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Abstract

Data-Centric Machine Learning for Human-Centric Applications

by

Hari Prasanna Das

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

Climate change and pandemics are two of the most pressing threats facing humanity today.
Addressing these urgent threats require immediate mitigative actions. In the US, buildings
are responsible for 40% of primary energy consumption, 73% of electrical use and 40% of
greenhouse gas emissions, the primary cause of global warming, and such high levels are now
rapidly spreading across the rest of the world. At the same time, buildings are integral to
human lives, as we spend most of our time in them which substantially affects our health
and productivity. So, for climate change mitigation, it is essential to optimize energy use in
buildings while ensuring human comfort. On the other hand, for pandemics mitigation, it is
crucial to diagnose and have a better understanding of the new disease in a time-sensitive
manner. Over the years, Machine Learning (ML) as a tool has been widely utilized for both
the above efforts. However, both buildings and pandemic-specific healthcare systems exhibit
a number of shared data-specific challenges, hindering robust ML implementations.

We will present 3 major research works on tackling them with generative modeling, and
transfer learning. The first work will be on conditional synthetic data generation, where
the focus is to conditionally generate synthetic data for classes with infrequent data points.
The applications include tackling class imbalance in healthcare data, and privacy-preserving
data sharing. The second will be on improved pre-processing methods for tabular data (a
common data type in smart buildings) to enable seamless use by many ML algorithms. To
improve the generalizability and scalability of the models, the third work will be on a transfer
learning-based adversarial domain adaptation method, with applications in adapting personal
thermal comfort models in buildings from one occupant to another without using any data
labels for the target occupant. With this method, the time and the resource-intensive task of
acquiring multiple labels for the target environment in a building can be avoided.
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Chapter 1

Introduction

Figure 1.1: A taxonomy of the Smart Buildings illustrated at three levels: cluster of buildings,
single building, and occupant.

Climate change and pandemics are two of the most pressing threats facing humanity today.
Addressing these urgent threats requires immediate mitigative actions. In the US, buildings
are responsible for 40% of primary energy consumption, 73% of electrical use and 40% of
greenhouse gas emissions [2], the primary cause of global warming, and such high levels are
now rapidly spreading across the rest of the world. At the same time, we spend 90% of
our time every day in indoor environments, so buildings substantially influence our health,
well-being, safety, and work and study performance. So, for climate change mitigation, it is
essential to optimize energy use in buildings while ensuring human comfort. On the other
hand, for pandemic mitigation, it is crucial to diagnose and have a better understanding
of the new disease in a time-sensitive manner. Over the years, Machine Learning (ML) as
a tool has been widely utilized for both the above efforts. However, both buildings and
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pandemic-specific healthcare systems exhibit a number of shared data-specific challenges,
hindering robust ML implementations.

In the following sections, we will cover more about the machine learning applications in
smart buildings and pandemic specific healthcare, and point some data specific challenges
present in them. We will then present our research work to tackle the above challenges.

1.1 ML Applications and Data Challenges in Smart
Buildings

It is of utmost importance to improve building energy systems to optimize energy usage
and thus limit the greenhouse gas emissions contributed by them, while, at the same time,
ensuring an occupant-friendly environment to improve well-being and productivity. Energy
use reductions in buildings can be an environmentally sustainable, equitable, cost-effective,
and scalable approach to reducing greenhouse gas emissions. Simultaneously, maintaining
occupant comfort and productivity is crucial in achieving occupant satisfaction in buildings.

The smart building ecosystem is illustrated in Fig 1.1. Occupants constitute the basic
building block of the ecosystem. Being the consumer of the enviornment that a building
provides, occupants necessitate regulation of the building systems to achieve the desired
environment. The building comprises of structures, devices and systems in place to control
and maintain the desired environment for the occupants, along with diagnostic systems to
ensure a robust operation. The building operation requires energy, which primarily comes in
the form of electricity. The electrical energy is supplied to buildings via a power distribution
system, where, with the advent of smart grids, buildings interact and exchange surplus energy
and other ancillary services with the energy provider and with each other.

In efforts to improve energy efficiency in buildings, researchers and industry leaders
have attempted to implement control and automation approaches alongside techniques like
incentive design and price adjustment to more effectively regulate the energy usage [3]. The
heterogeneity of user preferences in regard to building utilities is considerable in variety and
necessitates a system that can adequately account for differences from one occupant to another.
Focus has shifted towards modeling occupant behavior to incorporate their preferences in
building control and automation [4]. The behavioral models can then be studied to introduce
initiatives to encourage energy efficient behaviors among the occupants/energy users. With
the growth of internet-of-things (IoT) devices, and the great variety of user-to-device and
device-to-device interactions, there is a need for integration and coordination of the related
objectives and actions. Further, to derive insights from the vast amount of data in certain
scenarios, and from the limited amount of data in others, ML applications are proliferating
in smart buildings. These ML-driven insights can be used for downstream tasks such as
forecasting, prediction, and control.
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Application of Machine Learning in Smart Buildings

Figure 1.2: Illustration of various applications where machine learning methods can be deployed in
smart buildings, grouped at the cluster of buildings-level, the building-level, and the occupant-level.

Recent years have witnessed an exponential growth in machine learning implementation
in smart buildings. Fig 1.2 illustrates the building components at various levels and classes
of machine learning algorithms that are proposed for those systems.

Fault detection plays a crucial part in reducing maintenance costs and increasing the
energy efficiency of building operations [5]. However, faults in an actual building don’t occur
frequently, and it is hard to collect fault data for analysis. Data sets for fault diagnosis
are usually created through testbed experiments or simulations. Techniques in ML such as
out-of-distribution detection has been proposed to detect faults [6].

ML has been utilized to predict thermal comfort. Often, the Fanger’s features [7] (air
temperature, mean radiant temperature, relative humidity, air velocity, clothing insulation
and metabolic rate.), alone or with additional relevant real and synthetic features, are fed into
a data-driven model to learn the connections between the features and the thermal preference
labels [8, 9]. The model is later leveraged to predict the same given raw features. Because
the models are trained to learn directly from the data, and not from a rule established using
prior experiments, they perform better as compared to the conventional Predicted Mean Vote
(PMV) model, that functions by predicting a mean consensus of occupant comfort preference.

Kernel-based approaches have been widely-used for thermal sensation/preference pre-
diction. The list of kernel-based methods popular for thermal comfort prediction includes
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Support Vector Machine (SVM) [10–14], K-Nearest Neighbors (KNN) [8,15–18], and Ensemble
Learning algorithms, such as Random Forest (RF) [8, 9] and AdaBoost (Ab). Recently,
feed-forward neural networks [17, 19, 20], and time-series based networks [21] have surpassed
state-of-the-art kernel-based models in thermal comfort prediction.

Traditional thermal comfort models, as described above, are developed based on aggregated
data from a large population. So, rather than predicting the thermal comfort of individuals,
they were designed to predict the average thermal comfort of a population, when all its
members are exposed to the same environment. This naturally misses the inevitable and
sometimes significant differences in how different individuals respond to the same thermal
environment. A new approach that uses personal comfort models instead of the average
response of a large population can be applied to any building thermal control system [9].
Personal thermal comfort can adapt to the available input variables, such as environmental
variables [22], occupant behaviors [23] and physiological signals [8]. ML algorithms ranging
from kernel-based to neural network based methods have been proposed [9,24]. Other ML
approaches are also becoming popular in modeling the complex interactions that exist between
the features without much feature engineering, e.g. time-series prediction [25], artificial
neural networks [19], etc. Better approaches for modeling tabular data in smart buildings,
with a focus on thermal comfort datasets are provided in [26].

ML has also been proposed to be used in models that predict building performance. It has
been used during the design stage to augment generative design and parametric simulations.
Deep generative algorithms such as Generative Adversarial Networks (GANs) [27,28] have
been proposed for generating diverse but realistic architectural floorplans, a process that
has been known to be time-consuming iterative. The automated generation of architectural
floorplans can be coupled with BPS tools to systematically explore architectural layouts that
optimize building energy efficiency [29].

Metamodeling, defined as the practice of using a model to describe another model as an
instance [30], is another aspect where machine learning has been extensively applied to BPS
throughout the building lifecycle. Given the complex interaction between different building
systems and sub-systems, design optimization during early design typically requires exploring
a high-dimensional decision space. Consequently, machine learning has been used to create
metamodels that can be used for optimization and uncertainty analysis [31,32].

Privacy is a crucial element in buildings, as it is linked to safety of occupants inhabiting
them. Privacy preserving algorithms have been proposed to ensure machine learning algo-
rithms designed for smart buildings do not compromise private information of occupants.
Works such as [33] and [34] present accountable machine learning methods aimed to preserve
privacy in cyber-physical systems such as buildings.

Occupancy and activity sensing are key aspects for the observability of a human-in-the-loop
building control system. Traditionally, building operation methods that include occupancy
as one of their parameters, such as starting heating/cooling from early morning till late in
the evening during weekdays assuming maximum occupancy during working hours often
have static schedules set for the occupancy, which is far from realistic. Also, how much a
building will be occupied depends on several other factors, such as weather, building type, and
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holiday schedule. Such static policies may lead to a significant waste in energy consumption,
because the heating/cooling and ventilation levels are set with no regard for the actual
occupancy level. Activity sensing also helps to provide personalized, context-aware services
in buildings, thus enhancing overall satisfaction while creating a safety net for adverse events
such as falls in elderly homes [35]. Occupancy sensing can be performed using both intrusive
and non-intrusive methods. Intrusive methods require the occupants to carry an electronic
device whose signature is followed by a central server to infer occupancy/positioning [36–40].
However, requiring occupants to constantly carry a device is not reliable. This problem gets
magnified for the case of elderly population. Hence, non-intrusive methods for occupancy
sensing are getting popular.

