instructions for enforcing the orders among instructions. In addition to the fence instruc-

tions, modern architectures also provide other synchronization primitives that guarantee atomic

access to memory locations. In the x86 instruction set, the LOCK ADD instruction can be used

to atomically update a memory location. In the ARMv8 instruction set, the LDXR and STXR in-

structions can be used to build atomic access when paired together. In execution graph, these

primitives usually correspond to read-modify-write (RMW) events or pairs of read-write events

that carry out special synchronization semantics. Effectively, there is a linear order enforced

among the atomic accesses of each memory location. Therefore, they can also be used to restore

sequential consistency. The semantics of these synchronization primitives are typically formally

defined in axiomatic memory models as well.

In order to show that a weak memory model provide sufficient mechanisms to restore se-

quential consistency, a theorem that serves as a correctness criteria for weak memory models,

called the DRF-SC theorem [AH90], has to be proven. The DRF-SC theorem gives a guaran-

tee that follows programmers’ basic intuition: if a program is properly synchronized, then all its

executions are sequentially consistent. By "properly synchronized", the DRF-SC theorem requires

that there is no data race present in the program. A data race occurs when two threads access

the same memory location concurrently and one of them is writing to the location. It indicates

that there is no order enforced between the two accesses and is often a root cause of concur-

rency bugs. Based on different focuses and various definitions of data race, different versions

of the DRF-SC theorem are seen in existing literature [BMO12, LVK17, WPP20, BP19]. As we

will see in Chapter 3, we first prove a version of the DRF-SC theorem, which specifies that data-

race-freedom in all sequentially consistent executions of a program implies the program does not

have other weak memory executions. A slightly weaker version originally seen in [BP19] is also

proved in Chapter 3, which states that if an execution graph imposes no happens-before race,

then it is sequentially consistent. In Chapter 4, we show another version of the theorem stating

that enclosing memory accesses in critical sections protected by locks can also restore sequential

consistency.

11

Example In the example of Fig 2.1, there are two pairs of data races: ⟨Wx = 1, Rx = 0⟩ and

⟨Wy = 1, Ry = 0⟩. Due to the presence of these two data races, the weak memory behavior shown

in Fig. 2.1 is allowed under the x86-TSO model. In fact, it is also allowed under the memory model

of the Java Access Modes. The Java Access Modes provide Volatile mode operations, which can

be used to eliminate data races. If we mark all of the accesses in the previous program as Volatile

accesses as the following:

initially x == y == 0

Thread 1 Thread 2

x.setVolatile(1); y.setVolatile(1);

r1 = y.getVolatile(); r2 = x.getVolatile();

Then the two data races are eliminated from the program. The Volatile operations in the Java

Access Modes brings synchronization effects that enforces certain program orders, which result

in the execution graph shown in Fig. 2.2. In this execution graph, the program orders enforced

by the Volatile write events WxV = 1 and WyV = 1 are represented as the push order. The previous

cycle formed by po and fr orders is now a cycle formed by push and fr. The model of the Java

Access Modes specifies that such a cycle is forbidden. Thus, this execution is prevented under

the model of the Java Access Modes after we mark the accesses with Volatile. In fact, now all

the executions of this program are sequentially consistent. That is, the set of executions of this

program under the model of the Java Access Modes now coincides with the set of executions

under sequential consistency. In general, Volatile mode is used to restore sequential consistency

in Java.

2.4 Compilation, Prediction, and Transformation

While it seems that the three aspects we focus on, compilation, prediction, and transformation,

are each itself a separate topic, we explain how their correctness can be studied using the same

method with execution graphs in this section.

12

WxV = 1 WyV = 1

Wx = 0 Wy = 0

RxV = 0RyV = 0

push push

co co

rfrf

fr

Figure 2.2: Store Buffering (SB) with Volatile mode accesses

2.4.1 Compilation

Compilation is an operation of translating a source program to a target program by applying

a compilation scheme, which is a function that maps source-level instructions to target-level

instructions. As shown in Fig. 2.3a, Psrc is a program written in a source-level language. By

applying a compilation scheme, it is translated into a target program Ptgt. We use Psrc ⇝ Ptgt to

denote this translation relation. To understand the semantic effect of applying this translation,

we lift this relation to the execution graphs that are associated to each of the programs. In this

case, let Gsrc be an execution graph of Psrc. Applying the compilation scheme has the effect of

transforming this execution graph to a target-level execution graph, Gtgt, which is an execution

graph of Ptgt. We denote the relation between the two execution graphs as Gsrc ; Gtgt. While

not all source-level behaviors of a program are necessarily preserved at the target level by a

correct compiler, there should not be any new behavior at the target level introduced by the

compilation process. Following this intuition, if Gtgt is consistent under the memory model of

the target language, then a correct compilation scheme should ensure that Gsrc is consistent

under the memory model of the source language. Note that the memory models of the source

and target language may not be the same. Hence, we use two different colors to denote the

13

Psrc Ptgt

Gsrc Gtgt

⇝

;
(a) Compilation

P

GρGσ
Predict

(b) Predictive Analyses

P P ′

G G′;

⇝

(c) Transformations

P P ′

Gρ G′
ρGσ

Predict

;

⇝

(d) Predictive Analyses with Transformations

Figure 2.3: Relationships of Programs and Executions in Compilation, Prediction, and Transfor-

mation

two execution graphs, each being consistent under the respective memory model. In Chapter 3,

we formally define the relation between Gsrc and Gtgt and use this relation and the axiomatic

memory models of the source and target languages to define a correct compilation scheme.

Example From the example in previous section, we see that Volatile mode in Java enforces

program orders. Under the hood, there is a compilation scheme that translates the program that

we saw from the previous section into the following program in x86 instructions.

14

Wx = 1 Wy = 1

Wx = 0 Wy = 0

Rx = 0Ry = 0

MFENCE MFENCE

co co

rfrf

fr

Figure 2.4: Store Buffering (SB) with MFENCE inserted

initially x == y == 0

Thread 1 Thread 2

MOV [x], 1 MOV [y], 1

MFENCE MFENCE

MOV eax, [y] MOV ebx, [x]

The Java compiler inserts MFENCE instructions when compiling the program to x86 instruc-

tions, which results in the execution graph shown in Fig. 2.4. In this execution graph, the inserted

MFENCE instructions transforms the previous cycle formed by po and fr into a cycle formed by

MFENCE and fr.

To show that this compilation is correct, we need to show that Gsrc, which is the forbidden

execution graph shown in Fig. 2.2, is still forbidden after being translated to Gtgt, which is the

execution graph shown in Fig. 2.4. In this case, the execution in Fig 2.4 is forbidden under the x86-

TSO model precisely due to the presence of MFENCE instructions. Thus, we say the Java program

is correctly compiled into a x86 program.

15

2.4.2 Predictive Analysis

Predictive analysis is a class of dynamic program analyses that finds concurrency bugs by pre-

dicting executions. As shown in Fig. 2.3b, let P be a program with a reported bug to be fixed. Gσ

is an execution graph of P that is captured by the analysis and is sequentially consistent. Note

that predictive analyses can report bugs that are not necessarily present in the recorded execu-

tion Gσ, but in some execution of the same program P . In this case, let Gρ be such a witness

execution where the bug is present. We denote the relation between the two execution graphs

as Gσ
Predict−−−→ Gρ. Then a correct predictive analysis should ensure that Gρ is indeed a valid exe-

cution of P . We identify two important aspect of defining the notion of validity in this context,

executability, which establish the relation between P and Gρ, and memory consistency, which is

determined by the memory model under which P is executed. Note that, although Gσ is captured

under sequential consistency, the memory model under which P is expected to be executed is

not necessarily sequential consistency. Therefore, we use two different color to distinguish their

consistency property. In Chapter 4, we formally define the correctness of predictive analyses and

provide a proof recipe supporting the definition.

Example From Chapter 1 we saw a simple program with two threads, each with two instruc-

tions that accesses shared memory locations. Now consider the following program, which is an

extended version:

initially x == y == z == 0

Thread 1 Thread 2

x := 1 y := 1

r1 := y r2 := x

if (r1 == 0) if (r2 == 0)

z := 1 z := 2

While we know that there are data races on location x and y, is there any data race for location

z? Recall that a data race is a pair of memory events from different threads accessing the same

16

memory location such that at least one of the events is a write. In this program, there are two

write events for location z, generated from z := 1 and z := 2 respectively. Therefore, we need

to determine whether the write events generated from these two instructions form a data race.

Note that, the z := 1 and z := 2 are each enclosed in an if-statement in the program. Therefore,

the write events are only generated when the if-condition is true. In this case, when r1 and r2

are both 0. From Chapter 1, we know that under sequential consistency, at least one of r1 and r2

is guaranteed to be 1. Therefore, under sequential consistency, there is no data race for location z

since at least one of the if-condition is false in every execution. On the other hand, it is possible

for r1 and r2 to be both 0 under x86-TSO, as we have seen previously. Therefore, it is possible

for z := 1 and z := 2 to be executed at the same time under x86-TSO. As a result, there is a data

race formed precisely by the events generated from these two instructions.

To show that their results are sound, predictive analyses construct a witness execution for

each reported bug that dirctly expose the bug. Intuitively, the witness execution consists of an

execution prefix that occurs immediately before the bug and the bug itself. In this example, the SB

execution shown in Fig 2.5 is such a witness execution for the data race on location z under x86-

TSO. The bug is highlighted in■, which immediately occurs after a SB execution. Note that there

are two properties that this execution satifies: (1) it is a valid execution (prefix) of the program,

and (2) it is consistent under x86-TSO. We call the former property executability and the latter

property memory consistency.

2.4.3 Transformations

Transformations are commonly seen in compilers as well, in addition to compilation. Different

from compilation, transformation is an operation that may insert or eliminate memory events or

change the threads of which the events are generated from. On the other hand, transformations

are typically applied under a single memory consistency model. Therefore, we study the correct-

ness of transformations as a similar but different property than the correctness of compilations.

In Fig. 2.3c, let P be a program before applying a transformation and P ′
be the program obtained

17

Wx = 1 Wy = 1

Wx = 0 Wy = 0

Rx = 0Ry = 0

Wz = 1 Wz = 2

po po

popo

co co

rfrf

fr

Figure 2.5: Store Buffering (SB) with a data race

after applying the transformation. The effect of the transformation is lifted to execution graphs,

hence G ; G′
. From the perspective of memory consistency, a correct transformation should

not introduce new behavior by turning an inconsistent execution into a consistent one. There-

fore, if G′
is consistent, then G must be consistent as well. Note that the memory model used

to determine their consistency is the same. In the first half of Chapter 5, we formally define this

notion of correctness for transformations and prove the correctness of a list of transformations

under the memory model of the Java Access Modes.

Example Compilers can reorder instructions during the process of compilation. For the pro-

gram we saw in Chapter 1, a compiler may transform it into the following program:

initially x == y == 0

Thread 1 Thread 2

r1 := y y := 1

x := 1 r2 := x

The instructions in blue on the first thread are reordered. Note that, after the transformation,

it is still possible for both r1 and r2 to both be 0 under the model of Java Access Modes (assuming

18

this program is written in Java). This is acceptable since the behavior of the program is already

expected before the transformation, as we have discussed in the previous section. On the other

hand, the following reordered program is unacceptable:

initially x == y == 0

Thread 1 Thread 2

r1 = y.getVolatile(); y.setVolatile(1);

x.setVolatile(1); r2 = x.getVolatile();

Recall that Volatile mode enforces the program orders among events generated from instruc-

tions. The reordering transformation in this example breaks the guarantee of Volatile and intro-

duce a new behavior that is not expected from the source level. Note that now it is possible for r1

and r2 to both be 0 under the model of the Java Access Modes after the transformation. In fact,

this outcome is allowed for this transformed program even under sequential consistency, which

is the strongest memory model. Therefore, this transformation should not be applied to Volatile

accesses. We say that the reordering transformation in this example is sound if the instructions

are regular plain instructions, but unsound if they are annotated as Volatile.

2.4.3.1 Transformation for Predictive Analyses

Lastly, just like combining Fig. 2.3a and Fig. 2.3c leads to a definition for a correct compiler, it is

also possible to combine Fig. 2.3b and Fig. 2.3c, which provides a way to correctly extend existing

predictive analyses, which only focused on predicting bug under sequential consistency, with the

capability of predicting bugs under some weak memory models. In Fig. 2.3d, let P be a program

with an execution graph Gσ captured under sequential consistency. If the analysis is only able

to predict bugs under sequential consistency, then it would not be able to directly predict the

bug-exhibiting execution, Gρ, which is not sequentially consistency but is consistent under a

weaker memory model. However, we can transform Gρ into an execution graph G′
ρ that has the

same behavior but is sequentially consistent. In other words, if the program behavior of Gρ can

19

Wx = 1

Wy = 1

Wx = 0 Wy = 0

Rx = 0

Ry = 0

Wz = 1 Wz = 2

po po

popo

co

co

rf

rf

fr

fr

Figure 2.6: A sequentially consistent execution after transformation witnessing the data race

be explained by a sequentially consistent execution graph G′
ρ that also witnesses the reported

bug, then showing the existence of G′
ρ is sufficient for a correct predictive analysis. However,

although there are many sound transformations that support this definition of correctness, not

all transformations are helpful for catching more bugs in weak memory. In the second half of

Chapter 5, we borrow two transformations for x86-TSO from [LV16] that are previously proved

sound and define a new sound transformation for ARMv8. For demonstration, we augment an

existing SMT-based predictive analysis with one of the sound transformations for x86-TSO and

use the extended algorithm to predict new data races under x86-TSO, which could not be predicted

by the original analysis algorithm. Lastly, we prove the correctness of the new algorithm by

following the same recipe from Chapter 4.

Example Many existing predictive analyses assumes sequential consistency and construct wit-

ness executions with a single global linear order among events. They cannot recognize different

types of orders (that we have been using different colors to distinguish in the execution graphs)

and do not allow cycles of any form. As a result, they cannot be directly used to predict data races

under weak memory models, such as the example we have shown previously.

20

On the other hand, we have seen that reordering transformation can be applied if the instruc-

tions are not annotated asVolatile. The outcome that both r1 and r2 are 0 becomes possible under

sequential consistency after the transformation. We can leverage this observation and construct

a sequentially consistent execution graph with the same outcome as the execution graph from

Fig. 2.5 to represent the witness of the bug.

As shown in Fig. 2.6, a transformation is applied on the execution graph from Fig. 2.5 and

the two events in blue are reordered. Since there is no cycle in this new execution graph, it

is a sequentially consistent execution, and hence can be constructed by an existing predictive

analysis as a witness for the data race on location z as highlighted. It’s important to note that

this transformed execution graph is no longer an execution of the original program P , but rather

a transformed program P ′
. The previous correctness properties, i.e., executability and memory

consistency, are not satisfied by this transformed execution graph in Fig. 2.6. Instead, properties

of this execution graph imply the correctness properties of the actual witness execution in Fig. 2.5.

Thus, the soundness of the transformation becomes critical to ensure this relationship between

the two execution graphs is valid.

21

CHAPTER 3

Compilation Correctness of Java Access Modes

The content of this chapter was included in a paper published in ECOOP 2022 [LBP22].

In OpenJDK 9, the Java programming language introduced the VarHandle API with Access

Modes to provide a standard set of operations that gives clear semantics to programs with shared

object fields. Among the four available Access Modes (which we will explain in Section 3.2

in detail), programmers are allowed to use Volatile mode to ensure the consistency of updates

on shared variables. Conceptually, the set of Volatile mode accesses in a program is totally or-

dered [Lea18]. If all of the accesses in a program are in Volatile mode, then the program should

only have sequentially consistent executions since all accesses in that program are totally ordered.

Sadly, this basic property of Volatile mode does not hold under the current implementation

of the Java compiler in OpenJDK 9 HotSpot JVM. That is, marking all accesses as Volatile in a

Java program can still result in behaviors that are not sequentially consistent when compiling

to Power [SSA11]. In particular, the C1 and the C2 compilers in HotSpot do not provide enough

synchronization between a Volatile read and a Volatile write when compiling to the Power archi-

tecture.

While we leave the details of their respective compilation schemes to Section 3.1, when a

program includes a sequence of a Volatile read followed by a Volatile write, there is no hwsync

instruction inserted in-between. Without the hwsync, it is possible for threads to disagree on

the orders in which instructions are executed. As a consequence, the compilation schemes can

still cause violations of sequential consistency in programs with all accesses marked Volatile.

We have contacted the maintainers of the OpenJDK about this issue and a bug report has been

22

filed [Shi21].

One solution is to add the missing hwsync instruction to restore sequential consistency for

Volatile. While the change to the compilation scheme appears to be simple, the work of verify-

ing its soundness is challenging. First, the formal memory model Jam (hereafter Jam19) [BP19]

exhibits the same issue as the HotSpot compilers. That is, it cannot guarantee sequential consis-

tency for programs with all accesses marked Volatile. Therefore, we revise the language model

to fix this issue. To ensure the change to the model is valid we formally verify its key proper-

ties, such as the standard DRF-SC theorem, and leverage a set of empirical litmus tests via our

implementation of Java in Herd7 [AMT14] that keeps the model valid. We call the revised model

Jam21 to distinguish from the original version. Second, the language model defines the seman-

tics of fullFence() with a total order. However, many target-level architectures such as the

Power memory model [SSA11] only specify a partial observable order among their synchroniza-

tion mechanisms (fence cumulativity). Therefore, we develop an intermediate language model,

Jam21’, to bridge Jam21 with the target level models. We show that Jam21’ yields the same ob-

servable program executions as Jam21 but does not specify a total order among fullFence()s,

which simplifies the proof for compilation correctness.

Supplementary Material The proofs of the theorems appear in this paper are available in the

appendices (which are available in the full version of the paper). The following are also available

as artifact of this paper at https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material.

· The extended Herd7 tool suite with the Java architecture (merged to the official repository in

2022 after the paper was published).

· The litmus tests that appear in this chapter.

· The Coq proofs for some of the theorems in this chapter.

23

https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material

3.1 The Problem of Compiling Volatile and How to Fix it

In this section we use an example to demonstrate that the approach implemented by the HotSpot

JVM compilers does not provide sequentially consistent semantics even when all accesses use

Volatile mode.

Consider the volatile-non-sc.4 example shown as an execution in Fig.3.1. In this example,

there are four concurrent threads (P1, P2, P3, and P4) accessing two shared integer variables

(x and y). The notation Wx = 1 means “writing to variable x with value 1”. The notation Rx

= 0 means “reading from variable x and the value returned is 0”. In addition, each variable is

initialized to 0 at the beginning before the threads start execution. The small superscript on each

memory access denotes the access mode that the access uses. For example, Rxv means “reading

with Volatile mode”.

If all of the read and write accesses in this program use Volatile mode, would the reads ever

return the values that are specified in the figure?

According to the specification [Lea18], the program must exhibit sequentially consistent be-

havior because all accesses are marked Volatile:

“When all accesses use Volatile mode, program execution is sequentially consistent, in which

case, for two Volatile mode accesses A and B, it must be that A precedes execution of B, or vice

versa.”

Therefore, we are interested in whether the example in Fig. 3.1 is sequentially consistent. Se-

quential consistency, as first defined by [Lam79], requires a total sequential order that preserves

program order and the values returned by the reads are compatible with this total order. Follow-

ing the definition, the execution in Fig. 3.1 does not satisfy sequential consistency. To see this,

we demonstrate a contradiction under the guarantees of sequential consistency. Consider the

following order constraints:

1 By program order, we know that (a) occurs before (b).

24

Wx = 0 Wy = 0

P1 P2 P3 P4

(a) WxV = 2

(b) RyV = 0

(c) WyV = 1 (d) RyV = 1

(e) WxV = 1

(f) RxV = 1

(g) RxV = 2

1
2

3

4
6

5

Figure 3.1: volatile-non-sc.4 under the sequential consistency model, Forbidden

2 Since the value (b) gets is the initial value, it must occur before (c) writes to the location y.

3 Then, (d) reads the value written by (c), so (c) occurs before (d).

4 By program order, (d) occurs before (e).

5 By program order, (f) occurs before (g).

6 Now, looking at P4, we know that the value of x changed from 1 to 2. Therefore, we can

infer that (e) occurs before (a) since (e) is the only write to x with a value of 1 and (a) is the

only write to x with a value of 2.

In this execution, we find a cycle: (a) −→ (b) −→ (c) −→ (d) −→ (e) −→ (a) which is high-

lighted in Fig. 3.1 with the “occurs before” relation represented as edges in the execution graph.

Sequential consistency requires an irreflexive total order among all instructions. Therefore, the

chain formed by the total order should be acyclic, i.e., a valid execution should not exhibit any

cycle in its graph. Thus, this execution is inconsistent under sequential consistency and should

be forbidden.

However, despite the promise of sequential consistency given by the source-level Volatile

semantics, the compilation scheme found in the Java compilers for Power allows the example

25

execution in Fig. 3.1. To see this, we present the compilation scheme from the C1 compiler which

is the more conservative compiler of HotSpot. We then give a Power-consistent execution graph

corresponding to the example in Fig. 3.1.

The Power architecture adopts a relaxed memory model and provides fence instructions to

recover sequential consistency. Two main types of fence instructions, the stronger fence hwsync

and the weaker fence lwsync, are usually used by the compilers to enforce synchronization guar-

antees. Using lwsync usually gives better performance but the synchronization guarantee of

lwsync is weaker than hwsync. In particular, while both fence instructions carries a set of writes

(Group A writes) when propagating to another thread, lwsync does not require an acknowledge-

ment to continue executing the instructions after it. On the other hand, a hwsync requires an

acknowledgment marking that it (along with its Group A writes) has propagated to all threads

before proceeding to the next instruction.

The compilation to Power for Volatile accesses on C1 is the following
1
:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ lwsync ; stw ; hwsync

A Volatile read is compiled to a hwsync instruction followed by a load instruction and a

lwsync instruction; a Volatile write is compiled to a lwsync instruction followed by a store in-

struction and a hwsync instruction.

Fig. 3.2 shows the example from Fig. 3.1 according the compilation scheme in the C1 compiler
2
.

1
This compilation scheme was found in the OpenJDK 13 HotSpot compiler and it follows from a previously

inaccurate description in the documentation [Lea18] regarding the semantics of Volatile accesses. We have contacted

the author and the documentation has been corrected in the latest version while the compiler bug (although reported)

is still not fixed at the time of writing.

2
The C2 compiler yields a slightly different compilation scheme for Volatile reads: Instead of inserting a lwsync

fence after the load instruction, it emits a control dependency followed by an isync instruction, which we denote

as ctrlisync. But in this example, the resulting execution graph is effectively the same as C1’s because the effect

of ctrlisync is subsumed into the lwsync or the hwsync instruction that it follows. In addition, we have simplified

the compiled code (such as eliminating the fence instructions at the beginning or end of the threads and merging

consecutive fence instructions) without changing its semantics for clarity here.

26

Wx = 0 Wy = 0

P1 P2 P3 P4

(a) WxV = 2

(b) RyV = 0

(c) WyV = 1 (d) RyV = 1

(e) WxV = 1

(f) RxV = 1

(g) RxV = 2

(B1) hwsync (B2) lwsync (B3) hwsync

Figure 3.2: volatile-non-sc.4.ppc translated to Power by HotSpot C1, Allowed

The Power memory model [SSA11] allows the behavior annotated in Fig. 3.2. The full trace

of the execution can be found in Appendix K.5. Here we give a brief explanation. First note that

a write operation is split into multiple steps and can be propagated to foreign threads in different

orders if not properly synchronized. Furthermore, the lwsync in P3 is not sufficient in this case.

In particular, the lwsync does not require an acknowledgement before proceeding to the next

instructions and it only requires (c) Wy = 1 to be propagated when itself needs to be propagated

to the thread (the cumulativity of lwsync). Since P4 needs to read from (e) Wx = 1, which is

subsequent to (B2), (B2) needs to be propagated to P4 before (e) Wx = 1 is propagated to P4. The

propagation of (B2) lwsync makes sure that (c) Wy = 1 is propagated to P4 before it can read

x (even though it doesn’t really need to read the value of y). On the other hand, P1 does not

have any instructions reads from an instruction of P3 that comes after (in program order) (B2).

Therefore, it does not require (c) and (B2) to be propagated to it when it executes (b). As a result,

(c) can be propagated to P1 long after reaching P3 and hence letting P3 and P1 have different

views of the memory during the execution. When P1 tries to read the value of y, it can only

get an initial value of 0 since the newer value has not been propagated to P1 yet. Consequently,

this non-SC execution is allowed (consistent) under the Power memory model, despite that the

semantics of the "all-Volatile" source program requires it to be forbidden.

27

Wx = 0 Wy = 0

P1 P2 P3 P4

(a) WxV = 2

(b) RyV = 0

(c) WyV = 1 (d) RyV = 1

(e) WxV = 1

(f) RxV = 1

(g) RxV = 2

(B1) hwsync (B2) hwsync (B3) hwsync

Figure 3.3: volatile-non-sc.4.ppc translated to Power using the revised compilation scheme, For-

bidden

The solution to fix this issue is quite straightforward. Instead of letting Volatile read be trans-

lated using "leading fence" while Volatile write be translated using "trailing fence", they should

both use the same fence inserting strategy (both leading fence or both trailing fence).
3

Therefore,

the correct compiler scheme for Volatile should be:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ hwsync ; stw

With the revised compilation scheme we can demonstrate that the example of Fig. 3.1 is for-

bidden in accordance with the required SC semantics. The resulting execution graph is shown

in Fig. 3.3. While most of this example matches Fig. 3.2, (B2) now is a hwsync instruction. As an

effect of this change, (B2) is now required to be propagated to every thread and get acknowledged

before start executing (e). As a result, at the time when (c) is propagated to P4 (as a result of the

cumulative effect of (B2) just like in Section. 3.1), it must also have propagated to P1 due to the

3
Here we choose to show the leading fence strategy for simplicity. However, the trailing fence strategy is symmet-

ric to leading fence and the same correctness proof works for both conventions given it’s used consistently (more

details can be found in Section 3.4.1). In practice, it is usually preferable to use trailing fence strategy for better

performance.

28

acknowledgement required by the hwsync at (B2). Therefore, it becomes impossible for (b) to

read the value 0 because Power requires reads to always read from the latest value that has been

propagated to the thread. That is, this execution is now forbidden by Power, aligning with the

sequentially consistent semantics promised by the Java Volatile mode. Note that the reasoning is

the same if we use a "trailing fence" scheme. The key is to deploy a fence insertion strategy such

that there is a hwsync fence inserted between every pair of Volatile accesses.

Interestingly, we found similar compilation schemes applied to other architectures in HotSpot

as well. This is not an accident. The source of this compiling behavior stems from the IR phase

of the compiler. At the IR (called the Ideal Graph IR in HotSpot) level, a Volatile read is translated

to a fullFence() followed by an Acquire read; a Volatile write is translated to a Release write

followed by a fullFence(). Then each compiler back end translates the code further using the

corresponding template file that maps the IR to specific architecture instructions. In the case of

Power, a fullFence() is mapped to the hwsync instruction and Release-Acquire accesses are

implemented using the lwsync instruction. While the example we provide here focuses on the

compilation to Power, the more fundamental issue here is a lack of fullFence() between a

Volatile read and a Volatile write at the IR encoding level. Jam19 aligns with this encoding when

specifying the semantics of Volatile memory operations. As a result, Jam19 also exhibits the same

problem. That is, when all memory accesses are Volatile, Jam19 does not guarantee sequential

consistency.

3.2 Formal Model

In this section we present the revised model Jam21, which we use as our theoretical foundation

for proving compiler correctness in the rest of the paper. We begin by introducing the basic

syntax (Section 4.3) used in the rest of the paper. Then we give the formal definition of Jam21 in

Section 3.2.2.

29

3.2.1 Basic Syntax

We adopt the syntax of [BP19] and the cat language [AMT14] in addition to some utility func-

tions.

Given a program P ∈ Prog, there is a set of execution graphs associated with P , which

we use G to denote a single execution graph. Each execution graph consists of sets of memory

events generated from P . In particular: G.Evts denotes the set of memory events in G; G.F

denotes the set of fence events in G; G.IW denotes the set of initialization writes of G; G.FW

denotes the set of final writes of G; G.Wrts denotes the set of write events in G; G.Rds denotes

the set of read events in G; and G.RMW denotes the set of read-modify-write events in G. Note

that we treat each RMW event as a single event such that G.RMW ⊆ G.Wrts and G.RMW ⊆ G.Rds.

In addition, for RMW operations such as compare-and-swap (CAS), we assume the operation is

on its success comparison path. They are sometimes implemented using LL/SC instructions on

hardware, which cannot guarantee atomicity if the comparison fails. We assume each write event

to the same memory location has an unique value for simplicity.

For each memory event e ∈ G.Evts, we define the following attributes: G.AccessMode(e) is

the Access Mode of event e in G; G.val(e) is the value of event e in G; G.loc(e) is the memory

location of event e in G; and G.tid(e) is the thread identifier from which e is executed. Finally,

we use the symbol G to denote the set of all execution graphs.

The memory events in each G are related by order relations.

· The program order (po) is a partial order relation (po ⊆ G.Evts×G.Evts) specified by P . We

use the notation i1
po−−→ i2 to denote the pair of events ⟨i1, i2⟩ related by po and G.po to denote

the set of all pairs relates by po in G.

· The reads-from (rf) order is a partial order relation (rf ⊆ G.Wrts × G.Rds). For each read

event i2, there exists a unique write event i1 such that G.val(i1) = G.val(i2) and G.loc(i1) =

G.loc(i2). We use the notation i1
rf−−→ i2 to denote the pair of events ⟨i1, i2⟩ related by rf and

G.rf to denote the set of all pairs relates by rf in G.

30

· The trace order (to) is a total order among all events in an execution graph.

· Model-Specific relations. There are sets of relations that are specifically defined by the memory

model. They are derived from the event attributes, po, and rf using the semantic rules of the

memory model. We will detail them in the next few sections. We use the notation i1
R−→ i2 to

denote the pair of events ⟨i1, i2⟩ ∈ G.R.

We also use operations on relations: given relations R1 and R2, we use composition R1;R2 ,

union R1|R2, intersection R1 & R2, complement ~R1, transitive closure R+1, identity relations over a

set [A], and inversion R-11 .

Lastly, we use the notation acyclic(R−→) to denote that R is acyclic in the execution history.

3.2.2 The Jam21 Model

In this section, we present the Jam21 model. The full definition of Jam21 written in the cat

language [AMT14] can be found in Appendix A. We explain several excerpts of the formal model.

There are five available access modes in Jam21: Plain mode, Opaque mode, Release mode,

Acquire mode, and Volatile mode. The synchronization effect of the access modes are partially

ordered using ⊑ :

Plain ⊑ Opaque ⊑ {Release,Acquire} ⊑ Volatile.

Among the five access modes, the Plain mode is the most relaxed mode that imposes the lease

synchronization whereas the Volatile is the strongest mode that imposes the most synchroniza-

tion effect. In particular, the synchronization effect of each mode are expressed in terms of the

visibility orders, which we explain in details next.

31

3.2.2.1 Visibility

At the center of Jam21 is the notion of visibility orders (vo). The most basic form of visibility, vo

includes the reads-from (rf) relation. Intuitively, a write has to be visible to the read that read from

it. In other cases, visibility comes from the synchronization effects of various access modes. Both

Volatile (V) and Release(REL)-Acquire(ACQ), (RA as the union) accesses provide visibility effect.

Note that Volatile accesses are also included in the set of accesses that are considered Release-

Acquire by the model since their semantics are defined in a cumulative style. The vo order can be

derived from ra and svo orders, which captures the synchronization effects of Release-Acquire

memory events or fences, or spush and volint orders, which capture the synchronization effects

of Volatile memory events or fullFence()s. The union of the two orders is the push order. In

addition, the pushto order is a subset of trace order (to) restricted to Volatile memory events

and fullFence()s. Composing pushto with push emulates the cross-thread total order among

Volatile events and fullFence()s, which is also part of the vo order. Finally, po restricted to the

same memory location (po-loc) is also included as part of the vo definition, since Jam21 respects

the SC semantics per memory location.

ra ≜ po ; [REL | V] | [ACQ | V] ; po

svo ≜ po ; [F & REL] ; po ; [Wrts] | [Rds] ; po ; [F & ACQ] ; po

spush ≜ po ; [F & V] ; po

volint ≜ [V] ; po ; [V]

push ≜ spush | volint

vvo ≜ rf | svo | ra | push | pushto ; push

vo ≜ vvo+ | po-loc

Note that the definition of volint has been corrected from Jam19 to ensure sequential con-

sistency for Volatile.

32

3.2.2.2 Coherence

The coherence order, co-jom, is an order among Opaque or stronger mode writes to the same

location. Coherence order edges can be derived using the vo order and the po order among

memory accesses.

WWco(R) ≜ {⟨i1, i2⟩ | ⟨i1, i2⟩ ∈ G.R ∧ i1, i2 ∈ G.Wrts ∧G.loc(i1) = G.loc(i2) ∧ i1 ̸= i2}

coww ≜ WWco(vo)

cowr ≜ WWco(vo ; rf−1)

corw ≜ WWco(vo ; po)

corr ≜ [O | RA | V] ; WWco(rf ; po ; rf−1) ; [O | RA | V]

co-jom ≜ coww | cowr | corw | corr

Note that co-jom is different from the definition of co in other memory models such as Power

and x86-TSO. Instead of enumerating all possible total coherence order to check the consistency

of a given execution history, Jam21 derives coherence order co-jom among memory events from

their known relations. Therefore, co-jom is a partial order among writes to the same location in

Jam21. We use the notation i1
co-jom−−−−→ i2 to denote the pair of events ⟨i1, i2⟩ related by co-jom

and G.co-jom to denote the set of all pairs relates by co-jom in G. We use the simpler name co

to denote co-jom when the context is clear.

Different from Jam19, Plain mode reads to the same location ordered by po can be reordered

by compiler and therefore cannot be used to derive co-jom order.

3.2.2.3 Execution Consistency

Axiomatic models define program semantics as the set of allowed executions. We adopt the same

definition of candidate execution from [AMT14]. Given a program P and a memory modelM, an

execution graph G is aM-consistent execution of P if G is a candidate execution of P (specified by

the architecture of the programming language of which P is written in), and G isM-consistent.

33

We denote the set of allM-consistent candidate executions of P by JP KM.

We now have all the definitions needed to define execution consistency under Jam21.

▶ Definition 1 (Jam21-consistency)

A well-formed execution graph G is Jam21-consistent if it satisfies the following two require-

ments:

1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf−−−−→)

2. Coherence.: co-jom is acyclic, acyclic(co-jom−−−−→)

We say such an execution history G is allowed by Jam21. Otherwise, it is forbidden.

For the Jam21 model, we use JP KJam21 to denote the set of all Jam21-consistent execution

graphs of P .

Jam21 satisfies a set of properties such as the DRF-SC Theorem. We show the theorems and

the proofs in Appendix H and Appendix I.

3.2.2.4 Validation of Jam21 with Litmus Tests

The experimental validation of the Jam21 model includes two parts.

First, we implement the Java architecture in Herd7. Herd7 [AMT14] was developed to sim-

ulate program executions with user-defined memory models. An architecture in Herd7 provides

the parser for litmus tests written in the language corresponding to the architecture and an op-

erational semantics of the instructions that appear in litmus tests. Herd7 uses the parser and

the instruction semantics from the architecture to form an internal representation of the input

litmus test and generate the set of all possible executions. Then, Herd7 checks the consistency

of the executions using memory models written in the cat language. As of today, several main-

stream architectures, such as C/C++11 [LVK17], x86 [OSS09], ARM [PFD18], and Power [SSA11],

have been implemented and included in Herd7’s official repository. Unfortunately, Java is not.

Jam19 [BP19] validated its formalization by mapping memory events to other architectures’

events that exists in the Herd7 repository and run the litmus tests in the architecture’s lan-

34

guage. The mapping roughly captures part of the compilation scheme but it is neither complete

nor proven sound. For example, in its mapping to ARMv8, Volatile accesses are ignored and not

mapped to any memory event. Hence this approach is invalid and the results cannot be trusted

though they show intentions on how Jam19 was expected to behave. Therefore, we extend the

Herd7 tool suite with the Java architecture and translate the set of litmus tests used for testing

Jam19 to Java
4
. A detailed description of each supported instruction is shown in Appendix K.1.

Second, we validate the Jam21 model using the Java translation of the set of litmus tests that

was originally used to validate Jam19 and compare their outcomes. The results are mostly the

same as the results from Jam19 except for three cases that are relevant to the inconsistency issue

discussed earlier in this paper because we wish to fix the issue while keeping other parts of the

model unchanged. The three exceptions reveal another aspect of the change, accommodating

both the leading fence convention and the trailing fence convention, whereas Jam19 forced the

compiler to choose a particular (problematic) convention. Since the compiler is free to choose

either convention, a full synchronisation is only guaranteed to appear between a pair of Volatile

accesses. In effect, certain executions that was forbidden by Jam19 are allowed by Jam21 since it is

no longer guaranteed that Volatile writes are followed by a full synchronisation and Volatile reads

are prepended with a full synchronisation. In addition, we have added new litmus tests for show-

ing the change in the semantics of Volatile, volatile-non-sc.4 and volatile-non-sc.5. While Jam19

allows the non-sequentially consistent behavior, Jam21 correctly forbids them. We further trans-

lated the examples to Power using the problematic compilation scheme, volatile-non-sc.4.ppc and

volatile-non-sc.5.ppc, and the tests are indeed allowed by the Power memory model. Please see

Appendix K.2 for a detailed report.

4
Note that not all tests are translatable. For example, for the cases that test address dependencies, there is no

corresponding Java version since the notion of address dependency does not exist in Java. We drop a small set of

litmus tests due to this reason.

35

3.2.3 The Jam21’ Model

Jam21 enforces a total order among fullFence()s, which introduces complexity when proving

compilation correctness. Therefore, we introduce an intermediate memory model Jam21’ that is

observationally equivalent to the Jam21. We start by defining and proving the observational equiv-

alence between the two models. Then we use Jam21’ to prove the correctness of the compilation

schemes.

The Jam21’ model is the same as Jam21 except for the semantics of full fences. Instead of

having a total order on full fences, Jam21’ only enforces order when there is a communication

edge. The full semantics of Jam21’ can be found in Appendix B. Here we only include the updated

portion. The definition for chapo is newly added
5
. The cross-thread synchronization effect of

fullFence()s is then defined as push; chapo; push (instead of pushto; push as in Jam21):

chapo ≜ rfe | fre | coe | (fre ; rfe) | (coe ; rfe)

vvo ≜ ... | push ; chapo ; push

The rest of Jam21’ are the same as Jam21.

▶ Definition 2 (Jam21’ Consistency)

A well-formed execution graph G is Jam21’-consistent if it satisfies the following two require-

ments:

1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf−−−−→)

2. Coherence: co-jom is acyclic, acyclic(co-jom−−−−→)

We say such an execution history G is allowed by Jam21’. Otherwise, it is forbidden.

For the Jam21 model, we use JP KJam21’ to denote the set of all Jam21’-consistent execution

histories of P .

5
The name chapo comes directly from the Power Memory Model in the Herd [AMT14] repository. We use the

same name here so that the readers can easily relate them

36

It is important to note that Jam21’ is observationally equivalent to Jam21, which means they

allow the same visible program behaviors given the same program. Intuitively, each consistent

execution under Jam21 has a corresponding consistent execution under Jam21’ with the same

set of events and the same observable value on each event. Formally, we give the following

definitions for observational equivalence.

▶ Definition 3 (Observational Equivalence of Execution Graphs)

Let G and G′
be two well-formed execution graphs. We say G and G′

are observationally

equivalent, writes G ≖ G′
, if:

· G.IW = G′.IW, G.FW = G′.FW, and G.Evts = G′.Evts

· G.po = G′.po and G.rf = G′.rf

· ∀e ∈ G.Evts, G.AccessMode(e) = G′.AccessMode(e)

The above definition of observational equivalence can be lifted to define an equivalence rela-

tion over memory models.

▶ Definition 4 (Observational Equivalence of Memory Models)

Given a program P , let M1 and M2 be two memory models that both support the architecture

of P . Let JP KM1 be the set of all M1-consistent executions of P , and JP KM2 be the set of all

M2-consistent executions of P . We say M1 and M2 are observationally equivalent, writes

M1 ≖M2, if:

· (⇒) For each G1 ∈ JP KM1 , there exists G2 ∈ JP KM2 such that G1 ≖ G2.

· (⇐) For each G2 ∈ JP KM2 , there exists G1 ∈ JP KM1 such that G1 ≖ G2.

We now show the observational equivalence between Jam21 and Jam21’.

▶ Theorem 1

Jam21
′ ≖ Jam21.

The proof can be found in Appendix D.

37

3.3 Compilation Correctness: an Overview

While compilation correctness, in general, is a very challenging topic being studied in the re-

search field for many decades, we focus our attention on prove the correctness of compilation

schemes of concurrent instructions in this chapter. A compilation scheme is a mapping from

source-level language instructions to target-level language instructions. When a compiler trans-

lates a program from a source-level language to a target-level language, each source-level state-

ment is typically mapped to a sequence of target-level instructions. This translation should pre-

serve the basic semantics of the statement and should not introduce unexpected behaviors. While

this mapping may remove statements or insert instructions, we require that the events that are

generated at the source level are all preserved at the target level. While modern compilers may

also eliminate or insert events for optimizations, we consider those operations as transformations

and defer the discussion of transformations until Chapter 5.

To better understand the relationship of programs and executions between the source and

the target languages of a correct compilation scheme, consider Fig. 3.4. In this diagram, Ptgt is a

target-level program produced by applying a compilation scheme on a source-level program Psrc,

denoted by Psrc ⇝ Ptgt. Psrc and Ptgt are each associated with a set of execution graphs, which

capture their run-time semantics respectively. We use a relation called CompilesTo to associate

the two sets of executions, which captures the effect of applying the compilation scheme at the

execution graph level. We write Gsrc ; Gtgt for such a pair of execution graphs, where Gsrc is

a candidate execution of Psrc and Gtgt is a candidate execution of Ptgt.

A correct compilation scheme should not introduce new behavior. In the context of memory

consistency models, it means each forbidden source-level candidate executions should still be for-

bidden at the target level after the compilation. Specifically, if Gsrc represent a forbidden program

behavior by the source-level memory model, then Gtgt should still be forbidden by the target-

level memory model. In other words, if Gtgt is consistent under the target-level memory model,

then Gsrc should also be consistent under the source-level memory model. Formally, we adopt

38

Psrc Ptgt

Gsrc Gtgt

⇝

;

Figure 3.4: The relationship of programs and executions

the following definition for a correct compilation scheme.

▶ Definition 5 (Compilation Correctness)

LetPsrc be a source program, Msrc be a source-level memory model, Ptgt be the target program

such that Psrc ⇝ Ptgt with a compilation scheme, and Mtgt be a target-level memory model.

We say a compiler that compiles Psrc to Ptgt is correct if for each Gtgt ∈ JPtgtKMtgt there exists

a Gsrc ∈ JPsrcKMsrc such that Gsrc ; Gtgt.

In the following two sections, we prove the correctness of the compilation scheme from the

Java Access Modes to Power and to x86-TSO, respectively. In each of the two section, the follow-

ing structure is used:

· We first introduce the formal definition of the target-level memory model.

· We then provide a compilation scheme (⇝) that maps each statement of Java Access Modes to

a sequence of instructions in the target-level instruction sets.

· We define a CompilesTo (;) relation that reflects the compilation scheme at the execution

graph level for compilation to the target language.

· Lastly, we prove the compilation correctness theorems by showing that a memory consistent

Gtgt implies that Gsrc is also memory consistent.

39

3.4 Compilation Correctness to Power

In this section, we show that the revised compilation scheme for Power is correct with respect to

the Power memory model [SSA11]. We use Jam21’ to prove that the revised compilation scheme

to Power is correct, since it has been shown to be observationally equivalent to Jam21.

3.4.1 The Power Memory Model

We use the Power memory model defined in Herd7 [AMT14], which consists of the following

basic order definitions (Please see Appendix C for the full semantics):

· po and rf follows the same definitions as in Jam21 (as described in Section. 3.2).

· co is the union of total orders among writes to the same location. Additionally, if i1 and i2 are

events on different threads and i1
co−−→ i2, then i1

coe−−−→ i2.

· ctrl is the control dependency between memory accesses.

· ppo is the set of preserved program orders. The detailed definition can be found in Appendix C.

· chapo ≜ rfe | fre | coe | (fre ; rfe) | (coe ; rfe)

· com ≜ rf | fr | co

· po-loc is a subset of po that relates accesses to the same locations.

· rmw relates the read and the write access from the same RMW memory event.

· hb ≜ ppo | (sync | lwsync) | rfe

· propbase ≜ ((sync | lwsync) | (rfe ; (sync | lwsync))) ; hb∗

· prop ≜ propbase & (Wrts ∗Wrts) | (chapo? ; propbase∗ ; sync ; hb∗)

· Additional order definitions can be found in Appendix C.