ML has been proposed for occupancy/activity sensing using data from modalities such
as video and WiFi activity level. [41] use an U-Net like convolutional neural network on
thermal images to infer occupancy. Other works employing similar machine learning methods
on depth cameras are [42–44]. But, in general, cameras have other issues such as poor
illumination conditions and occlusion. A recent body of work focuses on occupancy and
activity detection from WiFi signals [45], because of their ubiquitous presence, and better
privacy guarantees. Authors in [46, 47] use Channel State Information (CSI) data collected
from WiFi sensors (a transmitter and a receiver) and measure the shape similarity between
adjacent time series CSI curves to infer occupancy. Additional work improves the detection
mechanism by using convolutional neural networks on the CSI heatmaps to detect human
gestures [48]. Another modality that is used to detect occupancy is CO2 data in a room. A
number of works [49–52] employ machine learning methods to map the CO2 concentration
and occupancy. Finally, others propose sensor fusion, where data from multiple sensing
modalities, i.e. RGB camera, and WiFi are used in tandem to come up with a robust activity
detection mechanism [53].

Data-Specific Challenges

At the core of machine learning is data: its continuous availability, intelligent processing,
efficient handling and storage. Smart buildings are equipped with an array of Internet-of-
Things (IoT) devices that ensure the availability of rich data. The data is then fed to machine
learning algorithms after appropriate curation and pre-processing to perform some task
that achieves an objective, be it enhancing energy efficiency or improving occupant thermal
comfort and productivity. For intelligent machine learning model design, it is crucial that
the continuous availability of rich and diverse data from building systems is ensured. There
are several data-specific challenges observed in smart buildings, as illustrated in Fig. 1.3.

A common challenge in designing ML based predictors in smart buildings is the issue
of class-imbalance in data. For instance, almost all of the thermal comfort datasets [8, 54]
are inherently data class-imbalanced, i.e. they have more data belonging to “Prefer No-
Change”than “Prefer Warmer”and “Prefer Cooler”thermal preference classes. Researchers have
tackled this issue by using weighted loss functions for ML models. A related challenge is the
overall lack of sufficient amount of data for rare cases, such as aged and frail subjects [8] in
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Figure 1.3: Machine Learning Applications and Data-related Challenges (in red font) in Smart
Buildings

thermal comfort analysis, and fault scenarios in building fault detection. Collecting large
amounts of data as required by ML models from humans and building systems via real-world
experiments is expensive and cumbersome.

Another challenge is domain discrepancy. For instance, thermal comfort, as per Predicted
Mean Vote (PMV) model (the widely adopted model for analyzing thermal comfort), is
dependent upon 6 major parameters as described in the beginning of the section or, as per the
adaptive thermal comfort model, is dependent on the outside temperature. However, it also
varies from person to person, across climatic regions and economic conditions. A literature
review of personal comfort models concluded that there is a lack of diversity in terms of
building types, climates zone and participants that are considered in existing thermal comfort
studies [55]. Under such domain discrepancy, models developed in one environment, when
used in another target environment may lead to low accuracy or misleading predictions. Also,
thermal comfort modeling depends largely on self-reporting, which is inherently unreliable.

Another data-specific challenge that exists in smart buildings is the compatibility between
the available data, and state-of-the-art ML models. A large number of smart building datasets
are tabular in nature. Tabular data is defined as data that is structured into rows, and
columns of information. Each row contains the same number of cells (although some of
these cells may be empty), which is considered as a single data sample. Each column in
tabular data represents a variable, or a property or a feature of the system to which the
dataset corresponds to. The columns in tabular datasets can be continuous, with variables
whose values are real numbers, and can be uncountably infinite, or discrete, with variables
that are categorical and can have a countably limited number of values. Continuous and
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Figure 1.4: Machine Learning Applications and Data-related Challenges (in red font) in Pandemic
Specific Healthcare

discrete features require specialized handling. Continuous variables generally observed in the
real-world are multi-modal in nature, but existing practices to transform them during data
pre-processing, namely min-max or gaussian normalization treat them as unimodal, which
leads to inefficient modeling of the variables. Also, many of the widely used state-of-the-art
ML models such as neural networks are smooth function approximators, and cannot be
directly used with discrete data.

1.2 ML Applications and Data Challenges in Pandemic
Specific Healthcare

The COVID-19 pandemic has created a public health crisis and continues to have a devastating
impact on lives and healthcare systems worldwide. In the fight against this pandemic, a number
of algorithms involving state-of-the-art machine learning techniques have been proposed.
Data-based approaches have been used in a number of important tasks such as detection,
mitigation, transmission modeling, decisions on lockdown, reopening and related restrictions
etc. For example, ML tools such as out-of-distribution detection have been proposed [56] to
detect that there has been a new disease in the world. Computer vision-based detection of
COVID-19 from chest computed tomography (CT) images has been proposed as a supportive
screening tool for COVID-19 [57], along with the primary diagnostic test of transcription
polymerase chain reaction (RT-PCR). This is beneficial since obtaining definitive RT-PCR
test results may take a lot of time in critical situations. Reinforcement learning based methods
were also proposed to optimize mitigation policies that minimize the economic impact without
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overwhelming the hospital capacity [58].
The application of machine learning algorithms in healthcare depends upon ample avail-

ability of disease data along with their attributes/labels. At the beginning of a pandemic, data
corresponding to the disease might be unavailable or sparse. Sparse data often have limited
variation in several important factors relevant to disease detection such as age, underlying
medical conditions etc. Class imbalance is another issue faced by machine learning algorithms
when pandemic-disease related data is limited. For example, at the onset of COVID-19,
the amount of CT scan images corresponding to COVID-19 were much less than those
corresponding to other existing lung diseases (e.g. pneumonia). ML models fed with such
class-imbalanced data could be biased and thus provide inaccurate results. Furthermore, the
amount of data with proper labels among the available pandemic data might be minimal.
This issue can arise because healthcare professionals and domain experts who can review
and label the data are busy treating patients inflicted with the new disease, or also because
of privacy concerns associated with medical data sharing. Adapting ML models to the new
disease under such label scarce scenarios needs special design.

Concurrently, after a new disease has been discovered, the healthcare ML tools must
rapidly adapt to the new disease in order to assist medical professionals diagnose and treat
affected individuals as quickly as possible. Rapid actions are also expected in the design
of policy interventions that are based on insights from pandemic data. Another issue in
development of machine learning algorithms for emerging pandemics is privacy. Development
of solutions to pandemics at the scale of COVID-19 requires collaborative research which in
turn presses the need for open-sourced healthcare data. But, even if healthcare organizations
wish to release relevant data, they are often restricted in the amount of data to be released
due to legal, privacy and other concerns.

1.3 Research Contributions
It can be observed that smart buildings and healthcare exhibit some shared data-specific
challenges, such as class-imbalance and limited data for rare-events, domain discrepancy, and
data-model inconsistencies. In this research, we aim to tackle the above challenges using
tools of deep generative modeling and un/semi-supervised learning.

More specifically, we aim to generate synthetic data to augment the training dataset as one
of the approaches for tackling challenges of class imbalance and limited data for rare events.
Synthetic data generation can be done using classical methods such as SMOTE [59,60] or
using advanced neural network-based generative models [60–63]. To deal with the data/label
insufficiency challenge across domains, we propose domain adaptation methods to adapt ML
models from one domain to another. We also design pre-processing methods specifically for
handling tabular data and enabling their use with smooth function approximators such as
neural networks. Our proposed methods are generic, since they can also be used for other
applications or data types with minor modifications.



CHAPTER 1. INTRODUCTION 9

The rest of this thesis has been divided into three parts, part I describing conditional
synthetic data generation and its application in healthcare and smart buildings, part II
covering transfer learning/domain adaptation for synthetic data generation and prediction,
and part III introducing data pre-processing methods for handling tabular data. Finally, we
present some avenues of future research.
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Part I

Experimental Setup, Baseline Models,
Problem Identification
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Chapter 2

Personal Thermal Comfort Modeling

2.1 Introduction
Occupants’ thermal comfort is associated with health [64,65], work productivity [66], learning
performance [67] and well-being [68]. Indoor thermal environment design and thermostat
settings in most buildings with mechanical systems rely on air temperature control values
based on the existing predicted mean vote (PMV) model as described in thermal comfort
standards as ASHRAE Standard 55 [69], EN 15251 [70] and ISO 7730 [71], while the adaptive
model is used for automated buildings [72].

Nevertheless, neither PMV nor the adaptive model incorporates individual differences
and dynamics in thermal perceptions. Also, both models ignore aspects of human thermo-
regulation and important personal psychophysics influencing the perception of thermal
comfort [73]. The PMV predicts thermal sensation correctly only one out of three times
and has a mean absolute error of one unit on the thermal sensation scale [74]. The main
limitation of both PMV and adaptive models is that these two models were developed based
on aggregated data from a large population. They were designed to predict the average
thermal comfort of the entire population rather than that of an individual. Consequently,
their accuracy on predicting thermal comfort for a specific occupant is very low. Kim et al. [9]
proposed a framework of personal comfort models that can predict an individual’s thermal
comfort responses by leveraging Internet of Things (IoT) and machine learning, rather than
the responses of an “average person.” Such a framework has been applied in a few recent
studies that aimed to customize thermal comfort models for each occupant through users’
feedback, IoT and machine learning [75,76]. The primary advantage of a personal thermal
comfort model lies in its capacity of self-learning and updating to suit an individual with a
data-driven approach, resulting in higher predictive power.