40

▶ Definition 6 (Power Consistency)

A well-formed execution graph G is Power-consistent if it satisfies the following six require-

ments:

1. SC-per-location: (po-loc | com) is acyclic.

2. Atomicity: rmw & (fre ; coe) is empty.

3. No-Thin-Air: hb is acyclic.

4. Propagation: (co | prop) is acyclic.

5. Observation: (fre ; prop ; hb∗) is irreflexive.

6. SCXX: co | (po & (X ∗ X)) is acyclic (where X denotes atomic accesses)

We say such an execution history G is allowed by Power. Otherwise, it is forbidden.

3.4.2 Compilation Scheme

We use the compilation scheme in Fig. 3.5. Note that this is slightly different from the compilation

scheme found in OpenJDK HotSpot compiler in that each Opaque mode read is translated to

a load instruction followed by a conditional branch. This enables us to ensure the No-Thin-

Air property as it is not guaranteed in the Power memory model. The Out-of-Thin-Air (OOTA)

problem in axiomatic models has been an active research area for a long time and there exists

various ways to use weaker compilation schemes while still ruling out thin-air reads. However,

it is out of the scope of this thesis and here we adopt the stronger scheme for Opaque mode.

Additionally, we fix the compilation scheme for Volatile as suggested in Section 3.1. Note that

both leading fence and trailing fence conventions ensure a hwsync instruction is inserted between

each pair of Volatile mode accesses as long as they are used consistently (use the same convention

for Volatile writes and reads). Therefore, the proof for the trailing fence convention can be carried

out in a very similar way as the proof for the leading fence convention.

We start our proof by defining a CompilesTo (;) relation over execution graphs that relates

source level executions to target level executions. Intuitively, the process of compilation can

41

getOpaque()⇝ lwz ; cmp ; bc

setOpaque()⇝ stw

getAcquire()⇝ lwz ; lwsync

setRelease()⇝ lwsync ; stw

getVolatile()⇝ hwsync ; lwz ; lwsync

(Or getVolatile()⇝ lwz ; hwsync for trailing fence convention)

setVolatile()⇝ hwsync ; stw

(Or setVolatile()⇝ lwsync ; stw ; hwsync for trailing fence convention)

AcquireFence()⇝ lwsync

ReleaseFence()⇝ lwsync

fullFence()⇝ hwsync

getAndAdd()⇝ hwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync

(Or getAndAdd()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; hwsync for trailing fence convention)

getAndAddAcquire()⇝ _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync

getAndAddRelease()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1

Figure 3.5: Compilation to Power

be seen as a transformation function on executions from source level to target level. With the

⇝ relation, we can characterize a subset of target level executions constructed via compilation,

following a given compilation scheme, from the source level. Note that at this step we do not

check whether the resulting execution is consistent under the target level memory model, since

the consistency check of an execution comes after the execution is constructed for axiomatic

memory models.

▶ Definition 7 (Java CompilesTo Power)

Given a Java program Psrc, let Ptgt be the target-level program compiled from Psrc using the

compilation scheme in Fig. 3.5 (using the leading fence convention). Let Gsrc be a candidate

execution graph of Psrc and Gtgt be a candidate execution graph of Ptgt. We say Gsrc ; Gtgt

if:

· Gtgt.IW = Gsrc.IW and Gtgt.FW = Gsrc.FW

· Gtgt.Evts\Gtgt.F = Gsrc.Evts\Gsrc.F, Gtgt.rf = Gsrc.rf, and Gsrc.po ⊆ Gtgt.po

· Gtgt.co ⊆ Gsrc.to

· If i1 ∈ Gsrc.Evts, irmw ∈ Gsrc.RMW and irmw
po−−→ i1, then irmw

ctrl−−−→ i1 in Gtgt

42

· If i⊒O

R ∈ Gsrc.Rds, i1 ∈ Gsrc.Evts and i⊒O

R
po−−→ i1, then iR

ctrl−−−→ i1 in Gtgt

· If i1, i2 ∈ Gsrc.Evts and i1
push−−−→ i2, then i1

sync−−−→ i2 for i1, i2 ∈ Gtgt.Evts

· If i1, i2 ∈ Gsrc.Evts and i1
ra−−→ i2, then i1

lwsync−−−−→ i2 for i1, i2 ∈ Gtgt.Evts

Once we have the source level and target level execution graphs, we use the memory model

to check for consistency and show the correctness of the compilation scheme according to Def. 5.

3.4.3 Proof of Compilation Correctness

Now we prove the compilation correctness from Jam21’ to Power.

▶ Lemma 1 (Jam21’ to Power)

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compi-

lation scheme in Fig. 3.5 (with the leading fence convention). For all Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21’ such that Gsrc ; Gtgt.

Please see Appendix E for the proof.

Finally, we can prove the compilation correctness from Jam21 to Power via its observational

equivalence relation with Jam21’.

▶ Theorem 2 (Compilation Correctness to Power (Leading Fence))

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compila-

tion scheme in Fig. 3.5 (using the leading fence convention). For each Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21 such that Gsrc ; Gtgt.

Please see Appendix E for the proof.

In addition, we prove that the trailing fence convention is also correct.

▶ Corollary 1 (Compilation Correctness to Power (Trailing Fence))

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compila-

tion scheme in Fig. 3.5 (using the trailing fence convention). For each Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21 such that Gsrc ; Gtgt.

Please see Appendix E for the proof.

43

3.5 Compilation Correctness to x86-TSO

In this section we show that the current compilation scheme to x86-TSO is correct with respect

to the TSO memory model.

3.5.1 The x86-TSO Model

We use the x86-TSO model defined in Herd7 [AMT14], and the full model can be found in Ap-

pendix F).

· po and rf are the same as defined previously

· co is the union of total orders among writes to the same location. Additionally, if i1 and i2 are

events on different threads, then i1
coe−−−→ i2.

· fr ≜ rf−1; co and com ≜ rf|co|fr

· i1
rmw−−−→ i2 if and only if i1

po−−→ i2 and i1 and i2 belongs to the same RMW event.

· i1
po-ghb−−−−→ i2 if and only if i1

po−−→ i2 ∧ ((i1 ∈ G.Wrts ∧ i2 ∈ G.Wrts) ∨ (i1 ∈ G.Rds)).

· i1
implied−−−−−→ i2 if and only if (i1 ∈ G.Wrts∧i2 ∈ G.Rds∧i1 po−−→ i2)∧ (i1 ∈ G.RMW∨i2 ∈ G.RMW)

· i1
mfence−−−−→ i2 if and only if ∃i3.i1 po−−→ i3

po−−→ i2 ∧ i3 is an mfence

· ghb ≜ mfence | implied | po-ghb | rfe | fr | co

▶ Definition 8

An execution history G is TSO-consistent if it is trace coherent and satiesfies the following

three requirements:

1. SC-per-location: po-loc | com is acyclic,

2. Atomicity: rmw & (fre ; coe) is empty,

3. Global Happens-Before: ghb is acyclic

44

getOpaque()⇝ mov

setOpaque()⇝ mov

getAcquire()⇝ mov

setRelease()⇝ mov

getVolatile()⇝ mov

setVolatile()⇝ mov ; mfence

AcquireFence()⇝ NoOp

ReleaseFence()⇝ NoOp

fullFence()⇝ mfence

getAndAdd()⇝ lock xaddl

getAndAddAcquire()⇝ lock xaddl

getAndAddRelease()⇝ lock xaddl

Figure 3.6: Compilation to x86-TSO

We say such execution history G is allowed by TSO. Otherwise, it is forbidden.

3.5.2 Compilation Scheme

We use the following compilation scheme. Note that instead of using mfence instruction for full

fences, HotSpot uses a read-modify-write instruction to emulate the synchronization effect of it.

According to the definition of TSO, the synchronization effect of a RMW event is exactly the same

as an mfence event. Both of them produce a ghb order before and after the event. Therefore, we

keep the simplicity of the proof here by using the mfence instruction.

3.5.3 Proof of Compilation Correctness

▶ Definition 9 (Compilation of an Execution)

Given a Java program Psrc, let Ptgt be the target-level program compiled from Psrc using the

compilation scheme to x86 as shown above. Let Gsrc be a candidate execution of Psrc and Gtgt

be a candidate execution graph of Ptgt. We say Gsrc ; Gtgt if:

1. Gtgt.IW = Gsrc.IW and Gtgt.FW = Gsrc.FW

2. Gtgt.Evts\Gtgt.F = Gsrc.Evts\Gsrc.F, Gtgt.rf = Gsrc.rf, and Gsrc.po ⊆ Gtgt.po

45

3. Gtgt.co ⊆ Gsrc.to

4. If i1, i2 ∈ Gsrc.Evts and i1
push−−−→ i2 and i1 is a write, then i1

po−−→ i3
po−−→ i2 for

i1, i2 ∈ Gtgt.Evts and i3 ∈ Gtgt.F where i3 is an event stem from an mfence instruction.

Note that this definition does not say anything about whether an execution graph is consistent

under a memory model.

Similar to the previous section, we start by showing compilation correctness from Jam21
′

to

x86-Tso.

▶ Lemma 2

Let Psrc be a Java program, Ptgt be the x86 program compiled from Psrc using the compilation

scheme to x86 as shown above. For each Gtgt ∈ JPtgtKTso there exists a Gsrc ∈ JPsrcKJam21′
such that Gsrc ; Gtgt.

The proof can be found in Appendix G.

▶ Theorem 3

Let Psrc be a Java program, Ptgt be the x86 program compiled from Psrc using the compilation

scheme to x86 as shown above. For each Gtgt ∈ JPtgtKTso there exists a Gsrc ∈ JPsrcKJam21 such

that Gsrc ; Gtgt.

The proof can be found in Appendix G.

3.6 Performance Implications

At the time of writing, the compiler bug [Shi21] has been reported but still not resolved. The

main argument against fixing the bug by inserting the missing fence instruction is that it may

slow down the performance significantly. In this section, we argue that this is not the case.

The reason we only translated our volatile-non-sc example to Power instructions is that

we only expect changes in the implementation of compilers targeting Power architectures. There

is no need to change the Java compilers for x86 [SSO10] and ARMv8 [PFD18] all thanks to a prop-

erty called write atomicity. Write atomicity, or multicopy atomicity, ensures that, when a write

46

issued by a thread becomes observable by any other thread, it is observable by all other threads

in the system. The issue that we demonstrate in this paper is caused by a write operation be-

coming visible to some threads before some other threads. Therefore, this violation of sequential

consistency may only be observed when compiling to non-multicopy atomic architectures. If

the underlying architecture ensures multicopy atomicity, then we can be sure that all writes are

committed in a broadcast style and Release-Acquire semantics is sufficient. Since x86 [SSO10]

and ARMv8 [PFD18] are multicopy atomic, we do not expect the incorrect program behavior to

appear on those architectures. Therefore, no change is needed in compilers targeting multicopy-

atomic architectures. In fact, we give a correctness proof for x86 in Appendix 3.5 to concretely

show that the current compilation scheme to x86 is correct with respect to the x86-TSO memory

model. Furthermore, the fence instruction that compilers use to compile to ARMv7 is the DMB

SY instruction [Lea11b], which captures the same effects of a fullFence(). The only change

that needs to be made is when compiling to Power instructions. This change might slow down

some programs. However, relative to all other major factors that affect the performance of Java

programs, we expect the impact by this change in compilers to be small.

Furthermore, symmetric to "leading fence" scheme, the "trailing fence" scheme is also valid.

A correct compiler may choose to either of the schemes. Usually one may wish to choose the

"trailing fence" scheme for better performance. In this case, comparing to the original compilation

scheme, the fix only changes the compilation scheme for each Volatile read:

1. Remove the hwsync in front of the lwz instruction

2. Change the lwsync following the lwz instruction to hwsync

It is easy to see that this fix only requires, in effect, moving the hwsync instructions that were

originally inserted before the lwz instruction, but does not add more. In addition, it removes the

lwsync instructions. Therefore, we do not expect this change to the compilation scheme to have

much performance impact as argued in the discussions in the bug report [Shi21].

On the other hand, the impact of this change for compiler optimizations is unclear. That is,

47

whether this revised compilation scheme disables some of the compiler optimizations is still a

question. However, since C/C++11 compilers has long adopted this compilation scheme and per-

formance has always been the first priority in their implementations, the possibility of disabling

optimisations is unlikely. We leave a detailed empirical study for future work.

48

CHAPTER 4

Soundness of Predictive Analyses

4.1 Introduction

Concurrent programs are often error-prone due to the non-deterministic nature of their execu-

tions. Over the last two decades, various techniques have been proposed to catch bugs in con-

current programs. Among them, dynamic predictive analysis has become a promising research

area. A dynamic predictive analysis takes an execution trace as input and discovers concurrency

bugs without accessing the program source code. Recent work in the area of predictive anal-

ysis [MPV21, HMR14, HLR15, CYW21, Pav20, TMP23, GRX19, KMV17, SES12, MKV18, FF09]

support soundness as one of their most important properties. A sound predictive analysis reports

no false positives, which sounds straightforward but has been defined in many different ways in

previous work [SES12, KMV17, Pav20, HMR14, SCR13, MKV18, MPV21, TMP23].

Three problems emerge from the use of varying soundness criteria in previous work. First,

there is no single recipe for proving soundness, so existing proofs cannot be directly applied or

adapted to a new algorithm. Second, some previous proofs later turned out to be flawed when

counterexamples emerged, without revealing whether the algorithm or the soundness proof were

wrong. Third, existing soundness criteria and proof techniques have no support for weak memory

models. This is in part due the focus on trace-based soundness definitions in previous work, which

is a poor fit for weak memory models.

To address these issues, we propose a modular framework for soundness of predictive analyses

that unifies, simplifies, and generalizes existing approaches and handles weak memory behaviors.

49

Instead of traces, our framework is based on execution graphs, which are widely used in the

field of axiomatic memory models [AMS12, ADG21, PFD18, PLV19, AFI09]. Compared to traces,

execution graphs distinguish the sequential semantics per thread versus global weak memory

semantics as two separate aspects of validity. The former is affected by the source language

semantics, and the latter is determined by the axiomatic memory model. As a result, this feature

enables a modular structure of soundness, which also leads to a simple recipe for constructing a

proof.

Our contributions are the following:

§4.4 We propose a modular soundness definition parameterized by a memory model. The defi-

nition is more general than existing soundness definitions, reflects a closer connection with

the language semantics, and can be applied with weak memory models. Specifically, we de-

rive an executability property from a language semantics and augment existing multicopy-

atomic memory models with lock semantics. We analyze the execution spaces represented

by the existing soundness definitions and explain their relationships with our soundness

definition.

§4.5 We provide a three-step recipe for constructing a soundness proof by constructing a witness

execution graph that satisfies our soundness definition. We also provide a set of reusable

lemmas that can be applied in the construction of proofs under other memory models or

semantic constraints.

§4.6 We use our recipe to prove the soundness of six data race predictive analyses [Lam78,

MKV18, MPV21, Pav20, HMR14, HH16]. Among them, the proof for MCR-tso [HH16] is

the first proof of soundness for a predictive analysis that works with weak memory. In ad-

dition, we extend the approach of [HH16] and define a new data race predictor based on a

transformation that can discover more data races under TSO. We show that the extended

data race predictor is sound following the same recipe in Appendix P.

50

Name Memory Model Bug Type Sound Witness Defini-

tion

Ref.

HB SC Data Race Relaxed CR [Lam78, FF09]

CP SC Data Race Correct Reordering [SES12]

WCP SC Data Race Correct Reordering [KMV17]

SHB SC Data Race Relaxed CR [MKV18]

SyncP SC Data Race Sync-Preserving CR [MPV21]

SPD SC Deadlock Sync-Preserving CR [TMP23]

M2 SC Data Race Correct Reordering [Pav20]

RVPredict SC Data Race Feasible Closure [HMR14]

MCR-tso TSO Data Race Correct Reordering in-

formally relaxed with

TSO semantics

[HH16]

Figure 4.1: Various Criteria for a Sound Witness from Past Work

4.2 Motivation

A concurrency bug is a sequence of events that occur in some specific order. For example, a data

race is a pair of two conflicting events ordered consecutively. Since a predictive analysis predicts

whether a bug can occur in some execution of the program that produced the input execution, the

soundness theorem of an analysis is defined by the existence of a witness execution that exhibits

the bug. Therefore, characterizing the valid witness executions and showing that each reported

bug corresponds to a witness execution that satisfies all the characteristics become critical in

the soundness proofs of existing works in predictive analysis. Fig. 4.1 shows a summary of the

soundness criteria used in existing works.

FastTrack [FF09] is a data race analysis that builds a partial order, the happens-before (HB)

order [Lam78], among the events in a given input trace. While FastTrack with HB can report

multiple data races in a single run, only the first data race is guaranteed to be sound. The sound-

ness theorem of FastTrack states that the algorithm correctly implements the HB order using

vector clocks. On the other hand, the soundness of the HB order was assumed in the paper.

51

After FastTrack, CP [SES12] and WCP [KMV17] built weaker partial orders than HB and

used Correct Reordering (CR) to characterize valid witness traces. Correct Reordering requires

each read event that appears in the witness execution to maintain the same values as in the input

execution. The soundness theorems of both algorithms state that the first race reported by the

algorithms is a HB-race or there is a deadlock in a correct reordering of the input trace. Both the

soundness of Correct Reordering and the HB order were implicitly assumed.

[MKV18] shows an improvement over HB that ensures the soundness of all reported data

races. Their idea is to build a strictly stronger partial order, schedulable-happens-before (SHB),

which orders the unsound HB-races after the first race, so that all reported data races are sound.

The soundness of SHB is based on a relaxed version of Correct Reordering, denoted as Relaxed

CR in Fig. 4.1. Relaxed CR has the same requirements of Correct Reordering except that if a

read is the last event of a thread in the witness execution, then it does not have to maintain the

same value. In addition to the soundness of SHB, [MKV18] also formally proved that HB is sound

under the definition of Relaxed CR. But the soundness of Relaxed CR and Correct Reordering

were implicitly assumed.

[MPV21] and [TMP23] used a more restricted version of Correct Reordering called Sync-

Preserving CR. In addition to the requirements of Correct Reordering, the critical sections that

appear in a Sync-Preserving CR follow the same synchronization order as in the input trace. The

proofs of both works were done by linearizing an event closure called SRFClosure (or SPClosure

in [TMP23]) using the same trace order of the input trace. The soundness of Sync-Preserving CR

relied on Correct Reordering, which was implicitly assumed.

[Pav20] used Correct Reordering as the soundness criteria for a witness trace. The algorithm

computes a partial order P over a subset of events from the input trace and used it to determine if

a pair of events forms a data race. The key correctness result is their Theorem 3.1, which showed

that for a trace-closed partial orderP computed from the input trace, theMax-Min algorithm that

solves a particular linearization problem based on P always produce a correct reordering [Pav20,

Theorem 3.1]. But the soundness of Correct Reordering was implicitly assumed.

52

Soundsc

Feasible Closure

Relaxed CR

Correct Reordering

Sync-Preserving CR

Figure 4.2: Hierarchy of Existing Sound Definitions under Sequential Consistency

[HMR14] used the notion of Feasible Closure of traces derived from the causal model of

[SCR13]. Their main correctness result [HMR14, Theorem 1] showed the existence of a map-

ping from symbolic feasible traces to concrete feasible traces, but did not formally show that the

set of concrete feasible traces can be generated by the same program of the input trace.

[HH16] used a restricted version of Feasible Closure that preserves all read values, but relaxed

with a memory operation constraint, Φmem, to capture the weak behavior under x86-TSO. Effec-

tively, their soundness criteria is the same as Correct Reordering relaxed with the TSO write-

buffer semantics. Instead of requiring all program orders to be preserved, it does not require

write-to-read program orders to be preserved. However, the soundness of the constraints was

left unproved.

From the review above, we can see that the soundness criteria from existing works all specify

properties that a witness execution has to satisfy given an input execution. For dynamic pre-

dictive analyses, the program source code is kept unknown. Therefore, all existing soundness

definitions focus on characterizing a set of valid executions that can be produced by all programs

that can generate the input execution. In other words, existing soundness definitions focus on ex-

ecutions in an intersection space of all the programs that can generate the input execution. Fig. 4.2

shows a hierarchy of the sets of valid executions specified by the soundness criteria from past

works. Each rectangle represents a set of executions that satisfiy the corresponding soundness

definition.

However, since all existing definitions focus on an intersection execution space, the size of this

execution space depends on the amount of information about the program semantics captured

53

in the input execution. Indeed, the analyses that used Feasible Closure [HMR14, SCR13, HLR15]

record branch events in the input execution whereas other analyses [Pav20, MKV18, MPV21,

TMP23, KMV17, SES12] do not. This difference enables Feasible Closure to subsume other sound-

ness definitions in Fig. 4.2. A better approach is to define soundness independently of how much

information the input execution captures. We focus on characterizing the set of valid executions

that can be produced by a single program that generates the input execution. In other words, our

soundness definition is not based on an intersection of execution sets, but is based on the complete

execution set of each program that generates each input execution. Obviously, this set of execu-

tions subsumes all other sets specified by existing definitions, and is shown as the blue rectangle

in Fig. 4.2 annotated with Soundsc. The set inclusion relations shown in Fig. 4.2 is the following.

Soundsc [this paper] ⊇ Feasible Closure [HMR14]

⊇ Relaxed CR [MKV18]

⊇ Correct Reordering [Pav20, KMV17, SES12]

⊇ Sync-Preserving CR [MPV21, TMP23]

The subscript sc in the name of our soundness stands for sequential consistency. While se-

quential consistency is subsumed by other memory models, the sets of valid executions under

different memory models are not comparable in general. In §4.4, we give a general definition of

soundness, SoundM, under a memory modelM.

The dynamic nature of the analyses, that is, having no access to the program source code,

makes this set of executions unknown to the analysis tools. As a result, the traditional approach,

which requires one to step through the source code of the program to show an execution is valid,

cannot be used to prove a predictive analysis sound. Instead, we leverage the existing input

execution and provide a three-step proof technique in Section 4.5. Note that the restriction of

having no access to the program source code does not affect the soundness definition, but only

the proof technique.

54

In Appendix L, we provide the formal definitions of the existing soundness criteria and show

their relationships with our soundness definition.

4.3 Preliminaries

In this section, we recall standard definitions of programs and execution graphs [PLV19], which

we extend with acquire and release events [Pav20], and a straightforward sync order over such

events. Our operational semantics of programs uses the standard notion of a thread state (Definition 12).

We instrument thread states with symbolic book-keeping information that plays no role in the

semantics but helps in proofs of soundness.

We use standard notation for relations and functions. For a relation R, we use R?
, R+

, and

R∗
to denote the reflexive, transitive, and reflexive-transitive closures of R, respectively. We use

R−1
for the inverse of R. Given a set A, [A] is the identity relation on A, ℘(A) is the power set of

A. The composition of two relations R1 and R2 is written as R1;R2. R|A stands for R restricted

to the set A. We say a set A is downward-closed with respect to a relation R if for each element

e ∈ A, if there is ⟨e′, e⟩ ∈ R, then e′ ∈ A. We use the following domains: Loc is a set of shared

memory locations; Lock is a set of locks; Val is a set of concrete integer values; Sym is a set of

symbols; Reg is a set of thread-local registers; and Thrd is a set of natural numbers for thread

identifiers. In addition, we assume all memory locations are fixed.

4.3.1 Programs

A concurrent program consists of a set of threads, each containing a list of instructions. Formally,

a program is a map from thread identifiers to sequential programs P : Tid → Sprog, where

Sprog = N→ Instr and the set of instructions is defined in Fig. 4.3.

Our sequential programs use standard instructions, including lock and unlock instructions

for the acquire and release operations of locks. These two instructions allow us to reason about

lock operations without worrying about the implementations of locks. We assume the imple-

55

i ∈ Instr ::= r := e x ∈ Loc

| if e goto n v ∈ Val

| [x] := e r ∈ Reg

| r := [x] l ∈ Lock

| lock(l) | unlock(l) n ∈ N
e ∈ Expr ::= r | e+ e | e− e | e ∗ e | v

Figure 4.3: Instructions of the Language

mentation of lock and unlock is correct and guarantees lock-fairness [LNO20, LCK23] so that

each lock-acquiring request is eventually fulfilled.

4.3.2 Execution Graphs

Each program generates a set of execution graphs. In this section, we formally define events and

execution graphs.

An event is a tuple of form ⟨tid, eid, typ, val, loc⟩where tid ∈ N is the identifier of the thread

of the event; eid ∈ N is a unique identifier for the event; typ ∈ {r, w, acq, rel, br} is the event

type with r standing for read events, w for write events, acq for lock acquire events, rel for lock

release events, and br for branch events; val ∈ Val is the value of the event; and loc ∈ Loc∪Lock

is the memory location or lock that the event accesses.

An execution graph consists of a set of events and the relations over the events.

▶ Definition 10 (Execution Graph)

An execution graph G = ⟨Evts, po, rf, co, sync⟩ with each component defined below:

· Events is a finite set of events G.Evts. We use G.T where T ∈ {Rds,Wrts,Acqs,Rels,Brs}
to denote subsets of events based on their types. In addition, G.Init is a set of initialization

writes to each memory location. G.Init ∩G.Evts = ∅.

· Program Order (po) is a partial order G.po ⊆ G.Evts×G.Evts. ⟨e1, e2⟩ ∈ G.po iff e1.tid =
e2.tid and e1.eid < e2.eid.

56

· Reads-from Order (rf) is a binary relation G.rf ⊆ G.Wrts×G.Rds.

· Coherence Order (co) is a binary relation G.co ⊆ G.Wrts×G.Wrts.

· Synchronization Order (sync) is a binary relation G.sync ⊆ G.Rels×G.Acqs.

In addition, the from-read order [AMS12] (fr) is defined as fr = rf−1; co. We use com to

denote the union of the communication orders, com = fr ∪ rf ∪ co. If an execution graph is

sequentially consistent, then there is also a linear order trace among all events of the execution

graph. For each event e, we use LocksHeld(e) to denote the set of locks that are acquired but not

released at the point of e in its thread.

Furthermore, a symbolic execution graph Ĝ is an execution graph with an event set of which

event values are either concrete values v ∈ Val or symbols ŝ ∈ Sym. For each read event r ∈

Ĝ.Rds, if r is a read event with a concrete value, then either there exists a unique concrete write

event ⟨w, r⟩ ∈ Ĝ.rf such that w.loc = r.loc and w.val = r.val, or r.val is the initial value. Note

that for a read event with symbolic value, we do not require it to be mapped to a unique write

event. Intuitively, symbolic execution graphs are used to accomodate the approaches of [HMR14]

and [HH16], where some of the events becomes symbolic due to changes of the rf-map in the

prediction result. On the other hand, later in Section 4.5.3, we show that there exists a concrete

execution graph that a symbolic execution graph can be mapped to, given a set of conditions are

satisfied.

Using definitions from [PLV19], an execution graph G is a plain execution graph, if G.rf =

G.co = G.sync = ∅. An execution graph G with well-formed rf, co, and sync relations is

called a complete execution graph.

▶ Definition 11 (Well-formed Complete Execution Graph)

A complete execution graph G = (Evts, po, rf, co, sync) is well-formed if

· Each read event must be justified by a write event in the same execution graph. That is,

for each read event r ∈ G.Rds either there is a unique write event w ∈ G.Wrts such that

⟨w, r⟩ ∈ G.rf, or r.val = winit.val where winit is the initialization write of r.loc. For each

pair ⟨w, r⟩ ∈ G.rf, r.val = w.val, and r.loc = w.loc.

57

· For each pair of distinct writes w1 and w2, if w1.loc = w2.loc, then either ⟨w1, w2⟩ ∈ G.co
or ⟨w2, w1⟩ ∈ G.co but not both. In addition, ⟨w0, w⟩ ∈ G.co for each initial write w0 and

w ∈ G.Wrts such that w0.loc = w.loc.

· There is a functionmatch : G.Rels→ G.Acqs such that for each rel ∈ G.Rels,match(rel).loc =
rel.loc, and ⟨match(rel), rel⟩ ∈ G.po. There is a function Open : G.Locks → G.Acqs such

that Open(l) = acq iff acq.loc = l and for all rel ∈ G.Rels, match(rel) ̸= acq. If no such ac-

quire event exists for lock l, Open(l) = ⊥. For each ⟨rel, acq⟩ ∈ G.sync, rel.loc = acq.loc.
For each lock l ∈ Lock, let cs ∈ linear(G.Relsl) be a linear order among all the release

events of l. Then for each ⟨rel1(l), rel2(l)⟩ ∈ cs, we have ⟨rel1(l),match(rel2(l))⟩ ∈ sync.

4.3.3 From Programs to Execution Graphs

Given the formal definitions of programs and execution graphs, we explain how execution graphs

are generated from programs.

An execution graph is generated from a program by starting with an empty execution graph

G0. Given a value map loadV al : Load→ Val for each load instruction of the form r:=[x], use the

sequential operational semantics of instructions and the loadV al() function to generate a chain

of events for each thread by adding one event at a time. At this stage, only the program order

po is added to the graph while other relations are left empty. The result of this stage is a plain

execution graph. Note that we do not consider the consistency of the graph at this stage. Lastly,

rf, co, and sync relations are added to the plain execution graph according to the values and

the well-formedness conditions, which we will define later. The result of this stage is a complete

execution graph ready for the consistency check.

We next define the notion of thread state. Here we use the same definition from [PLV19]

with an additional symbolic register state Φθ
and a function θ : G.Rds → Sym. These two new

components do not replace any functionality of other components as described in [PLV19]. They

are only added for additional book-keeping purposes. Later in the proof of Lemma 3 in §4.4.3,

they are used to re-construct state transition paths of prediction results.

In addition, we assume memory fairness [LNO20] so that each lock(l) instruction will even-

tually succeed and produce an acq event.

58

ê ∈ SymExpr :: = ŝ | (ê) | v ŝ ∈ Sym

| ê+ ê | ê− ê | ê ∗ ê v ∈ Val

Figure 4.4: Symbolic Expressions

▶ Definition 12 (Thread State)

A thread state st ∈ State for a thread t is a tuple

st = ⟨sprog, pc,Φ, G,Ψ, ctrl, θ,Φθ⟩

with each component defined as follows:

· sprog : N→ Instr is the instructions in thread t, sprog = P (t).

· pc ∈ N is the program counter pointing to the next instruction

· Φ : Reg→ Val is map recording the value of each register

· G is the execution graph that has been constructed so far for thread t

· Ψ : Reg→ ℘(G.Rds) maps each register to a set of read events in G such that the value in

the register depends on the set of reads.

· ctrl ⊆ G.Rds is a set of read events that has a control dependency with the current program

point.

· θ : G.Rds → Sym is a map recording the symbolic value of each read event. When a read

event is generated from executing a load instruction, in addition to the concrete value that

it receives via the loadV al function, a fresh new symbol is assigned to the read event and

an entry is added in θ.

· Φθ : Reg → SymExpr is a map recording the symbolic expression used to calculate the

current (concrete) value on each register. The grammar of symbolic expressions is defined

in Fig. 4.4. In other words, the concrete value on each register can be calculated by plugging

the concrete values of the read events into its symbolic expression.

The initial state for a thread t ∈ Tid is stt0 = ⟨sprog, 0, λr.0, G0, λr.∅,∅, λrd.null, λr.0⟩

where sprog = P (t) and G0 is an empty execution graph such that G0.Evts = G0.po = G0.rf =

G0.co = G0.sync = ∅.

59

An important invariant for a state to be valid is ∀r ∈ Reg, subst(Φθ(r), valθ(Ψ(r))) = Φ(r)

where the helper functions subst : SymExpr→ (Sym→ Val)→ Expr replaces each symbol in an

symbolic expression with a concrete value given a mapping from symbols to concrete values, and

valθ : ℘(G.Rds) → (Sym → Val) uses θ to provide a set of such mapping. In words, evaluating

the symbolic expressions that each register is mapped to with the concrete value of each read

events should have the same result as the value stored in Φ. Note that in order for this invariant

to hold, a register cannot occur on both sides of an assignment.

For two thread states st1, st2 ∈ State of a thread t, we write st1 →t st2 if st1 steps to st2 in

a single step and st1 →∗
t st2 if st1 steps to st2 in zero or more steps. We provide the sequential

operational semantics for our language in Appendix M.

We borrow the following definition from [PLV19]. For an execution graph G and t ∈ Tid, G|t

is a thread of events such that G|t.Evts = G.Evts|t, G|t.po = G.po ∩ (G|t.Evts × G|t.Evts), and

G|t.rf = G|t.co = G|t.sync = ∅

▶ Definition 13 (Plain Program Executions [PLV19])

An execution graph G is an execution graph of a program P if for every t ∈ Tid, there exists a

state st such that st.G = G|t and stt0 →∗
t st.

We write G ∈ JP K for such an execution graph G and program P . We say a plain symbolic

graph Ĝ ∈ JP K if there exists a st0 →∗
t stn transition path for each thread t that produces the

resulting graph. The only difference from Definition 13 is the invariant condition that each

state has to maintain because valθ(Ψ(r)) may not be defined for every register in the presence of

events with symbolic values. We relax the requirement and let the invariant condition only apply

to registers with concrete values, i.e., subst(Φθ(reg), valθ(Ψ(reg))) = Φ(reg) if Φ(reg) ∈ Val.

Moreover, if a write event has a concrete value, it has to be computed from concrete values as

well. In other words, for each state sti such that sti.sprog(sti.pc) = [x] := e, if w is the write

event emitted after sti and w.val ∈ Val, then for each reg ∈ Reg used in e, Φ(reg) ∈ Val.

Given a plain execution graph, the rf, co, and sync relations are added to the graph according

to Definition 11 to obtain a complete execution graph.

60

4.3.4 Bug Sequence

Each instance of bug is represented as a sequence of events:

b = e1 . . . en

The basic well-formedness requirement for a bug sequence is for it to be sequentially consis-

tent. We give three common examples below.

Data Races. In the context of data race prediction, each reported bug is in the form of a se-

quence e1e2 such that e1.tid ̸= e2.tid∧e1.loc = e2.loc∧{e1.typ, e2.typ}∩{Wrts} ≠ ∅. We write

e1 ▷◁ e2 for such pair of events. Note that the value of e1 or e2 may not be the same as occurred

in the input execution Gσ.

Deadlocks. In the context of deadlock prediction, [TMP23] provided a necessary pattern con-

sisting a set of acquire events that imposes a cyclic resource dependency. However, note that

this pattern itself violates memory consistency because a lock cannot be acquired again while it

is held. The essential issue here is that, the acquire events in a sound execution represent suc-

cessful aquisition of the locks, whereas the acquire events in the deadlock pattern of [TMP23]

represent requests of the locks. Therefore, for deadlock prediction, the lock request events have

to be distinguished from lock acquire events, following the approach of [KP18]. The rest of the

definition stays the same as in [TMP23]. A bug sequence of size k is defined as a sequence

of request events e0, . . . , ek−1 on k distinct threads t0, . . . , tk−1 and k distinct locks l0, . . . , lk−1

such that ei.tid = ti, ei is a request of lock li, where li ∈ LocksHeld(e(i+1)%k). In addition,

LocksHeld(ei) ∩ LocksHeld(ej) = ∅ for i ̸= j. Note that using this definition, the composition

of a sound witness execution and the deadlock sequence is still a sound execution.

61

P

GρGσ
Predict

Figure 4.5: Predictive Analyses

Atomicity Violations. Atomicity violation patterns can be represented as sequences of events

in multiple ways. Each pattern consists of an atomic pair, i.e., a pair of events (e1, e2) on the same

thread that is expected to be executed atomically, and a third event e3 accessing the same memory

location from another thread. [HLR15] provided one pattern in their example: r1w1w2 where

r1 ∈ Rds, w1, w2 ∈ Wrts, r1.loc = w1.loc = w2.loc, and ⟨r1, w2⟩ is an atomic pair. [CYW21]

provided another example: w2w1r1 where ⟨w2, r1⟩ is an atomic pair.

4.4 Soundness

We begin this section by asking a question.

What does it mean for a predictive analysis to be sound?

A sound predictive analysis only reports a bug if it can be exposed by a valid witness execu-

tion. As shown in Fig. 4.5, let P be a program with a reported bug to be fixed. Gσ is an execution

graph of P captured from running P . In the rest of this paper, we assume the captured Gσ is

sequentially consistent and the events of Gσ all have concrete values. A predictive analysis algo-

rithm analyzes Gσ without inspecting P to spot the existence of any concurrent bug. Note that

the predictive analysis can report bugs that are not necessarily exposed in the recorded execu-

tion Gσ, but in some other execution of the same program P . Let Gρ be such a witness execution

where the bug is exposed. Then a sound predictive analysis should ensure that Gρ is indeed a

62

valid execution of P . But what does it mean for an execution to be valid?

We identify two important but separate aspects in answering this question:

· Executability The program that generates the input execution has to be able to generate the

witness execution. From Definition 13, we can see that this is a local property. That is, an

execution can be generated by a program if each of its threads can be generated by the program.

In an execution graph, threads are formed by events related by the program orders po. In other

words, executability means the events on each thread can be generated by the program in the

order specified by po.

· Memory Consistency Another factor is the memory consistency model under which the

execution is executed. Axiomatic memory models specify consistent executions under weak

memory contexts by characterizing the ordering relations among the events, including the

inter-thread communications. Therefore, this is a global property that concerns the orders

among the events in an execution graph.

In addition, the well-formedness of the witness and its relationship with the reported bug are

required to ensure that the composition of the witness with the reported bug sequence is a sound

execution. As a result, we define the overall soundness of a predictive analysis as a conjunction

of four major components.

Formally, a predictive analysis is a function Predict : G → ℘(B) that takes a recorded exe-

cution as an input and reports a set of bugs predicted from the execution. Soundness of such a

predictive analyses is defined as the following.

SoundM ≜ ∀P ∈ Prog, ∀Gσ ∈ JP K ∧ SC-consistent(Gσ), ∀b ∈ Predict(Gσ),

∃Gρ, Gρ � b ∧ wf(Gρ) ∧ Gρ ∈ JP K ∧ M-consistent(Gρ)

The above soundness definition states that in order to prove a predictive analysis is sound,

one needs to show that for each bug reported, there is a witness execution Gρ such that:

63

§4.4.1 Gρ � b Gρ is composable with the reported bug b [Definition 15]

§4.4.2 wf(Gρ) Gρ is well-formed [Definition 16]

§4.4.3 Gρ ∈ JP K Gρ is executable [Definition 13]

§4.4.4 M-consistent(Gρ)Gρ isM-consistent [Definition 18]

The first three parts of the conjunction states properties that the witness execution has to

satisfy as a plain execution graph, whereas the last part is about the orders among the events in

the witness execution as a complete execution graph. In the rest of this section, we discuss each

part in details. The proofs of the propositions and lemmas can be found in Appendix N.

4.4.1 Composability with bug sequences

Intuitively, witness Gρ is the execution that must occur before the bug sequence b occurs. Hence,

the composition of them should also be a valid execution. We start by formally defining the

composition of an execution graph with an event sequence.

▶ Definition 14 (Composition)

Let Gρ be a well-formed execution graph and b be a bug sequence. Then the composition

G = Gρ ◦ b

is an execution graph such that:

· G.Evts = Gρ.Evts ∪ b.Evts

· G.po = Gρ.po ∪ b.po ∪ {⟨e1, e2⟩ | e1 ∈ Gρ.Evts ∧ e2 ∈ b.Evts ∧ e1.tid = e2.tid}

· G.co = Gρ.co ∪ b.co ∪ {⟨w1, w2⟩ | w1 ∈ Gρ.Wrts ∧ w2 ∈ b.Wrts ∧ w1.loc = w2.loc}

· G.rf = Gρ.rf ∪ b.rf ∪ {⟨w, r⟩ | r ∈ b.Rds ∧ r /∈ range(b.rf) ∧ w ∈ Gρ.Wrts ∧ (∀w′ ∈
Gρ.Wrts, (w′.loc = w.loc∧w′ ̸= w)⇒ ⟨w′, w⟩ ∈ Gρ.co)∧w.loc = r.loc∧w.val = r.val}

· G.sync = Gρ.sync ∪ b.sync ∪ {⟨rel(l), acq(l)⟩ | rel(l) ∈ Gρ.Rels ∧ acq(l) ∈ b.Acqs}

To ensure that the composition Gρ ◦ b is executable, we require Gρ to be composable with the

64

bug sequence b.

▶ Definition 15 (Composability)

Let Gσ be an input execution that is sequentially consistent, Gρ be a witness execution with

an event map δρ : Gρ.Evts → Gσ.Evts, and b be a well-formed bug sequence with an event

map δb : b.Evts→ Gσ.Evts.

We say an execution graph Gρ witnesses a bug sequence b, written Gρ � b, if Gρ.Evts ∩
b.Evts = ∅ and

· No Skipping. For each thread t ∈ b.Thrd, let e ∈ b|t.Evts be the first event occur in b|t. For

any e′ ∈ Gσ.Evts such that ⟨e′, δb(e)⟩ ∈ Gσ.po, there is an event e′′ ∈ Gρ.Evts such that

δρ(e
′′) = e′, and

· Same Control Flow. For each r ∈ Gρ.Rds and e ∈ b.Evts, if ⟨δρ(r), δb(e)⟩ ∈ Gσ.ctrl, then

δρ(r) = r.

The conditions above ensure the composition Gρ ◦ b inherits executability from Gρ.

▶ Proposition 1

Let Gρ be a well-formed execution graph such that Gρ ∈ JP K, and b be a bug sequence. If

Gρ � b, then (Gρ ◦ b) ∈ JP K.

On the other hand,M-consistency (which will be defined in §4.4.4) is inherited by construc-

tion.

▶ Proposition 2

Let Gρ be a well-formed execution graph such that Gρ isM-consistent, and b be a sequence

of events. Then (Gρ ◦ b) isM-consistent.

4.4.2 Well-formedness of Plain Execution

The second requirement is well-formedness requirements for a plain execution ⟨Evts, po⟩.

▶ Definition 16 (Well-Formed Plain Execution)

A plain execution Gρ = (Evts, po) is well-formed if:

· Gρ.po is a partial order over Evts that orders each pair of events ⟨e1, e2⟩ iff e1.tid = e2.tid.

65

· Read Feasible. For each read event included in Gρ.Evts, either there exists a write event

included in Gρ.Evts with the same value and location, or the value of the read is the same

as the initial value of the memory location.

· Lock Feasible. For each lock l ∈ Locks, there is at most one open critical section protected

by l. An open critical section is defined as sequence of events totally ordered by Gρ.po
where the minimal event in the sequence is an acquire event acq(l) for some lock l and the

matching release event rel(l) is not included in Gρ.Evts.

4.4.3 Executability

Now we turn our attention to the most important part of the soundness definition, executability.

Given a witness execution graph Gρ, we want to make sure that Gρ is indeed an execution graph

of the input program P , namely, Gρ ∈ JP K, via the semantics defined in Appendix M.

Typically, in order to show that an execution graph Gρ is generated by a program P , one has

to start from the initial state (as seen in §4.3) and determine whether there is a reachable state

containing Gρ from the initial state via a path of transitions. However, in the setting of dynamic

analysis, one cannot inspect the source code of P and hence cannot follow the semantic rules to

determine whether such a state is reachable.

In the setting of dynamic analysis, what we have is the input execution Gσ, which is obtained

by running the program P , i.e., Gσ ∈ JP K. Therefore, for each thread t in Gσ, there exists a

path st0 → st1 → . . .→ stk with each sti ∈ State and st0.sprog = P (t). We use Path(Gσ|t) to

denote this path. Again, due to the nature of dynamic analyses, the states on this path are opaque.

To show that Gρ ∈ JP K, the key is to reuse these states and identify a similar transition path that

generates each thread of Gρ from the initial state. By Definition 13, it means we have to show

that for each thread t in Gρ, there exists a state st′m such that st′m.G = Gρ|t and st′0 →∗
t st

′
m with

st′0.sprog = P (t). Note that st′m is not necessarily a terminal state.

We first borrow the notion of data-abstract equivalence from [HMR14] and lift it to execution

graphs.

66

st0 → st1 → . . .→ stm → . . .→ stk

= ≈ ≈

st′0 → st′1 → . . .→ st′m

Figure 4.6: Similar State Transitions

▶ Definition 17 (Data-Abstract Equivalent Graph)

A plain execution graph G is data-abstract equivalent to another plain execution graph G′
if

there is a map δ : G.Evts→ G′.Evts such that for each event e ∈ G.Evts = ⟨tid, eid, typ, val, loc⟩,
there is δ(e) ∈ G′.Evts = ⟨tid, eid, typ, val′, loc⟩ for some val′. In addition, for each ⟨e1, e2⟩ ∈
G.po, ⟨δ(e1), δ(e2)⟩ ∈ G′.po and vice versa.

We write G ≈ G′
if G is data-abstract equivalent to G.

The data-abstract equivalence relation can be extended naturally to the map Ψ and the set ctrl

in a state. Now we use this notion to define a similarity relation over states. Let st, st′ ∈ State

where st = ⟨sprog, pc,Φ, G,Ψ, ctrl, θ,Φθ⟩ and st′ = ⟨sprog′, pc′,Φ′, G′,Ψ′, ctrl′, θ′,Φθ′⟩. We

say st′ ≈ st, if sprog = sprog′, pc = pc′, G ≈ G′
, Ψ ≈ Ψ′

, ctrl ≈ ctrl′, θ ≈ θ′, and Φθ = Φθ′
. For

each read event r ∈ G.Rds, θ(r) = θ(δ(r)). Essentially, two states are data-abstract equivalent if

they only differ by the concrete values on each read events. It’s easy to see that if two states are

identical, then they are data-abstract equivalent, i.e., st = st′ ⇒ st ≈ st′.