Numerous recent studies have developed personal thermal comfort models by feeding
different variables into machine learning algorithms. The three primary categories of variables
are 1) environmental information, 2) occupant behavior, and 3) physiological signals. Proba-
bility distributions of thermal comfort for each occupant were created over indoor temperature
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for HVAC controls [77]. A similar data-driven method with indoor environment was applied
to classify occupants’ personal thermal comfort with temperature and humidity sensors [78].
The second option is to track occupants’ behavior to infer thermal comfort and preference,
such as adjusting thermostats [79] or changing the settings of personal heating/cooling
devices [80]. A personal comfort model using only control behavior of a smart chair system
can generate a prediction AUC of 69% compared to approximately 53% (almost random) for
the PMV and adaptive model [9]. Along with behavior-tracking, physiological signals, such
as skin temperature [81], heart rate variability [82], electroencephalogram (EEG) [83], skin
conductance [84], and accelerometry [85], show a strong relationship with human thermal
sensation and comfort. Sim et al. [86] developed personal thermal sensation models based
on wrist skin temperature measured by wearable sensors. In addition, studies using more
than one category are also not uncommon. A “personalized” model can be developed by
integrating the occupants’ physiological and behavioral data. Other recent attempts [87]
applied commercial wearable sensors together with environmental sensors (e.g., temperature,
air speed) to predict the comfort of each individual occupant.

Even though all the above-reviewed studies claimed an enhanced prediction accuracy over
conventional PMV and adaptive models, we identify three major drawbacks or limitations in
those studies. First, subjects involved in the studies were restricted in a climate-controlled
laboratory environment for a short period of time, usually a few hours [86]. The dynamics of
thermal comfort among daily diverse activities (e.g., dining, commuting, working, shopping)
and their interactions cannot be fully captured in steady-state short-term lab tests. Even
in a relatively “static” office environment, occupants would be engaged in different tasks
(e.g., attending meetings, working at computers, doing office chores). As such, studies
at steady-state conditions could not capture human activity, circadian cycle and mobility.
The feasibility and accuracy of personal thermal comfort models developed under real-life
conditions are still unclear. From our literature review, the models developed directly from
lab data [82] usually have higher prediction power ( 90% vs 70%) as compared to those
from the real environment [75]. Second, most studies evaluated the performance of personal
models, which predict categorical responses (e.g., cooler, warmer, no change), using accuracy
that is the number of correctly predicted instances divided by the total number of instances
in the dataset. Previous studies using such metric reported the prediction accuracy 79%
± 32% (Mean ± SD) for personal comfort models developed from physiological data with
wearable sensors [75, 82]. However, this metric is problematic because it fails to exclude
correct prediction purely due to randomness [88].

Third, previous studies with wearable sensors often employed commercialized low-cost
sensors. The sensing accuracies of those sensors when they were worn were not known, even
though manufacturers reported a high accuracy and strong reliance of the embedded sensors.
In most situations, the manufacture specification was based on laboratory validation in a
static environment, which could be quite different when sensors were used by end-users. For
instance, the Empatica E4 (Empatica Inc., USA) wristbands or similar products might be
only reliable with limited movements, for example, during sleeping and sitting at the table.

In the present study, to address the prior identified limitations, we developed personal
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thermal comfort models by machine learning using lab grade wearable sensors that continuously
monitor physiological signals (skin temperature, heart rate, accelerometry) for a long period
in real settings. Since a personal comfort model applies individually relevant rather than
group-averaged information for thermal comfort predictions, it can be better utilized to
understand specific comfort needs and desires of individual occupants and satisfy their
thermal comfort accordingly. With personal comfort models, a building system can provide
optimal conditions for enhanced thermal satisfaction and energy efficiency. More practically,
a personal model is able to evolve by adapting new data collected in future smart buildings.
We aim to evaluate the prediction power of each personal comfort model using metrics that
can compensate for randomness. The importance of physiological signals and environmental
parameters for prediction were also assessed in this study.

2.2 Thermal Comfort Experiment
Unlike population-average models, a personal comfort model should be specifically developed
for an individual occupant to account for great variations in personal factors. A personal
model for an occupant might not be necessarily the same for another, even if its accuracy
compared to a population-average model may be higher due to its flexibility. As such,
personal models are determined using data-driven approaches such as continuous training
of machine learning algorithms over streaming data [9]. In this study, we collected and
formatted physiological responses from human subjects and then applied machine learning
algorithms to train personal thermal comfort models for each subject. Thermal sensation
and preference from surveys were utilized as ground truth for model training and evaluation.
The following sub-sections describe our approach in detail.

Twenty subjects (half female and half male adults) living in Berkeley and San Francisco,
CA, were initially recruited through posted announcements. We only analyzed the data
from the fourteen subjects (6 female and 8 male adults) to develop personal thermal comfort
models for each person. We asked each subject to take an online survey at least once every
hour during the day. They were required to take the survey at least 12 times per day to
capture the dynamics of thermal conditions, especially when their thermal sensations changed,
such as after working out or moving to a different thermal environment. Developed with
Qualtrics (Qualtrics, LLC), the survey included three “right-now” questions: (1) location
(Indoor or Outdoor), (2) thermal sensation (continuous ASHRAE scale from -3 cold to 3 hot),
and (3) thermal preference (Cooler, No change, and Warmer).

We also collected physiological signals in this study. We collected skin temperature at
the wrist and ankle, heart rate, and wrist accelerometry. The physiological sensor set up is
illustrated in Fig. 2.1.
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Figure 2.1: Physiological Sensor setup.

2.3 Data Analysis and Problem Identification
The features were extracted from raw data and consisted of skin temperatures (wrist and
ankle), heart rate, body proximity temperature and weather conditions (wind, solar radiation,
temperature, and humidity). We downloaded weather data from the station near each subject
during the participation. People spend most of the time indoors, so one may think that these
parameters are relevant only when people are outdoors. We argue that weather conditions
may affect people’s clothing choices, thermal expectation and, to a certain degree, the way
how buildings are conditioned. These intermediate factors, which were not measured directly,
may also cause variation of thermal perception and comfort.

For skin temperature and heart rate, we considered the average and gradient over the
timeframes of 5 min and 60 min prior to a vote. The gradient was the slope of local linear
regression (time vs variable) applied to the data within a timeframe window. A negative
gradient of skin temperatures of the extremities possibly indicated a cool thermal sensation.
Likewise, an increased (positive gradient) heart rate and body movement (inferred by
measuring acceleration) might be associated with enhanced metabolism or energy expenditure.
The standard deviation of acceleration suggested the intensity of a physical activity (e.g.,
walking). The selection of the time frame window was based on two assumptions. First, in
most real-life situations, occupants’ thermal conditions change little within 5 min. Second,
physiological signals 60 min ago or earlier have little reflection on the present thermal
conditions. The Pearson correlation coefficients between averaged heart rate over 5 min vs 15
min, 5 min vs 30 min, 5 min vs 60 min, 15 min vs 30 min, 15 min vs 60 min, and 30 min vs 60
min are 0.95, 0.92, 0.91, 0.96, 0.94, and 0.96, respectively. The high auto-correlations imply
that finer or more timeframe windows might not be useful to improve prediction accuracy.
Similar strong auto-correlations can be also found for skin temperatures of both wrist and
ankle: 0.94 (5 min vs 15 min), 0.84 (5 min vs 30 min), 0.67 (5 min vs 60 min), 0.95 (15 min
vs 30 min), and 0.92 (30 min vs 60 min). In addition, the time frame windows for the average
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Figure 2.2: Distribution of Data Points for various Thermal Preference Classes

Table 2.1: Distribution of Number of Subjects in various Age Groups

Age Group Number of Subjects

20-30 10
30-40 3
40-50 1
>50 0

and gradient of meteorological parameters are 1h and 8h.
The plots in Fig. 2.2 show the overall thermal sensation and preference (sorted by the

percentage of “No change”) for each subject. Consistent to a larger scale meta-data (the
Comfort Database [54]), the median thermal sensations for all participants are within the
thermal neutrality (-0.5 < Thermal Sensation (TS) < 0.5) except for the subject (ID = 5,
TSmedian = 0.7) and the subject (ID = 6, TSmedian = -0.6). However, the range of thermal
sensations varies extensively among them.

We observed that the distribution of data among the 3 thermal preference classes is highly
imbalanced. This is expected since most of the systems in existing buildings are expected to
achieve thermal neutrality. The distribution of individuals in various age groups, and various
Body Mass Index (BMI) categories are provided in Table 2.1 and Table 2.2 respectively. We
observe that the availability of data for extreme classes in each type, i.e. aged subjects,
and overweight and obese subjects is rare. This can be partly attributed to the difficulty in
logistics of conducting experiments with aged or frail subjects. This class imbalance in the
nature of the data causes challenges in ML-based modeling for thermal comfort prediction.
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Table 2.2: Distribution of Number of Subjects in various BMI Groups

Age Group Number of Subjects

Underweight (<19) 9
Healthy (19-25) 3

Overweight (25-30) 2
Obese (>30) 0

2.4 Machine Learning based Thermal Preference
Prediction

Model Selection

We applied various machine learning algorithms to develop personal thermal comfort models
over the collected dataset. The predicted response of the models was thermal preference
(“Cooler”, “No change” or “Warmer”) because it is the most relevant parameter addressing
thermal discomfort by specifying which action a heating, ventilation, and air conditioning
(HVAC) system should take. The dataset consisted of numerical variables mainly measured
by wearable sensors and subjective votes that were numerical (e.g., thermal sensation) or
categorical (e.g., thermal preference). We applied four groups of machine learning algorithms
(1) linear methods, (2) non-linear methods, (3) trees and rules, and (4) ensembles of trees
with each including several commonly used classification algorithms. This algorithm selection
ensures that prediction biases can be well balanced, preventing over- or under-prediction
resulting from specific algorithms. Each algorithm can be applied to train a personal thermal
comfort model based on the data-driven method.

Evaluation Metrics

The performance of all the developed personal thermal comfort models from the machine
learning algorithms was evaluated by three commonly used metrics: Cohen’s kappa [89]
(measures the agreement between two raters who each classify the items into some mutually
exclusive categories), accuracy [75], and Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC).

2.5 Results
Table 2.3 summarizes prediction performance with the metrics of Cohen’s kappa/accuracy/AUC
using 14 machine-learning algorithms for all participants. For all these subjects, the median
prediction Cohen’s kappa of personal comfort models is 20% with coincidence accuracy of 68%
and AUC of 0.69. When only the best performing algorithm for each subject is considered, the
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Table 2.3: Prediction power (Cohen’s kappa/accuracy/AUC) for each participant with 14 common
machine learning algorithms.

SubID/Data Size 1/152 2/253 3/323 4/261 5/271 6/242 7/393

Lda 21%/56%/0.66 24%/61%/0.7 45%/74%/0.79 2%/83%/0.53 37%/69%/0.77 11%/48%/0.58 20%/68%/0.69
regLogistic 17%/56%/0.68 22%/62%/0.73 40%/75%/0.82 0%/87%/0.57 30%/69%/0.79 15%/53%/0.64 15%/70%/0.7

nnet 21%/56%/0.68 26%/62%/0.73 50%/77%/0.86 7%/78%/0.62 38%/70%/0.79 15%/51%/0.62 18%/68%/0.7
svmRadial 15%/54%/0.58 19%/60%/0.72 44%/76%/0.84 0%/87%/0.64 32%/70%/0.76 17%/55%/0.61 13%/69%/0.67

knn 11%/52%/0.61 24%/59%/0.71 43%/76%/0.83 1%/86%/0.65 29%/69%/0.76 15%/51%/0.59 17%/68%/0.62
nb 13%/49%/0.62 22%/55%/0.7 47%/72%/0.81 5%/75%/0.6 32%/63%/0.74 14%/45%/0.6 21%/65%/0.65

rpart 7%/49%/0.55 45%/71%/0.65 31%/71%/0.74 3%/85%/0.55 30%/68%/0.66 10%/50%/0.56 17%/66%/0.58
J48 7%/46%/0.55 52%/72%/0.61 40%/71%/0.7 9%/82%/0.53 31%/68%/0.66 10%/48%/0.55 13%/69%/0.54

PART 9%/47%/0.56 43%/68%/0.63 39%/71%/0.72 8%/82%/0.54 29%/64%/0.65 12%/46%/0.56 13%/61%/0.59
C5.0 10%/50%/0.61 65%/80%/0.73 47%/75%/0.85 6%/86%/0.63 32%/66%/0.78 21%/53%/0.58 19%/66%/0.65

treebag 11%/51%/0.61 49%/73%/0.73 46%/75%/0.84 6%/85%/0.65 34%/68%/0.76 16%/51%/0.6 17%/68%/0.66
gbm 19%/55%/0.67 54%/75%/0.78 50%/77%/0.85 7%/85%/0.68 4%/71%/0.8 16%/52%/0.62 20%/69%/0.68

extraTrees 19%/57%/0.67 51%/74%/0.78 50%/78%/0.88 7%/86%/0.73 37%/70%/0.8 17%/53%/0.63 21%/70%/0.7
rf 17%/55%/0.64 51%/74%/0.75 48%/76%/0.86 7%/87%/0.68 34%/68%/0.8 18%/54%/0.62 18%/69%/0.68

SubID/Data Size 8/353 9/261 10/256 11/399 12/164 13/198 14/322

Lda 40%/87%/0.76 18%/77%/0.68 17%/62%/0.65 34%/79%/0.74 22%/64%/0.71 33%/71%/0.66 8%/80%/0.7
regLogistic 6%/87%/0.76 2%/80%/0.7 7%/62%/0.69 22%/79%/0.76 8%/62%/0.74 41%/75%/0.83 2%/82%/0.71

nnet 34%/85%/0.78 20%/74%/0.72 21%/64%/0.68 31%/79%/0.77 16%/62%/0.74 37%/73%/0.76 11%/78%/0.72
svmRadial 25%/88%/0.82 4%/79%/0.72 5%/62%/0.64 32%/80%/0.76 0%/60%/0.69 35%/75%/0.78 1%/82%/0.73

knn 9%/87%/0.75 15%/76%/0.73 17%/60%/0.66 18%/77%/0.7 6%/59%/0.63 40%/75%/0.7 0%/82%/0.68
nb 35%/84%/0.79 20%/70%/0.69 16%/48%/0.66 32%/71%/0.76 24%/62%/0.72 41%/73%/0.78 16%/74%/0.72

rpart 19%/84%/0.59 16%/75%/0.64 12%/61%/0.58 24%/76%/0.68 11%/60%/0.55 34%/72%/0.66 6%/75%/0.55
J48 27%/84%/0.58 22%/74%/0.61 11%/61%/0.56 20%/72%/0.63 19%/62%/0.64 37%/74%/0.65 6%/77%/0.57

PART 27%/85%/0.58 21%/75%/0.62 13%/55%/0.57 21%/72%/0.65 15%/62%/0.64 35%/72%/0.62 5%/77%/0.58
C5.0 27%/88%/0.8 23%/78%/0.75 16%/59%/0.65 33%/77%/0.76 19%/63%/0.67 38%/74%/0.69 6%/77%/0.66

treebag 30%/87%/0.78 21%/79%/0.77 18%/63%/0.65 30%/78%/0.76 18%/63%/0.71 42%/75%/0.78 3%/79%/0.66
gbm 31%/88%/0.79 24%/78%/0.79 15%/61%/0.67 37%/79%/0.79 19%/63%/0.74 47%/77%/0.81 6%/79%/0.71

extraTrees 33%/88%/0.84 21%/79%/0.81 20%/64%/0.7 32%/80%/0.8 18%/63%/0.76 46%/78%/0.81 4%/80%/0.75
rf 29%/87%/0.81 23%/79%/0.8 18%/63%/0.67 33%/79%/0.78 18%/64%/0.76 45%/76%/0.8 1%/80%/0.7

median (based on kappa) prediction power is 24%/78%/0.79 (Cohen’s kappa/accuracy/AUC).
Kim et al. [9] reported the median prediction AUC of personal models, 0.73, by analyzing
the heating and cooling behavior of 34 out of 38 occupants in an office building. The results
show that prediction power fluctuates among subjects and algorithms. The personal thermal
comfort model of Subject 2 shows the highest median prediction power (44%/69%/0.73). By
contrast, the model of Subject 4 displays the weakest performance (6%/85%/0.62), almost
random “guessing” in terms of the low Cohen’s kappa. Worthy of notice here is that the
accuracy would be misleading (Subject 4 has a higher accuracy than Subject 2) because
of the imbalanced dataset. Subject 4’s data were probably problematic, because we found
that the subject always responded with “No change” for three consecutive days. In addition,
preferring “Warmer” while feeling warm (TS = 1.4), and “Cooler” while cold (TS = -1.5),
existed in the survey answers. As thermal comfort is subjective, we cannot conclude that
those data are faulty. However, we can hypothesize that the subject did not answer carefully,
and this could be a reason for the low prediction power. Another possibility is that some
people might be less predictable than others.
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2.6 Towards Neural Network based Modeling
Neural networks can have significant potential both in better modeling of personal thermal
comfort, and to introduce use of several advanced algorithms. In a study conducted by the
University of Pennsylvania in 2021, researchers used a Bayesian Neural Network (BNN) to
predict a room occupant’s thermal preferences. They chose this architecture because the
Bayesian method utilizes both prior knowledge of occupants’ preferences as well as real-time
measurements for prediction [90]. A study conducted at George Washington University
utilized thermal sensors to extract temperature information from subjects and machine
learning to predict the thermal comfort of individuals to adjust their Heating, Ventilation,
and Air Conditioning (HVAC) systems [91].

In this part, we aimed to build on these prior studies, but instead of using kernel-based
algorithms for thermal comfort prediction, we propose time-series modeling using deep-
learning for the same purpose. Given a series of observations x(1), · · · , x(t) we generate y(t+1),
our hypothesis for the next label. Furthermore, we do it at an individual level, i.e. personal
thermal comfort models.

Deep learning methods are powerful tools for time series analysis as they can extract
high level patterns using non-linearities. Such methods include artificial neural networks,
convolutional neural networks and recurrent neural networks. RNNs are often used in the
context of time series prediction for the ability to leverage temporal relationships. However,
one problem that arises from the unfolding of an RNN is that the gradient of some of the
weights starts to become too small if the network is unfolded for too many time steps. This
is called the vanishing gradient problem. A type of network architecture that solves this
problem is the LSTM, which utilizes a unique gradient structure that ensures there is at least
one path where the gradient does not vanish.

In many contexts, however, overfitting is a major issue in creating well-generalizable
models for time series applications. In this regard, we use a novel regularized LSTM (R-
LSTM) as a way to develop personal thermal comfort models for application in smart building
contexts. To the best of our knowledge, there is limited work utilizing regularized time-series
based models for thermal comfort prediction in literature.

Data Pre-processing

The quantity of the initial, unfiltered survey data and physical data for each participant can
be seen in Fig. 2.3. We separated both the survey, physiological, and environmental data by
each participant. For each given participant, we filtered the physiological and environmental
data, removing all rows whose time stamps were not within 30 minutes of at least one
timestamp from the subject’s corresponding survey data. We then merged that subject’s
physical and survey data and imputed any missing values using forward filling and then
backward filling. Because every survey timestamp corresponded to exactly one timestamp of
the physical data, we ensured that all the imputed data were within a 30-minute range of the
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data at that imputed time step. The number of samples of filtered data for each participant
can also be seen in Fig. 2.3.