As illustrated in Fig. 4.6, for each thread t, if we can construct a similar state transition path

st′0 → . . . → st′n that generates Gρ|t from an empty state containing the same source program

as P (t), then by Definition 13 we can conclude that Gρ ∈ JP K.

We can use the following lemma to prove that an execution graph is executable.

▶ Lemma 3

Let Gρ, Gσ be well-formed execution graphs and Gσ ∈ JP K. If for each thread t ∈ Gρ.Thrd,

t ∈ Gσ.Thrd and there is a ⊑-ordered set {st′0, . . . , st′m} such that for i ∈ 0 . . .m,

· each state st′i satisfies the invariant subst(Φθ(r), valθ(Ψ(r))) = Φ(r) for r ∈ Reg,

67

· for each st′i there exists a state sti ∈ Path(Gσ|t) with sti ≈ st′i and st0 = st′0,

· for each st′i if st′i.sprog(st
′
i.pc) = if expr goto k then sti.Φ(expr) = st′i.Φ(expr),

· st′m.G = Gρ|t,

then Gρ ∈ JP K.

Lemma 3 uses the notion of states to reason about the relation between the input execution

and the witness execution. In addition, it requires each event in the witness graph to be concrete.

The following lemma simplifies the requirements of executability, focusing the reasoning process

on events and allowing events with symbolic values.

▶ Lemma 4

Let Ĝρ be a well-formed symbolic execution graph andGσ be a concrete input execution graph

such that Gσ ∈ JP K. If Ĝρ satisfies the following conditions:

· there is a map δ : Ĝρ.Evts→ Gσ.Evts such that for each event e ∈ Ĝρ.Evts, δ(e) ≈ e and if

e.val ∈ Val (i.e., e.val is concrete), then δ(e) = e.

· if ⟨e1, e2⟩ ∈ Gσ.po and e2 = δ(e′2) for some e′2 ∈ Ĝρ.Evts, then there is an event e′1 ∈
Ĝρ.Evts such that e1 = δ(e′1) and ⟨e′1, e′2⟩ ∈ Ĝρ.po,

· for each thread t ∈ Ĝρ.Thrd and each event e ∈ Ĝρ|t.Evts, if there is a read event r ∈
Ĝρ|t.Rds, such that ⟨δ(r), δ(e)⟩ ∈ Gσ.ctrl, then r.val ∈ Val (i.e., r.val is concrete),

· for each write event w ∈ Ĝρ.Wrts, if w.val ∈ Val (i.e., w.val is concrete), then for all

r ∈ Ĝρ.Rds such that ⟨δ(r), δ(w)⟩ ∈ Gσ.data, r.val ∈ Val (i.e., r.val is concrete).

then Ĝρ ∈ JP K.

4.4.4 Memory Consistency

The second major component of soundness is memory consistency. Most existing work in pre-

dictive analysis focuses on sequentially consistent executions (except for [HH16], which focused

on TSO and PSO models). Under sequential consistency, an execution can be treated as a linear

sequence of events, i.e., a trace. However, under relaxed memory models, executions may not be

68

linearizable by a global order. Instead, the validity of an execution is determined by a memory

consistency model, which can be represented as a pair of constraints: emptiness and irreflexivity

constraints over event orders [KLV23].

To keep the presentation manageable, we consider Multicopy-Atomic (MCA) models. It re-

mains our future work to integrate the semantics of lock operations into non-MCA models. Under

an MCA model, if a write event is visible to a thread that is not its issuing thread, then it is visible

to all other threads as well. This property simplifies the axiomatic model because all cross-thread

communications can be treated as global in MCA models. The rest of the section relies on MCA

models that are defined in the following way.

An execution is consistent under an MCA memory model if

irreflexive (ppo ∪ com)+

irreflexive (po-loc ∪ com)+

where the ppo stands for preserved program order. Each MCA model provides its own definition

of ppo. The second requirement corresponds to SC-per-location.

In addition, we omit treatment of Read-Modify-Write (RMW) events, and consider only fully

fenced lock events. All of these could be accommodated without impacting the logic of our ap-

proach.

Under sequential consistency (SC), preserved program order is given by all po orders.

ppo = po

Under x86-TSO [OSS09], preserved program order is given by

ppo = po ∩ ((Wrts×Wrts) ∪ (Rds×Wrts) ∪ (Rds× Rds))

69

Under ARMv8, preserved program order is given by the locally-ordered-before (lob) order

from [ADG21].

We now augment these memory models with lock operations. We first define a new relation

sync order. For each lock l, there is a linear order among the critical sections protected by l. For

each two ordered critical sections of the same lock CS1 and CS2, where CS1 → CS2, syncl is

a relation from the release event of CS1 to the acquire event of CS2. sync is the union of syncl

for all locks l ∈ Locks.

We do not allow events to move into or out of a critical section. Therefore, each lock operation

also has a fence-like effect. In practice, this is typically given by the use of fence instructions inside

lock implementations. We augment preserved program order with the program orders where a

lock operation occurs in-between. We use L to denote the union of lock acquires and releases.

ppo ∪ (po; [L]) ∪ ([L]; po)

The most important property that locks should provide is mutual exclusion. Given two critical

sections protected by the same lock, the events in one critical section should be all finished before

the events in another critical section start. In other words, there should not be any interleaving

among the events from two critical sections.

We can rule out this behavior by augmenting MCA models with:

irreflexive (ppo ∪ (po; [L]) ∪ ([L]; po) ∪ com ∪ sync)+

It’s easy to see that moving events into a critical section while preserving all other program

orders does not introduce new behavior as it only monotonically adds more ppo order into the

execution graph.

Finally, there may be open critical sections in an execution graph. By well-formedness of an

execution graph, there is at most one open critical section per lock. The open critical sections

70

should always be ordered as the last critical section in the linear order of that lock. Therefore,

we add one more restriction to the memory model. For each lock l, if there is an open critical

section, let acq(l) be the acquire event of that open critical section. The for every release event

rel(l) of the same lock occur in the same execution, we have ⟨rel(l), acq(l)⟩ ∈ sync.

Overall, we have the following definition for an MCA memory model augmented with lock

operations.

▶ Definition 18 (M-consistency)

Given a definition of preserved program order ppo from an memory modelM for an MCA

architecture, a complete execution graph Gρ isM-consistent if

· (po-loc ∪ com)+ is irreflexive, and

· (ppo ∪ (po; [L]) ∪ ([L]; po) ∪ com ∪ sync)+ is irreflexive, and

· for each lock l ∈ Locks, if Gρ.Open(l) = acq(l), then for each release event rel(l) ∈
Gρ.Rels, ⟨rel(l), acq(l)⟩ ∈ Gρ.sync.

As a sanity check, we prove a property that is a weaker variation of the DRF-SC theorem.

The following proposition states that, if every pair of conflicting access is protected by some

lock, which means there is no data race in the program, then the program is guaranteed to be

sequentially consistent.

▶ Proposition 3

Let P be a program. For each sequentially consistent execution graph of P , if for each con-

flicting memory event e1 ▷◁ e2, e1, e2 ∈ CSl for some l ∈ Locks, then every sound execution

of P is sequentially consistent.

Given the definition of soundness, in the rest of this paper, we explain how one can prove

that a given predictive analysis is sound.

71

4.5 A Recipe to Prove Soundness

The soundness definition from §4.4 has an existential quantifier over witness execution graphs.

Hence, a proof of soundness for a given predictive analysis should provide a scheme to construct

a witness execution graph for each reported concurrent bug and show that the witness satisfies

each of the four requirements of soundness.

Note that the soundness definition asks for a complete execution graph where the value of

each event is concrete. In some cases where the rf order of the witness execution is altered from

that of the input execution, the values of some events are not computable without knowing the

program source code. On the other hand, there is a subset of events whose values are critical for

the execution control flow, and therefore have to be preserved. For events that do not affect the

control flow, their concrete values are unimportant to the soundness of the algorithm. Therefore,

we use a symbolic execution graph as an intermediate form, which allows the values of a subset

of events to be symbolic if they do not need to be preserved before memory orders are inserted.

To prove soundness for a predictive analysis, a witness execution can be constructed in the

following steps:

§4.5.1 Constructing a Symbolic Plain Execution. Construct a symbolic plain execution

graph Ĝρ with an event map δ : Ĝρ.Evts → Gσ.Evts, such that Ĝρ � b, and Ĝρ is

well-formed and executable.

§4.5.2 Inserting Consistent Memory Orders. Insert rf, co, and sync memory orders so

that Ĝρ isM-consistent up to concrete events and well-formed.

§4.5.3 Mapping to a Concrete Execution. Map the symbolic execution Ĝρ to a concrete

execution graph Gρ with a complete rf-map while preserving all the properties.

In the rest of this section, we discuss each step in details. The proofs of the propositions and

lemmas can be found in Appendix O.

72

4.5.1 Constructing a Symbolic Plain Execution

Recall that a symbolic plain execution graph Ĝρ is a tuple (Evts, po) where some of the events

have symbolic values. To ensure executability, the program order po from Gσ has to be preserved

in Ĝρ. Therefore, the task of constructing Ĝρ is essentially finding a set of events to be included

in Ĝρ.Evts and determine the concrete values of a subset of events in the set.

The set of events Evts to be included in the witness execution is determined by dependencies

and lock semantics. We identify two types of dependencies, control and data dependencies. While

modern architectures define other types of dependencies as well, control and data dependencies

are two most fundamental dependencies that determines the soundness of a predictive analysis

in the language of this paper.

· Control dependencies. Control dependencies determine the control flow of the program.

Formally, it is a subset of po whose domain is a set of read events. For each ⟨r, e⟩ ∈ ctrl in

an execution, the value of r determines whether the instruction that generates e is eventually

executed at some point. In each execution state, the field ctrl is a set of read events that is used

to compute control dependency.

· Data dependencies. Data dependencies determine the data flow of the program. Formally, it

is a subset of po whose domain is a set of read events and whose range is a set of write events.

For each ⟨r, w⟩ ∈ data in an execution, the value of r determines the value of w.

The two dependencies encapsulate the sequential and control properties from any memory

model considered in this paper. The two dependencies are sufficient to determine a set of events

in the input execution that each bug sequence depends on. In other words, there is a set of events

Sσ ⊆ Gσ.Evts with a subset Cσ ⊆ Sσ such that the existence of events in Sσ and the values

of the events in Cσ determine the control flow of the execution that leads to the bug sequence.

These events can then be used to construct a plain execution graph, i.e. the witness execution.

To ensure the witness execution satisfy the first three soundness requirements, Sσ and Cσ have

73

to satisfy the following properties.

▶ Definition 19

Let ⟨Sσ, Cσ⟩ be two event sets such that Cσ ⊆ Sσ ⊆ Gσ.Evts. We say ⟨Sσ, Cσ⟩ enables a bug

sequence b if

I. For each event e ∈ b, if ⟨e′, e⟩ ∈ Gσ.po, then e′ ∈ Sσ

II. Sσ is downward-closed w.r.t. Gσ.po

III. Sσ is lock-feasible

IV. For each event e ∈ b, if ⟨r, e⟩ ∈ Gσ.ctrl, then e′ ∈ Cσ

V. For each e ∈ Sσ, if ⟨r, e⟩ ∈ Gσ.ctrl, then r ∈ Cσ

VI. For each e ∈ Cσ, if ⟨r, e⟩ ∈ Gσ.data, then r ∈ Cσ

VII. For each r ∈ Cσ, there exists a write w ∈ Cσ such that r.val = w.val and r.loc = w.loc

VIII. Sσ ∩ b = ∅

Given such a pair of event sets ⟨Sσ, Cσ⟩, one can construct a plain execution graph Ĝρ =

(Evts, po) by the following steps. Let Sρ be an event set such that Sρ ≈ Sσ and Cσ ⊆ Sρ. In other

words, there is a bijective event map δ : Sρ.Evts→ Sσ.Evts where δ(e) ≈ e for each e ∈ Sρ and

δ(e) = e for each e ∈ Cσ.

1. Ĝρ.Evts = Sρ.

2. Ĝρ.po = δ−1(Gσ.po ∩ (δ(Ĝρ.Evts× Ĝρ.Evts))).

Given a pair of event set ⟨Sσ, Cσ⟩ that enables the bug sequence b, the constructed witness

plain execution Ĝρ can be shown to satisfy the first three soundness requirements.

▶ Proposition 4

If ⟨Sσ, Cσ⟩ enables a bug sequence b, then Ĝρ is well-formed up to concrete events and Ĝρ�b.

▶ Proposition 5

If ⟨Sσ, Cσ⟩ enables a bug sequence b, and Gσ ∈ JP K, then Ĝρ ∈ JP K.

Since the soundness of the witness execution depends on the pair ⟨Sσ, Cσ⟩, one essentially

has to provide such a pair and show that it enables the reported bug sequence.

74

In practice, the precise information of control and data dependencies are rarely known to the

predictive analysis. In addition, if the analysis does not record the concrete values of events in

the input execution, then it’d be hard to determine which write event has the same value of a

read event, as required by one of the conditions above. One way to overcome these challenges is

tracing the po∪rf orders of the input execution Gσ and leverage the well-formed properties that

they provide. The following lemma shows that any plain execution graphs of which the event set

is downward-closed with respect to po and a subset of rf is read-feasible and executable.

▶ Lemma 5

Let Ĝρ = (Evts, po) be a plain execution graph such that Ĝρ.Evts is downward-closed with

respect to Gσ.(po∪rf|C) where C is the set of concrete read and write events of Ĝρ such that

((data ∪ rf)∗; ctrl)+ ⊆ C for a bug sequence b, and δ(e) = e for each e ∈ C . Then Ĝρ is

read-feasible up to C and executable.

Lemma 5 does not guarantee lock feasibility. Lock feasibility may be ensured by tracing a

partial order from Gσ, as stated in the following lemma.

▶ Lemma 6

Let Ĝρ = (Evts, po) be a plain execution graph such that Ĝρ.Evts is downward-closed with

respect to Gσ.(po ∪ sync), then Ĝρ is lock-feasible.

As we will see in §4.6, analyses that over-approximate the control and data dependencies can

apply Lemma 5 and Lemma 6 to show the well-formedness and the executability requirements.

4.5.2 Inserting Consistent Memory Orders

After a symbolic plain execution graph is determined, the next step is providing a memory order

insertion scheme so that the complete execution graph is memory consistent. The goal in this step

is to obtain anM-consistent symbolic graph such that rf-map is defined and well-formed for all

concrete read events, co is a total order among all write events to the same location, and sync

is well-formed for each lock. While the insertion scheme is, in general, specific to the predictive

algorithm, in some cases memory orders of Gσ can be reused since it is sequentially consistent,

75

which automatically ensuresM-consistency.

We begin by inserting rf orders among concrete events in Ĝρ. For each concrete read in Ĝρ,

by Lemma 4, we know that its value is inherited from the correspondent event in Gσ. From (VII)

of Definition 19, there is a write event whose value is also preserved. Therefore, we can insert

the same rf order between the preserved write and preserved reads.

Moreover, note that the only case where a cycle would potentially occur is when critical

sections are reordered, due to the second requirement forM-consistency: open critical sections

should be ordered after all other critical sections of the same lock. Hence, if any of the events

occur in the bug sequence is in an open critical section, all other critical sections of the same

lock in Ĝρ have to be ordered before the open critical section. For critical sections that originally

occurred after some events from the bug sequence, it means they would need to be reordered

with the bug events in Ĝρ. In order to show that Ĝρ isM-consistent, one has to show that such

reordering can never cause a cycle that is forbidden byM to occur.

On the other hand, if the set of events in Ĝρ is guaranteed not to include such critical sec-

tions, then the memory orders from Gσ can be reused and the resulting execution graph is still

sequentially consistent. The following lemma demonstrates this idea.

▶ Lemma 7

Let Gσ be an input execution such that Gσ is sequentially consistent, equipped with a linear

trace order. Let Ĝρ be a symbolic plain execution that is well-formed, and Ĝρ � b where

b is a reported bug. If for all acquire event acq(l) ∈ Ĝρ.Evts such that l ∈ LocksHeld(e),
⟨acq(l), e⟩ ∈ Gσ.trace for each event e ∈ b.Evts that is in a critical section where the acquire

event of the critical section acq(l) ∈ Ĝρ, then there exists a memory order insertion scheme

over Ĝρ.Evts such that Ĝρ is sequentially consistent.

As we will see in §4.6, predictive analyses that preserve synchronization orders [MPV21,

MKV18] use this lemma to insert memory orders when constructing the witness execution.

76

4.5.3 Mapping to a Concrete Execution

Finally, once the memory orders are inserted while maintaining M-consistency, the following

lemma shows that there exists a well-formed concrete graph, i.e., Gρ, that can be obtained by

concretizing the symbolic events in Ĝρ and all properties from the previous steps are preserved.

▶ Lemma 8

Let Ĝρ be a symbolic execution with a well-formed rf-map over concrete events, a total co

order over write events to the same location, and a well-formed sync over lock events. If Ĝρ

isM-consistent and Ĝρ ∈ JP K with e.val ∈ Val for each e ∈ preserve(b), then there exists a

map Θ : Sym → Val such that the concrete execution Gρ = Θ(Ĝρ) with a complete rf-map

isM-consistent and Gρ ∈ JP K.

The result of applying this lemma is a complete and concrete execution graph that satisfies

the four requirements of soundness, which finishes the soundness proof.

4.6 Proving Race Prediction Algorithms Sound

In §4.2, we reviewed a set of existing predictive analyses that used various soundness definitions

as their correctness criteria. Fig. 4.7 shows six of the nine analyses from §4.2 that focus on pre-

dicting data races with their race reporting criteria. Because the soundness definitions used in

their papers were different, their soundness proofs are hard to compare with each other. In this

section, we take a closer look at these algorithms and use our recipe on each of them to show

their soundness.

In the rest of the section, we assume e1, e2 ∈ Gσ are two events from the input execution and

e1 ▷◁ e2. In addition, to keep the discussions concise, ⟨e1, e2⟩ ∈ Gσ.trace.

4.6.1 M2

M2 [Pav20] determines data races by computing linearizable closures. In particular, a set of

events, RConeσ(e1, e2), is first computed. Then a partial order is inserted among the events in

77

Analyses Race Reporting Criteria

[Pav20] M2 P is a strict partial order over RConeσ(e1, e2)

[HMR14] RVPredict ∃ρ |= Φσ
mhb
∧ Φσ

lock
∧ Φσ

race
(e1, e2)

[HH16] MCR-tso ∃ρ |= Φσ
ppo ∧ Φσ

lock
∧ Φσ

race
(e1, e2)

[FF09] HB the first e1 ∥hb e2
[MKV18] SHB e1 ∥shb e2
[MPV21] SyncP {e1, e2} ∩ SPIdealσ(e1, e2) = ∅

§P Enhanced-MCR-tso ∃ρ |= Φσ
ppo ∧ Φσ

lock
∧ Φσ

race
(e1, e2)

after Read Elimination

Figure 4.7: Race Reporting Criterion of Various Race Prediction Algorithms

this set until a linearizable state is reached. If e1 or e2 is included in RConeσ(e1, e2), or a cycle

occurs during the process of inserting the partial order, then ⟨e1, e2⟩ is not a data race. Other-

wise, ⟨e1, e2⟩ is reported as a data race. Formally, RConeσ(e1, e2) is defined inductively as the

following:

· {prevσ(e1), prevσ(e2)} ⊆ RConeσ(e1, e2), where ⟨prevσ(e), e⟩ ∈ Gσ.po|imm for all e ∈ Gσ.Evts,

· for each event e ∈ Gσ.Evts, if ⟨e, e′⟩ ∈ Gσ.(po ∪ rf) for some event e′ ∈ RConeσ(e1, e2), then

e ∈ RConeσ(e1, e2),

· for each acquire event acq(l) ∈ RConeσ(e1, e2), if acq(l).tid ̸= e1.tid and acq(l).tid ̸= e2.tid,

then there is a release event rel(l) ∈ RConeσ(e1, e2) such that match(rel(l)) = acq(l).

Then a closure algorithm is applied over events in RConeσ(e1, e2). The algorithm inserts a

strict partial order P based on the following closure rules.

1. Gσ.(po ∪ rf)|RCone ⊆ P,

2. For every acq(l) = Openl(RConeσ(e1, e2)) and every rel(l) ∈ RConeσ(e1, e2).Rels, rel(l)
P−→

acq(l),

78

3. If w′ P−→ r and w rf−−→ r then w′ P−→ w for each w,w′ ∈ RConeσ(e1, e2).Wrts and r ∈

RConeσ(e1, e2).Rds where w′.loc = w.loc = r.loc

4. If w P−→ w′
and w rf−−→ r then r P−→ w′

for each w,w′ ∈ RConeσ(e1, e2).Wrts and r ∈

RConeσ(e1, e2).Rds where w′.loc = w.loc = r.loc

5. For acq1(l) = match(rel1(l)), acq2(l) = match(rel2(l)), if acq1(l)
P−→ rel2(l), then rel1(l)

P−→

acq2(l)

Moreover, if there exists any pair of events e ▷◁ e′ ∈ RConeσ(e1, e2) such that ei.tid /∈

{e.tid, e′.tid} for a non-deterministically chosen i ∈ {1, 2}, e trace−−−−→ e′, and e ∥P e′, then ⟨e, e′⟩

is added into P and the closure rules above are applied to reach a fixed point.

The soundness of M2 is stated as the following.

▶ Theorem 4

If LocksHeld(e1)∩LocksHeld(e2) = ∅, {e1, e2}∩RConeσ(e1, e2) = ∅, and P computed as de-

scribed by closure rule 1-5 is a strict partial order such that∀ē1, ē2 ∈ RConeσ(e1, e2)\Gσ.Evts|ei.tid,

ē1 ▷◁ ē2 ⇒ ē1 ∦ ē2 where i ∈ {1, 2}, then ⟨e1, e2⟩ is a sound data race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a set defined as the following.

Sσ = RConeσ(e1, e2) Cσ = Gσ.(Rds ∪Wrts) ∩ Sσ

From the definition, we know that Sσ is downward-closed w.r.t. Gσ.(po ∪ rf). Let Gρ be a plain

execution graph such that Gρ.Evts = Sσ and Gρ.po = Gσ.po|Sσ . In addition, δ : Gρ.Evts →

Gσ.Evts is the identity function.

We first show that Gρ�b where b = e1e2. To start with, {e1, e2}∩RConeσ(e1, e2) = ∅ comes

from the assumption. In addition, No Skipping is satisfied by the base condition of the definition,

i.e., {prev(e1), prev(e2)} ⊆ RConeσ(e1, e2). Since δ is the identity function, for each r ∈ Gσ.Rds

79

such that ⟨r, e1⟩ ∈ Gσ.ctrl or ⟨r, e2⟩ ∈ Gσ.ctrl, δ(r) = id(r) = r ∈ Gρ.Evts. Hence, Same

Control Flow is also satisfied.

We now show that Gρ is well-formed and executable. Since Gρ.Evts is downward-closed w.r.t.

Gσ.(po∪rf), by Lemma 5, Gρ is read feasible and executable. From that last condition of RCone’s

definition, we know that every critical section on thread t, where e1.tid ̸= t ̸= e2.tid, is closed.

Hence, open critical sections can only occur on thread t1 and t2 where t1 = e1.tid and t2 = e2.tid.

By well-formedness of Gσ, we know that at most one open critical section of each lock can occur

on each thread. Given that LocksHeld(e1) ∩ LocksHeld(e2) = ∅, we can conclude that at most

one open critical section is included in RConeσ(e1, e2) for each lock. Thus, RConeσ(e1, e2) is lock

feasible.

▶ Inserting Memory Orders. Lastly, we show that there exists a memory order insertion scheme

such that Gρ is sequentially consistent. First, we set Gρ.(po∪ rf) = Gσ.(po∪ rf)|RCone. From 1.,

we know that Gρ.(po ∪ rf) ⊆ P. Next, for every acq(l) = Openl(RConeσ(e1, e2)) and every

rel(l) ∈ RConeσ(e1, e2), we set ⟨rel(l), acq(l)⟩ ∈ Gρ.sync. We call this subset of sync order as

sync|open. Then from 2., it’s easy to see that sync|open ⊆ P. In addition, the third requirement for

M-consistency in Definition 18, whereM is sequential consistency, is satisfied. We now insert

co orders.

For each pair of write events accessing the same location, ⟨w1, w2⟩, co is inserted in the fol-

lowing way,

· if w1
P−→ w2, then w1

co−−→ w2; if w2
P−→ w1, then w2

co−−→ w1

· otherwise, if w1.tid = ei.tid, then w1
co−−→ w2; if w2.tid = ei.tid, then w2

co−−→ w1

For each rel1(l), rel2(l) and acq1(l), acq2(l) such thatmatch(rel1(l)) = acq1(l), andmatch(rel2(l)) =

acq2(l), sync is inserted in the following way,

· if rel1(l)
P−→ acq2(l), then rel1(l)

sync−−−→ acq2(l); if rel2(l)
P−→ acq1(l), then rel2(l)

sync−−−→

acq1(l),

80

· otherwise, if rel1(l).tid = ei.tid then rel1(l)
sync−−−→ acq2(l); if rel2.tid = ei.tid, then rel2(l)

sync−−−→

acq1(l)

Note that after inserting the ordered as described above, co and sync are well-formed in Gρ.

We now show that this insertion scheme guarantees sequential consistency. Suppose, towards

contradiction, that there is a (po ∪ rf ∪ co ∪ fr ∪ sync)+ cycle in Gρ after we finish inserting

the orders. First, since (po ∪ rf) ⊆ P and P is a strict partial order, one of the edges forming this

cycle must be a (co∪fr∪sync) edge from some event ea to eb such that ea.tid = ei.tid ̸= eb.tid

and ea ∥P eb. In addition, there is also a P edge in this cycle from an event ec to some event ed

such that ed.tid = ei.tid ̸= ec.tid. Since they form a cycle, we can infer that ed
po−−→∗ ea, which

also means ed
P−→∗ ea. In other words, the cycle is structure as

ed
P−→∗ ea

co ∪ fr ∪ sync−−−−−−−−−→ eb
po ∪ rf ∪ co ∪ fr ∪ sync−−−−−−−−−−−−−−→∗ ec

P−→ ed

Since eb.tid ̸= ei.tid ̸= ec.tid, for any conflicting events e ▷◁ e′, we know that e ∦P e′. Given this

and that (po ∪ rf) ⊆ P, the (po ∪ rf ∪ co ∪ fr ∪ sync)+ path between eb and ec must also be

a P path (note that all communication edges relates conflicting events), i.e., eb
P−→∗ ec. Now we

analyze each possible case.

· ed
P−→∗ ea

co−−→ eb
P−→∗ ec

P−→ ed. But eb
P−→ ea implies that the eb

co−−→ ea, which contradicts

with ea
co−−→ eb.

· ed
P−→∗ ea

fr−−→ eb
P−→∗ ec

P−→ ed. Then there exists a write event w rf−−→ ea and w co−−→ eb.

From eb
P−→ ea and w rf−−→ ea, we know eb

P−→ w because of the closure rule 3., which

contradicts with w co−−→ eb.

· ed
P−→∗ ea

sync−−−→ eb
P−→∗ ec

P−→ ed. Then ea ∈ Gρ.Rels, eb ∈ Gρ.Acqs, and there exists

acqa = match(ea) and match(relb) = eb. By the closure rule 5., we have relb
sync−−−→ acqa,

which contradicts with ea
sync−−−→ eb.

81

Since each case gives us a contradiction, we can conclude that (po ∪ rf ∪ co ∪ fr ∪ sync)+ is

irreflexive. That is, Gρ is sequentially consistent.

▶ Mapping to Concrete Execution Graph. Since the execution graph Gρ is already concrete by

construction, there is no further step needed.

4.6.2 RVPredict

RVPredict [HMR14] is an SMT-based approach to predicting data races in a program. Given an

input execution Gσ with a trace order, the algorithm maps each event from the input execution

to an integer variable that represents its order in a potential witness along with a formula gen-

erated from the input execution. A pair of conflicting events is reported as a data race if the set

of constraints is satisfiable, i.e., there exists a map from the variables to integers that solves the

contraints. Formally, for each event e ∈ Gσ.Evts, Oe ∈ O is an order variable for e. A formula Φ

is generated from Gσ:

Φ = Φmhb ∧ Φlock ∧ Φrace

where each sub-formula is defined as the following.

Φmhb =
∧

⟨e,e′⟩∈Gσ .po

Oe < Oe′

Φlock =
∧

rel1(l),rel2(l)∈Gσ .Rels

(
Orel1(l) < Oacq2(l)

∨Orel2(l) < Oacq1(l)

)
where acqi(l) = match(reli(l))

Φrace = (Oe2 −Oe1 = 1) ∧ Φ≈
cf
(e1) ∧ Φ≈

cf
(e2)

Φ≈
cf
(e) = Φcf(br) where br ∈ Gσ.Brs is the last branch event such that ⟨br, e⟩ ∈ Gσ.po

Φcf(e) =
∧

r∈Gσ .Rds

Φcf(r) where ⟨r, e⟩ ∈ Gσ.po and e ∈ Gσ.(Brs ∪Wrts)

82

Φcf(e) = Φcf(w) ∧Ow < Oe

∧
w′∈Gσ .Wrts

(Ow′ < Ow ∨Oe < Ow′)

where w.loc = e.loc = w′.loc, ⟨w, e⟩ ∈ Gσ.rf, w ̸= w′
, and e ∈ Gσ.Rds

The soundness theorem for RVPredict is the following.

▶ Theorem 5

If there exists a map ρ : O → Int such that Φ is satisfiable for (e1, e2), i.e., ∃ρ |= Φmhb∧Φlock∧
Φrace(e1, e2), then ⟨e1, e2⟩ is a sound race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a subset of events defined as the following.

Sσ = {e ∈ Gσ | ρ(Oe) < ρ(Oe1)} Cσ = R ∪W where

R = {r ∈ Gσ.Rds | (⟨r, br⟩ ∈ Gσ.po for some branch event br ∈ Sσ.Brs)

∨ (∃w ∈ Cσ, ⟨r, w⟩ ∈ Gσ.po)}

W = {w ∈ Gσ.Wrts | ∃r ∈ Cσ, ⟨w, r⟩ ∈ Gσ.rf}

Since ρ(Oe2)− ρ(Oe1) = 1, we know that Sσ ∩ {e1, e2} = ∅.

By Φmhb, we have that Sσ is po-closed.

Let Sρ be a set of data-abstract equivalent events of Sσ where e′ ∈ Sρ iff there is e ∈ Sσ such

that e′ ≈ e. We now define a bijective map δ : Sρ.Evts→ Sσ.Evts such that δ(e) ≈ e. If there is a

last branch event bri ∈ Gσ.Brs that po-ordered before ei, we have bri ∈ Sσ for i ∈ {1, 2}. Then

for all read event such that ⟨r, bri⟩ ∈ Gσ.po (note that r ∈ Sσ), set δ−1(r) = r. For each write

event w ∈ Sσ.Wrts, if for all ⟨r, w⟩ ∈ Gσ.po (note that r ∈ Sσ), r = δ−1(r), then set w = δ−1(w).

For each read event r ∈ Sσ.Rds, if there is ⟨w, r⟩ ∈ Gσ.rf, then by Φcf(r) we have w ∈ Sσ. If

δ−1(w) = w, then set δ−1(r) = r. Otherwise, we assign a distinct symbolic value δ−1(e).val = ŝ

for read or write event e ∈ Sσ. Observe that the set of concrete events C ⊆ Sρ is (po∪rf)-closed

83

by construction.

Let Ĝρ be a symbolic plain execution graph such that Ĝρ.Evts = Sρ and Ĝρ.po = δ(Gσ.po|Sσ).

We first show that Ĝρ � b where b = e1e2. For i ∈ {1, 2} and each event e ∈ Gσ such that

⟨e, ei⟩ ∈ Gσ.po, from Φmhb, we know that ρ(Oe) < ρ(Oei). Hence e ∈ Sσ and there is an event

e′ ∈ Ĝρ such that δ(e′) = e. Therefore, No Skipping is satisfied. In addition, if ⟨r, ei⟩ ∈ Gσ, then

there is a branch event ⟨bri, ei⟩, ⟨r, bri⟩ ∈ Gσ.po. From the definition of δ above, δ−1(r) = r.

Hence there is r′ ∈ Ĝρ.Rds such that δ(r′) = r = r′ and r′ ∈ C . Therefore, Same Control Flow

is satisfied.

We now show that Ĝρ is well-formed and executable. Observe that ((data∪rf)∗; ctrl)+ ⊆ C

in Ĝρ since ctrl ⊆ po; [Brs]; po and data ⊆ po. By Lemma 5, Ĝρ is read feasible and executable.

For each lock l, if two acquire events acq1(l), acq2(l) ∈ Sσ, then by Φlock, either rel1(l) ∈ Sσ

or rel2 ∈ Sσ. Since Ĝρ.(Acqs ∪ Rels) = Sσ.(Acqs ∪ Rels), we have if two acquire events

acq1(l), acq2(l) ∈ Ĝρ.Acqs, then either rel1(l) ∈ Ĝρ.Rels or rel2 ∈ Ĝρ.Rels. Therefore, Ĝρ is

lock feasible.

▶ Inserting Memory Orders. We now show that there is a memory order insertion scheme such

that Ĝρ is sequentially consistent up to C . For each read event r ∈ C ⊆ Ĝρ.Rds, from the

definition of δ, we know that there is a write event w ∈ C such that ⟨δ(w), δ(r)⟩ ∈ Gσ.rf.

Insert ⟨w, r⟩ ∈ Ĝρ.rf. For each write events w,w′ ∈ Ĝρ.Wrts, if ρ(Oδ(w)) < ρ(Oδ(w′)), then

⟨w,w′⟩ ∈ Ĝρ.co. For each lock l, if ρ(Orel(l)) < ρ(Oacq(l)) for some release event rel(l) and

acquire event acq(l), then ⟨rel(l), acq(l)⟩ ∈ Ĝρ.sync. Since ρ maps order variables to integers,

which are linearly ordered, Ĝρ.co is a linear among writes to the same location and Ĝρ.sync is

well-formed. We argue Ĝρ is sequentially consistent after inserting the orders. First, from Φlock,

we can infer that open critical sections are ordered last. For each ⟨r, w′⟩ ∈ Ĝρ.fr, there is a

write w such that ⟨w, r⟩ ∈ Ĝρ.rf and ⟨w,w′⟩ ∈ Ĝρ.co. By the order insertion scheme above, it

means ρ(Oδ(w)) < ρ(Oδ(w′)). From Φcf(r), we can infer that ρ(Oδ(r)) < ρ(Oδ(w′)). From Φmhb,

for each ⟨e, e′⟩ ∈ Ĝρ.po, we have ρ(Oδ(e)) < ρ(Oδ(e′)). From Φcf(r), for each ⟨w, r⟩ ∈ Ĝρ.rf, we

84

have ρ(Oδ(w)) < ρ(Oδ(r)). Therefore, for any ⟨e, e′⟩ ∈ Ĝρ.(po ∪ rf ∪ fr ∪ co ∪ sync)+, we have

ρ(Oδ(e)) < ρ(Oδ(e′)). Thus, Ĝρ is sequentially consistent.

▶Mapping to Concrete Execution Graph. Lastly, by Lemma 8, there exists a concrete executionGρ

inherits all the properties of Ĝρ, i.e., Gρ � b, and Gρ is well-formed, executable, and sequentially

consistent.

4.6.3 MCR-tso

Here we provide a formal proof for a race predictor built based on the constraint encoding from

[HH16]. While the paper of MCR [HH16] did not provide any example of new data races discov-

ered under TSO, we observe that the non-SC-race example from Fig. 8 of [Pav20] is such a data

race. We provide a detailed explanation of the example in Appendix Q.

Given an input execution Gσ with a trace order, the algorithm maps each event from the

input execution to an integer variable that represents its order in a potential witness along with

a formula generated from the input execution. A pair of conflicting events is reported as a data

race if the set of constraints is satisfiable, i.e., there exists a map from the variables to integers

that solves the constraints. Formally, for each event e ∈ Gσ.Evts, Oe ∈ O is an order variable for

e. A formula Φ is generated from Gσ:

Φ = Φppo ∧ Φlock ∧ Φrace

where each sub-formula is defined as the following.

Φppo =
∧

⟨e,e′⟩∈Gσ .ppo

Oe < Oe′

∧
⟨e,e′⟩∈Gσ .po-loc

Oe < Oe′∧
⟨e,rel(l)⟩,⟨acq(l),e′⟩∈Gσ .po

Oe < Orel(l) ∧Oacq(l) < Oe′

Φlock =
∧

rel1(l),rel2(l)∈Gσ .Rels

(
Orel1(l) < Oacq2(l)

∨Orel2(l) < Oacq1(l)

)

85

where acqi(l) = match(reli(l))

Φrace = (Oe2 −Oe1 = 1) ∧ Φobs

Φobs =
∧

⟨w,r⟩∈Gσ .rf

(Ow < Or)
∧

w′∈Gσ .Wrts

(Ow′ < Ow ∨Or < Ow′)

where w.loc = r.loc = w′.loc, w ̸= w′
, and r ∈ Gσ.Rds

The soundness theorem is the following.

▶ Theorem 6

If there exists a map ρ : O → Int such that Φ is satisfiable for (e1, e2), i.e., ∃ρ |= Φppo∧Φlock∧
Φrace(e1, e2), then ⟨e1, e2⟩ is a sound race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a lock-feasible event set that is downward-

closed w.r.t. Gσ.po ∪ rf from b = e1e2. Let Sρ be a set of data-abstract equivalent events of Sσ

where e′ ∈ Sρ iff there is e ∈ Sσ such that e′ ≈ e. We now define a bijective map δ : Sρ.Evts →

Sσ.Evts such that δ(e) ≈ e. Let Cσ = Gσ.(Wrts ∪ Rds) ∩ Sσ. If δ(e) ∈ Cσ, then we set δ(e) = e.

Let Ĝρ be a symbolic plain execution graph such that Ĝρ.Evts = Sρ and Ĝρ.po = δ(Gσ.po|Sσ).

By Lemma 5 and the fact that Sσ is lock-feasible, we get Ĝρ is well-formed and executable. In

addition, since Sσ is downward-closed from b, Ĝρ � b.

▶ Inserting Memory Orders. We now provide a memory insertion scheme such that Ĝρ is TSO-

consistent. First, for each read event r ∈ Cσ, from the definition of δ and Cσ, we know that

there exists a write event w ∈ Cσ such that ⟨δ(w), δ(r)⟩ ∈ Gσ.rf. Insert ⟨w, r⟩ ∈ Ĝρ. From

Φobs, we know that ρ(Ow) < ρ(Or). For each write events w,w′ ∈ Ĝρ.Wrts, if ρ(Oδ(w)) <

ρ(Oδ(w′)), then ⟨w,w′⟩ ∈ Ĝρ.co. For each lock l, if ρ(Orel(l)) < ρ(Oacq(l)) for some release event

rel(l) and acquire event acq(l), then ⟨rel(l), acq(l)⟩ ∈ Ĝρ.sync. Since ρ maps order variables

to integers, which are linearly ordered, Ĝρ.co is a linear among writes to the same location and

Ĝρ.sync is well-formed. We argue Ĝρ is TSO-consistent after inserting the orders. First, from

86

Φlock, we can infer that open critical sections are ordered last. For each ⟨r, w′⟩ ∈ Ĝρ.fr, there

is a write w such that ⟨w, r⟩ ∈ Ĝρ.rf and ⟨w,w′⟩ ∈ Ĝρ.co. By the order insertion scheme

above, it means ρ(Oδ(w)) < ρ(Oδ(w′)). From Φobs, we have ρ(Oδ(r)) < ρ(Oδ(w′)). From Φppo, for

each ⟨e, e′⟩ ∈ Ĝρ.ppo, we have ρ(Oδ(e)) < ρ(Oδ(e′)), and for each ⟨e, e′⟩ ∈ Ĝρ.po-loc, we have

ρ(Oδ(e)) < ρ(Oδ(e′)). Hence, we can infer that (ppo ∪ (po; [L]) ∪ ([L]; po) ∪ com ∪ sync)+ and

(po-loc ∪ com ∪ sync)+ are both irreflexive. That is, Ĝρ is TSO-consistent.

▶ Mapping to Concrete Execution Graph. Since the execution graph Gρ is already concrete by

construction, there is no further step needed.

4.6.4 Happens-Before (HB)

Happens-before (HB) is a partial order that is commonly used for partial-order-based dynamic

race analyses. A partial-order-based race prediction algorithm predicts data races based on whether

two conflicting events are ordered by a partial order built by the algorithm from the input execu-

tion. Formally, let D be a partial order built by the algorithm given an input trace σ. For an event

pair ⟨e1, e2⟩ ∈ Gσ.Evts such that e1 ▷◁ e2, if e1 ∥D e2, then ⟨e1, e2⟩ is reported as a predictable

race.

The happens-before (hb) order is defined as the following.

hb = (po ∪ sync)+

In addition, Happens-before only guarantees soundness of the first pair of conflicting events

that is not ordered by hb. In other words, an extra assumption, i.e., every conflicting pair of events

before e1 and e2 are ordered by hb, is added to its soundness theorem.

▶ Theorem 7

If ⟨e1, e2⟩ is the first reported race such that e1 ∥hb e2, i.e., for all events e trace−−−−→σ e′ trace−−−−→σ e2
such that e ▷◁ e′, ⟨e, e′⟩ ∈ Gσ.hb, then ⟨e1, e2⟩ is a sound data race.

87

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a set defined as the following.

Sσ = {e ∈ Gσ.Evts | ⟨e, e1⟩ ∈ Gσ.hb ∨ ⟨e, e2⟩ ∈ Gσ.hb}

Cσ = Gσ.(Rds ∪Wrts) ∩ Sσ

Because hb is transitive, Sσ is downward-closed w.r.t. hb. In addition, note that for each

⟨w, r⟩ ∈ Gσ.rf and w trace−−−−→ r trace−−−−→ e1, since w ▷◁ r by definition, then ⟨w, r⟩ ∈ Gσ.hb.

Similarly, for each r ∈ Gσ.Rds such that ⟨e1, r⟩ ∈ Gσ.rf and e1
trace−−−−→ r trace−−−−→ e2, ⟨e1, r⟩ ∈

Gσ.hb. Hence, for every reads r ∈ Sσ.Rds, if there is ⟨w, r⟩ ∈ Gσ.rf, then w ∈ Sσ, i.e., Sσ

is downward-closed w.r.t. Gσ.po ∪ rf ∪ sync. Let Gρ be a plain execution graph such that

Gρ.Evts = Sσ and Gρ.po = Gσ.po|Sσ . In addition, δ : Gρ.Evts → Gσ.Evts is the identity

function. Therefore, we omit the application of δ in the rest of the proof for better readability.

We first show that Gρ � b. Because e1 ∥hb e2, we know that {e1, e2} ∩ Sσ = ∅. Then No

Skipping is satisfied becauseGσ.po ⊆ Gσ.hb. Since δ is the identity function, for each r ∈ Gσ.Rds

such that ⟨r, e1⟩ ∈ Gσ.ctrl or ⟨r, e2⟩ ∈ Gσ.ctrl, δ(r) = id(r) = r ∈ Gρ.Evts. Hence, Same

Control Flow is also satisfied.

We now show that Gρ is well-formed and executable. By Lemma 5, Gρ is executable. Since

Gρ.Evts ⊆ Gσ.Evts and Gσ.rf|Sσ ⊆ Gσ.hb, Gρ is reads-from feasible. Since Gσ.(po ∪ sync) ⊆

Gσ.hb, by Lemma 6, Gρ is lock feasible.

▶ Inserting Memory Orders. Finally, we show that there exists a memory insertion scheme such

thatGρ is sequentially consistent. Observe that for all acq(l) ∈ Gρ.Acqs, where l ∈ LocksHeld(e1),

we have acq(l) trace−−−−→ e1 because either ⟨acq(l), e1⟩ ∈ Gσ.hb or ⟨acq(l), e2⟩ ∈ Gσ.hb by defini-

tion. In the former case, since hb ⊆ trace, we know that acq(l) trace−−−−→ e1. In the latter case,

since l ∈ LocksHeld(e1), we can infer that there is a hb path between e1 and acq(l). Then acq(l)

has to be trace ordered before e1 as the alternative would imply e1
hb−−→ acq(l) hb−−→ e2, i.e., a

88

contradiction with the assumption that e1 ∥hb e2. Then we can apply Lemma 7 and conclude that

there exists a memory insertion scheme such that Gρ is sequentially consistent.

▶ Mapping to Concrete Execution Graph. Since the execution graph Gρ is already concrete by

construction, there is no further step needed.

4.6.5 Schedulable Happens-before (SHB)

Schedulable Happens-before (SHB) [MKV18] is an extension of Happens-before (HB) in which

the race reported by the SHB algorithm does not have to be the first race to be sound. Like HB, it

is also a partial order based algorithm that builds an shb order, which is defined as the following.

shb = (po ∪ sync ∪ rf)+

The soundness theorem is stated as the following.