A significant challenge was working with the large proportion of missing data and
irregularly sampled observations. For instance, features like heart rate had a higher frequency
than external humidity. The data was re-sampled on a minute-by-minute basis, using the
mean value for feature xi during each period. To account for gaps between sections of recorded
time (for instance, between the end of day i and the start of day i+ k, k > 0), a delta time
feature was incorporated. However, no feature aggregation and further processing was done
on the existing time series columns, in contrast to previous ML approaches.

For the time-series task, 3D data were generated from the dataset using a sliding window,
representing the number of time steps used to ‘look back’ before predicting the next outcome.
In this work, a period of 120 time-steps were used. This number was chosen from small pilot
tests (with subsets of the processed dataset) and with the pragmatic consideration of roughly
two hours providing adequate information to make a prediction.

Modeling

The model architecture consisted of a core LSTM [92] layer connected to a dropout layer, and
a dense layer with the softmax activation function applied to produce three class probabilities,
corresponding to a predicted thermal preference of “cooler”, “no change”, and “warmer”. We
use Adam optimizer, with varying decay rates.

The regularized loss has a l1 regularization. The l1 norm was chosen for its ability to
improve sparsity, resulting in feature subset solution and sparser optimization solutions.
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Metric/Experiments

To evaluate the model on different hyper-parameters and architectures, the categorical
accuracy and weighted average F1 were chosen as metrics. It was also found that many subjects
had severe class imbalance, so a normalized weighting was applied to data corresponding to
each of the three class labels.

To evaluate experiments, 5-fold time-series cross-validation was employed, consisting of
increasing super-sets of training data. This is required as there is a temporal dependency
between observations, and we must preserve that relation during testing.

Results

The results from best performing R-LSTM models for each subject are included in Table 2.4.
On average for the different subject datasets, the model achieved an accuracy of 78%, weighted
F1 of 0.74, and AUC.

Overall, the R-LSTM showed promising results on the time series data, and had the
crucial advantage of minimizing extra feature engineering (through the aggregation of different
physical signals over a fixed period of time).While there was variation between datasets, it
was found that the large batch size (up to 512) tended to produce better results, especially
when paired with relatively higher learning rates. This reflects the ability for the model to
escape from local minima found from noise that plays a more significant role with smaller
batch sizes (approaching that of stochastic gradient descent). Furthermore, the model often
found lead-in periods of comfort preference where long sections of an outcome (such as prefer
“warmer”followed by “no-change”) and performed well when such patterns were present in the
validation data.

Overfitting proved to be a major issue for this task, so both dropout regularization and
the l1-regularization were important to ensure the model still had sufficient capacity without
memorizing the training data. This was particularly salient when the data was extremely
imbalanced, despite the weighted resampling method that was used. Another difficulty was
stabilizing the training process without getting trapped in local minima and inconsistency
between datasets. In general, the cross-folds with more data showed better results.

2.7 Conclusions
The thermal comfort of individuals can have a strong impact on health and well-being.
Especially in tropical, humid countries, it is important to try to understand the deleterious
effects that environmental exposures can have on the built environment. In order to eventually
better understand the physiological basis of thermal preferences of individuals, we built a
time-series based deep learning model for thermal comfort prediction.

Predicting thermal comfort/preference using physiological data could be potentially
incorporated into HVAC system control for occupants’ satisfaction and energy saving. The
low-cost wearable sensors and cloud computing allow real-time thermal comfort/preference



CHAPTER 2. PERSONAL THERMAL COMFORT MODELING 21

Table 2.4: Thermal Preference Prediction results using state-of-the-art random forest model vs
time-series based LSTM model.

Subject ID/
Survey Data Size

State-of-the-art
Random Forest Model
(Accuracy/F1/AUC)

Time-Series based
LSTM Model

(Accuracy/F1/AUC)
1/152 55%/-/0.64 82%/0.78/0.76
2/253 74%/-/0.75 79%/0.79/0.74
3/323 76%/-/0.86 80%/0.75/0.75
4/261 87%/-/0.68 85%/0.83/0.84
5/271 68%/-/0.8 75%/0.76/0.74
6/242 54%/-/0.62 66%/0.65/0.65
7/393 69%/-/0.68 76%/0.75/0.74
8/353 87%/-/0.81 82%/0.77/0.76
9/261 79%/-/0.8 84%/0.76/0.80
10/256 63%/-/0.67 76%/0.69/0.70
11/399 79%/-/0.78 68%/0.66/0.69
12/164 64%/-/0.76 76%/0.76/0.74
13/198 76%/-/0.8 73%/0.74/0.72
14/322 80%/-/0.7 86%/0.81/0.82

prediction using physiological and environmental data. We developed personal thermal
comfort models for 14 participants using lab-grade wearable sensors. Based on physiological
and meteorological data monitored for 2–4 weeks, we trained 14 personal comfort models
using different machine learning algorithms for each participant.

We also applied deep learning architecture to the prediction of thermal comfort preferences
for 14 individuals. Our deep learning model is a novel approach to thermal comfort prediction
by combining l1 regularization with an R-LSTM. We found that our deep-learning model was
successful in comparison to state-of-the-art kernel-based machine learning models for thermal
comfort prediction.

Some challenges existing in the dataset was also identified, including class imbalance
problem in thermal preference data distribution, and scarcity of data for extreme cases as
per age, and body mass index types. In the future chapters, we will design machine learning
based solutions to tackle these challenges.
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Chapter 3

Energy Game-Theoretic Frameworks and
Segmentation Analysis

3.1 Introduction
Energy game-theoretic frameworks can analyze occupant behavior and possibly modify it, by
engaging the users in the process of energy management, integrating cyber-physical technology
and by leveraging humans-in-the-loop strategy [48,93–96]. Such game-theoretic frameworks
can be thought of as a sensor-actuator system. Through their participation in the game
(the sensor), the behavior of users is observed, which then is treated as the input to an
incentive design process (the actuator). The incentives offered can motivate users to improve
upon their energy usage behaviors in order to achieve better energy efficiency, signifying the
importance of an intelligent incentive design in the success of such frameworks. Although
all such frameworks aim to achieve a long term or permanent improvement in the energy
usage behaviors among the users, the aim is seldom achieved after the completion of the
energy game, mostly attributed to the lack of an intelligent and adaptive incentive design
process. The incentive design process in prior works is dependent on utility functions of every
player in the game, which is hard to compute as energy game-theoretic frameworks involve
participation of a large number of energy users. Instead, the utility/energy usage behavior of
a large number of players can be simplified by grouping the players into a relatively small
number of clusters of similar behavior. Incentives can then be designed to tailor each cluster
assuming players in a cluster have similar behavior. Energy utility companies frequently use
such segmentation techniques for optimal planning of demand response, load shedding, and
microgrid applications [97]. In this work, we consider the design of a smarter segmentation
analysis as a solution for intelligent incentive design for energy game-theoretic frameworks.

This can be achieved by learning the factors leading to human decision-making, and using
the knowledge to devise a novel agent segmentation method. The segmentation analysis
in an energy game-theoretic framework with high dimensional data requires powerful yet
computationally efficient statistical methods. A possible candidate, Graphical Lasso algorithm
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[98], has been widely applied on different scientific studies due to its sparsity property (ℓ1
penalty term) and efficiency [99,100]. The potential of Graphical Lasso can be innovatively
combined with player segmentation. Towards this, we enable new avenues by combining
both concepts and applying it on a social game data set [93] to classify the energy efficiency
behaviors among building occupants. We explore the causal relationship between different
features of the agents using a versatile tool, Granger’s Causality [101], which leads to a deep
understanding of decision-making patterns and helps in integrating explainable game theory
models with adaptive control or online incentive design. We propose an explainable, rather
than just a black box model. To summarize, our contributions are threefold:

• Novel segmentation analysis using an explainable statistical model at the core towards
learning agent’s (building occupants) their decision-making in competitive environ-
ments [102,103].

• Characterization of causal relationship among several contributing features explaining
decision-making patterns in agent’s actions.

• Improving building energy efficiency by using the proposed segmentation analysis
method.

3.2 Related Work
Energy game theoretic frameworks have enabled an effective platform for incorporating
energy efficient behavior among the building occupants in a smart building. They involve
the important aspect of human participation in building control, otherwise lacking in many
conventional modeling approaches including passive Hidden Markov Models (HMMs) [104].
A number of such frameworks have been introduced over the years [93, 105, 106], which have
shown significant post game energy reduction.

For incentive design, many game-theoretic frameworks [107–109] rely on knowledge of
utility functions of the players in the game, which are hard to compute in the scenario of
energy game theoretic frameworks due to the complexity and scale. Authors in [110] propose
a Nash-equillibrium based approach for utility estimation. In [111], authors formulate the
utility estimation problem as a convex optimization problem by using first-order necessary
conditions for nash equilibria, and then create an affine map along with energy consumption
to derive the utilities. All these methods are hard to scale when the number of players is high.
Instead, we can segment the utilities of players into clusters by learning features characterizing
human decision-making in competitive environments, and performing an incentive design for
the clusters so obtained. We derive inspiration for agent segmentation owing to the fact that
customer segmentation has been successfully utilized in energy systems [97]. The energy usage
behavior exhibited by each player in a cluster is expected to be similar, and, statistically, it
has been shown that a relatively small number of clusters is adequate in describing a wide
scope of customer behaviors.
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Figure 3.1: Gamification abstraction of the Energy Social Game acting as our data source.