▶ Theorem 8

If e1 ∥shb e2, then ⟨e1, e2⟩ is a sound race.

Proof. Let Sσ be a set defined as the following.

Sσ = {e ∈ Gσ.Evts | ⟨e, e1⟩ ∈ Gσ.shb ∨ ⟨e, e2⟩ ∈ Gσ.shb}

Cσ = Gσ.(Rds ∪Wrts) ∩ Sσ

Because shb is transitive, Sσ is downward-closed w.r.t. shb. Let Gρ be a plain execution graph

such thatGρ.Evts = Sσ andGρ.po = Gσ.po|Sσ . In addition, δ : Gρ.Evts→ Gσ.Evts is the identity

function. The rest of the proof follows the exact same reasoning process of the soundness proof

for HB because hb ⊆ shb.

89

4.6.6 SyncP

SyncP [MPV21] is a data race prediction algorithm that computes the event set of a potential

witness and determine if ⟨e1, e2⟩ is a data race by checking whether they are included in the set.

Formally, the sync-reversal-free closure of (e1, e2), SRFIdealσ(e1, e2), is a set of events defined

inductively by the following rules:

· {prevσ(e1), prevσ(e2)} ⊆ SRFIdealσ(e1, e2), where ⟨prevσ(e), e⟩ ∈ Gσ.po|imm for all e ∈

Gσ.Evts,

· for each event e ∈ Gσ.Evts, if ⟨e, e′⟩ ∈ Gσ.(po ∪ rf) for some event e′ ∈ SRFIdealσ(e1, e2),

then e ∈ SRFIdealσ(e1, e2),

· for any two acquire events acq1(l) and acq2(l) ∈ Gσ.Acqs, if acq1(l) ∈ SRFIdealσ(e1, e2) and

acq2(l) ∈ SRFIdealσ(e1, e2) and ⟨acq1(l), acq2(l)⟩ ∈ Gσ.trace, then there is a release event

rel1(l) ∈ SRFIdealσ(e1, e2) such that match(rel1(l)) = acq1(l).

The soundness theorem is stated as the following.

▶ Theorem 9

If {e1, e2} ∩ SRFIdealσ(e1, e2) = ∅, then ⟨e1, e2⟩ is a sound race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a set defined as the following.

Sσ = SRFIdealσ(e1, e2)

Cσ = Gσ.(Rds ∪Wrts) ∩ Sσ

By the second condition of the definition of SRFIdealσ(e1, e2), we know that Sσ is downward-

closed w.r.t. Gσ.(po ∪ rf). Let Gρ be a plain execution graph such that Gρ.Evts = Sσ and

Gρ.po = Gσ.po|Sσ . In addition, δ : Gρ.Evts→ Gσ.Evts is the identity function.

90

We first show that Gρ � b where b = e1e2. To start with, {e1, e2} ∩ SRFIdealσ(e1, e2) = ∅

comes from the assumption. In addition, No Skipping is satisfied by the base condition of the

definition, i.e., {prev(e1), prev(e2)} ⊆ SRFIdealσ(e1, e2). Since δ is the identity function, for each

r ∈ Gσ.Rds such that ⟨r, e1⟩ ∈ Gσ.ctrl or ⟨r, e2⟩ ∈ Gσ.ctrl, δ(r) = id(r) = r ∈ Gρ.Evts.

Hence, Same Control Flow is also satisfied.

We now show that Gρ is well-formed and executable. Since Gρ.Evts is downward-closed

w.r.t. Gσ.(po∪ rf), by Lemma 5, Gρ is read feasible and executable. If there are two open critical

sections co-exist in Gρ, then there exists two acquire events acq1(l) and acq2(l) such that both

their matching release events are not included in Gρ.Evts. However, this contradict with the third

condition of the definition of SRFIdealσ(e1, e2). Hence, for each lock l ∈ Lock, there is at most

one open critical section present in Gρ. That is, Gρ is lock feasible.

▶ Inserting Memory Orders. Lastly, we show that there exists a memory order insertion scheme

such that Gρ is sequentially consistent. Observe that for any acq(l) ∈ Gρ.Acqs where l ∈

LocksHeld(ei) and i ∈ {1, 2}, acq(l) trace−−−−→ ei. This is because for each acq(l), if l ∈ LocksHeld(ei),

then either acq(l) is the acquire event of the critical section of ei, or there are acquire event acqi(l)

and release events rel(l) and reli(l) ∈ Gσ wherematch(rel(l)) = acq(l), match(reli(l)) = acqi(l),

and acqi(l) is the acquire event of ei’s critical section. In the former case, it’s obvious that

acq(l) trace−−−−→ ei. In the latter case, either reli(l)
sync−−−→ acq(l) or rel(l) sync−−−→ acqi(l). We

know that reli(l) /∈ Gρ.Evts because Gρ is downward-closed w.r.t. Gσ.po and ei /∈ Gρ.Evts.

Hence, if acq(l) ∈ Gρ, it must be that rel(l) sync−−−→ acqi(l), which implies that acq(l) trace−−−−→ ei.

By Lemma 7, there exists an order insertion scheme such that Gρ is sequentially consistent.

▶ Mapping to Concrete Execution Graph. Since the execution graph Gρ is already concrete by

construction, there is no further step needed.

91

4.7 Future Work

Soundness definitions may be extended to state that every reported data race indicates either

the presence of a race or a predictable deadlock. Our treatment does not currently incorporate

the deadlock provision covered by the weak soundness theorem, which is used in some partial-

order-based data race predictive analyses [SES12, GRX19, KMV17]. While one can modify our

soundness definition with a disjunction to accommodate the weak soundness theorem, precisely

capturing a predictable deadlock pattern with respect to the reported data race requires further

exploration.

As mentioned in Section 4.4.4, our definition forM-consistency assumes MCA models. Inte-

grating the semantics of lock acquire and release events into non-MCA models remains as future

work.

92

CHAPTER 5

Correctness of Transformations under Weak Memory

Models

Transformations are used in both the contexts of compilers and predictive analyses. In compilers,

before the compilation schemes are applied, source programs are often transformed in order for

more optimized code to be produced after compilation. In predictive analyses, executions can be

transformed to reveal concurrent bugs under weak memory models using existing analyses that

assume sequential consistency. As mentioned in Chapter 1, a sound compiler transformation can

be seen as a function that takes a set of executions as input and produces a set of observationally

equivalent executions such that any behavior that is observable after the transformation should be

expected before the transformation. Interestingly, the same notion of sound transformations can

be used to extend existing predictive analyses, which assume sequential consistency, to predict

concurrent bugs under weak memory models.

In this chapter, we start by diving into the sound transformations under the memory model of

Java Access Modes and compare them with the sound trasnformations under the memory model

of C++11, which are extensively studied by [LVK17]. We then focus our attention on sound

transformations that can help existing predictive analyses, which assume sequential consistency,

to catch concurrent bugs under weak memory models. In particular, in Section 5.2, we borrow

two sound transformations for x86-TSO from [LV16] and show a new sound transformation for

ARMv8 [ADG21].

93

Psrc Ptgt

Gsrc Gtgt;

⇝

Figure 5.1: The relationship between programs and executions with transformations

5.1 Sound Transformations for Java Access Modes

One important aspect of compilers is the program transformations that they apply to the program.

A correct compiler transformation should not introduce any new program behavior. While this

is relatively simple for sequential programs, it can yield subtle issues when applying the same

transformations to concurrent programs. A memory model’s task is then to accommodate a set

of common program transformations while still provide intuitive synchronization guarantees to

the programmers. In Section 3.4 we show that Java and C/C++11 can use the same compilation

scheme to Power and x86. However, Java has a stronger semantics for Volatile comparing to

seq_cst in C/C++11 and can adopt only a strict subset of the transformations that are valid for

C/C++11.

In this section, we use the set of compiler transformations detailed by [LVK17] and compare

their soundness in Java with C/C++11. We provide formal proofs for the sound transformations

and counter-examples for invalid transformations. We conclude this section by discussing the

implications of our results.

Recall that we have informally introduced the relationships of programs and executions in

the context of transformations in Chapter 2, as shown in Fig. 5.1. Let Psrc be the program before

applying a transformation and Ptgt is the program obtained after the transformation. Gsrc and

Gtgt are two execution graphs assiciated with the two programs. To prove a transformation is

valid, intuitively, we show that there does not exist a Gsrc of Psrc such that it is forbidden by

94

Transformation C/C++11 Java

Strengthening [§ 5.1.1] ✓ ✓

Sequentialisation [§ 5.1.2] ✓ ✓

Reordering [§ 5.1.3] See Fig. 5.3

Merging [§ 5.1.4] See Fig. 5.4

Register Promotion [§ 5.1.5] ✓ For locations that does not

have Volatile access

Figure 5.2: Compiler Transformations in C/C++11 and Java

Jam21 but the corresponding Gtgt of Ptgt is allowed.

▶ Definition 20 (Sound Program Transformation)

Let Psrc be a Java program which has a set of candidate executions, JPsrcK. Let T : G → G
be a transformation and Gtgt = T (Gsrc) for each candidate execution Gsrc of Psrc. Then we

say T is sound under Jam21 if for each Gtgt, if Gtgt is Jam21-consistent, then Gsrc is also

Jam21-consistent.

The results for Java comparing them C/C++11 [LVK17] are summarized in Fig. 5.2.

We explain each type of transformation shown in the table in details in the rest of this section.

5.1.1 Strengthening

Strengthening transforms the access mode of accesses to stronger access modes. It is supported

by Jam21 due to the monotonicity property (see Appendix H) of the memory model. The formal

theorem is the following:

▶ Theorem 10 (Strengthening)

Let Gtgt an execution of Ptgt, which is obtained from applying Strengthening to a program

Psrc. There exists an execution Gsrc of Psrc such that:

· Gsrc.Evts = Gtgt.Evts

· Gsrc.po = Gtgt.po

· Gsrc.rf = Gtgt.rf

95

· ∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) ⊑ Gtgt.AccessMode(i)

If Gtgt is Jam21-consistent, then Gsrc is Jam21-consistent.

Proof. By Monotonicity of Jam21, all the constraints in Gsrc are preserved in the strengthened

execution Gtgt. Therefore, if Gtgt is Jam21-consistent, so is Gsrc.

5.1.2 Sequentialization

Sequentialization transforms two concurrent accesses into accesses in a single sequential process.

It is natually supported by Jam21 because sequentialization does not remove any synchronization

from the program.

▶ Theorem 11 (Sequentialization)

Let Psrc be a Java program and Ptgt be a Java program obtained by performing a sequential-

ization operation on a pair of accesses a and b. Let Gtgt be an execution of Ptgt. Then there

exists an execution Gsrc of Psrc such that

· Gsrc.po ∪ {⟨a, b⟩} = Gtgt.po where ⟨a, b⟩ /∈ Gsrc.po and ⟨b, a⟩ /∈ Gsrc.po

· Gsrc.rf = Gtgt.rf

· Gsrc.Evts = Gtgt.Evts

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

and if Gtgt is Jam21-consistent, then Gsrc is Jam21-consistent.

Proof. Assume towards contradiction that Gsrc is not Jam21-consistent. Then there are two cases:

either there is a (po | rf)+ cycle or a co cycle in Gsrc. Whether or not a and b are included in this

cycle, adding a po edge between a and b cannot eliminate this cycle (although it might introduces

new cycles). Therefore, Gtgt is also not Jam21-consistent, contradicting to our assumption.

96

5.1.3 Reordering

The operation of reordering can be seen as composing deordering with sequentialization. Since we

know that sequentialization is sound in Jam21, we only need to show that deordering is sound in

order to show reordering is sound in Jam21.

Deordering Deordering is a transformation that turns a pair of accesses related by a po relation

into a pair of concurrent accesses. In effect, it removes an po edge in the execution graph.

First, we adopt the same definition of adjacent events from [LVK17]:

▶ Definition 21 (Adjacent Events)

Two events a and b are adjacent in a partial order R if for all c, we have:

· c R−→ a⇒ c R−→ b

· b R−→ c⇒ a R−→ c

For Java, the table of allowed reordering two adjacent events (with each row as the first

event and column as the second event) is shown in Fig. 5.3 (some of the cases are different from

C11 [LVK17] and we have marked them in red). Intuitively, the sound deorderable pairs are

ordered by the po edges that does not impose any synchronization in the program. Therefore,

deordering (removing the po edge) does not introduce new program behavior.

To prove that Jam21 supports the reordering shown in this table, we need to prove each cell

shown in the table is valid for Jam21.

▶ Theorem 12 (Deordering)

Let Psrc be a Java program and Ptgt be a Java program obtained by performing a deordering

operation on a pair of accesses a and b according to Fig. 5.3. Let Gtgt be an execution of Ptgt.

Then there exists an execution Gsrc of Psrc such that

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} where a and b are po-adjacent

· Gsrc.rf = Gtgt.rf

· Gsrc.Evts = Gtgt.Evts

97

Rm2
y Wm2

y RMWm2
y Fm2

Rm1
x m1 ⊑ Opaque m1,m2 ⊑ Opaque∧

(m1 = Plain∨m2 =
Plain)

m1 = Plain ∧m2 ⊑
Acquire

(m1 ⊑ Opaque ∧ m2 =
Release ∧ ∀i, Fm2 po−−→ i ⇒
i /∈ G.Wrts) ∨ (m1 =
Acquire ∧m2 = Acquire) ∨
(m1 = Acquire ∧ m2 =
Release)

Wm1
x m1 ̸= Volatile ∨

m2 ̸= Volatile

m2 ⊑ Opaque m2 ⊑ Acquire (m2 = Acquire) ∨ (m2 =
Release ∧ ∀i, Fm2 po−−→
i ⇒ i /∈ G.Wrts) ∨ (m2 =
Release ∧ ∀i, Fm2 po−−→
i ∧ i ∈ G.Wrts ⇒
AccessMode(i) =
Release)

RMWm1
x m1 ⊑ Release m1 ⊑ Release ∧

m2 = Plain

- (m1 ⊒ Acquire ∧ m2 =
Acquire) ∨ (m2 =
Release ∧ ∀i, Fm2 po−−→ i ⇒
(i ∈ G.Rds∨ (i ∈ G.Wrts∧
AccessMode(i) =
Release)))

Fm1 (m1 = Release) ∨
(m1 = Acquire ∧
∀i, i po−−→ Fm1 ⇒
i /∈ G.Rds)

m1 = Release ∧
m2 ⊒ Release ∨
(m1 = Acquire ∧
∀i, i po−−→ Fm1 ⇒
i /∈ G.Rds)

m1 = Release ∧
m2 ⊒ Release ∨
(m1 = Acquire ∧
∀i, i po−−→ Fm1 ⇒
i /∈ G.Rds)

(m1 = Release ∧ m2 =
Acquire)∨(m1 = Acquire∧
∀i, i po−−→ Fm1 ⇒ i /∈
G.Rds) ∨ (m2 = Release ∧
∀i, Fm2 po−−→ i ⇒ i /∈
G.Wrts)

Figure 5.3: Allowed Deordering Pairs in Jam21

98

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

and if Gtgt is Jam21-consistent, then Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

Reordering, as mentioned previously, can be decomposed into two steps: deordering and

sequentialization. Since we have already shown the soundness of the two transformations, the

soundness of reordering follows naturally.

▶ Corollary 2 (Reordering)

Jam21 supports the reordering transformation for pairs of adjacent accesses shown in Fig. 5.3.

5.1.4 Merging

Merging transforms two adjacent accesses into one single equivalent access to reduce the num-

ber of memory accesses in the program. We have grouped all types of merging transformations

appeared in C/C++11 [LVK17] here in one section. A summarized result of mergable pairs com-

paring with C/C++11 can be found in Fig. 5.4. The results are mostly similar except for Volatile.

Many merging transformation are invalid for Volatile because they remove the cross-thread syn-

chronization of Volatile.

5.1.4.1 Read-Read Merging

Read-read merging is sometimes done when the compiler is optimizing redundant loads in the

same thread. When we are encountering two consecutive reads to the same location, the first

read is unchanged but the second read becomes a local read without accessing the memory.

Let a′ and b be two adjacent read accesses reading from the same write access a. a rf−−→ a′

and a rf−−→ b, and a′ po−−→ b. Assuming AccessMode(a′) = AccessMode(b), then

99

Name C/C++11 Java

Read-read Merging Rm; Rm ⇝ Rm Rm⊑Acq; Rm⊑Acq ⇝ Rm

Write-write Merging Wm; Wm ⇝ Wm Wm⊑Rel; Wm⊑Rel ⇝ Wm

Write/RMW-read Merging Wm; Racq ⇝ Wm Wm; Rm⊑Opq ⇝ Wm

Wsc; Rsc ⇝ Wsc ✗

RMWm; Rmr⊑m ⇝ RMWm RMWm; Rm⊑Opq ⇝ RMWm

Write-RMWMerging Wmw⊑m; RMWm ⇝ Wmw Wmw⊑Rel; RMWm⊏Vol ⇝ Wmw

RMW-RMWMerging RMWm; RMWm ⇝ RMWm RMWm⊏Vol; RMWm⊏Vol ⇝ RMWm

Fence-fence Merging Fm; Fm ⇝ Fm Fm; Fm ⇝ Fm

Figure 5.4: Mergable Pairs in C/C++11 [LVK17] and Java

· ∀i, a′ po−−→ i⇒ b po−−→ i

· ∀i, a′ ra−−→ i⇒ b ra−−→ i

· ∀i, a′ push−−−→ i⇒ b push−−−→ i

· ∀j, j po−−→ b⇒ j po−−→ a′

For executions, this corresponds to the following transformation in the execution graph: since

the value of r1 and r2 are guaranteed to have the same value in Ptgt, we know that this corre-

sponds to the execution of Psrc where the two read accesses read from the same write access.

Then we want to show that, if Gtgt is Jam21-consistent, Gsrc is also Jam21-consistent.

▶ Theorem 13 (Read-Read Merging)

Let Gtgt be an Jam21-consistent execution. Let a ∈ Gtgt.Rds\RMW and let a′ ∈ Gtgt.Evts such

that a rf−−→ a′. Let b /∈ Gtgt.Evts. There exists a Gsrc such that:

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}

100

· Gsrc.rf = Gtgt.rf ∪ {⟨a′, b⟩}

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· b ∈ Gsrc.Rds

· Gsrc.AccessMode(b) = Gsrc.AccessMode(a) ⊑ Acquire

and Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

Note that Jam21 does not allow read-read merging if the two read accesses are both Volatile

mode reads. We provide an example of this in Appendix T.

5.1.4.2 Write-Write Merging

The write-write merge transformation refers to the program transformation that merges two

consecutive write operations into one by removing the former one. Jam21 support write-write

merge when the access modes of the two writes are the same and they are not Volatile mode

accesses.

Let a and b be the two adjacent writes such that a po−−→ b. We once again have the properties:

· ∀i, i po−−→ a⇒ i po−−→ b

· ∀j, b po−−→ j ⇒ a po−−→ j

· ∀i, i ra−−→ a⇒ i ra−−→ b

We have the following theorem.

101

▶ Theorem 14 (Write-Write Merging)

Let Gtgt be an Jam21-consistent execution. Let b ∈ Gtgt.Wrts\RMW and let a /∈ Gtgt.Evts and

loc(a) = loc(b)∧∀i ∈ Gtgt.Wrts, loc(i) = loc(b)⇒ val(a) ̸= val(i). There exists a Gsrc such

that:

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· a ∈ Gsrc.Wrts

· Gsrc.AccessMode(a) = Gsrc.AccessMode(b) ⊑ Release

and Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

Note that write-write merging is not valid for Volatile mode writes. We provide an example

of this in Appendix T.

5.1.4.3 Write/RMW-read Merging

The Write/RMW-read merging refers to the program transformation that merges a write/RMW

and a read into a single write/RMW and a local access.

Similarly, the transformation with an RMW operation and a read operation optimizes the lat-

ter read operation to read locally and in effect removes a memory load operation in the execution

graph.

Jam21 only support this transformation when the read operation is (or is weaker than)Opaque

mode which is different from RC11 [LVK17]’s result for C/C++11. We provide a counter-example

102

in Appendix T to show that write/RMW-read merging is invalid when the read is (or is stronger

than) Acquire mode.

▶ Theorem 15 (Write/RMW-Read Merging)

Let Gtgt be a Jam21-consistent execution. Let a ∈ Gtgt.Wrts and b /∈ Gtgt.Evts. There exists a

Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· b ∈ Gsrc.Rds

· Gsrc.loc(b) = Gsrc.loc(a)

· Gsrc.val(b) = Gsrc.val(a)

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.AccessMode(b) ⊑ Opaque

Please see Appendix T for the proof.

5.1.4.4 Write-RMW Merging

The write-RMW merging refers to the program transformation that merges a write and a con-

secutive RMW operation into a write with the value of the RMW. For example, if we have the

following pattern in a program:

x = 1;
x.getAndSet(1,2);

It can be tranformed to:

x = 2;

103

Similar to write-write merging, Jam21 supports write-RMW merging when the access mode

of the write is {Opaque, Release} and the access mode of the RMW is {Acquire, Release}.

▶ Theorem 16 (Write-RMW Merging)

Let Gtgt be a Jam21-consistent execution. Let b ∈ Gtgt.Wrts\Gtgt.RMW, a /∈ Gtgt.Evts and

v ∈ Val. There exists a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.AccessMode(a) ∈ {Opaque, Release}

· Gsrc.AccessMode(b) ∈ {Acquire, Release}

· Gsrc.loc(b) = Gsrc.loc(a)

· b ∈ Gsrc.RMW

· Gsrc.val(b) = (Gsrc.val(a), v)

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

and Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

5.1.4.5 RMW-RMW Merging

The RMW-RMW merging transformation refers to the program transformation that merges two

consecutive RMW operations into one such that it has the first RMW’s (expected) read value and

the second RMW’s write value. For example, if we have the following pattern in a program:

x.getandSet(1,2);
x.getandSet(2,3);

then it might be transformed into:

104

x.getAndSet(1,3);

The RMW-RMW merging transformation is essentially the same as write-write merging and

read-read merging described previously. Therefore, the set of constraints on valid access modes

for merging is the intersection of the two. That is, two RMWs are mergeable if they are both

Acquire mode or Release mode. For the counter-examples showing this transformation is invalid

for Volatile accesses, please see the examples for write-write and read-read merging.

▶ Theorem 17 (RMW-RMWMerging)

Let Gtgt be a Jam21-consistent execution. Let x be a memory location and a ∈ Gtgt.Evts with

Gtgt.val(a) = (vr, vw), Gtgt.loc(a) = x, and Gtgt.AccessMode(a) ∈ {Release, Acquire}. Let

b /∈ Gtgt.Evts, there exists a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.val(a) = (vr, v)

· Gsrc.val(b) = (v, vw)

· Gsrc.loc(b) = x

· Gsrc.AccessMode(b) = Gsrc.AccessMode(a) ∈ {Release, Acquire}

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i to−−→ a} ∪ {⟨b, j⟩ | a to−−→ j}

· Gsrc.IW = Gtgt.IW

and Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

5.1.4.6 Fence-fence Merging

The Fence-fence merging refers to the program transformation that merges two consecutive

fences of the same access mode into one. For example, if we have:

105

VarHandle.fullFence();
VarHandle.fullFence();

then it can be optimized to:

VarHandle.fullFence();

Since Jam21 is fence-based such that each fence is converted into an edge between memory

accesses, this is trivially supported since the execution graph before and after the transformation

is exactly the same.

5.1.5 Register Promotion for Non-shared Variable

Register Promotion promotes memory accesses of a non-shared memory location to local reg-

isters. It has the effect of removing memory accesses for thread-local variables. Jam21 only

supports register promotion for variables without any Volatile accesses in the program. For non-

Volatile accesses, since the variable is not shared across threads, it is safe to remove them without

worrying about removing synchronization from the program. In contrast, Volatile accesses im-

pose cross-thread synchronizations with Volatile accesses for other variables, so removing such

accesses can potentially remove important synchronization in the program and introduce new

behaviors that were previously forbidden by the memory model. We provide a counter-example

in this section showing that we cannot promote Volatile accesses to local register accesses even

if the location is only accessed by one thread.

Suppose all accesses to a memory location are in the same thread, the transformation can be

seen as two steps:

1. Weakening the accesses to Plain mode accesses

2. Removing the Plain mode accesses

106

▶ Theorem 18 (Weakening for non-shared variable)

LetGtgt be a Jam21-consistent execution such that, for all accesses i and j inGtgt.Evts, loc(i) =
loc(j) = x⇒ Tid(i) = Tid(j) for some memory locationx. In addition, ∀i ∈ Gtgt.Evts, loc(i) =
x⇒ AccessMode(i) = Plain. There exists an execution Gsrc such that:

· Gsrc.Evts = Gtgt.Evts

· Gsrc.po = Gtgt.po

· Gsrc.rf = Gtgt.rf

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gsrc.Evts, loc(i) = x⇒ AccessMode(i) ∈ {Release, Acquire}

and Gsrc is Jam21-consistent.

Please see Appendix T for the proof.

▶ Theorem 19 (Removing Plain accesses for non-shared variable)

Let Gtgt be a Jam21-consistent execution. Let x be a memory location and for all i ∈ Gtgt.Evts
such that loc(i) = x, Tid(i) = t for some x and t. Let a /∈ Gtgt.Evts. There is a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· Gsrc.loc(a) = x

· Gsrc.AccessMode(a) = Plain

· Gsrc.po ⊃ Gtgt.po

· for all i ∈ Gsrc.Evts such that Gsrc.loc(i) = x, i po−−→ a or a po−−→ i

· Gsrc.rf = Gtgt.rf if a ∈ Gsrc.Wrts\RMW, otherwise, Gsrc.rf = Gtgt.rf ∪ {⟨i, a⟩} such that

(i ∈ Gsrc.Wrts) ∧ (loc(i) = x) ∧ (i po−−→ a) ∧ (∀j ∈ Gsrc.Evts, (loc(j) = x) ∧ (j po−−→ a)⇒
(j po−−→ i)).

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

and Gsrc is Jam21-consistent.

107

Please see Appendix T for the proof.

Counter Example We now show a counter example for invalid register promotion on loca-

tions with Volatile accesses. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);
Z.setVolatile(1);
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

An execution with the annotated values in this program is not allowed by Jam21. The execu-

tion graph before the transformation is shown in Fig. 5.5. First note that the Volatile access on z

also has Release semantics due to the monotonicity of access modes, which yields the ra edge in

Thread 2. The total order among push edges gives use two cases:

1. Wz = 1 vvo−−−→ Wx = 1. Since Wx = 2 ra−−→ Wz = 1 and ra ⊆ vvo and vvo+ ⊆ vo, we have Wx

= 2 vo−−→ Wx = 1, which contradict with the co edge established by the observation from

Thread 0.

2. Wy = 2 vvo−−−→ Wy = 1. This contradict with the co edge established by the observation from

Thread 1.

In both cases there is a contradiction (a co cycle). Therefore, this execution is forbidden by Jam21.

In this example, the memory location z is only accessed by Thread 2. It maybe tempting to

promote z to a local register on Thread 2 to reduce the number of memory instructions, which

yields the following program:

108

Rx = 1

Rx = 2

Ry = 1

Ry = 2

Wx = 2

WzV = 1

WyV = 1

WyV = 2

WxV = 1

po po ra

push

push

co

co

Figure 5.5: Before Register Promotion on Volatile access (Forbidden)

Thread0 {
int r1 = X.getOpaque();
int r2 = X.getOpaque();

}

Thread1 {
int r3 = Y.getOpaque();
int r4 = Y.getOpaque();

}

Thread2 {
X.setOpaque(2);
int z = 1
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph after the transformation is shown in Fig. 5.6.

The annotated program behavior becomes allowed by Jam21 after the transformation. As the

execution graph shows, since Volatile accesses also have cross-thread synchronization effect, we

cannot simply weaken it to a Plain access without introducing new program behaviors.

5.1.6 Why are many transformations invalid for Volatile?

As we have shown, many local transformations are invalid forVolatile accesses under Jam21. This

is not a surprise and is intended to provide programmers a more intuitive semantics for Volatile

109

Rx = 1

Rx = 2

Ry = 1

Ry = 2

Wx = 2

WyV = 1

WyV = 2

WxV = 1

po po

po

push

co

co

Figure 5.6: After Register Promotion on Volatile access (Allowed)

accesses.

First, as we have confirmed with the author of [Lea18], Java’s Access Modes intend equiv-

alent semantics for Volatile mode and fullFence(). In this way, the programmers can easily

understand the semantics of both once they understand fullFence(). To accurately capture this

intention, Jam21 used a fence-based approach with push order to model Volatile mode. As we de-

scribed in Section 3.2, fullFence() in Java has cross-thread synchronization effects. As a result,

any local program transformation that removes a Volatile access from the execution graph may

also remove its cross-thread synchronization, and might introduce new program behavior after

the transformation. Therefore, those transformations on Volatile accesses are mostly not allowed

by Jam21. On the other hand, the sc fence in C/C++11 [LVK17] has slightly stronger synchro-

nization effect than sc accesses so that they can be used to restore sequential consistency when

inserted between every pair of accesses. Some of the transformations are allowed to apply to sc

accesses but not to the fence version of the program.

In addition, restricting the set of possible transformations that is allowed to apply to Volatile

variables can keep the coding process simple for programmers. From the programmers’ perspec-

110

tive, one of the biggest challenges of developing and debugging concurrent programs comes from

the compiler transformations that introduces surprising program behaviors that are not observ-

able under sequential consistency. Therefore, restricting the set of possible transformations on

Volatile accesses can restrict the set of surprising program behaviors that can happen when using

Volatile mode, making the development process simpler. From this perspective, Jam21 provides

more synchronization guarantees for Volatile mode than C/C++11 for sc mode atomic accesses.

Lastly, as we have confirmed with the author of [Lea18] the current implementation of Open-

JDK JVM does not apply those transformations on Volatile accesses.

5.2 Sound Transformations for Predictive Analyses

In the previous section, we have seen a set of sound transformations for a weak memory model

Jam21. Just like Jam21, there are sound transformations for other weak memory models as well,

such as x86-TSO and ARMv8. Among all the sound transformations, a subset of the transforma-

tion can transform an weak-memory consistent execution graph into a sequentially consistent

one. In this case, since the execution graphs before and after the transformation represents the

same program behavior, we say the behavior of the weak-memory consistent execution is ex-

plained by the sequentially consistent execution [LV16].

This feature of explaining a weak memory behavior using a sequentially consistent execution

is especially helpful for predictive analyses, since many existing predictive analyses are trace-

based, i.e., they expect the input execution is a sequential trace and predict bugs that correspond

to sequential witness traces. Although sequentially consistent executions can be linearized to

sequential traces, weak memory consistent execution graphs are not linearizable to traces due

to the cycles that they allow. As a result, existing analysis cannot be directly used to predict

bugs under weak memory models. However, if we augment the analyses with transformations

such that each of the weak memory bug witness can be explained by a sequentially consistent

execution, then the existing trace-based algorithms can still be applied and those sequentially

111

consistent executions are sufficient for showing the soundness of the results.

In this section, we borrow two of such transformations from [LV16] for explaining x86-TSO

and define a new transformation that explains ARMv8. We then demonstrate how a new data

race can be catched by adding transformation to an existing data race predictive analysis.

5.2.1 Sound Transformation for x86-TSO

The same trace-based approaches from existing data race prediction works cannot be directly

applied to executions under x86-TSO. The problem is that only sequentially consistent execution

graphs has a set of well-defined execution traces, but not TSO-consistent graphs. This is essen-

tially because the execution cycles that are allowed under TSO are not linearizable. Therefore,

we need a transformation function from a TSO-consistent execution graph to an sequentially

consistent execution graph so that we can find a trace representing the TSO-consistent execution

graph. The transformation functions are well-studied by [LV16].

The main aim of [LV16] was to give a more intuitive explanation of relaxed memory mod-

els using the same technique for reasoning about sequentially consistent programs. This was

achieved by transforming relaxed memory execution graphs to sequentially consistent execu-

tion graphs. While there were several relaxed memory models cannot be explained via this ap-

proach, all TSO-consistent execution graphs can be transformed to sequentially consistent exe-

cution graphs via two types of program transformations. We provide the definitions of the two

transformations below.

▶ Definition 22 (Write-Read Reordering [LV16])

For an execution graphG and event a and b, ReorderWR(a, b) is the executionG′
obtained from

G by inverting the program order from a to b, i.e., it is given by: G′.po = (G.po\{⟨a, b⟩}) ∪
{⟨b, a⟩}, and G′.C = G.C for every other component C. ReorderWR(a, b) is defined only when

⟨a, b⟩ ∈ [W]; po|imm; [R] and a.loc ̸= b.loc.

112

▶ Definition 23 (Read Elimination [LV16])

For an execution G and events a and b, RemoveWR(a, b) is the execution graph G′
obtained

by removing b from G, i.e., G′
is given by: G′.Evts = G.Evts\{b}, and G′.C = G.C ∩

(G′.Evts × G′.Evts) for every other component C. RemoveWR(a, b) is defined only when

⟨a, b⟩ ∈ [W]; po|imm; [R], a.loc = b.loc, and a.val = b.val.

We denote G⇝ G′
is G′

is obtained by applying either of the transformations on G.

It’s well-known that the two transformations are both sound [LV16].

▶ Proposition 6 (Soundness of Transformations under TSO [LV16])

If G⇝ G′
and G′

is TSO-consistent, then so is G.

Note that a transformation is still sound if G is consistent but G′
is inconsistent under TSO. In

general, as long as a transformation does not introduce any new behavior, i.e., transforming an in-

consistent execution into a consistent one under the same memory model, it is considered sound.

Therefore, the above proposition states the consistency implication in the opposite direction of

the transformation.

5.2.2 Sound Transformation for ARMv8

In this section, we define a reordering transformation for ARMv8 and prove its soundness. We

use the ARMv8 model for fixed-size integer accesses from [ADG21] to show the soundness of the

transformation.

▶ Definition 24

Let G be a plain execution graph, a, b ∈ G.Evts with ⟨a, b⟩ ∈ G.po|imm \ (G.addr ∪
G.ctrl ∪ G.data) and loc(a) ̸= loc(b). Then G′ = Reorder(G, a, b) is defined as:

· if there is e ∈ G.Evts such that ⟨e, a⟩ ∈ G.addr and b is a write, thenG′.po = G.po\{⟨a, b⟩} ∪
{⟨b, a⟩}. G′.addr = G.addr ∪ {⟨e, b⟩}. G′.C = G.C for other components C.

· otherwise, G′.po = G.po\{⟨a, b⟩} ∪ {⟨b, a⟩}. G′.C = G.C for other components C.

The purpose of distinguish the two cases is to preserve all the derived dob orders from the

113

original execution graph so that the transformation stays sound. Here we are inserting an ar-

tificial address dependency to enforce the order. Translating to program transformation, this

corresponds to the insertion of an XOR instruction on the destination register of e with itself (note

that e is a read event since there is already an address dependency from e to a) and add the result

of the XOR (which is always 0) to the address used in b. For more details of this transformation,

please see [MSS12].

▶ Lemma 9

Let G′ = Reorder(G, a, b). Then G.dob ⊆ G′.dob.

Proof. We show that for each ⟨e1, e2⟩ ∈ G.dob, ⟨e1, e2⟩ ∈ G′.dob. We analyze each case of dob

separately.

· ⟨e1, e2⟩ ∈ G.addr ∪ G.data ∪ (G.ctrl; [G.Wrts]). As the transformation does not change

any existing component C in G other than po|imm, the lemma holds in this case.

· ⟨e1, e2⟩ ∈ (G.addr;G.po; [G.Wrts]). Then it means there is e3 such that ⟨e1, e3⟩ ∈ G.addr,

⟨e3, e2⟩ ∈ G.po and e2 ∈ G.Wrts. If ⟨e3, e2⟩ ∈ G.po|imm\(G.addr ∪ G.ctrl ∪ G.data) and

loc(e2) ̸= loc(e3), then the first case in Definition 24 applies and ⟨e1, e2⟩ ∈ G′.addr ⊆ G′.dob.

Otherwise, the relations are not changed in G′
and ⟨e1, e2⟩ ∈ (G′.addr;G′.po; [G′.Wrts]) ⊆

G′.dob.

· ⟨e1, e2⟩ ∈ ((G.addr ∪ G.data);G.lrs). Then there is e3 ∈ G.Evts such that ⟨e1, e3⟩ ∈ G.addr

and ⟨e3, e2⟩ ∈ G.lrs ⊆ G.po-loc. G.data, G.addr and G.po-loc are preserved by the

transformation. That is, G.data = G′.data, G.addr ⊆ G′.addr and G.po-loc = G′.po-loc.

Therefore, ⟨e1, e2⟩ ∈ (G.addr;G.po-loc). In addition, there cannot be any intervening write

with the same location as e2 being reordered before e2 since the transformation requires the

locations of the two events to be different. Therefore, ⟨e3, e2⟩ ∈ G′.lrs.

114

Note that the converse is not true. After the transformation, there may be more derived dob

orders in the execution graph. However, this does not affect the soundness of the transformation

as it monotonically adds more ordering constraints to the execution graph. Therefore, it follows

that this transformation is sound.

▶ Lemma 10

Let G be a plain execution and G′ = Reorder(G, a, b) for some events a, b ∈ G.Evts. If G′
is

ARMv8-consistent, then so is G.

Proof. As G′
is ARMv8-consistent, we know that it satisfies the two requirements: the Internal

Visibility requirement and the External Visibility requirement. For Internal Visibility require-

ment, we have G′.po-loc ∪ G′.com is acyclic. As the transformation does not change po-loc

and com, we get that G.po-loc ∪ G.com is also acyclic, hence satisfying the Internal Visibility

requirement. For External Visibility requirement, by Lemma 9, we get G.dob ⊆ G′.dob. In addi-

tion, G.po-loc = G′.po-loc and G.com = G′.com. Therefore, G.(com ∪ po-loc ∪ dob) ⊆

G′.(com ∪ po-loc ∪ dob). Hence, we get G.((rfe ∪ fre ∪ coe) ∪ (po-loc; [Wrts]) ∪ dob) ⊆

G′.(rfe ∪ fre ∪ coe ∪ (po-loc; [Wrts]) ∪ dob). By induction, the same relation holds for

their transitive closures. Thus, G.ob ⊆ G′.ob. Since G′.ob is irreflexive, so is G.ob.

Let G be a plain execution graph and we denote G ⇝ G′
if G′

is obtained by applying a

sequence of the Reorder(.) transformations starting from G. By induction on the sequence along

with Lemma 10, we can see that applying a sequence of the Reorder(.) transformation is sound.

▶ Corollary 3

Let G be a plain execution and G′
is an execution graph obtained by applying a sequence of

Reorder(.) on G, i.e., G⇝ G′
. If G′

is ARMv8-consistent, then so is G.

5.2.3 Using Sound Transformations in Predictive Analyses

In this section, we augment an existing predictive data race analysis, M2 [Pav20], with transfor-

mations to predict data races under x86-TSO.

115

5.2.3.1 A Motivating Example

In this section, we provide an example of a TSO data race. The example was originally from the

paper by [Pav20, Figure 8] to show a non-SC-race.

The input execution traces are represented in the form shown in Fig. 5.7a. Each column

represents a thread and each row represents a time-stamp. At each time-stamp, there is exactly

one event being executed. Events from different threads can be executed in a interleaving style

while respecting the mutual exclusion property of locks. We use ei to identify each event, where

i is the time-stamp that ei is executed. There are four types of events: read, write, lock acquire,

and lock release. We write r(x) and w(x) for a read and a write event on a memory location x,

and acq(l) and rel(l) for an acquire and a release event on a lock l. The highlighted events are

reported as data races. In Fig. 5.7a, the two highlighted events, e5 and e13 is not a data race under

sequential consistency. Indeed,

· If e5 and e13 is a data race, then Fig. 5.7b shows all the events that have to occur before e5 and

e13. The order among these events has to respect the program order. Therefore, the order of

events on each thread follows the same order as captured in the input trace from 5.7a.

· M2 requires each read events to read from the same write event as they appeared in the input

trace to maintain soundness. Therefore, we have e8 → e10 and e8 → e12 for location x, and

e1 → e4 for location y.

· Since e5 is in a critical section protected by lock l, its critical section has to be ordered after all

other critical sections protected by the same lock. In this example, it means the critical section

on t2 has to be ordered before the critical section on t1. Hence, we can infer e9 → e2.

· By the transitivity of the partial order constructed so far, we can see that e8 → e3. Since there

are two read events on t3 reading from e8, then they must be ordered before e3. Therefore,

e12 → e3.

116

t1 t2 t3
1 w(y)
2 acq(l)
3 w(x)
4 r(y)
5 w(z)

6 rel(l)
7 acq(l)
8 w(x)
9 rel(l)

10 r(x)
11 w(y)
12 r(x)
13 r(z)

(a) The Input Trace

t1 t2 t3

e1: w(y)

e2: acq(l)

e3: w(x)

e4: r(y)

e7: acq(l)

e8: w(x)

e9: rel(l)

e10: r(x)

e11: w(y)

e12: r(x)

rf rf

rf

co

co

sync

fr

(b) A TSO-Consistent Witness Execution

Figure 5.7: Example from Fig. 8 in [Pav20]

117

· Since e8 → e10, by the transitivity of the partial order again, we have e1 → e11. Since e4 reads

from e1, then it must be that e4 → e11.

· But now a cycle occurs: e3 → e4 → e11 → e12 → e3.

On the other hand, the cycle derived in Fig. 5.7b is allowed under TSO [OSS09]. Indeed,

Fig. 5.7b also shows the execution with orders among events augmented with specific semantics

defined by the axiom memory model of TSO. The po order e3 → e4 and e11 → e12 are not

preserved program order. As a result, the po∪fr cycle shown in the figure is allowed by the TSO

model. Therefore, we can conclude that e5 and e13 form a data race under TSO, which M2 is not

able to directly predict.

From Section 5.2.1, we have seen that there are two sound transformations to explain TSO

behaviors under sequential consistency. We can use one of these two transformations and let M2

predict a witness trace that explain the behavior in Fig. 5.7b. As shown in Fig. 5.8b, ReorderWR(e11, e12)

is applied on the execution graph G from Fig. 5.7b, which effectively swaps the order of e11 and

e12. We highlight the two events in blue. Note that the cycle we previously saw in Fig. 5.7b is

resolved by reordering e11 and e12. Since there is no other cycle in the execution graph, the ex-

ecution graph obtained after the transformation is sequentially consistent. M2 is equipped with

a MaxMin algorithm that linearlize a sequentially consistent execution into a well-formed trace.

Fig. 5.8a shows such a trace output of the MaxMin algorithm. Note that in this trace, the two

querying events, w(z) and r(z), occur consecutively. Hence, M2 is now able to report them as a

data race.

5.2.3.2 Extending M2 to Predict TSO races

In this section, we formally introduce our extension to M2 for predicting TSO races. Algorithm 1

shows an extended algorithm for deciding whether a querying pair of events forms a predictable

TSO race given a sequential trace σ. Intuitively, the algorithm is augmented with two procedures

that remove events and orders in order to let the resulting closure to be sequentially consistent.

118

t1 t2 t3
1 w(y)
2 acq(l)
3 w(x)
4 r(x)
5 r(x)
6 rel(l)
7 acq(l)
8 w(x)
9 r(y)

10 w(y)
11 w(z)

12 r(z)

(a) A Trace output by the MaxMin algorithm of M2 after Transformation

t1 t2 t3

e1: w(y)

e2: acq(l)

e3: w(x)

e4: r(y)

e7: acq(l)

e8: w(x)

e9: rel(l)

e10: r(x)

e11: w(y)

e12: r(x)

rf
rf

rfco

co

sync

fr

(b) A Sequentially Consistent Execution

Figure 5.8: Transformed SC Execution

119

We highlight the two added steps in blue and the rest of the algorithm stays the same as the

original RaceDecision from [Pav20]. The added steps are two new procedures that effectively

transforms the witness execution. Algorithm 2 shows the procedure of ReadElimination and

Algorithm 3 shows the procedure of RemoveNonPPO. We explain each of them in details below.

Algorithm 1 TSO Extension to RaceDecision [Pav20]

Input: A trace σ and two events e1, e2 ∈ σ.Evts with e1 ▷◁ e2.
Output: True if (e1, e2) is detected as a predictable TSO race of σ.

1: Let X ← Rconeσ(e1, p(e2)) ∪ Rconeσ(e2, p(e1))
2: if {e1, e2} ∩ X ̸= ∅ or X is not feasible then return False

3: X ← ReadElimination(X) ▷ Eliminate read events that reads from writes on the same thread
4: Let P ← Rσ(X)
5: P ← RemoveNonPPO(σ, P) ▷ Remove po orders that are not preserved under TSO
6: Let Q← Closure(σ, P,X)
7: if Q = ⊥ then return False

8: Non-deterministically choose i ∈ [2]
9: while ∃ē1, ē2 ∈ X \ p(ei).Evts such that ē1 ▷◁ ē2 and ē1 ∥Q ē2 and ē1 <σ ē2 do

10: Q← InsertAndClose(Q, ē1 → ē2)
11: if Q = ⊥ then return False

12: end

13: return True

Algorithm 2 ReadElimination

Input: A set of events X of a well-formed trace

Output: An event set such that all read events that can be removed by RemoveWR are removed

1: Let E ← ∅
2: for r ∈ X.Rds do ▷ Scan through each thread in the order of po
3: if ∃w ∈ p(r).Wrts s.t. r.loc = w.loc and r.val = w.val then

4: if w.eid = r.eid− 1 then

5: E ← E ∪ {r}
6: else if ∀e ∈ p(r).Evts s.t. w.eid < e.eid < r.eid, either e ∈ X.Wrts or e ∈ E then

7: E ← E ∪ {r}
8: Let X ′ ← X \E
9: return X ′

Read Elimination From Section 5.2.1, we have seen a sound transformation, RemoveWR,

which removes read events that read from write events on the same thread. Note that RemoveWR

120

only corresponds to a single step of transformation. A desired sequentially consistent execution

can be obtained from applying a sequence of this transformation, which may consists of multi-

ple steps of RemoveWR and possibly interleaved with ReorderWR transformations. Therefore,

Algorithm 2 recognizes all read events that can be removed by RemoveWR at some point in

the sequence. Since the goal is to explain the behavior of the TSO-consistent witness execution

in sequential consistency if such witness exists , ReadElimination removes all such read events

to maximize the chance of sequential consistency. Let r be a read event in the input set such

that there exists a write event w on the same thread as r where w po−−→ r, r.loc = w.loc and

r.val = w.val. There are two cases when r is removable.

1. r immediately follows w on their thread and there is no other events between w and r. Note

that ⟨w, r⟩ satisfies the conditions required by RemoveWR in this case. Therefore, r can be

removed by RemoveWR. To identify this case, we check the eid of r and w since they are

generated in the same order as po.

2. w po−−→ e po−−→ r for some event e. Then r can still be removed by RemoveWR at some point

if each of the events between w and r is either:

(a) A write event to a different memory location. Since the input trace is well-formed

and we assume each write event has a distinct value, we only need to check whether

the event is a write event for this case. In this case, the write event may be reordered

with r by ReorderWR, which may brings r to be immediately after w and makes it

removeable by RemoveWR.

(b) Or a read event that is also removable. Since the algorithm scan through the events

following po, it’s sufficient to scan the set once and there is no need for more iteration.

In this case, removing the event can bring r to be immediately after w and makes it

removeable by RemoveWR.

We demonstrate the above idea of in Fig. 5.9. In this figure, a thread with two write events

and two write events is transformed into a thread with two write events in three steps. First, r(y)

121

w(x) = 1 w(x) = 1 w(x) = 1 w(x) = 1

w(y) = 1 w(y) = 1

w(y) = 1

w(y) = 1

r(y) = 1 r(x) = 1

r(x) = 1

r(x) = 1

RemoveWR(w(y), r(y))
//

ReorderWR(w(y), r(x))
//

RemoveWR(w(x), r(x))
//

Figure 5.9: A transformation sequence that removes two read events

is removed since it immediately follows a write event w(y) with the same value. Then w(y) and

r(x) is reordered since they are accessing different locations and r(x) immediately follows w(y).

Lastly, r(x) is removed since now it imediately follows w(x), and no further transformation is

available after this step. Note that r(x) only becomes removable after being reordered with w(y),

which is only possible after r(y) is removed. Therefore, to identify such removable reads, we

check the events between the write event and the read event. If all of the events in-between can

be either reordered or removed at some point, then eventually the read event can move to be

immediately following the write event and hence is eligible to be removed.

Algorithm 3 RemoveNonPPO

Input: A well-formed trace σ, and a partial order P over the events of σ such that σ.po ⊆ P
Output: A partial order such that all ⟨e1, e2⟩ that can be reordered by ReorderWR are removed

1: Let E ← ∅
2: for ⟨e1, e2⟩ ∈ σ.po do

3: if ⟨e1, e2⟩ /∈ σ.(ppo ∪ po-loc ∪ (po; [L]) ∪ ([L]; po)) then

4: E ← E ∪ {⟨e1, e2}
5: Let P ′ ← P \E
6: return P ′

Write-to-Read Order Elimination Another sound transformation under TSO is ReorderWR.

Just like RemoveWR, ReorderWR corresponds to a single step whereas a transformed execution

122

graph may be the result of a sequence of multiple steps of transformations. In addition, M2 deter-

mines data race by inferring orders in an execution graph. Therefore, during the RaceDecision

algorithm, we need to remove some orders and prevent M2 from inferring the orders that are

not preserved under TSO. Algorithm 3 is a procedure of removing program orders that are not

preserved under TSO, while keeping other orders in the closure. From Chapter 4, we have in-

troduced the TSO model augmented with lock events. The augmented TSO model preserves all

ppo, po-loc, and the program order with lock events. Hence, any po order that is not included

in these three types are removed by the procedure of RemoveNonPPO

5.2.3.3 Soundness Proof

In this section, we prove the soundness of our extended algorithm, following the recepe from

Chapter 4.

First, we show that ReadElimination is a sound transformation for TSO.

▶ Lemma 11

Let G be a plain execution graph over the set X before ReadElimination at line 3 of Algo-

rithm 1, and G′
be a plain execution graph over X after ReadElimination returns at line 3.

Then there is a sequence of RemoveWR and ReorderWR transformations that transforms G
to G′

, i.e., G ; G′
.

Proof. Let E be the set of read events removed by ReadElimination. That is, G.Evts = G′.Evts ∪

E. According to Algorithm 2, for each r ∈ E, there exists a write event w ∈ G.Wrts on the same

thread of r such that r.val = w.val and r.loc = w.loc. There are two cases to distinguish.

· ⟨w, r⟩ ∈ G.po|imm. Then G′ = G.RemoveWR(w, r). Therefore, G ; G′
.

· ∀e ∈ G.Evts, w po−−→ e po−−→ r ⇒ (e ∈ G.Wrts ∧ e.loc ̸= r.loc) ∨ (e ∈ E).

· Base case. ⟨w, e⟩, ⟨e, r⟩ ∈ G.po|imm. If e ∈ E, thenG′ = G.RemoveWR(e′, e).RemoveWR(w, r)

for some e′. If e ∈ G.Wrts and e.loc ̸= r.loc, thenG′ = G.ReorderWR(e, r).RemoveWR(w, r).

Therefore, G ; G′
.

123

· Inductive Step. w po−−→ e′ po−−→ e po|imm−−−−→ r. IH: if w po−−→ e′ po−−→ r where (e′ ∈

G.Wrts ∧ e′.loc ̸= r.loc) ∨ (e′ ∈ E), then G′′ ; G′
for some G′′

. If e ∈ E, then

G′′ = G.RemoveWR(e′′, e) for some e′′. If e ∈ G.Wrts and e.loc ̸= r.loc, then G′′ =

G.ReorderWR(e, r). Therefore, G ; G′′
. By IH and the transitivity of ;, G ; G′

.

We now prove Algorithm 1 is sound. Since we have already proved the soundness of the

original version of M2 in Chapter 4, a large portion of the notations an existing proof are reused

here.

▶ Theorem 20 (Soundness of Extended M2)

If Algorithm 1 returns True, then ⟨e1, e2⟩ is a sound data race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a set defined as the following.

Sσ = RConeσ(e1, e2)

Then by the same way shown in the proof of Theorem 4, let Gρ be the plain execution graph

constructed from Sσ and Gρ is well-formed and executable for the same reasons as in the proof

of Theorem 4.

In addition to Gρ, we construct a second plain execution graph G. Let S be a set defined as

the following.

S = ReadElimination(Sσ)

and G is a plain execution graph constructed from S. Then by Lemma 11, we can infer that that

Gρ ; G.

124

▶ InsertingMemoryOrders. We insert memory orders inG and show that there exists an insertion

scheme such that G is TSO-consistent. Define the order

preserve ≜ ppo ∪ po-loc ∪ (po; [L]) ∪ ([L]; po)

Then we use the same memory insertion scheme as in the proof of Theorem 4.

Following a similar reasoning process as in the proof of Theorem 4, we can see that

(preserve ∪ rf ∪ co ∪ fr ∪ sync)+

is irreflexive. Therefore, both ppo∪ [L]; po∪ po; [L]∪ com and po-loc∪ com are acyclic and G is

TSO-consistent.

By Proposition 6, from Gρ ; G, we can conclude that Gρ is TSO-consistent.

▶ Mapping to Concrete Execution Graph. Since the execution graph Gρ is already concrete by

construction, no further step is needed.

125

CHAPTER 6

Conclusion

We have shown that it is possible to formally prove the correctness of software tools under ax-

iomatic memory models by reasoning about the execution graphs of programs. We demonstrated

that Java can use a compilation scheme that is similar to C/C++11. On the other hand, one should

not simply compile Java’s Access Modes the same way as C/C++11 compiles atomic memory

orders since the formal memory models supports different compiler optimizations. Moreover,

we proposed a new modular soundness definition for predictive analyses under weak memory

models. The new soundness definition subsumes all existing definitions and comes with a simple

recipe for constructing a proof. Lastly, we extend an existing predictive analyses, which assumes

sequential consistency, with sound transformations to predict new data races under a weak mem-

ory model.

126

APPENDIX A

the Full JAM21 Model

let opq = O | RA | V

let rel = W & (RA | V)

let acq = R & (RA | V)

let f_rel = REL | V

let f_acq = ACQ | V

let vol = V

let fence = F

(* volatile accesses extend push order *)

let svo = po;[fence & f_rel];po;[W] | [R];po;[fence & f_acq];po

let spush = po;[fence & vol];po

(* release acquire ordering *)

let ra = po;[rel] | [acq];po

(* intra thread volatile ordering *)

let volint = [vol];po;[vol] (* OLD: po;[vol & R] | [vol & W];po *)

(* intrathread ordering contraints *)

let into = svo | spush | ra | volint

(* cross thread push ordering extended with volatile memory accesses *)

let push = spush | volint

with pushto from linearisations(domain(push), ((W * FW) & loc & ~id) | rf | po)

127

(* extend ra visibility *)

let vvo = rf | svo | ra | push | pushto;push

let vo = vvo+ | po-loc

include "filters.cat" (* includes WW filter *)

let WWco(rel) = WW(rel) & loc & ~id

(* final writes are co-after everything *)

let cofw = WWco((W * FW))

(* jam coherence *)

let coww = WWco(vo)

let cowr = WWco(vo;invrf)

let corw = WWco(vo;po)

let corr = [opq] ; WWco(rf;po;invrf) ; [opq]

let coinit = loc & IW*(W\IW)

include "cross.cat"

let co0 = loc & (IW * (W \ IW)|(W \ FW) * FW)

with cormwtotal from generate_orders(RMW, co0)

let rec co-jom = coww | cowr | corw | corr | cormwtotal

| WWco((rf;[RMW])^-1;co-jom) | coinit | cofw

acyclic (po | rf) ; [opq] as no-thin-air

acyclic co-jom as coherence

128

APPENDIX B

the Full JAM21’ Model

include "filters.cat"

include "cross.cat"

let WWco(rel) = WW(rel) & loc & ~id

let co0 = loc & (IW * (W \ IW)|(W \ FW) * FW)

with cormwtotal from generate_orders(RMW, co0)

let opq = O | RA | V

let rel = W & (RA | V)

let acq = R & (RA | V)

let f_rel = REL | V

let f_acq = ACQ | V

let vol = V

let fence = F

(* volatile accesses extend push order *)

let svo = po;[fence & f_rel];po;[W] | [R];po;[fence & f_acq];po

let spush = po;[fence & vol];po

(* release acquire ordering *)

let ra = po;[rel] | [acq];po

(* intra thread volatile ordering *)

let volint = [vol];po;[vol] (* OLD: po;[vol & R] | [vol & W];po *)

129

(* intrathread ordering contraints *)

let into = svo | spush | ra | volint

let push = spush | volint

let rec co-jom = coww | cowr | corw | corr | cormwtotal

| WWco((rf;[RMW])^-1;co-jom) | coinit | cofw

and fr-jom = rf^-1 ; co-jom

and fr-jom-e = fr-jom & ext

and co-jom-e = co-jom & ext

and chapo = rfe | fr-jom-e | co-jom-e | (fr-jom-e ; rfe) | (co-jom-e ; rfe)

(* extend ra visibility *)

and vvo = rf | svo | ra | push | push ; chapo ; push

and vo = vvo+ | po-loc

and cofw = WWco((W * FW))

and coww = WWco(vo)

and cowr = WWco(vo;invrf)

and corw = WWco(vo;po)

and corr = [opq] ; WWco(rf;po;invrf) ; [opq]

and coinit = loc & IW*(W\IW)

acyclic (po | rf) ; [opq] as no-thin-air

acyclic co-jom as coherence

130

APPENDIX C

The Power Memory Model in Herd7

PPC

(* Model for Power *)

include "cos.cat" (* Used to compute the coherence order*)

(* Uniproc *)

acyclic po-loc | rf | fr | co as scperlocation

(* Atomic *)

empty rmw & (fre;coe) as atomic

(* Utilities *)

let dd = addr | data

let rdw = po-loc & (fre;rfe)

let detour = po-loc & (coe ; rfe)

let addrpo = addr;po

(*******)

(* ppo *)

(*******)

let sync = try fencerel(SYNC) with 0

let lwsync = try fencerel(LWSYNC) with 0

let eieio = try fencerel(EIEIO) with 0

let isync = try fencerel(ISYNC) with 0

show sync,lwsync,eieio

131

(* Dependencies *)

show data,addr

let ctrlisync = try ctrlcfence(ISYNC) with 0

show ctrlisync

show isync ctrlisync as isync

show ctrl ctrlisync as ctrl

show isync,ctrlisync

(* Initial value *)

let ci0 = ctrlisync | detour

let ii0 = dd | rfi | rdw

let cc0 = dd | po-loc | ctrl | addrpo

let ic0 = 0

(* Fixpoint from i -> c in instructions and transitivity *)

let rec ci = ci0 | (ci;ii) | (cc;ci)

and ii = ii0 | ci | (ic;ci) | (ii;ii)

and cc = cc0 | ci | (ci;ic) | (cc;cc)

and ic = ic0 | ii | cc | (ic;cc) | (ii ; ic) (* | ci inclus dans ii et cc *)

let ppo =

let ppoR = ii & (R * R)

and ppoW = ic & (R * W) in

ppoR | ppoW

(* fences *)

let lwsync = lwsync (W * R)

let eieio = eieio & (W * W)

(* All arm barriers are strong *)

let strong = sync

132

let light = lwsync|eieio

let fence = strong|light

(* happens before *)

let hb = ppo | fence | rfe

acyclic hb as thinair

(* prop *)

let hbstar = hb*

let propbase = (fence|(rfe;fence));hbstar

let chapo = rfe|fre|coe|(fre;rfe)|(coe;rfe)

let prop = propbase & (W * W) | (chapo? ; propbase*; strong; hbstar)

acyclic co|prop as propagation

irreflexive fre;prop;hbstar as observation

let xx = po & (X * X)

acyclic co | xx as scXX

133

APPENDIX D

Proof of Observational Equivalence

▶ Proposition 7

Observational equivalence is a transitive relation. G1 ≖ G2 ∧G2 ≖ G3 ⇒ G1 ≖ G3.

Proof. The transitivity follows directly from the transitivity of set equivalence in the definition

of observational equivalence.

▶ Lemma 12

(⇒) Given a program P , for any G ∈ JP KJam21, there exists a G′ ∈ JP KJam21’ such that G′ ≖ G.

Proof. It’s obvious that there exists a candidate execution G′
that is observationally equivalent to

G. We prove that G′ ∈ JP KJam21’. That is, let G′
be a candidate execution of P and G′ ≖ G. We

show that G′
is Jam21

′
-consistent.

Since the only difference between Jam21 and Jam21
′
is at the effect of full fences, we focus on

this part in our proof. In particular, we first show that, if i1
push−−−→ i3, i2

push−−−→ i4, and i3
chapo−−−−→ i2,

then it must be that i1
vo−−→ i4 and not i2

vo−−→ i3. We distinguish five cases by unfolding the chapo

order and show that i2
vo−−→ i3 leads to a contradiction in each case:

1. i3
rf−−→ i2: then we have i1

push−−−→ i3
rf−−→ i2

push−−−→ i4, which is equivalent to i1
vvo−−−→ i3

vvo−−−→

i2
vvo−−−→ i4, which means i1

vo−−→ i4 and not i2
vo−−→ i3 (as it’d create a vo cycle in the latter

case).

2. i3
co−−→ i2: then it cannot be i2

vo−−→ i3 on the right side as it immediately gives us a coherence

cycle by coww. So it must be i1
vo−−→ i4 and not i2

vo−−→ i3.

134

3. i3
fr−−→ i2: then there exists a write event w such that w rf−−→ i3 and w co−−→ i2. If we

have i2
vo−−→ i3 then we would have i2

co−−→ w by cowr, which gives us a coherence cycle.

Therefore it must be that i1
vo−−→ i4 and not i2

vo−−→ i3.

4. i3
co−−→ w rf−−→ i2 for some write event w: if we have i2

vo−−→ i3 then, because rf ⊆ vo, we

have w vo−−→ i3. By coww we get w co−−→ i3, contradicting with the earlier assumption that

i3
co−−→ w. So it must be that i1

vo−−→ i4 and not i2
vo−−→ i3.

5. i3
fr−−→ w1

rf−−→ i2 for some write event w1: then it means there is w2 such that w2
rf−−→ i3

and w2
co−−→ w1. If we have i2

vo−−→ i3, since rf ⊆ vo, we have w1
vo−−→ i3. By cowr, we

have w1
co−−→ w2, contradicting with the assumption of w2

co−−→ w1 earlier. So it must be i1

vo−−→ i4 and not i2
vo−−→ i3.

Thus if we have i1
push−−−→ i3, i2

push−−−→ i4, and i3
chapo−−−−→ i2, then it must be that i1

vo−−→ i4 and not

i2
vo−−→ i3.

We now show that G′
is Jam21

′
-consistent. Note that the No-Thin-Air requirement is ob-

viously satisfied since G.Evts = G′.Evts, G.po = G′.po and G.rf = G′.rf, which follow from

G ≖ G′
.

Previously, we have shown that i1
push−−−→ i3, i2

push−−−→ i4, and i3
chapo−−−−→ i2 implies i1

vo−−→ i4

and not i2
vo−−→ i3 in G. Since G is Jam21-consistent, then co-jom is acyclic with either i1

vo−−→ i4

or i2
vo−−→ i3. Now we have two cases:

1. No communication edge: then we do not have any extra vo edge we can use to infer in

G′
either. Since co-jom is acyclic in G, and G.vo = G′.vo, co-jom is acyclic in G′

, too.

2. With communication chapo: suppose i3
chapo−−−−→ i2 (the other direction has a symmetrical

proof), then it must be that i1
vo−−→ i4 and not i2

vo−−→ i3 in G. Since G is Jam21-consistent,

we know that i1
vo−−→ i4 cannot lead to any co-jom cycle. In G′

, we can infer that i1
vo−−→ i4.

Since other portions of G′
satisfies the above conditions, we can infer that i1

vo−−→ i4 cannot

lead to any co-jom cycle in G′
either.

135

Since neither case leads to a co-jom cycle in G′
, we can conclude that G′

is Jam21
′
-consistent and

hence G′ ∈ JP KJam21′

▶ Lemma 13

Let fullfence = push; chapo; push. In Jam21, for any co-jom cycle derived due to the

fullfence orders, there is a vo∗; fullfence; vo∗; chapo cycle.

Proof. Let i1, i2, i3 and i4 be four events in an execution G such that i1
push−−−→ i3 and i2

push−−−→ i4.

We can derive that (i1
fullfence−−−−−−→ i4) ∨ (i2

fullfence−−−−−−→ i3). Suppose that G is not consistent

due to this condition under Jam21, i.e., following either side of the disjunction we can derive

a co-jom cycle. We analyze one side of the disjunction since the other side of the disjunction

symmetrically follow the same reasonings. We analyze each possible case to derive a coherence

cycle. Since fullfence ⊆ vo, we only need to analyze the cases where vo appears:

· coww. If we derived the coherence cycle from coww rule, then it means there exists w1 and

w2 such that w1
vo−−→ w2 and w2

co−−→ w1. It implies the following structure: w1
vo−−→∗ i1

vo−−→

i4
vo−−→∗ w2

co−−→ w1, revealing a cycle of vo∗; fullfence; vo∗; chapo.

· cowr. If we derived the coherence cycle from cowr rule, then it means there exists r1, w1, and

w2 such that w1
rf−−→ r1, w2

vo−−→ r1, and w1
co−−→ w2. The fact that i1

vo−−→ i4 "enables" us to

derive this contradiction implies the following structure: w2
vo−−→∗ i1

vo−−→ i4
vo−−→∗ r1. Because

w1
co−−→ w2 and w1

rf−−→ r1, we have r1
fr−−→ w2. We now have a cycle w2

vo−−→∗ i1
vo−−→ i4

vo−−→∗

r1
fr−−→ w2, which is a cycle of vo∗; fullfence; vo∗; chapo.

· corw. If we derived the coherence cycle from corw rule, then it means there exists r1, w1, and

w2, such that w1
rf−−→ r1, r1

vo−−→ w2, and w2
co−−→ w1. The fact that i1

vo−−→ i4 "enables" us

to derive this contradiction implies the following structure: r1
vo−−→∗ i1

vo−−→ i4
vo−−→∗ w2

co−−→

w1
rf−−→ r1, which is a cycle of vo∗; fullfence; vo∗; chapo.

136

Figure D.1: Cycle Structure caused by Full Fences with Communications

▶ Lemma 14

(⇐) Given a program P , for any Jam21
′
-consistent execution G′ ∈ JP KJam21′ , there exists an

execution history G ∈ JP KJam21 such that G ≖ G′
.

Proof. Given a program P , it’s obvious that there exists an G that is observationally equivalent

to G′
. We prove that G ∈ JP KJam21. That is, let G be a candidate execution of P and G is ob-

servationally equivalent to G′
. We show that G is Jam21-consistent. To help the reader better

understand this, consider Fig. D.1. Suppose G is an execution history that is forbidden by the

rules of Jam21, we show that its corresponding G′
is also forbidden by Jam21

′
. Since the only

difference between Jam21 and Jam21
′
is at the effects of full fences, we only analyze that part. In

other words, G is forbidden by Jam21 precisely due to the total order of full fences. Let i1, i2, i3,

and i4 be events in G such that i1
push−−−→ i3 and i2

push−−−→ i4. By Lemma 13, we can generalize

the structure and infer that there are E1, E2, E3, and E4 such that E1
vo−−→∗ i1, E3

vo−−→∗ i2,

i4
vo−−→∗ E2, and i3

vo−−→∗ E4. In addition, we also have E2
chapo−−−−→ E1 and E4

chapo−−−−→ E3. Because

G is forbidden under Jam21, it means we have two cycles, i1
vo−−→ i4

vo−−→∗ E2
chapo−−−−→ E1

vo−−→∗ i1

and i2
vo−−→ i3

vo−−→∗ E4
chapo−−−−→ E3

vo−−→∗ i2, so that no matter which side of the disjunction

we choose, we always end up with a contradiction. In G′
, on the other hand, we do not have

i1
vo−−→ i4 or i2

vo−−→ i3. However, despite the absence of the two edges, we now have a larger

cycle: i1
push−−−→ i3

vo−−→∗ E4
chapo−−−−→ E3

vo−−→∗ i2
push−−−→ i4

vo−−→∗ E2
chapo−−−−→ E1, which forms

a vo cycle by (vo-5’) in Jam21
′
. Therefore, execution history G′

is forbidden under Jam21
′

as

137

well, which contradicts to our previous assumption. Thus, since G′ ∈ JP KJam21′ implies that G′
is

Jam21
′
-consistent, G ∈ JP KJam21.

Essentially, the difference between Jam21 and Jam21
′
give no actual effect in forbidding execu-

tions. In Jam21, we look for two vo cycles to forbid an execution, whereas in Jam21
′
we combine

the two cycles into one to forbid the execution.

We can now show the observational equivalence between the two models.

▶ Theorem 1

Jam21
′ ≖ Jam21.

Proof. Given a program P , let JP KJam21 be the set of Jam21-consistent candidate executions of P

and JP KJam21′ be the set of Jam21
′
-consistent candidate executions of P . By Lemma 12, we know

that for all G ∈ JP KJam21, there exists an G′ ∈ JP KJam21′ such that G′
and G are observationally

equivalent. Similarly, by Lemma 14, we know that for all G′ ∈ JP KJam21′ , there exists an G ∈

JP KJam21 such that G and G′
are observationally equivalent. Combining together, we can conclude

that Jam21 and Jam21
′
are observationally equivalent.

▶ Corollary 4

Jam21
′
satisfies the same important properties (Theorem 21, Theorem 22, Theorem 23, Theo-

rem 24 and Corollary 5) in Section. H.

Proof. Since the definitions in Jam21
′
are the same as Jam21 except for the semantics of fullFences,

Jam21
′
automatically satisfies Theorem. 21, Theorem. 22, Theorem 23, and Theorem. 24. By Theo-

rem. 1, Jam21 and Jam21
′
allow the same set of execution up to observational equivalence. There-

fore, Jam21
′
also satisfies Corollary. 5.

138

APPENDIX E

Proof of Compilation Correctness to Power

▶ Lemma 1 (Jam21’ to Power)

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compi-

lation scheme in Fig. 3.5 (with the leading fence convention). For all Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21’ such that Gsrc ; Gtgt.

Proof. It is obvious that there exists a candidate execution history Gsrc of Psrc such that Gsrc ;

Gtgt. We show that Gsrc ∈ JP KJam21′ . That is, Gsrc is Jam21
′
-consistent. In order to be consistent

under Jam21
′
, we need Gsrc to satisfy two requirements:

1. No-Thin-Air Requirement: (po | rf) is acyclic. The intra-thread rfi order cannot con-

tradicting the po given that Gtgt is Power-consistent. Therefore, we need to show that

(po | rfe) is acyclic. Note that since the only inter-thread order is rfe. If there is a cycle in

(po | rfe), then the head of each thread is a rOpq and the last event in each thread participat-

ing in this cycle is a wOpq
, where rOpq po−−→ wOpq

in Gsrc. Using a compiler that follows the

compilation scheme, this translates to r ctrl−−−→ w in Gtgt. Further we can infer that r hb−−→ w

in Gtgt. Power ensures that (hb | rf) is acyclic. Therefore, if there is a cycle of (po | rf) in

Gsrc, Gtgt would not be consistent under Power’s memory model, contradicting to our pre-

vious assumption. For readers who do not care about this guarantee, getOpaque() can be

directly compiled to a lwz instruction.

2. Coherence Requirement: co-jom is acyclic. We now prove that co-jom is acyclic in Gsrc.

In order to show this, we show that co-jom is a partial order of co in Gtgt. In other words,

139

co is a linear extension of co-jom. We prove this by assuming the opposite and deriving a

contradiction.

Suppose that there exists i1
co-jom−−−−→ i2 in Gsrc but i2

co−−→ i1 in Gtgt. We analyze each of

the possible cases where we can derive a co-jom order.

· coinit. This automatically gives us a contradiction since Gsrc.IW = Gtgt.IW.

· cofw. This automatically gives us a contradiction since Gsrc.FW = Gtgt.FW.

· corr. This implies that there exist r1 and r2 such that, r1
po−−→ r2, i1

rf−−→ r1, and i2
rf−−→ r2.

We also have i2
co−−→ i1. Now the SC-per-location requirement of Power is violated,

contradicting with our previous assumption that Gtgt is Power-consistent.

· coww. This implies that i1
vo−−→ i2 but i2

co−−→ i1.

· i1 po-loc−−−−→ i2. i2
co−−→ i1 would violates the SC-Per-Location Requirement of Power,

making Gtgt inconsistent, contradicting to our previous assumption.

· i1 svo−−−→ i2 or i1
ra−−→ i2 or i1

push−−−→ i2. In Gtgt, this means i1
lwsync−−−−→ i2 or

i1
sync−−−→ i2. Note that all three cases of them are included in program order with ac-

cess to the same location. Therefore, i2
co−−→ i1 would violates the SC-Per-Location

Requirement of Power, making Gtgt inconsistent, contradicting to our previous as-

sumption.

· i1 push−−−→ e1
chapo−−−−→ e2

push−−−→ i2 for some e1 and e2. Note that we have e1
chapo−−−−→

e2
sync−−−→ i2 and i2

co−−→ i1
sync−−−→ e1. They form a propagation (prop) cycle between

i2 and e1, which makes Gtgt not Power-consistent, giving us a contradiction.

· i1 vvo−−−→ i3
vvo−−−→ i2. This corresponds to the inductive case where the visibility order

is formed by two visibility orders through another event, i3. Note that all the cases

of vo orders produce propagation (prop) orders. Therefore, we get a violation of

the Propagation requirement if i2
co−−→ i1 in Power, contradicting to our previous

assumption that Gtgt is Power-consistent.

· cowr. This implies that there exists r such that i2
rf−−→ r and i1

vo−−→ r.

140

· i1 po-loc−−−−→ i2. i2
co−−→ i1 would violates the SC-Per-Location requirement of Power,

making Gtgt inconsistent, contradicting to our previous assumption.

· i1 svo−−−→ r or i1
ra−−→ r or i1

push−−−→ r. In Gtgt, this means i1
lwsync−−−−→ i2 or i1

sync−−−→ i2.

Note that all three cases of them are included in program order with access to the

same location. Therefore, i2
co−−→ i1 would violates the SC-Per-Locationrequirement

of Power, making Gtgt inconsistent, contradicting to our previous assumption.

· i1 push−−−→ e1
chapo−−−−→ e2

push−−−→ r for some e1 and e2. Because i2
rf−−→ r and i2

co−−→ i1,

we have r fr−−→ i1. We now have e1
chapo−−−−→ e2

sync−−−→ r and r fr−−→ i1
sync−−−→ e1. Both

of them form a propagation order between r and e1 and they contradict with each

other.

· i1 vvo−−−→ i3
vvo−−−→ r This corresponds to the inductive case where the visibility order

is formed by two visibility orders through another event, i3. Note that all the cases

of vvo orders produce propagation orders. Therefore, we get r fr−−→ i1
prop−−−→ r,

which violates the Observation requirement in Power.

· corw. This implies that there exists r such that r po−−→ i2 and i1
rf−−→ R. i2

co−−→ i1 would

cause a violation of SC-Per-Location requirement in Power.

· cormwexcl. This implies that i1 is a rmw operation and there exists i3 such that i3
rf−−→ i1

and i3
co−−→ i2. Having i2

co−−→ i1 immediately violates the Atomicity requirement of

Power.

· cormwtotal. i1
co−−→ i2 because Gtgt.co ⊆ Gsrc.to. Therefore, having i2

co−−→ i1 in this

case would yield a cycle in co, violating the Propagation requirement in Power.

Thus, we have shown that co-jom is a partial order of co in Gtgt and the coherence require-

ment is automatically fulfilled because co is acyclic. Hence, Gsrc ∈ JP KJam21′ .

141

▶ Theorem 2 (Compilation Correctness to Power (Leading Fence))

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compila-

tion scheme in Fig. 3.5 (using the leading fence convention). For each Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21 such that Gsrc ; Gtgt.

Proof. By Lemma 1, we know that there exists an G′
src ∈ JPsrcKJam21’ such that G′

src ; Gtgt.

Therefore, by definition of the ; relation,

· Gtgt is observationally equivalent to G′
src

· Gtgt.co ⊆ G′
src.to

· If rmw, i1 ∈ G′
src.Evts and rmw po−−→ i1, then rmw ctrl−−−→ i1 in Gtgt

· If rOpq, i1 ∈ G′
src.Evts and rOpq po−−→ i1, then r ctrl−−−→ i1 in Gtgt

· If i1, i2 ∈ G′
src.Evts and i1

push−−−→ i2, then i1
sync−−−→ i2 for i1, i2 ∈ Gtgt.Evts

· If i1, i2 ∈ G′
src.Evts and i1

ra−−→ i2, then i1
lwsync−−−−→ i2 for i1, i2 ∈ Gtgt.Evts

By Theorem 1, we know that for all G′
src, there exists an Gsrc ∈ JP KJam21 such that Gsrc

is observationally equivalent to G′
src. By Lemma 7, Gsrc is observationally equivalent to Gtgt.

Furthermore,

· Gtgt.co ⊆ Gsrc.to because Gsrc.to = G′
src.to.

· If rmw, i1 ∈ Gsrc.Evts and rmw po−−→ i1, then rmw ctrl−−−→ i1 in Gtgt because Gsrc.Evts =

G′
src.Evts and Gsrc.po = G′

src.po.

· If rOpq, i1 ∈ Gsrc.Evts and rOpq po−−→ i1, then r ctrl−−−→ i1 in Gtgt because Gsrc.Evts = G′
src.E and

Gsrc.po = G′
src.po.

· If i1, i2 ∈ Gsrc.Evts and i1
push−−−→ i2, then i1

sync−−−→ i2 for i1, i2 ∈ Gtgt.Evts because

∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = G′
src.AccessMode(i) and Gsrc.po = G′

src.po, which

means Gsrc.push = G′
src.push.

142

· If i1, i2 ∈ Gsrc.Evts and i1
ra−−→ i2, then i1

lwsync−−−−→ i2 for i1, i2 ∈ Gtgt.Evts because

∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = G′
src.AccessMode(i) and Gsrc.po = G′

src.po, which

means Gsrc.ra = G′
src.ra.

Therefore, we have shown that for all Gtgt ∈ JP KPower, there exists an Gsrc ∈ JP KJam21 such that

Gsrc ; Gtgt. That is, the compilation scheme shown in Fig. 3.5 is correct.

▶ Corollary 1 (Compilation Correctness to Power (Trailing Fence))

Let Psrc be a Java program, Ptgt be the Power program compiled from Psrc using the compila-

tion scheme in Fig. 3.5 (using the trailing fence convention). For each Gtgt ∈ JPtgtKPower there

exists a Gsrc ∈ JPsrcKJam21 such that Gsrc ; Gtgt.

Proof. It is obvious that all the properties described in Definition 7 still hold with the trailing fence

convention. Most importantly, the property that transforms push in the source level execution

to sync in the target level execution is preserved as long as there is a hwsync instruction inserted

between everyVolatile accesses. The trailing fence convention, if used consistently, clearly satisfy

this property. Then the rest of Definition 7 is unchanged since leading/trailing fence convention

only concerns the compilation schemes for Volatile accesses. Therefore, the rest of the proof for

the correctness of the trailing fence convention can be naturally derived similarly.

143

APPENDIX F

The x86 TSO Model in Herd7

X86 TSO

include "x86fences.cat"

include "filters.cat"

include "cos.cat"

(* Uniproc check *)

let com = rf | fr | co

acyclic po-loc | com

(* Atomic *)

empty rmw & (fre;coe)

(* GHB *)

#ppo

let po_ghb = WW(po) | RM(po)

#mfence

let mfence = try fencerel(MFENCE) with 0

let lfence = try fencerel(LFENCE) with 0

let sfence = try fencerel(SFENCE) with 0

show data,addr,ctrl

#implied barriers

let poWR = WR(po)

144

let i1 = MA(poWR)

let i2 = AM(poWR)

let implied = i1 | i2

let ghb = mfence | implied | po_ghb | rfe | fr | co

show implied

acyclic ghb as tso

145

APPENDIX G

Proof of Compilation Correctness to x86-TSO

▶ Lemma 2

Let Psrc be a Java program, Ptgt be the x86 program compiled from Psrc using the compilation

scheme to x86 as shown above. For each Gtgt ∈ JPtgtKTso there exists a Gsrc ∈ JPsrcKJam21′
such that Gsrc ; Gtgt.

Proof. It is obvious that there exists anGsrc such thatGsrc ; Gtgt. We show thatGsrc ∈ JP KJam21′ .

That is, we show that Gsrc is consistent under Jam21
′
by showing that it fulfills the two require-

ments of Jam21
′
.

1. No-Thin-Air. (po|rf) is acyclic. The rfi order is included in the po. Therefore, we need

to show that (po|rfe) is acyclic. Note that since the only inter-thread order is rfe. If there

is a cycle in (po|rfe), then the head of each thread is a rOpq and the last event in each thread

participating in this cycle is a wOpq
, where rOpq po−−→ wOpq

in Gsrc. Using a compiler that

follows the compilation scheme, this translates to r po−−→ w in Gtgt. Further we can infer

that r ghb−−−→ w in Gtgt. x86-TSO ensures that ghb is acyclic. Therefore, if there is a cycle of

(po|rf) in Gsrc, Gtgt would not be consistent under x86-TSO, contradicting to our previous

assumption.

2. Coherence. In order to show that Gsrc fulfills the coherence requirement, we need to show

that co in Gtgt is a linear extension of co-jom in Gsrc. We prove this by analyzing each case

for co-jom. That is, if i1
co-jom−−−−→ i2 but i2

co−−→ i1, then Gtgt is inconsistent under x86-TSO.

· coinit. This follows naturally as Gsrc.IW = Gtgt.IW.

146

· cofw. This follows naturally as Gsrc.FW = Gtgt.FW.

· corr. This implies that there exists r1 and r2 such that i1
rf−−→ r1, i2

rf−−→ r2, and r1
po−−→

r2. From i2
co−−→ i1 we can infer that r2

fr−−→ i1. Note that r1
ghb−−−→ r2 in this case since

a po order from a read event is preserved in TSO. Now we have a ghb cycle r2
fr−−→

i1
rf−−→ r1

ghb−−−→ r2, contradicting to out previous assumption that Gtgt is consistent

under x86-TSO.

· coww. This implies that i1
vo−−→ i2. We analyze each case of vo order.

· i1 po-loc−−−−→ i2. i2
co−−→ i1 would violates the SC-Per-Location Requirement of Power,

making Gtgt inconsistent, contradicting to our previous assumption.

· i1 ra−−→ i2 or i1
push−−−→ i2 or i1

svo−−−→ i2. Note that all three cases are included in

i1
po−−→ i2 to the same location. Thus, if i2

co−−→ i1, then there would be a cycle of

(po-loc|com) in Gtgt, contradicting to our previous assumption that Gtgt is consis-

tent under TSO.

· i1 push−−−→ e1
chapo−−−−→ e2

push−−−→ i2 for some e1 and e2 in Gsrc. Since i1 is a write, we

can infer that i1
po−−→ iLOCK

po−−→ e1 in Gtgt, where iLOCK is a RMW event. According

to x86-TSO, we can further infer that i1
ghb−−−→ iLOCK

ghb−−−→ e1 in Gtgt, which can be

simplified to i1
ghb−−−→ e1. Similarly, we can infer that e2

ghb−−−→ i2 (if e2 is a read then

the po order is included in ghb; otherwise, there must be a RMW event between e2

and i2, which yields a ghb order too). Now, since the communication edges induced

by chapo are also included in ghb in Gtgt, i2
co−−→ i1 would directly produce a ghb

cycle, contradicting with our previous assumptions.

· i1 vvo−−−→ E vvo−−−→ i2 for some E in Gsrc. Note that vo orders in Gsrc only produce

ghb orders in Gtgt. Therefore, i2
co−−→ i1 would always result in a ghb cycle in Gtgt,

contradicting to the previous assumption.

· cowr. This implies that i1
vo−−→ r and i2

rf−−→ r for some r ∈ Gsrc.Rds. With i2
co−−→ i1

we can infer that r fr−−→ i1. As in previous cases, we observe that vo only produce ghb

in Gtgt. Therefore, having i2
co−−→ i1 would result in a ghb cycle in Gtgt.

147

· corw. This implies that there is r in Gsrc such that r po−−→ i2 and i1
vo−−→ r. Note that po

order from a Read access is included in ghb in Gtgt. As in previous cases, we observe that

vo only produce ghb in Gtgt. Therefore, having i2
co−−→ i1 would result in a ghb cycle,

contradicting to our previous assumption.

· cormwexcl. This implies that w rf−−→ r, r rmw−−−→ i1, and w co−−→ i2 for some w and r in Gsrc.

We also have r fr−−→ i2. Now having i2
co−−→ i1 would violate the Atomicity Requirement

of TSO, contradicting to our previous assumptions.

· cormwtotal. Since there is no other restrictions on the total order among RMW opera-

tions except that it has to be compatible with the rf and intra-thread orders, it automatics

becomes a subset of co in Gtgt. Therefore, having i2
co−−→ i1 in this case would yield a

cycle in co, producing a ghb cycle in Gtgt.

Thus we have shown that co is a linear extension of co-jom. As a consequence, co-jom is

guaranteed to be acyclic is Gtgt is consistent under TSO.

Thus we can conclude that Gsrc ∈ JP KJam21′ .

▶ Theorem 3

Let Psrc be a Java program, Ptgt be the x86 program compiled from Psrc using the compilation

scheme to x86 as shown above. For each Gtgt ∈ JPtgtKTso there exists a Gsrc ∈ JPsrcKJam21 such

that Gsrc ; Gtgt.

Proof. By Lemma 2, we know that there exists an G′
src ∈ JP KJam21′ such that G′

src ; Gtgt. There-

fore, by definition of the ; relation,

1. Gtgt.Evts\Gtgt.F = G′
src.Evts\G′

src.F, Gtgt.rf = G′
src.rf, and G′

src.po ⊆ Gtgt.po

2. Gtgt.co ⊆ G′
src.to

3. If i1, i2 ∈ G′
src.Evts and i1

push−−−→ i2 and i1 is a write, then i1
po−−→ i3

po−−→ i2 for i1, i2 ∈

Gtgt.Evts and i3 ∈ Gtgt.F where i3 is an event stem from an mfence instruction.

148

By Theorem 1, we know that for all G′
src, there exists an Gsrc ∈ JP KJam21 such that Gsrc

is observationally equivalent to G′
src. Therefore, we have Gtgt.Evts\Gtgt.F = Gsrc.Evts\Gsrc.F,

Gtgt.rf = Gsrc.rf, and Gsrc.po ⊆ Gtgt.po

Furthermore,

1. Gtgt.co ⊆ Gsrc.to since Gsrc.to = G′
src.to.

2. If i1, i2 ∈ Gsrc.Evts and i1
push−−−→ i2 and i1 is a write, then i1

po−−→ i3
po−−→ i2 for i1, i2 ∈

Gtgt.Evts and i3 ∈ Gtgt.F where i3 is an event stem from an mfence instruction, because

∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = G′
src.AccessMode(i) and Gsrc.po = G′

src.po,

which means Gsrc.push = G′
src.push.

Therefore, we have shown that for all Gtgt ∈ JP KTso, there exists an Gsrc ∈ JP KJam21 such that

Gsrc ; Gtgt. That is, the compilation scheme to x86 is correct.

149

APPENDIX H

Key Properties of the Jam21 Model

In this section, we show some key properties of Jam21. First we show that the prior theorems of

Jam19 still hold for Jam21 in Section H.1. Then in Section H.2, we prove that when all accesses

in program order are push ordered then the semantics of executions is sequentially consistent.

As a corollary when all accesses are Volatile, which implies a push order, then the executions

are sequentially consistent. We have defined and proved these theorems in Coq. The Coq source

code is included in our supplementary materials.

H.1 Prior Theorems

The Jam21 model preserves the two main theoretical results of [BP19], namely the monotonicity

of access modes and the causal-acquire reads. We recount each theorem here briefly beginning

with the monotonicity of access modes using the same notation from [BP19].

We use the reflexive ordering of the access modes as Plain ⊑ Opaque ⊑ Release Acquire ⊑

Volatile and extend it to accesses lm1 ⊑ lm2 , lm1 := n1 ⊑ lm2 := n2, RW(l, n1) ⊑ RW(l, n2)

whenever m1 ⊑ m2. We treat read-modify-write (RMW) events as always having the same

order. We extend the order to histories by matching identifiers and ordering the accesses.

H1 ⊑ H2 ≜ ∀ i a1 a2, H1(is(i, a1)) ∧H2(is(i, a2)) =⇒ a1 ⊑ a2

We adopt the same notion of "well-formedness" from [BP19] for a given history H , i.e., trace

150

coherence1
.

▶ Definition 25 (Trace Coherence)

An execution history H is trace coherent if:

· Each memory location is initialized by an initial write. For each event i ∈ H.E \ {H.IW ∪
H.F}, there exists an initial write event iw ∈ H.IW such that H.loc(i) = H.loc(iw) and

iw to−−→ i.

· Reads-from edges are well-formed. For all r ∈ H.R, there exists a unique write w such that

H.loc(w) = H.loc(r), H.val(w) = H.val(r), and w rf−−→ r.

· There exists a total trace order to for all e ∈ H.E such that to is compatible with po, rf,

ra, svo, and push.

When the po, rf, and to relations of two histories H1 and H2 have the following relationships:

H2.po ⊆ H1.po , H2.to ⊆ H1.to, H2.rf ⊆ H1.rf, then we say they match.

▶ Theorem 21 (Monotonicity)

[coq/Monotonicity.v, monotonicity]
For two histories H1 and H2, suppose that both match, both are trace coherent, and H2 ⊑ H1.

Further suppose that acyclic(co−−→H1) and that there are no specified visibility orders or push

orders in H2, then acyclic(co−−→H2)

A version of DRF-SC theorem was proved in [BP19]. However, the theorem was different

from the standard DRF-SC theorem.