Towards this we use high dimensional real-world data. We use the graphical lasso
algorithm as a powerful tool to understand the latent conditional dependence between
variables [98]. This in turn provides insights into how different features interplay among each
other. Historically, Graphical Lasso has been used in various fields of science, ranging from
study of how individual elements of the cell interact with each other [99] and to the broad
area of computer vision for scene labelling [100]. A modified version of the original algorithm,
named time-varying graphical lasso, has been used on financial and automotive data [112].
However, the novelties of graphical lasso has not been well utilized in the area of energy
cyber-physical systems. We use Granger’s causality [101] to explain the causal relationship
between the features in energy usage behavior of agents in social game. It has been widely
used in the energy domain in applications such as deducing the causal relationship between
economic growth and energy consumption [113].

Knitting novel segmentation algorithms and their application to energy game-theoretic
frameworks together, we employ graphical lasso algorithm for customer segmentation on
social game dataset and present an explainable model, helpful both in understanding inherent
factors leading to energy efficiency in buildings and in intelligent incentive design [114, 115].

3.3 Methods

Energy Game-Theoretic Dataset

The dataset used for our work is from an energy social game experiment to encourage energy
efficient resource consumption in a smart residential housing, as introduced in [93]. Authors
in [93] designed a social game among occupants of residential student housing apartments
at an university campus (Fig. 3.1). They make use of Internet of Things (IoT) sensors to
allow the occupants to monitor their room’s lighting (desk and ceiling light) and ceiling
fan usage via a personal web-portal account as they participate in the energy social game
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for maximizing their incentives. The above game-theoretic framework is modelled under
the umbrella of a multiplayer non-cooperative game. The dataset consists of per-minute
time-stamped reading of each resource’s (desk light, ceiling light and ceiling fan) status,
accumulated resource usage (in minutes) per day, resource baseline, gathered points (both
from game and surveys), occupant rank in the game over time and number of occupant’s
visits to the web portal. It also contains features related to time of day (morning vs. evening),
time of week (weekday vs. weekend) and college schedule feature indicators for dates related
to breaks, holidays, midterm and final exam periods. Additionally, the dataset incorporates
the external weather metrics during the experimental run.

Trade-off between Supervised/Unsupervised Segmentation

For the purpose of segmentation analysis, both supervised and unsupervised segmentation
methods can be implemented on the social game dataset. Supervised methods require a label
to classify data with similar labels together. For the dataset in hand, the label we have is the
rank of the player in the game, which in turn indicates their energy efficiency characteristics
as compared to other players in the game (i.e. a player with less rank is more energy efficient).
We use rank as the label to classify players into different groups. But, such a classification
method groups different players together as per their overall rank, and does not take into
account the distribution of their energy efficiency characteristics across different scenarios
such as time. For instance, Figure 3.2 shows the distribution of cumulative resource usage
(in minutes/day) for a player having low rank (high energy efficiency) and a player having
high rank (low energy efficiency), with some curve smoothing across a duration of the game
period. It can be observed that the high energy efficient player performs sub-optimally (uses
more energy resources) between the times A and B than the low energy efficient player. In
an ideal scenario, for every player, the data samples corresponding to low energy efficient
behavior should be clustered separately than high energy efficient behaviors so as to have
an accurate understanding of the interplay of features governing human decisions for energy
efficiency. In this case, unsupervised clustering proves helpful and clusters together similar
behaviors. But in this case, the output of unsupervised clustering is just a number of clusters
with no labelling about the energy efficiency characteristics exhibited by that cluster. So, to
summarize, supervised classification provides insight into an overall picture of how different
classes of energy-efficient players behave, but fails to capture the distribution of behaviors.
On the other hand, unsupervised clustering captures the latter accurately, but does not
provide any information on labels of the clusters generated. This poses a trade-off between
supervised classification and unsupervised clustering methods for application in energy games.

Proposed Segmentation Method

The trade-off mentioned in previous section signals to use the novelty of both unsupervised
and supervised segmentation together to build an optimal model. Knitting together both the
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Figure 3.2: Variation of cumulative energy resource usage (mins/day) for a player with low rank
(high energy efficient) and another with high rank (low energy efficient)

methods via a powerful tool, the graphical lasso algorithm, we present a novel methodology
to perform segmentation in energy game-theoretic frameworks. We employ the k-means
algorithm for unsupervised clustering. First, the optimal number of clusters in the dataset
is derived using elbow method and silhouette scores. An elbow plot is a plot between the
distortion score (a measure of closeness of data points to their assigned cluster center) vs
the number of clusters. The optimal number of clusters is determined to be corresponding
to drastic change in the rate of reduction in distortion score. The elbow plot for energy
social game dataset, obtained in an unsupervised manner is given in Figure 3.3. The optimal
number of clusters is determined to be 3. We also use another metric, the silhouette score to
confirm the optimal number of clusters. The silhouette score ∈ [−1, 1], is a measure of how
similar an object is to its own cluster compared to other clusters. A high value indicates that
the object is well matched to its own cluster and poorly matched to neighboring clusters. The
silhouette score corresponging to each number of clusters is given in Table 3.1. Note that the
score is the highest (shaded in blue) for the number of clusters as 3. Following this, we use

No. of Clusters 2 3 4 5
Silhouette Scores 0.684 0.749 0.611 0.540

Table 3.1: Silhouette Scores for different number of clusters

Minibatch k-means algorithm with k= 3 (optimal number of clusters in the data) to obtain
the clusters. Let the clusters obtained be represented by C1

unsup, C2
unsup and C3

unsup. Since
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Figure 3.4: Overview of the proposed segmentation method

the dataset correspond to energy usage behavior of the players, the three clusters so obtained
correspond to high, medium and low energy efficient behaviors. We then use supervised
classification and graphical lasso to label the unsupervised clusters. We divide the players
into three classes in a supervised way taking the ranks of the users as the label.

Let the players be denoted by P1, P2, · · · , Pm and the data points corresponding to the
ith player across time be di1, di2,· · · , dini

. The whole range of ranks were divided into three
equal segments, with the high, medium and low energy efficient rank groups being RHigh,
RMedium and RLow respectively.Let the classes be represented by CHigh

sup , CMedium
sup and CLow

sup ,
where the superscripts signify the energy efficiency behavior of each class. We assign the
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players to the classes as per the following formula, Pi ∈ CX
sup, where,

X = argmax
x∈[low,medium,high]

{ ni∑
j=1

1[rank(dij) ∈ Rx]

}
(3.1)

where 1[ · ] is the indicator function. This allocates each player into one of the three supervised
classes. The behavior of a player in a particular class, e.g. CHigh

sup represents the characteristic
behavior of players showcasing high energy efficiency. Then the feature correlations in all the
supervised classes and unsupervised clusters were studied using graphical lasso algorithm.
Knowledge of feature correlation similarity among members of the supervised classes and
unsupervised clusters is used to label the unsupervised clusters (C1

unsup, C2
unsup and C3

unsup) as
high/medium/low energy efficient. Finally, the labelled unsupervised clusters can be further
explored for downstream tasks, such as incentive design. The whole process is illustrated in
Figure 3.4.

3.4 Graphical Lasso for Energy Social Game
In this section, we formulate a framework towards segmentation analysis that allows us to
understand the users decision making model. Specifically, we adopt graphical lasso algorithm
[98,116] to study the way in which features in an energy game-theoretic framework interplay
among each other.

Let the features representing the social game data be denoted by the collection Y =
(Y1, Y2, · · · , YS). From a graphical perspective, Y can be associated with the vertex set
V = {1, 2, · · · , S} of some underlying graph. The structure of the graph is utilized to derive
inferences about the relationship between the features. We use the graphical lasso algorithm
[98] to realize the underlying graph structure, under the assumption that the distribution of
the random variables is Gaussian.

Consider the random variable Ys at s ∈ V . We use the Neighbourhood-Based Likelihood
for graphical representation of multivariate Gaussian random variables. Let the edge set of
the graph be given by E ⊂ V × V . The neighbourhood set of Ys is defined by

N (s) = {k ∈ V |(k, s) ∈ E} (3.2)

and the collection of all other random variables are represented by:

YV \{s} = {Yk, k ∈ (V − {s})} (3.3)

For undirected graphical models, node for Ys is conditionally independent of nodes not directly
connected to it given YN (s), i.e.

(Ys|YV \{s}) ∼ (Ys|YN (s)) (3.4)
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The problem of constructing the inherent graph out of observations is equivalent to finding
the edge set for every node. This problem becomes predicting the value of Ys given YN (s), or
equivalently, predicting the value of Ys given YV \{s}by the conditional independence property.
The conditional distribution of Ys given YV \{s} is also Gaussian, so the best predictor for Ys
can be written as:

Ys = Y T
V \s.β

s +WV \s (3.5)

where WV \s is zero-mean gaussian prediction error. The βs terms dictate the edge set for
node s in the graph. We use l1-regularized likelihood methods for getting a sparse βs. Let
the total number of data samples available be N. The optimization problem is formulated as:
corresponding to each vertex s = 1, 2, · · · , S, solve the following lasso problem:

β̂s ∈ argmin
βs∈RS−1

{
1

2N

N∑
j=1

(yjs − yTj,V \sβ
s)2 + λ∥βs∥1

}
(3.6)

Algorithm 1: Graphical Lasso Algorithm for Gaussian Graphical Models

1. For vertices s = 1, 2, · · · , S:

a) Calculate initial loss ∥Ys − Y T
V \sβ

s∥2
2

b) Untill Convergence:
i. Calculate partial residual r(s) = Ys - Y T

V \sβ
s

ii. For all j ∈ V \s, Get βs,newj = Sλ
(

1
N
⟨r(s), Yj⟩

)
iii. Compute new loss = ∥Ys − Y T

V \sβ
s,new∥2

2

iv. Update βs = βs,new

c) Get the neighbourhood set N (s)= supp(βs) for s

2. Combine the neighbourhood estimates to form a graph estimate G = (V,E) of the
random variables.

Sλ(θ) is soft thresholding operator as sign(θ)(|θ| − λ)+.