· It did not use the conventional definition of data race with the "happens-before" order. Instead.

[BP19] defined a sync order that captures the synchronizations between events and defined

the notion of "data-race-free" using sync.

· It used a stronger assumption than the standard DRF-SC theorem. In particular, given a pro-

gramP , the standard DRF-SC theorem assumes only the SC-consistent executions ofP are data

race free. On the other hand, the DRF-SC theorem proved in [BP19] assumes all executions of

1
We have omitted some of the details of trace coherence that are related to the internals of the modeling language

as they are irrelevant here

151

P are data race free. A similar theorem was also proved in [WPP20], called a "model-agnostic"

definition of DRF-SC.

Here, we first prove the standard DRF-SC theorem (DRF-SC) with a weaker assumption than

[BP19], and then prove a weaker DRF-SC theorem (Execution-DRF), both using "happens-before"

(hb).

We require the following standard definitions including the traditional notion of sequential

consistency (SC-consistency) [Lam79]:

i1
fr−−→ i2 ≜ ∃ i3, i3 rf−→ i1 ∧ i3

co−−→ i2

i1
com−−−→ i2 ≜ i1

co−−→ i2 ∨ i1
rf−→ i2 ∨ i1

fr−→ i2

i1
sc−−→ i2 ≜ i1

po−−→ i2 ∨ i1
com−−−→ i2

An execution H is SC-consistent if acyclic(sc−−→H).

We also require the notion of happens-before (hb) defined using the synchronizes-with (sw)

order:

i1
sw−−→ i2 ≜ (i1

rf−−→ i2 ∧ AccessMode(i1) = Release ∧ AccessMode(i2) = Acquire)

∨ (∃i3i4 ∈ F, AccessMode(i3) = Release ∧ AccessMode(i4) = Acquire

∧ i3
po−−→ i1

rf−−→ i2
po−−→ i4)

i1
hb−−→ i2 ≜ i1

po−−→ i2 ∨ i1
sw−−→ i2 ∨ ∃i3, i1 hb−−→ i3

hb−−→ i2

▶ Definition 26

Two memory accesses i1 and i2 are conflicting in an execution H if:

· i1, i2 ∈ H.E

· H.loc(i1) = H.loc(i2)

· At least one of i1 and i2 is a write

152

▶ Definition 27

Two memory accesses i1 and i2 form a data race if:

· i1 and i2 are conflicting

· ¬(i1 hb−−→ i2 ∨ i2
hb−−→ i1)

We say they form a volatile-race if both i1 and i2 are Volatile mode accesses.

Finally, our DRF-SC theorem is stated as the following:

▶ Theorem 22 (DRF-SC)

Given a program P , if all its SC-consistent executions are data-race-free or only have volatile-

races, then the set of all Jam21-consistent executions ofP coincide with the set of SC-consistent

executions.

Please see Appendix I for the proof.

We also provide a weaker version of the DRF-SC theorem:

▶ Theorem 23 (Execution-drf)

Any Jam21-consistent execution that is data race free or only has volatile-races is SC-consistent.

Please see Appendix J for the proof.

Finally, we demonstrate the revised semantics preserves causality with acquire reads.

▶ Theorem 24 (Causal Acquire-Reads)

[coq/ReleaseAcquire.v, acq_causality]
If H is trace coherent and all reads in H are acquire-reads, then acyclic(po | rf−−−−→).

H.2 Volatile implies SC

Here we demonstrate that when all accesses are volatile, the program will have SC semantics.

To begin, we note that both full fences andVolatile pairs result in push orders in the formalism

of [BP19]. That is, either a full fences or a volint edge implies a push edge. Our approach is to

153

prove that when all program order accesses are push ordered then the semantics is SC. Thus, SC

semantics follows as a corollary when all accesses are volint.

Recall from [BP19] that visibility order is acyclic. Intuitively, ordering induced by synchro-

nization should not admit cycles.

▶ Lemma 15 (Acyclic Visibility)

[coq/Truncate.v, vop_irreflex]
If H is trace coherent then, acyclic(vvo−−−→).

Next we show that the communication relation is not contradicted by visibility. Since the

com relationship is composed from reads and coherence relationships, both of which encode the

ordering of effects, we expect that visibility should not contradict such an ordering.

▶ Lemma 16 (Communication Write Not-Visible)

[coq/SC/Volatile.v, coms_vo_contra]
If H is trace coherent, all accesses are executed, i1

com−−−→∗ i2 and i2 is a write then ¬(i2 vvo−−−→+

i1)

Next we will establish that, when two pairs of push ordered accesses are connected by a

possibly empty sequence of com edges, the first access of the first pair has been executed before

the first access of the second pair. Intuitively, whenever there is a full fence between these two

pairs of accesses then the order in which those fences executed must be consistent with the

direction of the com relation.

▶ Lemma 17 (Push Trace-ordered)

[coq/SC/Volatile.v, svo_comp_svo_to]
If H is trace coherent, acyclic(co−−→), all accesses are executed, all accesses are push ordered,

i1
push−−−→ i2

com−−−→∗ i3
push−−−→ i4, then i1

to−−→ i3.

Proof. First, note that it is decidable whether i3 is a write. We will begin by considering the case

where it is a write. Since
to−−→ is total we consider each case for i1 and i3. First, if i1

to−−→ i3

we are done. Second, for i1 = i3 we will demonstrate a contradiction. By assumption we have

i1
push−−−→ i2, then by substitution we have i3

push−−−→ i2. By the definition of pushwe have i3
vo−−→ i2.

154

By assumption we have i2
com−−−→∗ i3. By Lemma 16 we have ¬(i3 vo−−→ i2) and a contradiction.

Finally, for i3
to−−→ i1 we will also demonstrate a contradiction. By assumption we have both

i1
push−−−→ i2 and i3

push−−−→ i4. Then by the definition of
pushto−−−−→ and i3

to−−→ i1 we have i3
vo−−→ i2.

As before we have i2
com−−−→∗ i3. By Lemma 16 we have ¬(i3 vo−−→ i2) and a contradiction.

Now consider the case where i3 is not a write, then it must be a read and there exists some

write iw such that iw
rf−→ i3. It can be shown that i2

com−−−→∗ iw. Thus we have i1
push−−−→ i2

com−−−→∗

iw
rf−→ i3

push−−−→ i4. Note that, because Lemma 16 applies to i2
com−−−→∗ iw we have that ¬(i2 vvo−−−→+

iw) and we must derive a contradiction by showing iw
vvo−−−→+ i2. For i1 = i3 we have i3

vvo−−−→ i2

as before. Since iw
rf−→ i3 by the definition of

vvo−−−→ we have iw
vvo−−−→ i3 and iw

vvo−−−→ i2
vvo−−−→ i3

as required. For i3
to−−→ i1 again we have that i3

vvo−−−→ i2 and in turn we have iw
vvo−−−→ i2

vvo−−−→ i3

as required.

Now we can demonstrate that when all accesses are push ordered the program semantics is

SC. The key idea is that any cycle in the sc relation (i.e. a non-SC execution) will have at least one

program order edge and at least one com edge. Thus we can show that the program order edge

will appear twice in the cycle and then use Push Trace-ordered inductively to show that such a

push order would have to execute before itself, thereby deriving a contradiction.

▶ Theorem 25 (All Push SC)

[coq/SC/Volatile.v, push_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all accesses are push or-

dered then acyclic(sc−−→).

Proof. We assume i1
sc−−→ i1 and derive a contradiction. Observe that i1

sc−−→ i1 must include at

least one
com−−−→ edge because

po−−→ is acyclic. Further observe that it must also include at least one

program order edge because
com−−−→ is also acyclic. Thus there exists some access i2 such that we

can rearrange to obtain a sequence of program order and communication edges, i2(
po−−→ com−−−→+

)+i2. We proceed by induction on the length of this sequence. In the base case there exists some

i3 such that i2
po−−→ i3

com−−−→+ i2 which wraps around to give i2
po−−→ i3

com−−−→+ i2
po−−→ i3. Then

Push Trace-ordered applies to give i2
to−−→ i2, but this is a contradiction since the trace order

155

is total. In the inductive case we use the same argument and connect the trace order from the

inductive hypothesis to give a contradiction.

From Theorem 25 we can derive two corollaries. The first shows that when all accesses are

Volatile the semantics is SC. The second shows that when all accesses have full fences between

them, represented by spush in the model, the semantics is SC. The structure of the model and our

definition for Volatile accesses shines through here as both results follow directly from a single

result about the behavior of full fences.

▶ Corollary 5 (All Volatile SC)

[coq/SC/Volatile.v, volatile_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all accesses are Volatile

mode accesses then acyclic(sc−−→).

Proof. If all accesses are volatile then any two program order accesses are push ordered and we

can appeal to Theorem 25.

▶ Corollary 6 (All Specified Push SC)

[coq/SC/Volatile.v, spush_sc]
If H is trace coherent, acyclic(co−−→), all accesses are executed, and all program ordered (po)

accesses are ordered by specified push order (spush) then acyclic(sc−−→).

Proof. If any two program order accesses have a specified push order then they are similarly push

ordered and we can again appeal to Theorem 25.

156

APPENDIX I

The Standard DRF-SC Theorem

▶ Theorem 22 (DRF-SC)

Given a program P , if all its SC-consistent executions are data-race-free or only have volatile-

races, then the set of all Jam21-consistent executions ofP coincide with the set of SC-consistent

executions.

Proof. Let P be a program, and suppose all its SC-consistent executions only has Volatile-races.

We want to show that P has no weak behavior. Toward contradiction, let’s assume there exists

an execution G of P such that G is Jam21-consistent but not SC-consistent.

▶ Definition 28

An execution G′
is called a prefix of an execution G if G′

is obtained by restricting G to a set

of events E such that:

1. the set of initialization events E0 ∈ E

2. for any event b ∈ E, if there is a po−−→ b or a rf−−→ b in G, then a ∈ E. (Closed with

respect to (G.po ∪G.rf))

Claim 1 Any prefix of a Jam21-consistent execution is Jam21-consistent.

Claim 2 Any prefix of an SC-consistent execution is SC-consistent.

Proof. The above two claims are true because a prefix consists of a subset of edges and events of

the original execution. If there is a cycle that violates the requirements of the memory models,

then the same cycle is present in the original execution graph. Therefore, since we assumed G is

Jam21-consistent, any prefix of G is also Jam21-consistent.

157

Notations For a set of events E, let Π(E) denote the set of all pairs ⟨a, b⟩ ∈ E ×E of conflict-

ing events, such that {G.AccessMode(a), G.AccessMode(b)} ̸= {Volatile} and ⟨a, b⟩, ⟨b, a⟩ /∈

(G.po ∪G.rf ↾Volatile)+.

Π(E) = {⟨a, b⟩ ∈ E × E | {G.AccessMode(a), G.AccessMode(b)} ≠ {Volatile},

⟨a, b⟩, ⟨b, a⟩ /∈ (G.po ∪G.rf ↾Volatile)
+}

Let a1, ..., an be an enumeration of events ordered by trace orders (recall that trace order is a

total order among the events in an execution that is compatible with (G.po ∪G.rf)+).

Let Ei denotes the subset of events E0 ∪ {a1, ..., ai} and Gi be the execution restrict to Ei.

This is easy to see that each Gi is a prefix to G because the trace order is compatible with (G.po∪

G.rf)+. Therefore, Gi is also Jam21-consistent by Claim 1.

Claim 3 For every 1 ≤ i ≤ n, if Π(Ei) = ∅, then Gi is SC-consistent.

Proof. Suppose thatΠ(Ei) = ∅. Then, for every conflicting pair ⟨a, b⟩, eitherG.AccessMode(a) =

G.AccessMode(b) = Volatile or ⟨a, b⟩ ∈ (G.po∪G.rf ↾Volatile)+ or ⟨b, a⟩ ∈ (G.po∪G.rf ↾Volatile

)+.

1. For any a rf−−→ b in Gi.

- If G.AccessMode(a) = G.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ G.rf ↾Volatile.

- If ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+.

- If ⟨b, a⟩ ∈ (G.po ∪ G.rf ↾Volatile)+, then there is a (po ∪ rf)+ cycle between a and b.

By the No-Thin-Air requirement, Gi is not Jam21-consistent. Contradicting to our

previous assumption. Therefore it is impossible to have ⟨b, a⟩ ∈ (G.po∪G.rf ↾Volatile

)+.

158

Thus, Gi.rf ⊆ (G.po ∪G.rf ↾Volatile)+

2. For any a co−−→ b in Gi,

- If G.AccessMode(a) = G.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ G.co ↾Volatile.

- If ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+.

- If ⟨b, a⟩ ∈ (G.po∪G.rf ↾Volatile)+, then the the domains of the G.rf on the path from

b to a has access mode equal to Volatile which includes Release semantics. Similarly,

the ranges of the G.rf have access mode equal to Volatile which includes Acquire

semantics. Therefore, po ⊆ ra on this path. That is, we have ⟨b, a⟩ ∈ (G.ra ∪

G.rf ↾Volatile)+ ⊆ G.vvo+. By coww, we have ⟨b, a⟩ ∈ G.co. With a co−−→ b, we now

have a co cycle, contradicting to the earlier assumption that Gi is Jam21-consistent.

Therefore, it is impossible that ⟨b, a⟩ ∈ (G.po ∪G.rf ↾Volatile)+.

Thus, we have Gi.co ⊆ (G.po ∪G.rf ↾Volatile)+ ∪G.co ↾Volatile.

3. For any a fr−−→ b in Gi,

- If G.AccessMode(a) = G.AccessMode(b) = Volatile, then ⟨a, b⟩ ∈ G.fr ↾Volatile.

- If ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+, then ⟨a, b⟩ ∈ (G.po ∪G.rf ↾Volatile)+.

- If ⟨b, a⟩ ∈ (G.po∪G.rf ↾Volatile)+, then the the domains of the G.rf on the path from

b to a has access mode equal to Volatile which includes Release semantics. Similarly,

the ranges of the G.rf have access mode equal to Volatile which includes Acquire

semantics. Therefore, po ⊆ ra on this path. That is, we have ⟨b, a⟩ ∈ (G.ra ∪

G.rf ↾Volatile)+ ⊆ G.vvo+. Expanding the definition of fr, there exists a write event i

such that ⟨i, a⟩ ∈ Gi.rf and ⟨i, b⟩ ∈ Gi.co. By cowr, we have ⟨b, i⟩ ∈ Gi.co. Now we

have a co cycle, contradicting with the earlier assumption that Gi is Jam21-consistent.

Therefore, it is impossible that ⟨b, a⟩ ∈ (G.po ∪G.rf ↾Volatile)+.

Thus, we have Gi.fr ⊆ (G.po ∪G.rf ↾Volatile)+ ∪G.fr ↾Volatile.

159

Therefore, we have Gi.po ∪ rf ∪ fr ∪ co ⊆ G.po ∪ rf ↾Volatile ∪fr ↾Volatile ∪co ↾Volatile. Since Gi

is Jam21-consistent, any prefix of Gi is Jam21-consistent as well (by Claim 1). By our previous

lemma that Volatile⇒ SC, any prefix of Gi with all events marked as Volatile are SC-consistent.

If Gi is not SC-consistent and there is a cycle of G.po ∪ rf ↾Volatile ∪fr ↾Volatile ∪co ↾Volatile, then

there exists a prefix of Gi containing all the events in this cycle and hence not SC-consistent. This

contradicts with our previous assumption. Thus, Gi is SC-consistent.

Now, continuing our proof, since G is not SC-consistent, we know that Π(E) ̸= ∅.

Convention In the rest of the proof, we treat an Read-modify-write (RMW) event as two sep-

arate events ordered by the rmw order. That is, each RMW event in G consists of two events i1

and i2 such that ⟨i1, i2⟩ ∈ G.rmw, where i1 ∈ G.Rds and i2 ∈ G.Wrts.

Let k = min{i |Π(Ei) ̸= ∅}. Then it is clear that Gk−1 is the maximum SC-consistent prefix

of G. That is, Π(Ek−1) = ∅ and Gk−1 is SC-consistent. We also have Π(Ek) ̸= ∅ and Gk is not SC-

consistent. That is, there exists j < k such that {G.AccessMode(aj), G.AccessMode(ak)} ̸=

{Volatile}, and ⟨aj, ak⟩, ⟨ak, aj⟩ /∈ G.po ∪G.rf ↾Volatile.

Claim 4 Let B = {b | ⟨b, ak⟩ ∈ Gk.po}, then ⟨aj, b⟩ /∈ (G.po ∪G.rf)+.

Proof. Since Π(Ek−1) = ∅, we have Gk−1.rf ⊆ (G.po ∪ G.rf ↾Volatile)+. If ⟨aj, b⟩ ∈ (G.po ∪

G.rf)+, then we have ⟨aj, b⟩ ∈ (G.po ∪ G.rf ↾Volatile)+. From that we have ⟨aj, ak⟩ ∈ (G.po ∪

G.rf ↾Volatile)+ since ⟨b, ak⟩ ∈ G.po, which contradicts to our previous assumption. Therefore,

⟨aj, b⟩ /∈ (G.po ∪G.rf)+.

1. ak ∈ G.Wrts.

Claim 5 ⟨aj, ak⟩ forms a data race.

160

Proof. Since Gk is closed under (G.po ∪ G.rf) and ak is the last event in the total trace

order in Gk, there is no outgoing edge from ak. Therefore, ⟨ak, aj⟩ /∈ (G.po ∪ G.rf)+. In

addition, Since ak is a write, we cannot have ⟨aj, ak⟩ ∈ G.rf. Therefore, if ⟨aj, ak⟩ ∈ G.hb,

then it would imply that ⟨aj, b⟩ ∈ (G.po ∪ G.rf)+ for some b such that ⟨b, ak⟩ ∈ G.po,

which contradicts with Claim 4. Therefore, ⟨aj, ak⟩ /∈ (G.po ∪G.rf)+ and ⟨aj, ak⟩ forms

a race in Gk.

Claim 6 Gk is not SC-consistent.

Proof. Given that ⟨aj, ak⟩ forms a data race in Gk and {G.AccessMode(aj),

G.AccessMode(ak)} ≠ {Volatile}, this follows from the assumption.

Claim 7 There does not exists a read event b such that ⟨b, ak⟩ ∈ G.rmw.

Proof. Suppose toward conradiction that there is b such ⟨b, ak⟩ ∈ G.rmw. SinceGk is not SC-

consistent, there is cycle of (Gk.po∪Gk.rf∪Gk.fr∪Gk.co)
+

. Since Gk−1 is SC-consistent,

it must be that ak is part of the cycle inGk. That is, there is a (Gk.po∪Gk.rf∪Gk.fr∪Gk.co)

edge from ak. Additionally, it cannot be a po or rf because Gk is a closed prefix of G.

Since ak is a write, it cannot be fr either. Therefore, there is some c in Gk−1 such that

⟨ak, c⟩ ∈ G.co and ⟨c, ak⟩ ∈ (G.po∪G.rf∪G.fr∪G.co)+. Extending the edges, we have

⟨c, d⟩ ∈ (G.po ∪G.rf ∪G.fr ∪G.co)∗, and ⟨d, ak⟩ ∈ (G.co ∪G.fr ∪G.po). We analyze

each case below.

- ⟨d, ak⟩ ∈ G.co. Then we know that c, d ∈ Gk−1 are writes to the same location. Since

Gk−1 is SC-consistent, and ⟨c, d⟩ ∈ (Gk−1.po ∪ Gk−1.rf ∪ Gk−1.fr ∪ Gk−1.co)
∗
, we

have ⟨c, d⟩ ∈ Gk−1.co
∗
. If c = d, then we have a Gk.co cycle between c and ak,

making Gk not Jam21-consistent. Therefore, we have ⟨c, d⟩ ∈ Gk−1.co. But we also

have ⟨d, ak⟩, ⟨ak, c⟩ ∈ Gk.co. Together, they yield a co cycle, contradicting with our

eariler assumption that Gk is Jam21-consistent.

161

- ⟨d, ak⟩ ∈ G.fr. Then we know d is a read. Given that ⟨ak, c⟩ ∈ G.co, we can infer that

⟨d, c⟩ ∈ Gk−1.fr. But we also have ⟨c, d⟩ ∈ (Gk−1.po∪Gk−1.rf∪Gk−1.fr∪Gk−1.co)
∗
,

which forms a cycle between c and d, contradicting to the assumption that Gk−1 is

SC-consistent.

- ⟨d, ak⟩ ∈ G.po. Then we have ⟨d, b⟩ ∈ Gk−1.po
?
. Since ⟨b, ak⟩ ∈ Gk.rmw, by

cormwexcl, we know that there exists some e such that ⟨e, b⟩ ∈ Gk−1.rf and ⟨e, c⟩ ∈

Gk−1.co. Therefore, ⟨b, c⟩ ∈ Gk−1.fr. However, we also have ⟨c, d⟩ ∈ (Gk−1.po ∪

Gk−1.rf ∪Gk−1.fr ∪Gk−1.co)
∗

and ⟨d, b⟩ ∈ Gk−1.po
?
. Now we have a cycle contra-

dicting to the assumption that Gk−1 is SC-consistent.

Now let G′
k be a transformation of Gk such that for all ⟨ak, c⟩ ∈ Gk.co, we have ⟨c, ak⟩ ∈

G′
k.co. Since there is no b such that ⟨b, ak⟩ ∈ G.rmw, transforming the co edges in Gk in

this way won’t affect any other fr or rf edges in Gk. As a result, G′
k is the same as Gk

except for the co edges. Moreover, G′
k is SC-consistent because we have established that

the only way to form a cycle in Gk is to have ⟨ak, c⟩ ∈ Gk.co for some c and G′
k essentially

breaks the cycle by flipping the co arrows. However, we still have ⟨aj, ak⟩ forming a race

in G′
k and {G′

k.AccessMode(aj), G
′
k.AccessMode(ak)} ≠ {Volatile}.

Claim 8 All prefixes of SC-consistent executions of P are data race free.

Proof. This follows from the fact that prefixes are closed under po ∪ rf.

Claim 9 G′
k is a prefix of some SC-consistent execution of P .

Proof. SinceG′
k is SC-consistent and closed under po∪rf, we can construct an SC-consistent

execution G′
such that for all event i ∈ G′.E\G′

k.E and e ∈ G′
k.E, we have ⟨e, i⟩ ∈ G′.to

(trace order).

162

It is clear that the fact G′
k has a data race ⟨aj, ak⟩ contradicts with Claim 8 and Claim 9.

2. ak ∈ G.Rds.

Then we know that aj is a write.

Let E = {a ∈ G.E | ⟨a, ak⟩ ∈ (G.po ∪ Gk−1.rf)
∗} ∪ {a ∈ G.E | ⟨a, aj⟩ ∈ (G.po ∪

Gk−1.rf)
∗}. Note that there does not exist any a ∈ E such that ⟨aj, a⟩ ∈ (G.po∪Gk−1.rf)

∗

and ⟨a, ak⟩ ∈ (G.po ∪Gk−1.rf)
∗

since Gk−1 is closed under (G.po ∪G.rf).

Let G′
be the restriction of Gk to the events in E.

Claim 10 ⟨aj, ak⟩ forms a data race in G′

Proof. Since ak is a read event, there is no out-going rf edge from ak. Because G′
itself is

closed under G.po ∪ G.rf, we have ⟨ak, aj⟩ /∈ (G′.po ∪ G′.rf)+. In addition, there is no

out-going edge from aj in G′
, so ⟨aj, ak⟩ /∈ (G′.po ∪G′.rf)+.

Now, we want to construct an SC-consistent execution that contains the race ⟨aj, ak⟩ to

show a contradiction.

Let x be the location ak accesses and c be the last write to x according to G′.co.

- c ̸= aj . Let d be the write to x such that ⟨d, ak⟩ ∈ G′.rf. We transform G′
so that

ak reads from c instead of d. That is, we remove ⟨d, ak⟩ from G′.rf, change the value

of ak to the value of c, and add ⟨c, ak⟩ to G′.rf. The immediate consequence of this

transformation is, for all e such that ⟨d, e⟩ ∈ G′.co, the fr edge from ak to e are also

removed. Since ak is a read event, there cannot be rf or co edge going out from ak. As

a result, we cannot form a (po∪rf∪co∪fr)+ cycle with ak and the resulting execution

is SC-consistent. Then the fact that ⟨aj, ak⟩ is a data race gives us a contradiction.

- c = aj . That is, ak forms a race with the last write to the same location. Let d be

the write to x such that ⟨a, ak⟩ ∈ G′.rf. We transform G′
so that ak reads from the

write that immediately co ordered before c. Let e be that write. We remove ⟨d, ak⟩

163

from G′.rf, change the value of ak to the value of e, and add ⟨e, ak⟩ to G′.rf. Since

⟨e, c⟩ ∈ G′.co, we have ⟨ak, c⟩ ∈ G′.fr. However, since c = aj and ⟨aj, ak⟩ forms a

race, ⟨c, ak⟩ /∈ (G′.po ∪ G′.rf)+. That is, there is no path from c to ak in G′
. As a

result, we cannot form any cycle with the added fr edge from ak and the execution

after the transformation is SC-consistent. Since we still have ⟨c, ak⟩ forming a race,

we now have a contradiction.

164

APPENDIX J

DRF-SC for Execution Graphs

▶ Theorem 23 (Execution-drf)

Any Jam21-consistent execution that is data race free or only has volatile-races is SC-consistent.

Proof. Let P be a program. We first consider the case without any Volatile-race. That is, all

conflicting pairs of accesses are ordered by the happens-before (hb) order in some SC-consistent

execution of P . We prove that there does not exist any Jam21-consistent execution of P that is

not SC-consistent. Suppose toward a contradiction that there exists an execution G of P such

that G is Jam21-consistent, race-free, but not SC-consistent. That is, G has a (po∪rf∪fr∪co)+

cycle. In addition, we assume that co-jam ⊆ co.

First note that each of the communication edges in the cycle of G are also pairs of conflicting

accesses. Indeed, they are defined between accesses to the same location and at least one of the

accesses is a write event. Then, by our assumption that G data-race-free, they are also ordered

by the hb order. In addition, for all conflicting accesses i1 and i2 in G:

· i1
rf−−→ i2 ⇒ i1

hb−−→ i2

· i1
fr−−→ i2 ⇒ i1

hb−−→ i2

· i1
co−−→ i2 ⇒ i1

hb−−→ i2

because the other direction can immediately lead to contradictions.

Then the cycle in G a cycle of (po ∪ hb)+. We expend the definition of hb, we have a cycle

of (po ∪ (po ∪ sw)+)+, which simplifies to a (po ∪ sw)+ cycle.

165

By the definition of sw order, the domain of each sync edge is a Release mode write (or a

release fence followed by a write) and the range of sw is an Acquire mode read (or a read followed

by an acquire fence). Therefore, we know that the "head" of each thread in this cycle is an Acquire

read and the "end" of each thread in this cycle is a Release write. By the semantics of Release-

Acquire mode, all of the po order to a Release write and all of the po order from an Acquire read

is preserved and captured in the ra order, which is a subset of vo. In addition, sw ⊆ vo. As a

result, the cycle in G is actually a vo cycle. However, we assumed that G is Jam21-consistent

and by the previous lemma by Bender et al. [BP19], the vo order is acyclic in all Jam21-consistent

executions. Thus a contradiction.

We now consider the case where there are Volatile-races in the execution. We prove this by

incrementally inserting a pair of Volatile-race into an execution that is data-race-free and Jam21-

consistent and prove that it does not introduce any weak behavior to the execution. Let G′
be

such an execution. As we just have shown, G′
is SC-consistent. We would like to insert a pair of

Volatile-race ⟨a, b⟩ into G′
. Let T1 be the thread where a is inserted and T2 be the thread where b

is inserted. By definition of data race, T1 ̸= T2. We have three possible cases:

· T1 and T2 are not connected by any (po∪sw)+ edge before inserting ⟨a, b⟩ in G′
. That is, there

does not exist any (po ∪ sw)+ path from T1 to T2. Then inserting ⟨a, b⟩ into the execution

cannot form any cycle in (po ∪ rf ∪ fr ∪ co)+ since it can only add at most one edge to the

graph.

· There is a (po∪sw)+ path from T1 to T2. First note that G′
before inserting ⟨a, b⟩ satisfies that,

if two threads are connected, then they must be connected by at least an sw edge. This implies

there is a release write WRel
on T1, an acquire read RAcq

on T2, and WRel sw−−→ (po | sw)∗−−−−−−→ RAcq
.

Due to this structure, the only way to insert ⟨a, b⟩ and build a cycle of (po∪rf∪fr∪co)+ is to

insert a before WRel
and insert b after RAcq

. Note that this implies a ra−−→ WRel sw−−→ (po | sw)∗−−−−−−→

RAcq ra−−→ b. So depending on what type of access a and b are, we have three cases:

· a is a Volatile write and b is a Volatile read and b fr−−→ a. By definition of fr, there exists

166

a write i such that i rf−−→ b and i co−−→ a. But a ra−−→ WRel sw−−→ (po | sw)∗−−−−−−→ RAcq ra−−→ b

implies that a vo−−→ b, and by the cowr coherence rule, we have a co−−→ i. Now we have a

co cycle, contradicting to our assumption that G′′
is Jam21-consistency.

· a is a Volatile read and b is a Volatile write and b rf−−→ a. Again, we have a vo−−→ b and

b rf−−→ a. Since rf ⊆ vo, we get a vo cycle, contradicting to our previous assumption of

Jam21-consistency.

· a is a Volatile write and b is a Volatile write and b co−−→ a. Again, we have a vo−−→ b and

b co−−→ a. By coww, we have a co−−→ b and b co−−→ a, a coherence cycle contradicting to our

previous assumption of Jam21-consistency.

· There is a (po ∪ sw)+ path from T2 to T1. Symmetrical to the previous case.

167

APPENDIX K

Experimental Validation of Jam21

In this chapter, we explain our implementation of Java architecture for Herd7 [AMT14] and

experimental results with the Jam21 model. The source code of our Java architecture implemen-

tation will become available for artifact evaluation.

K.1 Methods supported by Java Architecture for Herd7

The list of supported methods in our implementation of Java in Herd7 [AMT14] can be found

in Fig. K.1. We provide a description for each one of the method and its corresponding action in

Herd7.

K.2 Experimental Results

In this section, we show the experimental results of running the same set of litmus tests as in

Jam19 and compare their outcomes. Three types of results can be yielded by Herd7 at the end,

Always, Sometimes, and Never. Always and Sometimes means the behavior specified in the

litmus test is allowed, whereas Never means it is forbidden.

Fig. K.2 shows the experimental results of running volatile-non-sc.4 example and its 5-thread

version with the Jam19 and the Jam21 model. As we expected, the update to the Jam21 model

fixes the issue we addressed earlier in the paper and the executions changed from Sometimes to

Forbidden.

168

Method Memory Action Description

getM() R(M) Read operation with access

mode specified by M, where M
can be omitted (Plain mode),

Opaque, Acquire, or Volatile.

setM(val) W(M) Write operation with access

mode specified by M, where M
can be omitted (Plain mode),

Opaque, Acquire, or Volatile,

the value written is specified by

val, which can be either an in-

teger or a local variable.

compareAndExchangeM(expect, dest) RMW(M) An atomic compare and update

operation with access mode

specified by M, where M can

be omitted (Volatile mode),

Acquire, or Release.

getAndOpM(val) RMW(M) A numeric or bitwise atomic

update operation with modify-

ing operation specified by Op
and access mode specified by M,

where Op can be Add, And, Or,

or Xor; and M can be omitted,

Acquire, or Release.

fullFence() F(Volatile) A full fence.

releaseFence() F(Release) A release fence.

acquireFence() F(Acquire) An acquire fence.

Figure K.1: Methods supported by the Java Architecture

169

Name Jam19 Jam21

volatile-non-sc.4 Sometimes Never
volatile-non-sc.5 Sometimes Never

Figure K.2: volatile-non-sc Experimental Results

Fig. K.3 shows the rest of the experimental results in details. Note that not all litmus tests

used for Jam19 [BP19] are translatable to Java. We marked those non-translatable tests as “N/A”

in the tables (since Java does not have the notion of address dependency). The result agrees with

our expectation that most of the litmus tests yield the same results as Jam19, except those that are

related to the inconsistency issue (highlighted using bold font). We discuss each of the exceptions.

The execution graphs of IRIW-acq-sc are shown in Fig. K.4. Our experimental results show

that this execution is forbidden under Jam19 but is allowed under Jam21. Under the Jam19 model,

because the definition of volint includes orders from any instruction to a Volatile read pro-

gram ordered after the instruction, we have (c) volint−−−−→(d) and (e) volint−−−−→(f). Between the

two threads (P3 and P4), there is the visibility order (c)
vo−→(f), or (e)

vo−→(d). Both cases can

produce the contradictory result that one of the threads observes the non-initialization write be-

fore the initialization write, i.e., a coherence cycle. Therefore, this execution is forbidden under

the Jam19 model. In Jam21, the two volint orders are no longer present in the execution graph

because the new definition of volint requires both of the memory accesses to be Volatile. As a

result, the execution becomes allowed under the Jam21 model. To see why allowing this execu-

tion is an improvement, note that the Jam19 model only captures the "leading fence" convention

that fullFence() are inserted before Volatile accesses. On the other hand, if the compiler fol-

lows the "trailing fence" convention, there would not be fullFence()s in P3 and P4. In that case,

the execution is allowed. In order to accommodate both conventions, the Jam21 model relaxes to

allow this execution.

The execution graph of Z6.U are shown in Fig. K.5. Due to the original problematic encod-

ing of Volatile writes, volint includes orders from Volatile writes to any program ordered later

memory accesses. Therefore,(a) volint−−−−→(b), (c) volint−−−−→(d), and (e) volint−−−−→(f). Similar to the

170

Name Jam19 Jam21

WRC+addrs Never N/A

LB+data+data-wsi Never N/A

W+RR Never Never
totalco Never Never
PPOCA Sometimes N/A

IRIW Sometimes Sometimes
IRIW+addrs Sometimes N/A

IRIW+poaas+LL Sometimes Sometimes
IRIW+poaps+LL Sometimes Sometimes
MP+dmb.sy+addr-ws-rf-addr Sometimes N/A

WW+RR+WW+RR+wsilp+poaa+wsilp+poaa Sometimes Sometimes
LB Never Never

Name Jam19 Jam21

a1 Sometimes Sometimes
a1_reorder Sometimes Sometimes
a3 Sometimes Sometimes
a3_reorder Sometimes Sometimes
a3v2 Sometimes Sometimes
a4 Never Never
a4_reorder Sometimes Sometimes
arfna Never Never
arfna_transformed Never Never
b Never Never
b_reorder Sometimes Sometimes
c Never Never
c_p Never Never
c_p_reorder Never Never
c_pq Never Never
c_pq_reorder Never Never
c_q Never Never
c_q_reorder Never Never
c_reorder Never Never
cyc Never Never
cyc_na Sometimes Sometimes
fig1 Always Always
fig6 timed out time out

fig6_translated timed out time out

lb Never Never
linearisation Never Never
linearisation2 Never Never
roachmotel Never Never
roachmotel2 Never Never
rseq_weak Sometimes Sometimes
rseq_weak2 Always Always
seq Never Never
seq2 Never Never
strengthen Never Never
strengthen2 Never Never

Name Jam19 Jam21

2+2W Never Never
IRIW-acq-sc Never Sometimes
RWC+syncs Never Never
W+RWC Never Never
Z6.U Never Sometimes
IRIW-sc-rlx-acq Never Sometimes
cppmem_iriw_relacq Sometimes Sometimes
cppmem_sc_atomics Never Never
iriw_sc Never Never
mp_fences Never Never
mp_relacq Never Never
mp_relacq_rs Sometimes Sometimes
mp_relaxed Sometimes Sometimes
mp_sc Never Never
4.SB Sometimes Sometimes
6.SB timeout timeout

6.SB+prefetch timeout timeout

CoRWR Never Never
SB+SC Sometimes Sometimes
SB+mfences Never Never
SB+rfi-pos Sometimes Sometimes
SB Sometimes Sometimes
X000 Sometimes Sometimes
X001 Sometimes Sometimes
X002 Sometimes Sometimes
X003 Sometimes Sometimes
X004 Sometimes Sometimes
X005 Sometimes Sometimes
X006 Sometimes Sometimes
iriw-internal Sometimes Sometimes
iriw Sometimes Sometimes
podrw000 Sometimes Sometimes
podrw001 Sometimes Sometimes
x86-2+2W Sometimes Sometimes

Figure K.3: Litmus Test Comparisons

171

(a) Before: Forbidden (b) After: Allowed

Figure K.4: IRIW-acq-sc

(a) Before: Forbidden (b) After: Allowed

Figure K.5: Z6.U

(a) Before: Forbidden (b) After: Allowed

Figure K.6: IRIW-seq-rlx

172

previous example, there are two possible visibility orders, (a) vo−−→(f) or (e) vo−−→(b). The former

case leads to the derivation of (a) co−−→(Wx=0), which contradicts the assumption that all initial-

ization writes to variable x are ordered before all non-initialization writes to x. The latter case

leads to a contradiction as well. Because (d) reads the value written by (e) and (c) volint−−−−→(d),

we can infer that (c) co−−→(e). If (e) vo−−→(b), then (e) vo−−→(c). By the coww rule, (e) co−−→(c).

This leads to a coherence co cycle between (c) and (e). The Jam21 model relaxes the volint

edges in P1 and P2 in order to accommodate both the leading fence convention and the trail-

ing fence convention. If the compiler follows the convention of inserting fullFence() before

the Volatile accesses, there is only (a) ra−−→(b) in P1 and no synchronization between the two

instructions in P2. Thus this execution is allowed under the Jam21 model.

Lastly, the execution graphs of IRIW-seq-rlx are shown in Fig. K.6. Originally, due to the

old encoding of Volatile writes, (a) volint−−−−→(b) and (c) volint−−−−→(d). Two possible visibility or-

ders can be inferred, either (a) vo−−→(d) or (c) vo−−→(b). The former case leads to the conclu-

sion that (a) co−−→Wx=0 because (a) vo−−→(d) rf−−→(g) ra−−→(h) and (Wx=0) rf−−→(h). Similarly, the

latter case leads to the conclusion that (c) co−−→(Wy=0) because (c) vo−−→(b) rf−−→(e) ra−−→(f) and

(Wy=0) rf−−→(f). Each of the two conclusions contradicts the assumption that initialization writes

are coherence co ordered before non-initialization writes. Therefore this execution is forbidden

by the Jam19 model. In the Jam21 model, we relax the volint order in P1 and P2 to include the

situation of which the compiler inserts the fullFence() before Volatile accesses. Thus, under

the new Jam21 model, this execution is allowed.

In summary, the Jam21 model has two main differences comparing to the Jam19 model. First,

under the Jam21 model, when all memory accesses use Volatile mode, the execution is guaranteed

to be sequentially consistent, whereas the old Jam19model has the inconsistency issue we pointed

out earlier. Second, when mixing Volatile and other access modes in a program, the new Jam21

model accommodates both the "leading fence" convention and the "trailing fence" convention so

that the compiler is free to choose either one to implement.

173

Name Power [SSA11]

volatile-non-sc.4.ppc Sometimes
volatile-non-sc.5.ppc Sometimes

Figure K.7: volatile-non-sc on Power with the incorrect compilation scheme

K.3 Compilation to Power

We translated the volatile-non-sc.4 and the volatile-non-sc.5 example to Power instructions ac-

cording to the original compilation scheme:

The source code of the litmus tests in Power instructions can be found in Appendix K.4.

Fig. K.7 shows the results of running the litmus tests with Power instructions on Herd7 using

Power’s memory model. Both of the executions are allowed under Power’s memory model, which

confirms the problem we addressed in this paper. The executions becomes forbidden if we change

the lwsync instruction in the program to hwsync.

K.4 Source Code of litmus tests

In this section we provide the source code of the two examples that demonstrate the inconsis-

tency issue we addressed in the paper. In addition, we include the same tests translated to Power

instructions.

volatile-non-sc.4.litmus

Java volatile-non-sc.4
{
x = 0; y = 0;
0:X=x; 0:Y=y;1:X=x; 1:Y=y;
2:X=x; 2:Y=y;3:X=x; 3:Y=y;
}

Thread0 {
Y.setVolatile(2);
int r0 = X.getVolatile();

174

}

Thread1 {
X.setVolatile(1);

}

Thread2 {
int r0 = X.getVolatile();
Y.setVolatile(1);

}

Thread3 {
int r0 = Y.getVolatile();
int r1 = Y.getVolatile();

}

exists
(0:r0=0 /\ 2:r0=1 /\ 3:r0=1 /\ 3:r1=2)

volatile-non-sc.5.litmus

Java volatile-non-sc.5

{

x = 0;y = 0;z = 0;

0:X=x;0:Y=y;0:Z=z;1:X=x;1:Y=y;1:Z=z;2:X=x;2:Y=y;2:Z=z;

3:X=x;3:Y=y;3:Z=z;4:X=x;4:Y=y;4:Z=z;

}

Thread0 {

X.setVolatile(1);

int r1 = Y.getVolatile();

}

Thread1 {

Y.setVolatile(1);

}

Thread2 {

int r1 = Y.getVolatile();

175

Z.setVolatile(1);

}

Thread3 {

Z.setVolatile(2);

int r1 = X.getVolatile();

}

Thread4 {

int r1 = Z.getVolatile();

int r2 = Z.getVolatile();

}

exists

(0:r1 = 0 /\ 2:r1 = 1 /\ 3:r1 = 0 /\ 4:r1 = 1 /\ 4:r2 = 2)

volatile-non-sc.4.ppc.litmus

PPC volatile-non-sc.4.ppc

{

0:r1=x; 0:r2=y;1:r2=y;

2:r1=x; 2:r2=y;3:r1=x;

}

P0 | P1 | P2 | P3 ;

li r3,2 | li r3,1 | li r3,1 | sync ;

lwsync | lwsync | sync | lwz r3,0(r1) ;

stw r3,0(r1) | stw r3,0(r2) | lwz r4,0(r2) | lwsync ;

sync | sync | sync | sync ;

lwz r4,0(r2) | | stw r3,0(r1) | lwz r4,0(r1) ;

lwsync | | sync | lwsync ;

exists

176

(0:r4=0 /\ 2:r4=1 /\ 3:r3=1 /\ 3:r4=2)

volatile-non-sc.5.ppc.litmus

PPC volatile-non-sc.5.ppc

{

0:r1=x; 0:r2=y;1:r2=y;

2:r2=y; 2:r3=z;3:r1=x; 3:r3=z;4:r3=z;

}

P0 | P1 | P2 | P3 | P4 ;

li r4,1 | li r4,1 | li r4,1 | li r4,2 | sync ;

lwsync | lwsync | sync | lwsync | lwz r4, 0(r3);

stw r4,0(r1) | stw r4,0(r2) | lwz r5, 0(r2) | stw r4, 0(r3) | lwsync ;

sync | sync | lwsync | sync | sync ;

lwz r5,0(r2) | | stw r4,0(r3) | lwz r5, 0(r1) | lwz r5, 0(r3);

lwsync | | sync | lwsync | lwsync ;

exists

(0:r5 = 0 /\ 2:r5 = 1 /\ 3:r5 = 0 /\ 4:r4 = 1 /\ 4:r5 = 2)

K.5 Full Trace and Litmus Test the example in Section. 3.1

The litmus test of the example of Fig. 3.2 is shown below. We labeled each memory instruction

(in blue) in the litmus test for better readability of the trace. We obtained the trace by running

the ppcmem tool by [SSA11] in the online interactive mode.

PPC volatile-non-sc.4.ppc

{

0:r1=x; 0:r2=y;

1:r2=y;

2:r1=x; 2:r2=y;

177

3:r1=x;

}

P0 | P1 | P2 | P3 ;

li r3,2 | li r3,1 | li r3,1 | r: sync ;

a: lwsync | f: lwsync | m: sync | s: lwz r3,0(r1) ;

b: stw r3,0(r1) | g: stw r3,0(r2) | n: lwz r4,0(r2) | t: sync ;

c: sync | h: sync | o: lwsync | t16: lwz r4,0(r1) ;

d: lwz r4,0(r2) | | p: stw r3,0(r1) | t17: sync ;

e: sync | | q: sync | ;

exists

(0:r4=0 /\ 2:r4=1 /\ 3:r3=1 /\ 3:r4=2)

One of the traces to show that this execution is allowed

(0:0) Commit reg or branch: li r3,2

(1:6) Commit reg or branch: li r3,1

(2:10) Commit reg or branch: li r3,1

(0:1) Commit barrier: lwsync: a:lwsync

(1:) Barrier propagate to thread: a:lwsync to Thread 1

(2:) Barrier propagate to thread: a:lwsync to Thread 2

(3:) Barrier propagate to thread: a:lwsync to Thread 3

(1:7) Commit barrier: sync: f:Sync

(0:) Barrier propagate to thread: f:Sync to Thread 0

(2:) Barrier propagate to thread: f:Sync to Thread 2

(3:) Barrier propagate to thread: f:Sync to Thread 3

Acknowledge sync: Sync f:Sync

(2:11) Commit barrier: sync: m:Sync

(0:) Barrier propagate to thread: m:Sync to Thread 0

(1:) Barrier propagate to thread: m:Sync to Thread 1

(3:) Barrier propagate to thread: m:Sync to Thread 3

Acknowledge sync: Sync m:Sync

(3:16) Commit barrier: sync: r:Sync

178

(0:) Barrier propagate to thread: r:Sync to Thread 0

(1:) Barrier propagate to thread: r:Sync to Thread 1

(2:) Barrier propagate to thread: r:Sync to Thread 2

Acknowledge sync: Sync r:Sync

(1:8) Commit write: stw r3,0(r2): g:W y=1 i:W x=0,j:W y=0

Write reaching coherence point: g:W y=1

(2:) Write propagate to thread: g:W y=1 to Thread 2

(2:12) Read from storage subsystem: lwz r4,0(r2) (from g:W y=1)

(2:12) Commit read: lwz r4,0(r2): n:R y=1

(2:13) Commit barrier: lwsync: o:Lwsync

(2:14) Commit write: stw r3,0(r1): p:W x=1 g:W y=1,i:W x=0

Write reaching coherence point: p:W x=1

(3:) Write propagate to thread: g:W y=1 to Thread 3

(3:) Barrier propagate to thread: o:Lwsync to Thread 3

(3:) Write propagate to thread: p:W x=1 to Thread 3

(3:17) Read from storage subsystem: lwz r3,0(r1) (from p:W x=1)

(3:17) Commit read: lwz r3,0(r1): s:R x=1

(0:2) Commit write: stw r3,0(r1): b:W x=2 i:W x=0,j:W y=0

Write reaching coherence point: b:W x=2

(3:) Write propagate to thread: b:W x=2 to Thread 3

(0:3) Commit barrier: sync: c:Sync

(3:) Barrier propagate to thread: c:Sync to Thread 3

(1:) Barrier propagate to thread: o:Lwsync to Thread 1

(1:) Write propagate to thread: p:W x=1 to Thread 1

(1:) Write propagate to thread: b:W x=2 to Thread 1

(1:) Barrier propagate to thread: c:Sync to Thread 1

(2:) Write propagate to thread: b:W x=2 to Thread 2

(2:) Barrier propagate to thread: c:Sync to Thread 2

Acknowledge sync: Sync c:Sync

(0:4) Read from storage subsystem: lwz r4,0(r2) (from j:W y=0)

(0:4) Commit read: lwz r4,0(r2): d:R y=0

(0:) Write propagate to thread: g:W y=1 to Thread 0

179

(0:) Barrier propagate to thread: o:Lwsync to Thread 0

(3:18) Commit barrier: sync: t:Sync

(0:) Barrier propagate to thread: t:Sync to Thread 0

(1:) Barrier propagate to thread: t:Sync to Thread 1

(2:) Barrier propagate to thread: t:Sync to Thread 2

Acknowledge sync: Sync t:Sync

(3:19) Read from storage subsystem: lwz r4,0(r1) (from b:W x=2)

(3:19) Commit read: lwz r4,0(r1): t16:R x=2

(0:5) Commit barrier: sync: e:Sync

(1:) Barrier propagate to thread: e:Sync to Thread 1

(2:) Barrier propagate to thread: e:Sync to Thread 2

(3:) Barrier propagate to thread: e:Sync to Thread 3

Acknowledge sync: Sync e:Sync

(1:9) Commit barrier: sync: h:Sync

(0:) Barrier propagate to thread: h:Sync to Thread 0

(2:) Barrier propagate to thread: h:Sync to Thread 2

(3:) Barrier propagate to thread: h:Sync to Thread 3

Acknowledge sync: Sync h:Sync

(2:15) Commit barrier: sync: q:Sync

(0:) Barrier propagate to thread: q:Sync to Thread 0

(1:) Barrier propagate to thread: q:Sync to Thread 1

(3:) Barrier propagate to thread: q:Sync to Thread 3

Acknowledge sync: Sync q:Sync

(3:20) Commit barrier: sync: t17:Sync

(0:) Barrier propagate to thread: t17:Sync to Thread 0

(1:) Barrier propagate to thread: t17:Sync to Thread 1

(2:) Barrier propagate to thread: t17:Sync to Thread 2

Acknowledge sync: Sync t17:Sync

Result:

0:r4=0; 2:r4=1; 3:r3=1; 3:r4=2;

180

APPENDIX L

Relationship with Existing Soundness Definitions

In this section, we provide the formal definitions of the existing soundness definitions reviewed

in §4.2 and show their relationships with our soundness definition. Since all of the definitions

from existing works are based on sequential traces, we lift the definitions to execution graphs by

treating each well-formed trace as a well-formed execution graph equipped with a trace order,

which is a total order among all events in the execution graph. Note that we are focusing on the

validity of each execution itself here, without considering its relationship with the reported bug.

Therefore, we drop the requirement of composability.

Feasible Closure Feasible closure is defined in [HMR14] over sequential traces. We lift the

definition to sequentially consistent execution graphs and use the same composition operation

from Definition 14.

▶ Definition 29 (Feasible Closure)

Given a well-formed execution graph Gσ that is sequentially consistent with a linear order

Gσ.trace over all events, the Feasible Closure of Gσ, feasible(Gσ), is the smallest set of well-

formed execution graphs that includes Gσ and is closed under the following operations:

· Prefixes. If G1 is an execution graph such that G1.Evts ⊆ G2.Evts is closed with respect to

G2.trace for some execution G2 ∈ feasible(Gσ), then G1 ∈ feasible(Gσ)

· Local Determinism. Assume that G1 ◦ e1, G2 ∈ feasible(Gσ), e1.tid = t, and G1|t ≈ G2|t.
Then

· Branch. If e1.typ = br and G1|t∩G1.Rds = G2|t∩G2.Rds, then G2 ◦ e1 ∈ feasible(τ).

· Read. If e1.typ = r and e2 is a read event such that e2 ≈ e1, thenG2◦e2 ∈ feasible(Gσ).

· Write. If e1.typ = w then G2 ◦ e2 ∈ feasible(Gσ) with some write event e2 such that

181

e2 ≈ e1. IfG1|t∩G1.Rds = G2|t∩G2.Rds, then e2.val = e1.val. Otherwise, e2.val = ŝ
for some ŝ ∈ Sym.

· Otherwise, G2 ◦ e1 ∈ feasible(Gσ).

▶ Proposition 8

Let Gσ be a sequentially consistent input execution. Then for any Gρ ∈ feasible(Gσ), Gρ is

well-formed, executable, and sequentially consistent.

The well-formedness of Gρ is given by the definition. The executability of Gρ can be shown by

applying Lemma 5 with C = W ∪R where

R = {r ∈ Gσ.Rds | (⟨r, br⟩ ∈ Gσ.po for some branch event br ∈ Gρ.Brs)

∨ (∃w ∈ C, ⟨r, w⟩ ∈ Gσ.po)}

W = {w ∈ Gσ.Wrts | ∃r ∈ C, ⟨w, r⟩ ∈ Gσ.rf}

Notice that this definition of C satisfies ((data ∪ rf)∗; ctrl)+ ⊆ C for event e ∈ Gρ, because

ctrl ⊆ po; [Brs]; po and data ⊆ [Rds]; po; [Wrts]. By Proposition 2, the the composition oper-

ation (◦) preserves memory consistency. Since Gσ is sequentially consistent, we can inductively

show that Gρ is also sequentially consistent.

Relaxed CR We use the definition from [MKV18] for Relaxed CR, again lifted to execution

graphs.

▶ Definition 30 (Relaxed CR)

Given a well-formed execution graph Gσ that is sequentially consistent, a well-formed exe-

cution Gρ is a Relaxed CR of Gσ, if:

· Gρ is sequentially consistent

· for each event e ∈ Gρ.Evts, if ⟨e′, e⟩ ∈ Gσ.po, then e′ ∈ Gρ.Evts and Gρ.po ⊆ Gσ.po

182

· for each read event r ∈ Gρ.Evts, if r is not the last event in its thread, and ⟨w, r⟩ ∈ Gσ.rf,

then w ∈ Gρ.Evts and ⟨w, r⟩ ∈ Gρ.rf for each pair of such read and write events.

▶ Proposition 9

Let Gσ be a sequentially consistent input execution. Then for any Relaxed CR Gρ of Gσ, Gρ

is well-formed, executable, and sequentially consistent.

The well-formedness of Gρ is given by the definition. The executability of Gρ can be shown

by applying Lemma 5 with C = W ∪R where

R = {r ∈ Gσ.Rds | ⟨r, e⟩ ∈ Gρ.po for some non-branch event e ∈ Gρ.Evts }

W = Gσ.Wrts

Notice that this definition of C satisfies Cσ ⊆ C for event e ∈ Gρ, since all of the rules (IV, V,

VI in Definition 19) that add a read event r into Cσ require some non-branch event e′ to be

po-ordered after r in Gρ. Lastly, Gρ is sequentially consistent by definition.

It’s easy to see that the concrete set C of Feasible Closure is a subset of the concrete set C

of Relaxed CR, while both require the execution to be well-formed and sequentially consistent.

Hence, any Relaxed CR is also in the Feasible Closure of the input execution.

Correct Reordering Correct Reordering is defined as the following.

▶ Definition 31 (Correct Reordering)

Given a well-formed execution Gσ that is sequentially consistent, a well-formed execution Gρ

is a Correct Reordering of Gσ if:

· Gρ is sequentially consistent,

· for each event e ∈ Gρ.Evts, if ⟨e′, e⟩ ∈ Gσ.(po ∪ rf), then e′ ∈ Gρ.Evts,

· Gρ.rf = Gσ.rf ∩ (Gρ.Wrts×Gρ.Rds),

· Gρ.po = Gσ.po ∩ (Gρ.Evts×Gρ.Evts).

183

▶ Proposition 10

Let Gσ be a sequentially consistent input execution. Then for any Correct Reordering Gρ of

Gσ, Gρ is well-formed, executable, and sequentially consistent.

The well-formedness of Gρ is given by the definition. The executability of Gρ can be shown

by applying Lemma 5 with C = Gσ.Wrts∪Gσ.Rds. It is obvious that this definition of C satisfies

Cσ ⊆ C for each event e ∈ Gρ. Finally, Gρ is sequentially consistent by definition.

Sync-Preserving CR The formal definition of Sync-Preserving CR is given by

▶ Definition 32

Given a well-formed execution Gσ that is sequentially consistent, a well-formed execution Gρ

is a Sync-Preserving CR of Gσ if:

· Gρ is a Correct Reordering of Gσ

· Gρ.sync ⊆ Gσ.sync

By definition, any Sync-Preserving CR is a Correct Reordering of the input execution, hence

the following proposition.

▶ Proposition 11

Let Gσ be a sequentially consistent input execution. Then for any Sync-Preserving CR Gρ of

Gσ, Gρ is well-formed, executable, and sequentially consistent.

Interestingly, if we want to show a Sync-Preserving CR is executable without considering the

obvious relation with Correct Reordering, the concrete set C for Sync-Preserving CR is the same

as Correct Reordering. This is because Sync-Preserving CR only differ from Correct Reordering

in the memory orders among the events, whereas executability is not affected by memory orders

other than po.

184

APPENDIX M

Language Semantics for Chapter 4

In this section we provide the operational semantics for our language. The semantics are intended

to be straightforward and unsurprising.

Recall that a thread state st ∈ State for a thread t is a tuple of the form

st = ⟨sprog, pc,Φ, G,Ψ, ctrl, θ,Φθ⟩

Helper Functions We start by defining the helper functions.

Given a map θ : G.Rds → Sym, we define the function valθ : ℘(G.Rds) → (Sym → Val) as

the following.

valθ[] ≜ λs.0

valθ(r :: tl) ≜ λs. if s = θ(r) then r.val else valθ(tl)(s)

The substitution function subst : SymExpr → (Sym → Val) → Expr replaces symbols with

concrete values in an expression.

In addition, the function mkExpr : Expr → (Reg → SymExpr) → SymExpr converts a

concrete expression to a symbolic expression using a given map Φθ : Reg→ SymExpr.

The function newSym : ℘(Sym) → Sym returns a fresh new symbol that does not occur in

the given set of existing symbols.

Finally, we use a the same function addG defined from [PLV19] but without read-modify-write

185

operations and address dependencies (we assume all memory locations are fixed).

Semantic Rules Recall that we are given a map loadV al : Load→ Val for each load instruc-

tion of the form r := [x] with r ∈ Reg and x ∈ Loc. In this section, we use the helper functions

defined previously and the loadV al map to define the semantic rules for our language.

We use the notation st1
instr−−−→t st2 to represent a state transition in thread t from st1 to st2

where st1.sprog(st1.pc) = instr ∈ Instr and st1.sprog = st2.sprog.

st2.pc = st1.pc+ 1

st2.Φ = st1.Φ[r 7→ st1.Φ(e)]

st2.G = st1.G

st2.Ψ = st1.Ψ[r 7→ st1.Ψ(e)]

st2.ctrl = st1.ctrl

st2.θ = st1.θ

st2.Φ
θ = st1.Φ

θ[r 7→ mkExpr(e, st1.Φ
θ)]

st1
r:=e−−→t st2

(Assignment)

evt = ⟨t, |st1.G.Evts|,Rds, loadV al(i), x⟩

ŝ = newSym(codomain(st1.θ))

st2.pc = st1.pc+ 1

st2.Φ = st1.Φ[r 7→ loadV al(i)]

st2.G = add(st1.G, evt,∅, st1.ctrl)

st2.Ψ = st1.Ψ[r 7→ {evt}]

st2.ctrl = st1.ctrl

st2.θ = st1.θ[evt 7→ ŝ]

st2.Φ
θ = st1.Φ

θ[r 7→ ŝ]

st1
r:=[x]−−−→t st2

(Load)

186

evt = ⟨t, |st1.G.Evts|,Wrts, st1.Φ(e), x⟩

st2.pc = st1.pc+ 1

st2.Φ = st1.Φ

st2.G = add(st1.G, evt,Ψ(e), st1.ctrl)

st2.Ψ = st1.Ψ

st2.ctrl = st1.ctrl

st2.θ = st1.θ

st2.Φ
θ = st1.Φ

θ

st1
[x]:=e−−−→t st2

(Store)

evt = ⟨t, |st1.G.Evts|, Br,−,−⟩

st1.Φ(e) = 0⇒ st2.pc = st1.pc+ 1

st1.Φ(e) ̸= 0⇒ st2.pc = n

st2.Φ = st1.Φ

st2.G = add(st1.G, evt,∅, st1.ctrl)

st2.Ψ = st1.Ψ

st2.ctrl = st1.ctrl ∪ st1.Ψ(e)

st2.θ = st1.θ

st2.Φ
θ = st1.Φ

θ

st1
if e goto n−−−−−−→t st2

(If-Goto)

evt = ⟨t, |st1.G.Evts|,Acqs,−, l⟩

st2.pc = st1.pc+ 1

st2.Φ = st1.Φ

st2.G = add(st1.G, evt,∅, st1.ctrl)

st2.Ψ = st1.Ψ

st2.ctrl = st1.ctrl

st2.θ = st1.θ

st2.Φ
θ = st1.Φ

θ

st1
lock(l)−−−→t st2

(Lock)

evt = ⟨t, |st1.G.Evts|,Rels,−, l⟩

st2.pc = st1.pc+ 1

st2.Φ = st1.Φ

st2.G = add(st1.G, evt,∅, st1.ctrl)

st2.Ψ = st1.Ψ

st2.ctrl = st1.ctrl

st2.θ = st1.θ

st2.Φ
θ = st1.Φ

θ

st1
unlock(l)−−−−−→t st2

(Unlock)

187

APPENDIX N

Proofs for Soundness Properties in §4.4

In this section, we present the proofs of §4.4.

▶ Proposition 1

Let Gρ be a well-formed execution graph such that Gρ ∈ JP K, and b be a bug sequence. If

Gρ � b, then (Gρ ◦ b) ∈ JP K.

Proof. Note that (Gρ ◦ b) is a symbolic execution graph since all events in b have symbolic val-

ues. From Gρ ∈ JP K, we know that for each thread t ∈ Gρ.Thrd, there is a state transition path

st′0 → · · · → st′m generating Gρ|t where st0 = st′0 and sti ≈ st′i for sti ∈ Path(Gσ|t). Let e1 be

the first event and en be the last event in b|t. Then there is a set {δb(e1), . . . , δb(en)} ⊆ Gσ|t.Evts.

Let stj → · · · → stn be the subsequence of transition path that generates {δb(e1), . . . , δb(en)}.

We construct a set of states {st′j, . . . , st′n} as follows. For each i ∈ j . . . n, we first set st′i.sprog =

sti.sprog, st′i.pc = sti.pc, and st′i.Φ
θ = sti.Φ

θ
. For each read event r′ ∈ b|t.Rds, there exists a read

event r = δb(r
′) in Gσ|t.Rds such that r′ ≈ r. Set st′i.θ be a symbol map such that st′i.θ(r

′) =

sti.θ(r) for each read event r′. Then st′i.Ψ and st′i.ctrl are derived from sti.Ψ and sti.ctrl re-

spectively by replacing each r with r′. Finally, st′i.G is derived from sti.G by replacing every

event e with e′, where e = δb(e
′). By this construction, since b is sequentially consistent, the set

{st′j, . . . , st′n} is sqsubseteq-ordered. In addition, from the No Skipping condition, we know that

there is eq ∈ Gρ such that ⟨δρ(eq), δb(e1)⟩ ∈ Gσ.po. Hence, the set {st′0, . . . , st′m, st′j, . . . , st′n} is

sqsubseteq-ordered as well. For state st′m−1, if st′m−1.sprog(st
′
m−1.pc) = if expr goto n, for

each r ∈ stm−1.Ψ(expr), we have ⟨δρ(r), δb(ek)⟩ ∈ Gσ.ctrl for all k ∈ 1 . . . n. From the Same

Control Flow condition, we know that δρ(r) = r. Hence, stm−1.Φ(expr) = stm−1.Φ(expr).

188

From the assumption that Gρ ∈ JP K and that there is no concrete event in b, we can infer that

st′0 → · · · → st′m → st′j → · · · → st′n is a valid transition path generating (Gρ ◦ b). Thus,

(Gρ ◦ b) ∈ JP K.

▶ Proposition 2

Let Gρ be a well-formed execution graph such that Gρ isM-consistent, and b be a sequence

of events. Then (Gρ ◦ b) isM-consistent.

Proof. Towards contradiction, suppose there is a ppo∪com∪(po?; [L]; po?)∪sync cycle in (Gρ◦b).

Since Gρ isM-consistent and b is a sequentially consistent, there must be an ordering edge from

an event of b to an event of Gρ. Since (Gρ ◦ b).po orders all events of Gρ before events of b on the

same threads, this back edge is not a po edge. By the definition of composition, we can further

rule out sync, co, and rf edge for similar reasons. If it is an fr edge, then it means there is a write

eventw ∈ b.Wrts such that ⟨w, r⟩ ∈ b.rf for some read event r ∈ b.Rds and ⟨w,w′⟩ ∈ (Gρ◦b).co.

However, it contradicts with the definition of (Gρ ◦ b).co. Thus, (Gρ ◦ b) isM-consistent.

Lemma 3 is proved using two helper lemmas, Lemma 18 and Lemma 19. We begin by providing

their proofs.

▶ Lemma 18

Let st1, st2, st
′
1, st

′
2 ∈ State be four valid states and st1.sprog(st1.pc) ̸= if e goto n . If

st1 ≈ st′1, st2 ≈ st′2 via the same map δ and st1 → st2, then st′1 → st′2.

Proof. Let st1 = ⟨sprog1, pc1,Φ1, G1,Ψ1, ctrl1, θ1,Φ
θ
1⟩, st2 = ⟨sprog2, pc2,Φ2, G2,Ψ2, ctrl2, θ2,Φ

θ
2⟩,

st′1 = ⟨sprog′1, pc′1,Φ′
1, G

′
1,Ψ

′
1, ctrl

′
1, θ

′
1,Φ

θ′
1 ⟩, and st′2 = ⟨sprog′2, pc′2,Φ′

2, G
′
2,Ψ

′
2, ctrl

′
2, θ

′
2,Φ

θ′
2 ⟩.

Recall that each valid state satisfies the invariant ∀r ∈ Reg, subst(Φθ(r), valθ(Ψ(r))) =

Φ(r).

It’s obvious that sprog1 = sprog2 = sprog′1 = sprog′2.

189

Due to the data-abstract equivalence relations and the assumption that st1.sprog(st1.pc) ̸=

if e goto n , we have pc1 = pc′1 and pc2 = pc′2. Because sprog1(pc1) ̸= if e goto n, we have

pc2 = pc1 + 1. Hence, pc′2 = pc′1 + 1.

For the execution graph, we have G2 = add(G1, e) for some event e. Therefore, for each

e′ ∈ G2 that e′ ̸= e, we know that e′ ∈ G1, which implies that δ(e′) ∈ G1. For e, we have e /∈ G1

which implies that δ(e) /∈ G′
1. In addition, because G2 ≈ G′

2, we know that δ(e) ∈ G′
2. Therefore,

we can infer that G′
2 = add(G′

1, δ(e)).

For the ctrl set, because sprog(pc1) ̸= if e goto n, we have ctrl1 = ctrl2. Because st2 ≈

st′2 for each read event e ∈ ctrl2, we have δ(e) ∈ ctrl′2. Similarly, for each read event e ∈ ctrl′1,

we have δ−1(e) ∈ ctrl1. Hence, for each read event e ∈ ctrl′1, δ(δ
−1(e)) = e ∈ ctrl′2. Similarly,

for each read event e ∈ ctrl′2, δ(δ
−1(e)) = e ∈ ctrl′1. Therefore, ctrl′1 = ctrl′2.

Let i = sprog1(pc1). We do a case analysis on i to establish the relations on Φ, Φθ
and Ψ.

· i = lock(l) or i = unlock(l) . Then we have Φ2 = Φ1 and Ψ1 = Ψ2. It’s obvious that

Φθ
1 = Φθ′

1 = Φθ
2 = Φθ′

2 . Because the data-abstract equivalence is established via the same

function δ, for each register r ∈ Reg, we have Φ′
2(r) = subst(Φθ′

1 (r), val
θ(Ψ′

1(r))) = Φ′
1(r).

Hence, Φ′
1 = Φ′

2. Given that Ψ1 = Ψ2, for each register r ∈ Reg,Ψ1(r) = Ψ2(r). Lifting the

function δ, we have δ(Ψ1(r)) = δ(Ψ2(r)) for each r ∈ Reg. Therefore, Ψ′
1 = Ψ′

2.

· i = r := e . Then we have Φ2 = Φ1[r 7→ Φ1(e)] and Φθ
2 = Φθ

1[r 7→ ê] where ê =

mkExpr(e,Φθ
1). In addition, we have Ψ2 = Ψ1[r 7→ Ψ1(e)]. From st2 ≈ st′2, we have

Φθ
2 = Φθ′

2 . From st1 ≈ st′1, we have Φθ
1 = Φθ′

1 . Since for each read event r ∈ G1.Rds,

θ1(r) = θ′1(δ(r)), we have Φθ′
2 = Φθ′

1 [r 7→ ê]. For each r′ ̸= r, it’s obvious that Φ′
2(r

′) = Φ′
1(r

′).

We know that r does not occur on the right-hand-side of the assignment, therefore, Ψ′
1(e) =

Ψ′
2(e) and hence Φ′

2(r) = subst(Φθ′
2 (r), val

θ(Ψ′
1(e))) = subst(Φθ′

1 [r 7→ ê](r), valθ(Ψ′
1(e))) =

subst(ê, valθ(Ψ′
1(e))) = Φ′

1(e). Therefore, Φ′
2 = Φ′

1[r 7→ Φ′
1(e)]. Given that Ψ2 = Ψ1[r 7→

Ψ1(e)], for registers r′ ̸= r, Ψ′
2(r

′) = δ(Ψ2(r
′)) = δ(Ψ1(r

′)) = Ψ′
1(r

′). For the register

r, we have Ψ2(r) = Ψ1(e). Therefore, Ψ′
2(r) = δ(Ψ2(r)) = δ(Ψ1(e)) = Ψ′

1(e). Thus,

190

Ψ′
2 = Ψ′

1[r 7→ Ψ′
1(e)].

· i = r := [x] . Then we have Φ2 = Φ1[r 7→ v] for some concrete value v and Φθ
2 = Φθ

1[r 7→ v̂]

for some symbolic value v̂. From st2 ≈ st′2 and st1 ≈ st′1, we have Φθ′
2 = Φθ′

1 [r 7→ v̂]. Now we

want to show that there exists a concrete value v′ such that Φ′
2 = Φ′

1[r 7→ v′]. Note that at this

stage of generating execution graph, we do not restrict the value of each event to be consistent

with the memory model or well-formed. Therefore, any value from the domain Val is eligible

to be given to a read event. Since the domain Val is not empty, we can be sure that there exists a

value v′ ∈ Val such that δ(e).val = v′, where e is the read event generated from st1 to st2 with

G2 = add(G1, e). Because we have already established that Φθ′
2 = Φθ′

1 [r 7→ v̂] and θ2 ≈ θ′2, we

have Φ′
2 = Φ′

1[r 7→ v′] for some v′ ∈ Val. From the data-abstract equivalence relation among

states, we can easily see that Ψ′
2 = Ψ′

1[r 7→ {δ(e)}] via a similar set of reasonings for other

cases.

· i = [x] := e . Then we have Φ1 = Φ2, Φ
θ
1 = Φθ

2 and Ψ1 = Ψ2. We immediately have Φθ
1 =

Φθ′
1 = Φθ

2 = Φθ′
2 . In addition, from the data-abstract equivalence relations, we get thatΨ′

2 = Ψ′
1.

Because the data-abstract equivalence relations are established via the same function δ, for each

register r ∈ Reg, valθ(Ψ′
2(r)) = valθ(Ψ′

1(r)). Therefore,Φ′
2(r) = subst(Φθ′

2 (r), val
θ(Ψ′

1(r))) =

Φ′
1(r).

With the relations on each of the components of st′1 and st′2 established, we can conclude that

st′1 → st′2.

As we have seen in the proof, we are able to establish the state transition relation with only

the data-abstract equivalence relations among states when there is no if-goto instruction because

the control flow of the program does not depend on the concrete values in those cases. On the

other hand, there is one extra condition needed on states with if-goto instructions because this

is where the control flow becomes dependent on the values. We have the following lemma.

191

▶ Lemma 19

Let st1, st2, st
′
1, st

′
2 ∈ State be four valid states and st1.sprog(st1.pc) = if e goto n . If

st1 ≈ st′1, st2 ≈ st′2 via the same bijiective function δ, st1 → st2 and Φ1(e) = Φ′
1(e), then

st′1 → st′2.

Proof. If Φ1(e) = Φ′
1(e) = 0, then pc2 = pc′2 = pc1 + 1 = pc′1 + 1. If Φ1(e) = Φ′

1(e) ̸= 0, then

pc2 = pc′2 = n. Therefore, we can establish that Φ′
1 = 0⇒ pc′2 = pc′1+1 and Φ′

1 ̸= 0⇒ pc′2 = n.

We can establish the relations of other components of st′1 and st′2 using a similar proof as the one

for Lemma 18. Thus, st′1 → st′2.

We are now ready to proof Lemma 3.

▶ Lemma 3

Let Gρ, Gσ be well-formed execution graphs and Gσ ∈ JP K. If for each thread t ∈ Gρ.Thrd,

t ∈ Gσ.Thrd and there is a ⊑-ordered set {st′0, . . . , st′m} such that for i ∈ 0 . . .m,

· each state st′i satisfies the invariant subst(Φθ(r), valθ(Ψ(r))) = Φ(r) for r ∈ Reg,

· for each st′i there exists a state sti ∈ Path(Gσ|t) with sti ≈ st′i and st0 = st′0,

· for each st′i if st′i.sprog(st
′
i.pc) = if expr goto k then sti.Φ(expr) = st′i.Φ(expr),

· st′m.G = Gρ|t,

then Gρ ∈ JP K.

Proof. Induction on the size of the set {st′0, . . . , st′m}. For the base case, since st′0 = st0 is the

initial state, it’s obvious that the lemma holds. For the inductive step, assume that the lemma holds

for {st′0, . . . , st′i}. That is, given such set of states, we have st′0 →∗
t st

′
i. We want to prove the same

property holds for st′i+1. There are two cases to analyze. If st′i.sprog(st
′
i.pc) = if e goto n,

then we can apply Lemma 19. Otherwise, we can apply Lemma 18. By the transitivity of state

transition relation, we have st′0 →∗
t st′i+1. Thus, we can conclude that st′0 →∗

t st′m. Hence,

Gρ ∈ JP K by Definition 13.

192

▶ Lemma 4

Let Ĝρ be a well-formed symbolic execution graph andGσ be a concrete input execution graph

such that Gσ ∈ JP K. If Ĝρ satisfies the following conditions:

· there is a map δ : Ĝρ.Evts→ Gσ.Evts such that for each event e ∈ Ĝρ.Evts, δ(e) ≈ e and if

e.val ∈ Val (i.e., e.val is concrete), then δ(e) = e.

· if ⟨e1, e2⟩ ∈ Gσ.po and e2 = δ(e′2) for some e′2 ∈ Ĝρ.Evts, then there is an event e′1 ∈
Ĝρ.Evts such that e1 = δ(e′1) and ⟨e′1, e′2⟩ ∈ Ĝρ.po,

· for each thread t ∈ Ĝρ.Thrd and each event e ∈ Ĝρ|t.Evts, if there is a read event r ∈
Ĝρ|t.Rds, such that ⟨δ(r), δ(e)⟩ ∈ Gσ.ctrl, then r.val ∈ Val (i.e., r.val is concrete),

· for each write event w ∈ Ĝρ.Wrts, if w.val ∈ Val (i.e., w.val is concrete), then for all

r ∈ Ĝρ.Rds such that ⟨δ(r), δ(w)⟩ ∈ Gσ.data, r.val ∈ Val (i.e., r.val is concrete).

then Ĝρ ∈ JP K.

Proof. For each thread t ∈ Ĝρ.Thrd, we know that t ∈ Gσ.Thrd because the map δ : Ĝρ.Evts →

Gσ.Evts maps each event e ∈ Gρ.Evts to some event δ(e) ∈ Gσ.Evts and δ(e) ≈ e, which implies

δ(e).tid = e.tid. Because Gσ ∈ JP K, there is a valid transition path generating Gσ|t. Let stm be

the state right after en is generated (note that n ≤ m because there may be internal transitions

that do not emit any memory event). Then there is a set {st0, . . . , stm} that is ⊑-ordered. The

goal is to derive a set of states {st′0, . . . , st′m} from {st0, . . . , stm} such that the derived states

satisfy the requirements in Lemma 3.

We start by setting st′0 = st0, where st0 is the initial state. For each state sti where i ∈ 1 . . .m,

there is a state st′i constructed in the following way.

For each state sti, we first set st′i.sprog = sti.sprog, st′i.pc = sti.pc, and st′i.Φ
θ = sti.Φ

θ
. That

is, the sequential program instructions, program counter, and the symbolic expressions recorded

for each register on each state are directly copied from the original states. For each read event

r′ ∈ Gρ|t.Rds, there exists a read event r = δ(r′) in Gσ|t.Rds such that r′ ≈ r. Set st′i.θ be a

symbol map such that st′i.θ(r
′) = sti.θ(r) for each read event r′. If r′ is a concrete event, we can

then use st′i.θ to compute the concrete values of registers by plugging in r′.val. Then st′i.Ψ and

193

st′i.ctrl are derived from sti.Ψ and sti.ctrl respectively by replacing each r with r′. Finally, st′i.G

is derived from sti.G by replacing every event e with e′, where e = δ(e′). By this construction,

for each state sti and st′i, we have sti ≈ st′i and the invariant subst(Φθ(reg), valθ(Ψ(reg))) =

Φ(reg) for reg ∈ Reg holds if Φ(reg) ∈ Val. In addition, for each ⟨e1, e2⟩ ∈ Ĝρ.po, there is

⟨δ(e1), δ(e2)⟩ ∈ Gσ.po. Therefore, {st′0, . . . , st′m} is ⊑-ordered.

For each state st′i such that st′i.sprog(st
′
i.pc) = if expr goto n, let e′j be the event gen-

erated right before st′i. Then by the language semantics, for each r ∈ st′i.Ψ(expr), we have

⟨δ(r), δ(e′k)⟩ ∈ Gσ.ctrl for all k > j. From the assumption, we know that r.val ∈ Val and

δ(r) = r. Hence, st′i.Φ(expr) is concrete and st′i.Φ(expr) = sti.Φ(expr).

Lastly, for each state st′i such that st′i.sprog(st
′
i.pc) = [x] := expr, let w be the write event

generated after st′i. If w.val ∈ Val, then by the semantics of store instruction, st′i.Φ(expr) ∈ Val

has to be concrete. Hence, for all r ∈ st′i.Ψ(expr), r.val ∈ Val has to be concrete. Note that for

all r ∈ st′i.Ψ(expr), there is ⟨δ(r), δ(w)⟩ ∈ Gσ.data, and we have the assumption that δ(r) = r.

Therefore, st′i.Φ(expr) = sti.Φ(expr) ∈ Val.

▶ Theorem 22 (DRF-SC)

Given a program P , if all its SC-consistent executions are data-race-free or only have volatile-

races, then the set of all Jam21-consistent executions ofP coincide with the set of SC-consistent

executions.

Proof. Towards contradiction, suppose not. Then there is an execution of P that is not se-

quentially consistent but is M -consistent for some MCA memory model M . Hence, there is a

(po∪com∪sync)+ cycle in the execution where at least one of the edges is not ppo edge. By the

transitive nature of po order, for each event in the cycle is either a source or a target or both of a

communication com edge.

First, note that com relates conflicting events. Hence, for each two events related by com, there

is a lock protecting the two events. In other words, for each ⟨e1, e2⟩ ∈ com, there are lock events

acq1(l) and rel1(l) enclosing e1 and acq2(l) and rel2(l) enclosing e2. In addition, we can also

194

infer that rel1(l)
sync−−−→ acq2(l) since critical sections of the same lock are linearly ordered and

the other direction would immediately yield a contradiction.

In addition, for each two events e1
po−−→ e2 but not e1

ppo−−−→ e2, they are enclosed in the same

one or more critical sections. If not, then either they are not in the same critical section of some

lock or they are both not in any critical section. In the former case, there would be a lock event po

ordered between e1 and e2. By our new definition for ppo, this would result in e1
ppo−−−→ e2, which

is a contradiction. In the latter case, note that each event in this cycle is either a source or a target

or both of a communication com edge relating conflicting events. The hypothesis states that each

conflicting events are protected by the same lock, which implies the existence of a critical section

enclosing every event in the cycle.

Since for each two events e1
po−−→ e2 but not e1

ppo−−−→ e2, they are enclosed in the same one or

more critical sections, from the new definition of ppo, we can infer that acq ppo−−−→ rel for any

acquire event and release event (they may be lock events for different locks) enclosing e1 and e2.

Hence, if there is a (po ∪ com ∪ sync)+ cycle in the execution graph, there is also a (ppo ∪

com ∪ sync)+ cycle in the same graph, contradicting with the assumption that the execution

graph is M-consistent. Thus, any sound execution of the same program must be sequentially

consistent.

195

APPENDIX O

Proofs of §4.5

▶ Proposition 4

If ⟨Sσ, Cσ⟩ enables a bug sequence b, then Ĝρ is well-formed up to concrete events and Ĝρ�b.

Proof. Since Gσ.po is well-formed, it follows that Ĝρ.po is also well-formed. For each read event

r ∈ Ĝρ.Rds, if r.val ∈ Val, then it means r = δ(r) ∈ Cσ. Since ⟨Sσ, Cσ⟩ enables the bug sequence

b, by (VII), there exists a write event w ∈ Ĝρ.Wrts such that δ(w) = w ∈ Cσ, w.loc = r.loc, and

w.val = r.val. Hence, Ĝρ is read feasible. In addition, (III) ensures Ĝρ is lock feasible.

(VIII) ensures the premise for composability. No Skipping is satisfied by (I). Same Control

Flow is satiesfied by (IV). Hence Ĝρ � b.

▶ Proposition 5

If ⟨Sσ, Cσ⟩ enables a bug sequence b, and Gσ ∈ JP K, then Ĝρ ∈ JP K.

Proof. It’s obvious that the map δ satisfies the requirement δ(e) ≈ e for each e ∈ Ĝρ.Evts. For

each event e1 ∈ Ĝρ.Evts, let e′1 = δ(e). Then e′1 ∈ Sσ. By (II), if there is ⟨e′2, e′1⟩ ∈ Gσ.po, then

e′2 ∈ Sσ. Hence, there is e2 ∈ Ĝρ.Evts such that δ(e2) = e′2 and ⟨e2, e1⟩ ∈ Gρ.po. For each thread

t ∈ Ĝρ.Thrd, let et be the last event on thread t. By (V), if there is a read event r ∈ Gσ.Evts such

that r = δ(r′) for some r′ ∈ Ĝρ.Rds and ⟨r, δ(et)⟩ ∈ Gσ.ctrl, then r ∈ Cσ. Then r = δ(r′) = r′.

A write event w has a concrete value if and only if δ(w) is included in Cσ. From (VI), for each

δ(w) ∈ Cσ, if there is ⟨δ(r), δ(w)⟩ ∈ Gσ.data, then δ(r) ∈ Cσ, which means δ(r) = r ∈ Ĝρ.Rds.

Therefore, by Lemma 4, Ĝρ ∈ JP K.

196

▶ Lemma 5

Let Ĝρ = (Evts, po) be a plain execution graph such that Ĝρ.Evts is downward-closed with

respect to Gσ.(po∪rf|C) where C is the set of concrete read and write events of Ĝρ such that

((data ∪ rf)∗; ctrl)+ ⊆ C for a bug sequence b, and δ(e) = e for each e ∈ C . Then Ĝρ is

read-feasible up to C and executable.

Proof. It is clear that Ĝρ is read feasible by the fact that Ĝρ is downward-closed with respect to

Gσ.(po ∪ rf|C) for all concrete events e ∈ C . Because Ĝρ is downward-closed with respect to

Gσ.po, for each e2 ∈ Ĝρ.Evts, if there is ⟨e′1, δ(e2)⟩ ∈ Gσ.po, then there is e1 ∈ Ĝρ.Evts such that

e′1 = δ(e1) and ⟨e1, e2⟩ ∈ Ĝρ.po.

In addition, (data ∪ rf)∗; ctrl ⊆ C ensures that there is a pair ⟨Sσ, Cσ⟩ that satisfies (II),

(V), (VI), (VII) of Definition 10 and Cσ ⊆ C . Let Sσ = δ(Ĝρ.Evts) and Cσ = Gσ.((data ∪

rf)∗; ctrl) ∩ δ(Ĝρ.Evts).

II Sσ is downward-closed w.r.t. Gσ.po. This can be shown by noticing that Ĝρ.Evts is downward-

closed w.r.t. Gσ.po.

V For each e ∈ Sσ, if ⟨r, e⟩ ∈ Gσ.ctrl, then r ∈ Cσ. This can be shown by noticing ctrl ⊆

((data ∪ rf)∗; ctrl)+.

VI For each e ∈ Cσ, if ⟨r, e⟩ ∈ Gσ.data, then r ∈ Cσ. By definition of data, we know that e

is a write. Then for e ∈ Cσ, there must be a read r′ ∈ Cσ such that e rf−−→ r′. Given that

(data; rf)∗; ctrl ⊆ ((data ∪ rf)∗; ctrl)+, we have r ∈ Cσ.

VII For each r ∈ Cσ, there exists a write w ∈ Cσ such that r.val = w.val and r.loc = w.loc.

This is ensured by the well-formedness of Gσ.rf.

The similar reasoning steps as in the proof of Proposition 5, (II), (V), and (VI) ensures exe-

cutability of Ĝρ. (VII) ensures that Ĝρ is read-feasible.

197

▶ Lemma 6

Let Ĝρ = (Evts, po) be a plain execution graph such that Ĝρ.Evts is downward-closed with

respect to Gσ.(po ∪ sync), then Ĝρ is lock-feasible.

Proof. Suppose, towards contradiction, that Ĝρ is not lock feasible. Then there exists a lock l

such that there are two open critical sections in Ĝρ with acquire events a1 and a2. Then there

are release events r1 = match(a1) and r2 = match(a2) in Gσ such that either r1
sync−−−→ a2

or r2
sync−−−→ a1 and neither of them are included in Ĝρ. This immediately contradicts with the

hypothesis that Ĝρ is downward-closed with respect to Gσ.(po ∪ sync), which implies that at

least one of r1 and r2 is included in Ĝρ. Thus, Ĝρ is lock-feasible.

▶ Lemma 7

Let Gσ be an input execution such that Gσ is sequentially consistent, equipped with a linear

trace order. Let Ĝρ be a symbolic plain execution that is well-formed, and Ĝρ � b where

b is a reported bug. If for all acquire event acq(l) ∈ Ĝρ.Evts such that l ∈ LocksHeld(e),
⟨acq(l), e⟩ ∈ Gσ.trace for each event e ∈ b.Evts that is in a critical section where the acquire

event of the critical section acq(l) ∈ Ĝρ, then there exists a memory order insertion scheme

over Ĝρ.Evts such that Ĝρ is sequentially consistent.

Proof. Set

Ĝρ.rf = Gσ.rf|C

Ĝρ.co = δ−1(Gσ.co|δ(Ĝρ.Wrts))

Ĝρ.sync = Gσ.sync ∩ (Ĝρ.Rels× Acqs)

where C is the set of concrete events in Ĝρ. Since Ĝρ is read feasible, Ĝρ.rf is well-formed over

concrete events.

SinceGσ is sequentially consistent, the inserted orders in Ĝρ do not form a (po ∪ sync ∪ com)+

cycle.

198

For each e ∈ b.Evts such that e is in a critical section, let the acquire event of the critical

section be acq(l) ∈ Ĝρ.Acqs. Then this critical section is an open critical section in Ĝρ. Since

Ĝρ is lock feasible, all other critical sections of l are closed, i.e., each acq(l)′ ∈ Ĝρ.Acqs has a

matching rel(l)′. Since Ĝρ.sync = Gσ.sync ⊆ Gσ.trace, we have ⟨rel(l)′, acq(l)⟩ ∈ Ĝρ.sync

for all rel(l)′ ̸= match(acq(l)). Hence, all open critical sections are ordered last in Ĝρ.

With both requirements satisfied, we can conclude that Ĝρ is sequentially consistent.

▶ Lemma 8

Let Ĝρ be a symbolic execution with a well-formed rf-map over concrete events, a total co

order over write events to the same location, and a well-formed sync over lock events. If Ĝρ

isM-consistent and Ĝρ ∈ JP K with e.val ∈ Val for each e ∈ preserve(b), then there exists a

map Θ : Sym → Val such that the concrete execution Gρ = Θ(Ĝρ) with a complete rf-map

isM-consistent and Gρ ∈ JP K.

Proof. We begin by inserting rf orders so that for each (symbolic) read event r ∈ Ĝρ.Rds, there

is a unique write event w ∈ Ĝρ.Wrts such that ⟨w, r⟩ ∈ Ĝρ.rf and w.loc = r.loc. In the rest of

the proof, we define the global happens-before as ghb = com∪sync∪ppo∪ (po; [L])∪ ([L]; po).

Claim: Let t ∈ Ĝρ.Thrd and r ∈ Ĝρ.Rds be the first read event with symbolic value in thread

t. Let Ĝ′
ρ be the resulting graph after inserting ⟨w, r⟩ to Ĝρ.rf, where w is the co-maximal write

such that ⟨w, r⟩ ∈ Ĝρ.ghb. If there is no such write event, then w is the initial write to the

memory location r.loc. Then Ĝ′
ρ is stillM-consistent.

Proof of Claim: Comparing to Ĝρ, Ĝ′
ρ has the following memory orders inserted: ⟨w, r⟩ ∈ rf,

and ⟨r, w′⟩ ∈ fr for all w′
such that ⟨w,w′⟩ ∈ Ĝρ.co. Since w is the co-maximal write event such

that ⟨w, r⟩ ∈ Ĝρ.ghb, we know that ⟨w′, r⟩ /∈ Ĝρ.ghb. Hence, there is no new ghb cycle formed

with the newly inserted orders. Hence, Ĝ′
ρ is alsoM-consistent.

For each thread t ∈ Ĝρ.Thrd, we start from the beginning of t and insert rf orders for each

symbolic read events according to the previous claim. SinceM-consistency is maintained at each

step, the resulting execution graph isM-consistent.

199

Let Ĝ′
ρ be the resulting execution graph after the previous step of inserting rf orders. We

now show that there is a map Θ : Sym→ Val that maps Ĝ′
ρ to a concrete execution Gρ.

Claim: For each event e ∈ Ĝ′
ρ such that e.val ∈ Sym, then there exists a value v ∈ Val such

that the resulting execution graph Ĝ′′
ρ after substituting e.val by v is executable, i.e., Ĝ′′

ρ ∈ JP K,

and well-formed.