For optimal design of penalty factor λ in Graphical Lasso run for a vertex s, we take 10
values in logarithmic scale between λmax and λmin as given below and conduct a line search
to find the penalty factor which brings the minimum loss.

λmax =
1

N
max
j∈V \s

|⟨Yj, Ys⟩|, λmin =
λmax
100

(3.7)

Implementing a coordinate descent approach [98], the time complexity of the proposed
algorithm is O(SN) for a complete run through all S features. We also do 5-fold cross
validation to ensure accurate value of the coefficients βs. Use of partial residuals for each
node significantly reduces the time complexity of the algorithm.
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3.5 Results
As has been introduced in Section 3.3, we learn the feature correlations using graphical lasso
algorithm in supervised classes CHigh

sup , CMedium
sup and CLow

sup to obtain the knowledge about
factors governing human decision making towards various (high/medium/low) energy efficient
behaviors.

Feature correlation learning in supervised segregation

We consider a representative player (selected as the player holding the median rank in the
class) for each of the three classes obtained out of supervised segregation method described
in Section 3.3 to run graphical lasso and study the correlation between the features for that
class. We group the features into different categories so as to study their influence on energy
efficiency behaviors. Specifically, we consider Temporal features like time of the day, academic
schedules and weekday/weekends, External features as outdoor temperature, humidity, rain
rate etc. and Game Engagement features like frequency of visits to game web portal.

The feature correlations for a low energy efficient player is given in Fig 3.5. The player tries
to use each resource independently which can be observed in Figure 3.5(a) with no correlation
between the corresponding resource usage identifiers. There is a positive correlation between
morning and desk light usage indicating heedless behavior towards energy savings. The
absolute energy savings increase during the breaks and finals, given by positive correlation
with total points, but it is not significant as compared to other players during the same
period, thus increasing the rank. External parameters play a significant role in energy usage
behavior of this class. The operation of the ceiling fan is driven by external humidity as given
in Figure 3.5(b). Figure 3.5(c) indicates that their frequency of visits to the game web portal
is motivated by sub-optimal performance in the game.
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Figure 3.5: Feature correlations for a Low Energy Efficient Player (∈ CLow
sup )
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Figure 3.6: Feature correlations for a Medium Energy Efficient Player (∈ CMedium
sup )
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Figure 3.7: Feature correlations for a High Energy Efficient Player (∈ CHigh
sup )
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Figure 3.8: Feature correlations for energy usage behaviors in C3
unsup. The labels “Total Points”and

“Rank”are removed for unsupervised clustering.
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Feature correlations for a medium energy efficient player is given in Fig 3.6. The player
showcases predictable behaviors with correlations between desk light, ceiling light and ceiling
fan usage (Figure 3.6(a)). The player co-optimizes the usage by alternating the use of ceiling
and desk light. Different occasions like break, midterm and final are marked by energy saving
patterns. Unlike a low energy efficient player, the player in this class tries to save energy
in a conscious manner shown by reduced fan usage during the morning and reduced light
usage during the afternoon. The fan usage is influenced by the external humidity, shown by
Fig 3.6(b). The game engagement patterns for a player in this class (Fig 3.6(c)) is similar to
that of the low energy efficient class.

Fig 3.7 shows the feature correlations for a high energy efficient player. This player also
exhibits predictable behavior. Opportunistically, this player saves energy during breaks and
midterms as shown by negative correlation between the corresponding flags and rank in
Figure 3.7(a). Notice that there exists a negative correlation between midterm flag and total
points, indicating decrease in absolute amount of points. However, the points are still higher
than the points by other players which marks improvement in the rank. This behavior is
completely opposite to what is exhibited by a player in low energy efficient class. The player
is neither affected by the time of the day, nor by the external factors (Figure 3.7(b)) showing
a dedicated effort to save energy. The game engagement behavior for this player, given in
Figure 3.7(c) is inconclusive, possibly due to dominance by other energy saving factors.

Test whether X causes Y Fan ⇒ Ceiling Light Humidity ⇒ Fan Desk Light ⇒ Fan Ceiling Light ⇒ Desk Light Morning ⇒ Desk Light Afternoon ⇒ Fan Evening ⇒ Ceiling Light
Player type p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic p-value F-statistic

Low Energy Efficient 0.54 0.37 0.004 8.12 0.06 3.55 0.81 0.06 0.4 0.71 0.01 6.1 0 25.3
Medium Energy Efficient 0 21.2 0.008 7.06 0 113.6 0 25.8 0.23 1.41 0.46 0.55 0.0007 11.5

High Energy Efficient 0 21.9 0.12 2.36 0.99 0.003 0.93 0.007 0.63 0.22 0.04 4.2 0.52 0.41

Table 3.2: Causality test results among various potential causal relationships. In bold are the
p-values (shaded in blue) where Granger’s causality is established through F-statistic test between
features at the 5% significance level.

Causal Relationship between features

To ensure the correctness of results in Section 3.5 and to enhance the explainable nature of
our model, we studied the causal relationship between features using Granger’s causality test.
Granger’s causality is a statistical test used to determine causal relationship between two
signals. If signal A Granger’s-causes signal B, then past values of A can be used to predict
B for future timesteps beyond what is available for B. The results for causal relationship
study is given in Table 3.2. Under null hypothesis H0, X does not Granger’s-cause Y . So, a
p-value lower than 0.05 (5% significance level) indicates a strong causal relationship between
the tested features and implies rejecting the null hypothesis H0.

The p-values (shaded in blue) for which Granger’s causality is established are highlighted
in the table. Interestingly, for medium and high energy efficient building occupants, ceiling
fan usage causes ceiling light usage. This in fact confirms the predictive behavior for them



CHAPTER 3. ENERGY GAME-THEORETIC FRAMEWORKS AND SEGMENTATION
ANALYSIS 33

as mentioned earlier. In both low and medium energy efficient building occupants, external
humidity causes ceiling fan usage. This is an indicator that their energy usage is affected by
external weather conditions. However, for high energy efficient building occupants external
humidity doesn’t cause ceiling fan usage. This shows that they are highly engaged with the
proposed gamification interface and try to minimize their energy usage. Another interesting
result is that the evening label causes ceiling light usage for both low and medium energy
efficient building occupants. But this is not the case for high energy efficient building
occupants, for whom ceiling light usage is better optimized as a result of their strong
engagement with the ongoing social game, eventually leading to exhibition of better energy
efficiency.

Labeling unsupervised clusters using feature correlation knowledge
from supervised classification

We also learn the feature correlations in clusters obtained from unsupervised clustering of data
in Section 3.3. Based on the feature correlation knowledge gained from different supervised
classes in Section 3.5, we label the clusters as having low, medium or high energy efficient data.
As an illustration, the feature correlations for C3

unsup is shown in Fig 3.8. It is evident from
Fig 3.8(a) that data in C3

unsup exhibit predictability in behavior with correlations between
resource usage flags. Also the weekdays are marked by energy savings in terms of decrease in
fan usage minutes. The time of the day is also unrelated to the performance. Neither do
the external factors contribute to the performance (Figure 3.8(b)). The engagement in the
game also boosts the points (Figure 3.8(c)). All the above behaviors are indicative of the
similarity between the energy efficiency characteristics manifested by C3

unsup and the high
energy efficient class obtained using supervised segregation (CHigh

sup ). So, C3
unsup is labeled

as the high energy efficient cluster. Following the same comparison, C1
unsup and C2

unsup are
labeled as the medium and low energy efficient clusters respectively.

To further strengthen our inference, we compute the similarity using Pearson Correlation
and RV coefficient [117] between the feature correlation matrices in unsupervised clusters
and supervised classes. Figure 3.9 showing the result of above operation confirms our
earlier assignment of labels to the unsupervised clusters, i.e. {C1

unsup ∼ Medium Energy
Efficient},{C2

unsup ∼ Low Energy Efficient} and {C3
unsup ∼ High Energy Efficient}. The labeled

unsupervised clusters are the final segments that can be used for a number of downstream
tasks as discussed in Section 3.6.

3.6 Conclusion and Future Work
A general framework for segmentation analysis in energy game-theoretic frameworks was
presented in this research work. The analysis included clustering of agent behaviors and an
explainable statistical model representing the contributed features motivating their decision-
making. To strengthen our results, we examined several feature correlations using granger
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Figure 3.9: Similarity between feature correlation matrices. The highest value in each column is
highlighted and corresponds to the matching of supervised classes to the unsupervised clusters

causality test for potential causal relationships. Coupled with statistical justification and
explainability, the proposed method can provide characteristic clusters demonstrating different
energy use behaviors, following which, specific incentives can be designed for each cluster.