Proof of Claim: Induction on the events on (rf ∪ data)+ chain. Let e ∈ Ĝ′
ρ.Evts. If there is no

event (rf ∪ data)+-ordered before e or all events (rf ∪ data)+-ordered before e are concrete,

then set e.val = δ(e).val. Then obviously the resulting execution graph Ĝ′′
ρ ∈ JP K.

If e ∈ Ĝ′
ρ.Rds, then there exists a unique write event w ∈ Ĝ′

ρ.Wrts such that ⟨w, e⟩ ∈ Ĝ′
ρ.rf.

If w.val ∈ Val, then set e.val = w.val. If w.val ∈ Sym, then by induction hypothesis, there

exists a value v ∈ Val for w such that the resulting execution graph is executable and well-

formed. Set e.val = v. The resulting graph is executable because e /∈ Cσ, and well-formed since

e.val = w.val.

If e ∈ Ĝ′
ρ.Wrts, since Ĝ′

ρ ∈ JP K, there exists a state sti right before e is generated such

that sti.sprog(pc) = [x] := expr. By induction hypothesis, for each read event r such that

⟨δ(r), δ(e)⟩ ∈ Gσ.data, there exists a value such that the resulting graph is executable and well-

formed. Set e.val = subst(sti.Φ
θ(expr), val(sti.Ψ(expr))) where val : Sym → Val is a value

map for those reads. The resulting graph is executable and well-formed because e /∈ Cσ and each

read that e depends on is mapped to a concrete value before e.val is mapped.

Then Gρ can be obtained by following the (rf ∪ data)+ chain and replace the value of each

symbolic event by a concrete value according to the above description. By previous claims, Gρ is

M-consistent, executable, and well-formed.

200

APPENDIX P

Enhanced-MCR-tso

In this section, we define an enhanced version of the previous algorithm that uses a novel idea

of transformation to predict data races under the TSO model. This enables us to catch more data

races than the work of [HH16]. We provide an example in Appendix R.

In addition to the constraints defined above, we preprocess the input execution Gσ with read

elimination. During this phase, all removable read events are eliminated from the trace, where

removable(Gσ) is a subset of read events that can be found inductively as described as the fol-

lowing.

For each read event r ∈ Gσ.Rds, if there is a write event w ∈ Gσ.Wrts such that ⟨w, r⟩ ∈

Gσ.(rf ∩ po), then r ∈ removable(Gσ) if there is no event such that w po−−→ e po−−→ r, or for

each event e such that w po−−→ e po−−→ r, either e is a write event where e.loc ̸= r.loc, or e ∈

removable(Gσ).

After the read events in removable(Gσ) are removed from the execution, we use the same set

of constraints, Φppo ∧ Φlock ∧ Φrace, to determine if ⟨e1, e2⟩ forms a data race.

Before we start proving its soundness, we introduce a proposition from the work of [LV16].

▶ Proposition 12

If G⇝tso G
′
and G′

is TSO-consistent, then G is TSO-consistent.

In [LV16], two transformations were considered, read elimination and write-read reordering.

G ⇝tso G′
iff G′

can be obtained via either of the transformations. Therefore, we can use this

proposition for read elimination.

201

The soundness theorem is the following.

▶ Theorem 26

If there exists a map ρ : O → Int such that Φ is satisfiable for (e1, e2), i.e., ∃ρ |= Φppo∧Φlock∧
Φrace(e1, e2) after read elimination, then ⟨e1, e2⟩ is a sound race.

Proof.

▶ Constructing a Plain Execution Graph. Let Sσ be a lock-feasible event set that is downward-

closed w.r.t. Gσ.po ∪ rf from b = e1e2.Let Sρ be a set of data-abstract equivalent events of Sσ

where e′ ∈ Sρ iff there is e ∈ Sσ such that e′ ≈ e. We now define a bijective map δ : Sρ.Evts →

Sσ.Evts such that δ(e) ≈ e. Let C = Gσ.Wrts∪Rds. If δ(e) ∈ C , then we set δ(e) = e. Let Ĝρ be

a symbolic plain execution graph such that Ĝρ.Evts = Sρ and Ĝρ.po = δ(Gσ.po|Sσ).

By Lemma 5 and the fact that Sσ is lock-feasible, we get Ĝρ is well-formed and executable. In

addition, since Sσ is downward-closed from b, Ĝρ � b.

▶ Inserting Memory Orders. Note that not all events in Ĝρ is assigned to a number by ρ, due

to the read elimination transformation. Let Ĝρ
′

be the symbolic execution after applying read

elimination on Ĝρ. Then every event in Ĝρ

′
is assigned to a natural number by ρ. By the same

order insertion scheme as in the proof of Theorem 6, we have that Ĝρ

′
is TSO-consistent. By

Proposition 12, Ĝρ is also TSO-consistent.

▶Mapping to Concrete Execution Graph. Lastly, by Lemma 8, there is a concrete execution graph

that inherit all the properties above.

202

APPENDIX Q

A TSO Race Predictable from SC trace

In this section, we provide an example of a TSO data race that is discoverable byMCR-tso [HH16].

The example was originally from the paper by [Pav20, Figure 8] to show a non-SC-race.

The input execution traces are represented in the form shown in Fig. Q.1a. Each column

represents a thread and each row represents a time-stamp. At each time-stamp, there is exactly

one event being executed. Events from different threads can be executed in a interleaving style

while respecting the mutual exclusion property of locks. We use ei to identify each event, where

i is the time-stamp when ei is executed. There are four types of events: read, write, lock acquire,

and lock release. We write r(x) and w(x) for a read and a write event on a memory location x,

and acq(l) and rel(l) for an acquire and a release event on a lock l. The highlighted events are

reported as data races. In Fig. Q.1a, the two highlighted events, e5 and e13 is not a data race under

sequential consistency. Indeed,

· If e5 and e13 is a data race, then Fig. Q.1b shows all the events that have to occur before e5 and

e13. The order among these events has to respect the program order. Therefore, the order of

events on each thread follows the same order as captured in the input trace from Q.1a.

· M2 requires each read event to read from the same write event as they appeared in the input

trace to maintain soundness. Therefore, we have e8 → e10 and e8 → e12 for location x, and

e1 → e4 for location y.

· Since e5 is in a critical section protected by lock l, its critical section has to be ordered after all

other critical sections protected by the same lock. In this example, it means the critical section

203

t1 t2 t3
1 w(y)
2 acq(l)
3 w(x)
4 r(y)
5 w(z)

6 rel(l)
7 acq(l)
8 w(x)
9 rel(l)

10 r(x)
11 w(y)
12 r(x)
13 r(z)

(a) The Input Trace

t1 t2 t3

e1: w(y)

e2: acq(l)

e3: w(x)

e4: r(y)

e7: acq(l)

e8: w(x)

e9: rel(l)

e10: r(x)

e11: w(y)

e12: r(x)

rf rf

rf

co

co

sync

fr

(b) A TSO-Consistent Witness Execution

Figure Q.1: Example from Fig. 8 in [Pav20]

204

on t2 has to be ordered before the critical section on t1. Hence, we can infer e9 → e2.

· By the transitivity of the partial order constructed so far, we can see that e8 → e3. Since there

are two read events on t3 reading from e8, then they must be ordered before e3. Therefore,

e12 → e3.

· Since e8 → e10, by the transitivity of the partial order again, we have e1 → e11. Since e4 reads

from e1, then it must be that e4 → e11.

· But now a cycle occurs: e3 → e4 → e11 → e12 → e3.

On the other hand, the cycle derived in Fig. Q.1b is allowed under TSO [OSS09]. Indeed,

Fig. Q.1b also shows the execution with orders among events augmented with specific semantics

defined by the axiomatic memory model of TSO. The po order e3 → e4 and e11 → e12 are not

preserved program order. As a result, the po∪fr cycle shown in the figure is allowed by the TSO

model. Therefore, we can conclude that e5 and e13 form a data race under TSO.

Note that the constraint encoding of MCR can capture this data race, precisely because the

constraints do not require e3 to be ordered before e4 and e11 to be ordered before e12. As a result,

there exists a satisfiable solution of the event orders.

205

APPENDIX R

TSO Race Discovered by Read Elimination

In §4.6, we showed an enhanced version of a data race predictor augmented with Read Elimi-

nation. In this section, we show an example that exhibit a sound TSO data race that cannot be

caught by the TSO analysis by [HH16], but can be caught by our enhanced race predictor.

Fig. R.1a shows a sequential trace of four threads. The highlighted events, e8 and e17, form a

data race under the TSO [OSS09] model. However, the constraints from [HH16] fail to catch this

data race due to overly strong restriction imposed by Φmem. The constraints on memory events,

Φmem is defined as

Φmem = Φww ∧ Φrr ∧ Φrw ∧ Φaddr

where Φww enforces the write-write program orders, Φrr enforces the read-read program orders,

Φrw enforces the read-write program orders, and Φaddr enforces the program orders between

memory events accessing the same location. Note that the first three constraints enforce the pre-

served program orders (ppo) of TSO and the last constraint enforces the program order restricted

to the same location (po-loc). The constraint includes all four of them in one transitive partial

order, while the TSO model considers them separately in two assertions:

irreflexive (po-loc ∪ rf ∪ fr ∪ co)+

irreflexive (ppo ∪ rfe ∪ fr ∪ co)+

In the example, the program orders e5 → e6 and e11 → e12 are po-loc orders whereas e6 → e7

206

t1 t2 t3 t4
1 acq(l1)
2 w(x)
3 rel(l1)
4 acq(l2)
5 w(y)
6 r(y)
7 r(x)
8 w(z)

9 rel(l2)
10 acq(l2)
11 w(y)
12 rel(l2)
13 acq(l1)
14 w(x)
15 r(x)
16 r(y)
17 r(z)

18 rel(l1)

(a) The Input Trace

t1 t2 t3 t4

e1: acq(l1)

e2: w(x)

e3: rel(l1)

e4: acq(l2)

e5: w(y)

e6: r(y)

e7: r(x)

e10: acq(l1)

e11: w(x)

e12: r(x)

e13: r(y)

e16: acq(l2)

e17: w(y)

e18: rel(l2)
rf rf

rfi rfi

co

sync

fr

(b) Witness Execution

Figure R.1: A TSO Race Captured by Race Predictor after Read Elimination

207

and e12 → e13 are ppo orders. Together with the fr edges from e7 to e11 and from e13 to e5, they

form a cycle, as shown in Fig. R.1b. The cycle makes the constraints unsatisfiable, but is allowed

under the memory model of TSO.

On the other hand, augmenting the constraints with the Read Elimination transformation

suffices to cover this case. Note that e6 and e12 are removed after the Read Elimination trasfor-

mation. The resulting execution graph corresponds to a standard store-buffering (SB) litmus test,

which can be captured by the constraint Φmem.

208

APPENDIX S

WRC-race: another example

In this section, we provide another example of data race under weak memory that can be pre-

dicted from an SC trace while preserving the same observable behavior. Fig. S.1a shows a se-

quential trace of four threads. The highlighted events, e3 and e12, form a data race under the

ARMv8 [ADG21] model, assuming there is no data or address dependencies among the events

and no control dependency between e10 and e11.

First, note that e3 and e12 is not an SC race. To see this, following steps similar to M2 [Pav20],

we have:

· All events except for the release in t2 (e4) are included in a witness execution.

· Since we have an open acquire in t2, the critical section in t2 should be ordered after the critical

section in t1, yielding a coherence order from w(x) at line 7 to w(x) at line 2.

· From the inferred coherence order, we get r(x) at line 11 is ordered before w(x) at line 2 (since

it reads from the write at line 7)

· Now we have a cycle: e2 : w(x)
rf−→ e5 : r(x)

po−→ e9 : w(y)
rf−→ e10 : r(y)

po−→ e11 : r(x)
fr−→ e2 :

w(y). The cycle is highlighted in Fig. S.1b.

On the other hand, the cycle is allowed under the ARMv8 [ADG21] model and the witness

execution in Fig. S.1b is consistent. To see this, note that the program order e10 → e11 is not

included in the locally-ordered-before order and hence the external visibility requirement of the

ARMv8 model is satisfied.

209

t1 t2 t3 t4
1 acq(l)
2 w(x)
3 w(z)

4 rel(l)
5 r(x)
6 acq(l)
7 w(x)
8 rel(l)
9 w(y)

10 r(y)
11 r(x)
12 r(z)

(a) The Input Trace

t1 t2 t3 t4

e1: acq(l)

e2: w(x)

e5: r(x)e6: acq(l)

e7: w(x)

e8: rel(l)

e9: w(y)

e10: r(y)

e11: r(x)

rf

rf rf

co

sync

fr

(b) Witness Execution

Figure S.1: A Data Race under the ARMv8 model

210

APPENDIX T

Program Transformations

T.1 Deordering and Reordering

▶ Theorem 12 (Deordering)

Let Psrc be a Java program and Ptgt be a Java program obtained by performing a deordering

operation on a pair of accesses a and b according to Fig. 5.3. Let Gtgt be an execution of Ptgt.

Then there exists an execution Gsrc of Psrc such that

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} where a and b are po-adjacent

· Gsrc.rf = Gtgt.rf

· Gsrc.Evts = Gtgt.Evts

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gsrc.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

and if Gtgt is Jam21-consistent, then Gsrc is Jam21-consistent.

Proof. Note that for theCoherence requirement, only three kinds of edges contributes to co-jam:

vo, rf, and po to the same location. Since here we are considering deorderable pairs, which are

pairs of accesses to different locations related by po in Gsrc, we only need to consider whether

deordering them would affect the set of vo in the execution. We can analyze this case by case.

· (rx∗ry). The No-Thin-Air requirement is satisfied automatically in Gsrc since we are deorder-

ing a pair of reads. Since po ∩ (r⊑Opq

x ∗ ry) ⊈ vo, it follows that Gsrc is also Jam21-consistent.

211

· (rx ∗wy). Gsrc fulfills Coherence since the po edge between two accesses whose access mode

is weaker or equal to Opaque mode does not contribute to any new vo edge. In addition, Gsrc

fulfills the No-Thin-Air requirement because one of the accesses is in Plain mode where as

No-Thin-Air only requires the acyclicy of po ∪ rf among Opaque mode accesses.

· (rx ∗ rmwy). First note that the Volatile mode for read-modify-write events include the effect

of Release Mode. Gsrc fulfills Coherence since the po edge between rx and rmwy does not

contribute to any new vo edge. Gsrc fulfills No-Thin-Air because rx is Plain mode.

· (rx ∗F). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo edge

therefore the Coherence is satisfied. Since we are deordering a read and a fence, Gsrc fulfills

No-Thin-Air automatically.

· (wx ∗ ry). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo

edge therefore the Coherence is satisfied. Since we are deordering a write and a read, Gsrc

fulfills No-Thin-Air automatically. The only situation the two accesses cannot be deordered

is when they are both in Volatile mode because the po between two Volatile accesses can be

derived into a vo order.

· (wx∗wy). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo edge

therefore the Coherence is satisfied. Since we are deordering a write and a write, Gsrc fulfills

No-Thin-Air automatically. Here we need the second writewy to be weaker than release mode

to ensure that the po between the two accesses does not contribute to the vo order.

· (wx ∗ rmwy). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo

edge therefore the Coherence is satisfied. Since we are deordering a write and a read-modify-

write, Gsrc fulfills No-Thin-Air automatically. Since rmwy is both in the set of reads and in

the set of writes of the execution graph Gsrc, we take the intersection of previous cases. In

addition, rel and acq do not subsume each other, so it is safe for o2 to be acq mode.

· (wx ∗F). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo edge

212

therefore the Coherence is satisfied. Since we are deordering a write and a fence, Gsrc fulfills

No-Thin-Air automatically. Here we are basically avoiding the situation when wx and F can

form any svo. In addition, there are also situations where wx and F have a svo if the writes

that follows the fence are already in rel modes. Since svo and ra are considered equivalently

in terms of their memory order effect in the Jam21 model, the svo they form is redundant in

the presence of all the ra.

· (rmwx ∗ ry). It’s easy to see that the po edge added in Gsrc does not contribute to any new vo

edge therefore the Coherence is satisfied. Since we are deordering a read-modify-write and

a read, Gsrc fulfills No-Thin-Air automatically. Here we want to avoid the rmwx to have an

access mode stronger or equal to acq mode because it’d create an ra edge which is considered

as a vo edge.

· (rmwx ∗ wy). It’s easy to see that the po edge added in Gsrc does not contribute to any new

vo edge therefore the Coherence is satisfied. For the No-Thin-Air requirement, since wy is

in Plain mode, it does not contribute to any po ∪ rf cycle among Opaque accesses.

· (rmwx ∗ rmwy). They cannot be deordered due to the No-Thin-Air requirement. (Note that

read-modify-write operations are atomic by definition, so there is no Plain mode or Opaque

mode for RMW events).

· (rmwx ∗ F). Similar to the previous cases.

· Deordering with fence. Similar to the previous cases.

▶ Corollary 2 (Reordering)

Jam21 supports the reordering transformation for pairs of adjacent accesses shown in Fig. 5.3.

Proof. Let a and b be a pair of such memory events and a po−−→ b in Gsrc. By Theorem 12, we

know that removing the po edge between a and b does not introduce new program behavior. Let

213

G′
be the execution graph after the deordering transformation. By Theorem 11, we know that

adding a po edge from b to a in G′
does not introduce new program behavior either. Therefore,

reordering of access pairs in Fig. 5.3 is supported by Jam21.

T.2 Merging

T.2.1 Read-read Merging

▶ Theorem 13 (Read-Read Merging)

Let Gtgt be an Jam21-consistent execution. Let a ∈ Gtgt.Rds\RMW and let a′ ∈ Gtgt.Evts such

that a rf−−→ a′. Let b /∈ Gtgt.Evts. There exists a Gsrc such that:

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a′, b⟩}

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· b ∈ Gsrc.Rds

· Gsrc.AccessMode(b) = Gsrc.AccessMode(a) ⊑ Acquire

and Gsrc is Jam21-consistent.

Proof. We show that Gsrc fulfills the two requirements needed to be Jam21-consistent.

· Suppose Gsrc violates the No-Thin-Air requirement, then there is a (po∪rf)+ cycle involving

b. If we have a′ rf−−→ b (po|rf)+−−−−−→ a′, then a′ rf−−→ a (po|rf)+−−−−−→ a′. If we have a po−−→ b (po|rf)+−−−−−→ a,

then a (po|rf)+−−−−−→ a. In both of the cases, Gtgt is inconsistent, which contradict with our previous

assumption. Therefore, the No-Thin-Air requirement is satisfied by Gsrc.

· SupposeGsrc violates theCoherence requirement, then there is a co cycle. Note thatAccessMode(b) =

214

AccessMode(a) ⊑ Acq. In addition, for all events i, if b vo−−→ i, then a vo−−→ i and for all events

j, if j vo−−→ b, then j vo−−→ a. Therefore, for any coherence cycle derived from the edges from

and to b, there is also a coherence cycle derived from the edges from and to a. If Gsrc has a co

cycle, Gtgt also has a co cycle, which contradicts with our previous assumption.

Counter Example Here, we give an example showing that read-read merging is not allowed

by Jam21 if the read accesses are both Volatile mode. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);

}

Thread3 {
int r5 = X.getVolatile(); // 2
int r6 = X.getVolatile(); // 2
Y.setRelease(1);
}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

Applying the read-read merging transformation to this program yields:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);

}

Thread3 {
int r5 = X.getVolatile(); // 2
int r6 = r5
Y.setRelease(1);
}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graphs with the annotated read values is shown in Fig. T.1 and Fig. T.2.

215

Figure T.1: Execution Graph before read-read merge on Volatile (Forbidden)

Figure T.2: Execution Graph after read-read merge on Volatile (Allowed)

For the two read accesses of x on Thread 3, one may think it’s OK to merge them into one.

However, since they are Volatile accesses, they also impose a push edge which is totally ordered

with other push edges. Merging the two reads removes the synchronization provided by the push

edge, introducing the program behavior shown in Fig. T.2.

T.2.2 Write-write Merging

▶ Theorem 14 (Write-Write Merging)

Let Gtgt be an Jam21-consistent execution. Let b ∈ Gtgt.Wrts\RMW and let a /∈ Gtgt.Evts and

loc(a) = loc(b)∧∀i ∈ Gtgt.Wrts, loc(i) = loc(b)⇒ val(a) ̸= val(i). There exists a Gsrc such

216

that:

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· a ∈ Gsrc.Wrts

· Gsrc.AccessMode(a) = Gsrc.AccessMode(b) ⊑ Release

and Gsrc is Jam21-consistent.

Proof. We show that Gsrc fulfills the two requirements to be Jam21-consistent.

· No-Thin-Air. Note that a po−−→ b (po|rf)+−−−−−→ a implies that b (po|rf)+−−−−−→ b. Therefore, if Gsrc vio-

lates No-Thin-Air, Gtgt also violates No-Thin-Air, contradicting to our previous assumption.

· Coherence. First note that there is no extra rf edge from a and ∀i, (i vo−−→ a ⇒ i vo−−→

b) ∧ (a vo−−→ i ⇒ b vo−−→ i) (because a and b have the same access mode and they are not in

Volatile mode). Therefore, any co cycle derived from a, we can derive the same co cycle with

b. While a po−−→ b implies that a vo−−→ b, since there is no rf edge from a, it cannot contribute

to any extra co cycle. Therefore, if there is a co cycle in Gsrc, then it implies that there is a co

cycle in Gtgt, contradicting to our previous assumption.

Counter Example We now provide a counter-example showing write-write merge is not valid

for Volatile mode writes. Consider the following example program:

217

Thread0 {
int r1 = X.getOpaque(); // 2
int r2 = X.getOpaque(); // 3
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(2);
X.setVolatile(1);
X.setVolatile(2);
}

Thread3 {
X.setVolatile(3);
Y.setVolatile(1);

}

The execution graph of the program before the transformation is shown in Fig. T.3.

Applying write-write merging transformation to Thread 2, we have:

Thread0 {
int r1 = X.getOpaque(); // 2
int r2 = X.getOpaque(); // 3
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(2);
X.setVolatile(2);
}

Thread3 {
X.setVolatile(3);
Y.setVolatile(1);

}

The execution graph after the transformation is shown in Fig. T.4. After removing the write

access in Volatile mode, the cross-thread synchronization effect between Thread 2 and Thread 3

is also removed, introducing the new behavior in the figure.

T.2.3 Write/RMW-read Merging

▶ Theorem 15 (Write/RMW-Read Merging)

Let Gtgt be a Jam21-consistent execution. Let a ∈ Gtgt.Wrts and b /∈ Gtgt.Evts. There exists a

Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· b ∈ Gsrc.Rds

· Gsrc.loc(b) = Gsrc.loc(a)

· Gsrc.val(b) = Gsrc.val(a)

218

Figure T.3: Execution graph before write-write merge on Volatile (Forbidden)

Figure T.4: Execution graph after write-write merge on Volatile (Allowed)

219

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.AccessMode(b) ⊑ Opaque

Proof. We show that Gsrc fulfills the two requirements to be Jam21-consistent.

· No-Thin-Air. First note that, by the well-formedness of rf order, a is the only access in

the execution graph that has a rf edge to b. Therefore, a rf−−→ b (po|rf)+−−−−−→ a implies that

a (po|rf)+−−−−−→ a, which means there is also a (po|rf)+ cycle in Gtgt, contradicting to our previous

assumption.

· Coherence. Since AccessMode(b) = Opaque, there is no out-going cross-thread edge from

b and for all event i such that b vo−−→ i, we have a vo−−→ i (similarly, for all event j such that

j vo−−→ b, we have j vo−−→ a). Since a rf−−→ b is intra-thread, for any co edge derived from

a rf−−→ b using the corr rule, it implies that there is a read access r and write access w such

that a rf−−→ b po−−→ r and w rf−−→ r we can derive the same co edge using the cowr rule with

a vo−−→ r and w rf−−→ r. Similarly, for any co edge derived from a rf−−→ b using the cowr rule,

it implies that there is a write access w such that w vo−−→ b. Then w vo−−→ a as well. Using the

coww rule we can derive the same co edge. Thus, if there is any co cycle in Gsrc, the same co

cycle also appear in Gtgt, contradicting to our previous assumption.

Counter Example Here we show that write/RMW-read merging is not valid if the read is or

is stronger than Acquire mode. Consider the following example:

220

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(1);

}

Thread3 {
X.setRelease(2);
int r7 = X.getAcquire(); // 2
int r5 = Z.getVolatile(); // 0
int r6 = Y.getVolatile(); // 1
}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph can be found in Fig. T.5. The execution is forbidden. Indeed, there are

two possible cases:

1. rVz = 0 vvo−−−→ wV
x = 1. Since rf ⊆ vvo and ra ⊆ vvo, we can infer that wrel

x = 2 vvo−−−→

rVz = 0 vvo−−−→ wV
x = 1. Using the coww rule, we can infer that wrel

x = 2 co−−→ wV
x = 1, which

contradicts with the co edge we inferred using the corr rule and Thread 0.

2. wV
y = 2 vvo−−−→ rVy = 1. This immediately contradicts with the co edge we derived using the

corr rule with Thread 1.

Applying the transformation, we have:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2
}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
Y.setOpaque(1);

}

Thread3 {
X.setRelease(2);
int r7 = 2;
int r5 = Z.getVolatile(); // 0
int r6 = Y.getVolatile(); // 1
}

Thread4 {
Y.setVolatile(2);
X.setVolatile(1);

}

The execution graph is shown in Fig. T.6. Due to the removal of the rf and ra edge, the

previously forbidden behavior is introduced after the transformation.

221

Figure T.5: Execution Graph before Write-read Merge Transformation (Forbidden)

Figure T.6: Execution Graph after Write-read Merge Transformation (Allowed)

222

T.2.4 Write-RMW Merging

▶ Theorem 16 (Write-RMW Merging)

Let Gtgt be a Jam21-consistent execution. Let b ∈ Gtgt.Wrts\Gtgt.RMW, a /∈ Gtgt.Evts and

v ∈ Val. There exists a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.AccessMode(a) ∈ {Opaque, Release}

· Gsrc.AccessMode(b) ∈ {Acquire, Release}

· Gsrc.loc(b) = Gsrc.loc(a)

· b ∈ Gsrc.RMW

· Gsrc.val(b) = (Gsrc.val(a), v)

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}

· Gsrc.IW = Gtgt.IW

and Gsrc is Jam21-consistent.

Proof. Most parts of the proof is similar to the proof for write-write merging except for the case

where there is a co cycle in Gsrc due to the total coherence order among RMW operations. Sup-

pose Gsrc violates Coherence by having a co cycle built from the cormwtotal rule. That is, we

have a RMW operation i such that:

· If b cormwtotal−−−−−−−→ i, then i co−−→ b

· If i cormwtotal−−−−−−−→ b, then b co−−→ i

Note that we cannot use existing co orders to derive other orders than
cormwexcl−−−−−−→ orders (which

is also a co order). If the co between i and b are not
cormwexcl−−−−−−→ edges, then they co-exists in one

223

execution. Now we have i co−−→ b co−−→ i. If the co between i and b are
cormwexcl−−−−−−→ edges, then

there exist two RMW operations j and k, such that, b rf−−→ j, i rf−−→ k, i co−−→ j and b co−−→ k.

Note that there is still a total order among i, j, k in Gtgt. Now we have either j cormwtotal−−−−−−−→ k or

k cormwtotal−−−−−−−→ j. Each case yields a contradiction by the coermwexcl rule. Therefore, if there is a

co cycle in Gsrc, Gtgt is also forbidden, which contradicts to our previous assumption.

T.2.5 RMW-RMW Merging

▶ Theorem 17 (RMW-RMWMerging)

Let Gtgt be a Jam21-consistent execution. Let x be a memory location and a ∈ Gtgt.Evts with

Gtgt.val(a) = (vr, vw), Gtgt.loc(a) = x, and Gtgt.AccessMode(a) ∈ {Release, Acquire}. Let

b /∈ Gtgt.Evts, there exists a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {b}

· ∀i ∈ Gtgt.Evts, Gsrc.AccessMode(i) = Gtgt.AccessMode(i)

· Gsrc.val(a) = (vr, v)

· Gsrc.val(b) = (v, vw)

· Gsrc.loc(b) = x

· Gsrc.AccessMode(b) = Gsrc.AccessMode(a) ∈ {Release, Acquire}

· Gsrc.po = Gtgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}

· Gsrc.rf = Gtgt.rf ∪ {⟨a, b⟩}

· Gsrc.to = Gtgt.to ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i to−−→ a} ∪ {⟨b, j⟩ | a to−−→ j}

· Gsrc.IW = Gtgt.IW

and Gsrc is Jam21-consistent.

Proof. We show that Gsrc fulfills the two requirements of Jam21-consistency.

· No-Thin-Air. SupposeGsrc violates this requirement and has a (po|rf)+ cycle. SinceGsrc.val(a) =

(vr, v) and Gsrc.val(b) = (v, vw), if a po−−→ b (po|rf)+−−−−−→ a in Gsrc, it implies that a (po|rf)+−−−−−→ a

in Gtgt, contradicting to our previous assumption.

224

· Coherence. First note that there is only one rf edge from a in Gsrc and that is a rf−−→ b. In

addition, for all event i such that i vo−−→ b in Gsrc, i
vo−−→ a in Gtgt. For all j such that b vo−−→ j

in Gsrc, a
vo−−→ j in Gtgt. Therefore, if there is a co cycle in Gsrc, there is also a co cycle in Gtgt,

contradicting to our previous assumption.

T.3 Register Promotion for non-shared Variable

▶ Theorem 18 (Weakening for non-shared variable)

LetGtgt be a Jam21-consistent execution such that, for all accesses i and j inGtgt.Evts, loc(i) =
loc(j) = x⇒ Tid(i) = Tid(j) for some memory locationx. In addition, ∀i ∈ Gtgt.Evts, loc(i) =
x⇒ AccessMode(i) = Plain. There exists an execution Gsrc such that:

· Gsrc.Evts = Gtgt.Evts

· Gsrc.po = Gtgt.po

· Gsrc.rf = Gtgt.rf

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

· ∀i ∈ Gsrc.Evts, loc(i) = x⇒ AccessMode(i) ∈ {Release, Acquire}

and Gsrc is Jam21-consistent.

Proof. We show that Gsrc fulfills the two requirements of Jam21-consistency.

1. No-Thin-Air. Note that there is no cross-thread rf edge from or to accesses of location

x. Therefore, since Gsrc.po = Gtgt.po and Gsrc.rf = Gtgt.rf, if there is a (po|rf)+ cycle in

Gsrc, there is a (po|rf)+ cycle in Gtgt, contradicting to our previous assumption.

2. Coherence. Note that the transformation is equivalent to removing all the ra edges that

involve accesses to x. Therefore, Gsrc.vo = Gtgt.vo\{⟨a, b⟩ | (loc(a) = x ∧ a ra−−→ b ∧

AccessMode(b) ̸= Release) ∨ (loc(b) = x ∧ a ra−−→ b ∧ AccessMode(a) ̸= Acquire)}.

225

For accesses i and j such that loc(i) ̸= x and loc(j) ̸= x, if i vo−−→ j in Gsrc, i
vo−−→ j in

Gtgt. In addition, since x is not shared across different threads, all accesses to location x

are related by po. Since all accesses to x have an access mode of either Release or Acquire,

there is no cross-thread vo edges or rf edges from or to these accesses. Therefore, for all

memory location y ̸= x, Gsrc.vo ↾y= Gtgt.vo ↾y. Suppose Gsrc violates this requirement

by having a co cycle:

· If there is a co cycle with accesses to location x. Since Gsrc.po-loc = Gtgt.po-loc

and po-loc ⊆ vo, then there is also a co cycle with accesses to location x in Gtgt,

contradicting to our previous assumption.

· If there is a co cycle with accesses to other locations. Since for all memory location

y ̸= x, Gsrc.vo ↾y= Gtgt.vo ↾y and Gsrc.rf = Gtgt.rf, it implies there is also a co cycle

in Gtgt, contradicting to our previous assumption.

▶ Theorem 19 (Removing Plain accesses for non-shared variable)

Let Gtgt be a Jam21-consistent execution. Let x be a memory location and for all i ∈ Gtgt.Evts
such that loc(i) = x, Tid(i) = t for some x and t. Let a /∈ Gtgt.Evts. There is a Gsrc such that:

· Gsrc.Evts = Gtgt.Evts ∪ {a}

· Gsrc.loc(a) = x

· Gsrc.AccessMode(a) = Plain

· Gsrc.po ⊃ Gtgt.po

· for all i ∈ Gsrc.Evts such that Gsrc.loc(i) = x, i po−−→ a or a po−−→ i

· Gsrc.rf = Gtgt.rf if a ∈ Gsrc.Wrts\RMW, otherwise, Gsrc.rf = Gtgt.rf ∪ {⟨i, a⟩} such that

(i ∈ Gsrc.Wrts) ∧ (loc(i) = x) ∧ (i po−−→ a) ∧ (∀j ∈ Gsrc.Evts, (loc(j) = x) ∧ (j po−−→ a)⇒
(j po−−→ i)).

· Gsrc.to = Gtgt.to

· Gsrc.IW = Gtgt.IW

226

and Gsrc is Jam21-consistent.

Proof. It is clear that Gsrc does not violate No-Thin-Air and there is no co cycle for accesses to

location x. For Coherence, note that for all memory location y ̸= x, Gsrc.vo ↾y= Gtgt.vo ↾y

and Gsrc.rf = Gtgt.rf, it implies that if there is a co cycle in Gsrc there is also a co cycle in Gtgt,

contradicting to our previous assumption.

227

REFERENCES

[ADG21] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc

Maranget. “Armed Cats.” ACM Transactions on Programming Languages and Systems,
43:1–54, 6 2021.

[AFI09] Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O Myreen, Susmit Sarkar, Peter

Sewell, and Francesco Zappa Nardelli. “The semantics of power and ARM multipro-

cessor machine code.” Proceedings of the 4th ACM SIGPLAN Workshop on Declarative
Aspects of Multicore Programming, DAMP’09, pp. 13–24, 2009.

[AH90] Sarita V. Adve and Mark D. Hill. “Weak ordering—a new definition.” ACM SIGARCH
Computer Architecture News, 18:2–14, 6 1990.

[AMS12] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. “Fences in weak memory

models (extended version).” Formal Methods in System Design, 40:170–205, 4 2012.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. “Herding Cats: Modelling, Simu-

lation, Testing, and Data Mining for Weak Memory.” ACM Trans. Program. Lang. Syst.,
36, 7 2014.

[BMO12] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. “Clar-

ifying and compiling C/C++ concurrency.” Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 509–520, 1

2012.

[BP19] John Bender and Jens Palsberg. “A formalization of Java’s concurrent access modes.”

Proceedings of the ACM on Programming Languages, 3:1–28, 10 2019.

[Cor03] International Business Machines Corporation. PowerPC User Instruction Set Architec-
ture, 2003.

[Cor08] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual (5 vols),
2008.

[CYW21] Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, and Jens Palsberg. “Sound and efficient

concurrency bug prediction.” ESEC/FSE 2021 - Proceedings of the 29th ACM Joint Meet-
ing European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 21:255–267, 8 2021.

[Dev07] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual (3 vols), 2007.

[FF09] Cormac Flanagan and Stephen N. Freund. “FastTrack: efficient and precise dynamic

race detection.” SIGPLAN Not., 44(6):121–133, jun 2009.

228

[GRX19] Kaan Genç, Jake Roemer, Yufan Xu, and Michael D. Bond. “Dependence-Aware, Un-

bounded Sound Predictive Race Detection.” Proc. ACM Program. Lang., 3(OOPSLA),

oct 2019.

[HH16] Shiyou Huang and Jeff Huang. “Maximal Causality Reduction for TSO and PSO.” Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pp. 447–461, October 2016.

[HLR15] Jeff Huang, Qingzhou Luo, and Grigore Rosu. “GPredict: Generic Predictive Concur-

rency Analysis.” 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, 1:847–857, 5 2015.

[HMR14] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. “Maximal sound predictive

race detection with control flow abstraction.” Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation, 49:337–348, 6 2014.

[ISO98] ISO. ISO/IEC 14882:1998: Programming languages — C++, September 1998. Available

in electronic form for online purchase at http://webstore.ansi.org/ and http:
//www.cssinfo.com/.

[KLV23] Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. “Kater: Automating Weak

Memory Model Metatheory and Consistency Checking.” Proc. ACM Program. Lang.,
7(POPL), jan 2023.

[KMV17] Dileep Kini, Umang Mathur, and Mahesh Viswanathan. “Dynamic race prediction in

linear time.” ACM SIGPLAN Notices, 52:157–170, 6 2017.

[KP18] Christian Gram Kalhauge and Jens Palsberg. “Sound deadlock prediction.” Proceedings
of the ACM on Programming Languages, 2, 11 2018.

[Lam78] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed system.”

Commun. ACM, 21(7):558–565, jul 1978.

[Lam79] Leslie Lamport. “How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs.” IEEE Transactions on Computers, C-28:690–691, 9 1979.

[LBP22] Shuyang Liu, John Bender, and Jens Palsberg. “Compiling Volatile Correctly in Java.”

In 36th European Conference on Object-Oriented Programming (ECOOP 2022), 2022.

[LCK23] Dongjae Lee, Minki Cho, Jinwoo Kim, Soonwon Moon, Youngju Song, and Chung-Kil

Hur. “Fair Operational Semantics.” Proc. ACM Program. Lang., 7(PLDI), jun 2023.

[Lea11a] Doug Lea. “The JSR-133 Cookbook for Compiler Writers.”, 2011. Last modified: Tue

Mar 22 07:11:36 2011.

[Lea11b] Doug Lea. “The JSR-133 Cookbook for Compiler Writers.”, 2011. Last modified: Tue

Mar 22 07:11:36 2011.

229

[Lea18] Doug Lea. “Using JDK 9 Memory Order Modes.”, 2018. Last Updated: Fri Nov 16

08:46:48 2018.

[LNO20] Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor

Vafeiadis. “Making Weak Memory Models Fair.” arXiv preprint arXiv:2012.01067, 12

2020.

[LV16] Ori Lahav and Viktor Vafeiadis. “Explaining Relaxed Memory Models with Program

Transformations.” FM 2016: Formal Methods, pp. 479–495, 2016.

[LVK17] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. “Re-

pairing Sequential Consistency in C/C++11.” Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 618–632, 2017.

[MKV18] Umang Mathur, Dileep Kini, and Mahesh Viswanathan. “What happens-after the first

race? enhancing the predictive power of happens-before based dynamic race detec-

tion.” Proceedings of the ACM on Programming Languages, 2:1–29, 10 2018.

[ML21] Roy Margalit and Ori Lahav. “Verifying observational robustness against a c11-style

memory model.” Proceedings of the ACM on Programming Languages, 5:1–33, 1 2021.

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java Memory Model.” ACM
SIGPLAN Notices, 40:378–391, 2005.

[MPV21] Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. “Optimal predic-

tion of synchronization-preserving races.” Proceedings of the ACM on Programming
Languages, 5, 1 2021.

[MSS12] Luc Maranget, Susmit Sarkar, and Peter Sewell. “A Tutorial Introduction to the ARM

and POWER Relaxed Memory Models.”, 2012. Draft available from http://www. cl.

cam. ac. uk/ pes20/ppc-supplemental/test7.pdf.

[OSS09] Scott Owens, Susmit Sarkar, and Peter Sewell. “A Better x86 Memory Model: x86-

TSO.” Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics, p. 391–407, 2009.

[Pav20] Andreas Pavlogiannis. “Fast, Sound, and effectively complete dynamic race predic-

tion.” Proceedings of the ACM on Programming Languages, 4:1–29, 1 2020.

[PFD18] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter

Sewell. “Simplifying ARM concurrency: Multicopy-atomic axiomatic and operational

models for ARMv8.” Proceedings of the ACM on Programming Languages, 2:1–29, 1

2018.

[PLV19] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. “Bridging the gap between pro-

gramming languages and hardware weak memory models.” Proceedings of the ACM on
Programming Languages, 3, 1 2019.

230

[SCR13] Traian Florin ŞerbănuŢă, Feng Chen, and Grigore Roşu. “Maximal Causal Models for

Sequentially Consistent Systems.” Runtime Verification, pp. 136–150, 2013.

[SES12] Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan.

“Sound Predictive Race Detection in Polynomial Time.” SIGPLAN Not., 47(1):387–400,

jan 2012.

[Shi21] Aleksey Shipilev. “[JDK-8262877] PPC sequential consistency problem: volatile stores

are too weak.” Technical report, OpenJDK Bug System, 03 2021.

[SRA05] Koushik Sen, Grigore Roşu, and Gul Agha. “Detecting Errors in Multithreaded Pro-

grams by Generalized Predictive Analysis of Executions.” Formal Methods for Open
Object-Based Distributed Systems, pp. 211–226, 2005.

[SSA11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. “Under-

standing POWER multiprocessors.” Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation - PLDI ’11, p. 175, 2011.

[SSO10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O

Myreen. “X86-TSO: A rigorous and usable programmer’s model for x86 multiproces-

sors.” Communications of the ACM, 53:89–97, 7 2010.

[SWY11] Mahmoud Said, Chao Wang, Zijiang Yang, and Karem Sakallah. “Generating Data Race

Witnesses by an SMT-based Analysis.” NASA Formal Methods Symposium, 2011.

[TAC23] Hünkar Can Tunç, Parosh Aziz Abdulla, Soham Chakraborty, Shankaranarayanan Kr-

ishna, Umang Mathur, and Andreas Pavlogiannis. “Optimal Reads-From Consistency

Checking for C11-Style Memory Models.” Proc. ACM Program. Lang., 7(PLDI), jun

2023.

[TMP23] Hünkar Can Tunç, Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan.

“Sound Dynamic Deadlock Prediction in Linear Time.” Proceedings of the ACM on
Programming Languages, 7:1733–1758, 6 2023.

[VBC15] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and

Francesco Zappa Nardelli. “Common Compiler Optimisations are Invalid in the C11

Memory Model and what we can do about it.” Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 50:209–220, 1

2015.

[WPP20] Conrad Watt, Christopher Pulte, Anton Podkopaev, Guillaume Barbier, Stephen Dolan,

Shaked Flur, Jean Pichon-Pharabod, and Shu Yu Guo. “Repairing and mechanising the

JavaScript relaxed memory model.” Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 346–361, 6 2020.

[Še08] Jaroslav Ševčík. Program Transformations in Weak Memory Models. PhD thesis, The

University of Edinburgh, 2008. Publication Title: Memory.

231

	Introduction
	Background
	Execution Graphs
	Axiomatic Weak Memory Models
	The DRF-SC Guarantee
	Compilation, Prediction, and Transformation
	Compilation
	Predictive Analysis
	Transformations

	Compilation Correctness of Java Access Modes
	The Problem of Compiling Volatile and How to Fix it
	Formal Model
	Basic Syntax
	The Jam21 Model
	The Jam21' Model

	Compilation Correctness: an Overview
	Compilation Correctness to Power
	The Power Memory Model
	Compilation Scheme
	Proof of Compilation Correctness

	Compilation Correctness to x86-TSO
	The x86-TSO Model
	Compilation Scheme
	Proof of Compilation Correctness

	Performance Implications

	Soundness of Predictive Analyses
	Introduction
	Motivation
	Preliminaries
	Programs
	Execution Graphs
	From Programs to Execution Graphs
	Bug Sequence

	Soundness
	Composability with bug sequences
	Well-formedness of Plain Execution
	Executability
	Memory Consistency

	A Recipe to Prove Soundness
	Constructing a Symbolic Plain Execution
	Inserting Consistent Memory Orders
	Mapping to a Concrete Execution

	Proving Race Prediction Algorithms Sound
	M2
	RVPredict
	MCR-tso
	Happens-Before (HB)
	Schedulable Happens-before (SHB)
	SyncP

	Future Work

	Correctness of Transformations under Weak Memory Models
	Sound Transformations for Java Access Modes
	Strengthening
	Sequentialization
	Reordering
	Merging
	Register Promotion for Non-shared Variable
	Why are many transformations invalid for Volatile?

	Sound Transformations for Predictive Analyses
	Sound Transformation for x86-TSO
	Sound Transformation for ARMv8
	Using Sound Transformations in Predictive Analyses

	Conclusion
	the Full JAM21 Model
	the Full JAM21' Model
	The Power Memory Model in Herd7
	Proof of Observational Equivalence
	Proof of Compilation Correctness to Power
	The x86 TSO Model in Herd7
	Proof of Compilation Correctness to x86-TSO
	Key Properties of the Jam21 Model
	Prior Theorems
	Volatile implies SC

	The Standard DRF-SC Theorem
	DRF-SC for Execution Graphs
	Experimental Validation of Jam21
	Methods supported by Java Architecture for Herd7
	Experimental Results
	Compilation to Power
	Source Code of litmus tests
	Full Trace and Litmus Test the example in Section. 3.1

	Relationship with Existing Soundness Definitions
	Language Semantics for Chapter 4
	Proofs for Soundness Properties in §4.3
	Proofs of §4.4
	Enhanced-MCR-tso
	A TSO Race Predictable from SC trace
	TSO Race Discovered by Read Elimination
	WRC-race: another example
	Program Transformations
	Deordering and Reordering
	Merging
	Read-read Merging
	Write-write Merging
	Write/RMW-read Merging
	Write-RMW Merging
	RMW-RMW Merging

	Register Promotion for non-shared Variable

	References