There are several directions for future research. Our ultimate goal for the segmentation
analysis is to improve the gamification methodology, to simultaneously learn occupant
preferences while also opening avenues for feedback, as static programs for encouraging
energy efficiency are less efficient with passing of time [118]. So, an improved version of
energy social game, similar in structure to that of [93] but with intelligent incentive design
and privacy preserving techniques [119] can be implemented, with building occupants and
managers interaction modeled as a reverse stackelberg game (leader-follower) in which there
are multiple followers that play in a non-cooperative game setting [111]. By leveraging
proposed segmentation analysis, an adaptive model can be formulated that learns how user
preferences change over time, and thus generate the appropriate incentives. Furthermore,
the learned preferences can be adjusted through incentive mechanisms [120] and a tailored
mean-field game approach [121] to enact improved energy efficiency. Above two operations
can be carried out in a tree structure, with segmentation carried out in regular intervals in
each of the tree branches, as depicted in Figure 3.10. The above can be coherently designed
with other smart building systems [8,45,53,122]. Summing up, this would result in a novel
mechanism design, effectively enabling variation in occupant’s behaviors, in order to meet, for
instance, the requirements of a demand response program. Another line of future work can
be to study the delayed impacts of energy social game and design it accordingly to achieve
long term energy efficiency, like a research in same line [123].
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Figure 3.10: Tree based incentive design mechanism employing proposed graphical lasso based
segmentation method. Clusters are treated with incentives specifically tailored for them.
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Chapter 4

Likelihood Contribution based
Multi-scale Architecture for Generative
Flows

4.1 Introduction
Deep Generative Modeling aims to learn the embedded distributions and representations
in input (especially unlabeled) data, requiring no/minimal human labeling effort. The
representations learnt can then be utilized in a number of downstream tasks such as semi-
supervised learning [124,125], synthetic data augmentation and adversarial training [126], text
analysis and model based control etc. The repository of deep generative modeling majorly
includes likelihood based models such as autoregressive models, latent variable models,
flow based models and implicit models such as generative adversarial networks (GANs).
Autoregressive models [127–130] achieve exceptional log-likelihood score on many standard
datasets, indicative of their power to model the inherent distribution. But, they suffer from a
slow sampling process. Latent variable models such as variational autoencoders [131] tend to
better capture the global feature representation in data, but do not offer an exact density
estimate. Implicit generative models such as GANs optimize a generator and a discriminator
in a min-max fashion have recently become popular for their ability to synthesize realistic
data [132,133]. But, GANs neither offer a latent space suitable for further downstream tasks,
nor do they perform density estimation.

Flow based generative models [1,134] perform exact density estimation with fast inference
and sampling, due to their parallelizability. They also provide an information rich latent
space suitable for many applications. However, the dimension of latent space for flow based
generative models is same as the high-dimensional input space, by virtue of the bijective
nature of flows. This poses a bottleneck for flow models to scale with increasing input
dimensions due to the computational complexity. An effective solution to the above problem
is a multi-scale architecture, introduced by [1], which performs iterative early gaussianization
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of a part of the total dimensions at regular intervals of flow layers. This not only makes the
model computational and memory efficient but also aids in distributing the loss function
throughout the network for better training. Many prior works including [134–137] implement
multi-scale architecture in their flow models, but use static masking methods for factorization
of dimensions.

We propose a multi-scale architecture which performs data dependent factorization to
decide which dimensions should pass through more flow layers. For the decision making, we
introduce a heuristic based on the amount of log-likelihood contribution by each dimension,
which in turn signifies their individual importance. Since in the proposed architecture, the
heuristic is obtained as part of the flow training process, it can be universally applied to generic
flow models. We present such implementations for flow models based on affine/additive
coupling as well as ordinary differential equations (ODE) and achieve quantitative and
qualitative improvements. We also perform ablation studies to establish the novelty of our
method [138,139]. Summing up, the contributions of our research:

1. A log-determinant based heuristic which entails the contribution by each dimension
towards the total log-likelihood in a multi-scale architecture.

2. A multi-scale architecture based on the above heuristic performing data-dependent
splitting of dimensions, implemented for several classes of flow models.

3. Quantitative and qualitative analysis of above implementations and an ablation study

To the best of our knowledge, we are the first to propose a data-dependent splitting of
dimensions in a multi-scale architecture.

4.2 Background
Flow-based Generative Models
Let x be a high-dimensional random vector with unknown true distribution p(x). The
following formulation is directly applicable to continous data, and with some pre-processing
steps such as dequantization [127, 140, 141] to discrete data. Let z be the latent variable
with a known standard distribution p(z), such as a standard multivariate gaussian. Using an
i.i.d. dataset D, the target is to model pθ(x) with parameters θ. A flow, fθ is defined to be
an invertible transformation that maps observed data x to the latent variable z. A flow is
invertible, so the inverse function T maps z to x, i.e.

z = fθ(x) = T −1(x) and x = T (z) = f−1
θ (z) (4.1)

The log-likelihood can be expressed as,

log pθ(x) = log p(z) + log

∣∣∣∣det(∂fθ(x)∂xT

)∣∣∣∣ (4.2)
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where
∂fθ(x)

∂xT
is the Jacobian of fθ at x. The invertible nature of a flow allows it to be

capable of being composed of other flows of compatible dimensions. In practice, flows are
constructed by composing a series of component flows. Let the flow fθ be composed of K
component flows, i.e. fθ = fθK ◦ fθK−1

◦ · · · ◦ fθ1 and the intermediate variables be denoted by
yK ,yK−1, · · · ,y0 = x. Then the log-likelihood of the composed flow is,

log pθ(x) = log p(z)︸ ︷︷ ︸
Log-latent density

+ log

∣∣∣∣det(∂(fθK ◦ fθK−1
◦ · · · ◦ fθ1(x))

∂xT

)∣∣∣∣︸ ︷︷ ︸
=
∑K

i=1 log | det(∂yi/∂yT
i−1)| (Log-det)

(4.3)

which follows from the fact that det(A · B) = det(A) · det(B). In our work, we refer the
first term in Equation 4.3 as log-latent-density and the second term as log-determinant
(log-det). The reverse path, from z to x can be written as a composition of inverse flows,
x = f−1

θ (z) = f−1
θ1
◦ f−1

θ2
◦ · · · ◦ f−1

θK
(z). Confirming with above properties for a flow, different

types of flows can be constructed [1, 134,135,142,143].

Multi-scale Architecture
Multi-scale architecture is a design choice for latent space dimensionality reduction of flow
models, in which part of the dimensions are factored out/early gaussianized at regular
intervals, and the other part is exposed to more flow layers. The process is called dimension
factorization. In the problem setting as introduced in Section 4.2, the factoring operation
can be mathematically expressed as,

y0 = x, (zl+1,yl+1) = fθl+1
(yl), l ∈ {0, 1, · · · , K − 2}

zK = fθK (yK−1), z = (z1, z2, · · · , zK)

The factoring of dimensions at early layers has the benefit of distributing the loss function
throughout the network [1] and optimizing the amount of computation used by the model.

4.3 Likelihood Contribution based Multi-scale
Architecture

In a multi-scale architecture, it is apparent that the network will better learn the distribution
of dimensions getting exposed to more layers of flow as compared to the ones which get
factored at a finer scale (earlier layer). The method of dimension splitting proposed by prior
works such as [1, 134,135] are static in nature and do not distinguish between importance
of different dimensions. In this section, we introduce the general framework for likelihood
contribution based heuristic and associated multi-scale architecture along with its integration
with flow training process.
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Likelihood Contribution based Heuristic

Recall from Equation 4.3 that the log-likelihood is composed of two terms, the log-latent
density term and the log-det term. We focus on the log-det term since it depends on the
modeling of flow layers.

Let the dimension of the input (images in our case) space x be s × s × c, where s is
the height/width and c is the number of channels. For the following formulation, let us
assume NO dimensions were gaussianized early so that we have access to log-det term
for all dimensions at each flow layer, and the dimension at all intermediate layers remain
the same (i.e. s × s × c). We apply a flow (fθ) with K component flows to x, z pair,
so that z = fθ(x) = fθK ◦ fθK−1

◦ · · · ◦ fθ1(x). The intermediate variables are denoted by
yK ,yK−1, · · · ,y0 with yK = z (since no early gaussianization was performed) and y0 = x.
The log-det term at layer l, L(l)

d , is given by,

[L
(l)
d ]scaler =

l∑
i=1

log | det(∂yi/∂yTi−1)| (4.4)

The log-det of the jacobian term encompasses contribution by all the s× s× c dimensions.
If we decompose it to obtain the individual contribution by the dimensions (we discuss
explicitly on how to perform this decomposition in Sec. 4.3) towards the total log-det (∼
total log-likelihood). The log-det term can be viewed (with slight abuse of notations) as a
s× s× c tensor corresponding to each of the dimensions, summed over the flow layers till l,

[L
(l)
d ]s×s×c =

l∑
i=1

[d
(α,β,γ)
i−1 ]s×s×c,

where α, β ∈ {0, · · · , s} and γ ∈ {0, · · · ,c}, s.t.
∑
α,β,γ

d
(α,β,γ)
i−1 = log | det(∂yi/∂yTi−1)|

The entries in [L
(l)
d ]s×s×c having higher value were scaled up more, and correspond to

dimensions which are more sensitive to changes in input, so the flow can learn more by
processing them through more layers. So, we can use the likelihood contribution (in the form
of log-det term) by each dimension as a heuristic for deciding which variables should be
gaussianized early in a multi-scale architecture.

Estimation of Per-Dimension Likelihood Contribution for various
Flow types

The likelihood (log-det) contributions per dimension can be obtained by decomposition of
the overall log-det of the jacobian. Now, we describe the decomposition process for various
types of flow models. The log-det per dimension after decomposition is averaged across the
samples in the training set, so as to obtain an overall representative likelihood contribution
by each dimension.
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Affine coupling based flows

RealNVP [1]: For RealNVP with affine coupling layers, the logarithm of individual diagonal
elements of jacobian, summed over layers till l provides the per-dimensional likelihood
contribution components at layer l.

Glow [134]: Unlike RealNVP where the log-det terms for each dimension can be expressed
as log of corresponding diagonal element of jacobian, Glow contains 1× 1 convolution blocks
having non-diagonal log-det term. For a s×s×c tensor, the log-det term is s ·s · log | det(W )|,
where W is the weight matrix. It is clear that the contribution by a pixel is log | det(W )|,
and it has to be decomposed to obtain individual contribution by each channel. As a suitable
candidate, singular values of W correspond to the contribution from each channel dimension,
hence their log value is the individual log-det contribution. The individual log-det term for
channels are obtained by,

| det(W )| =
∏
i

σi(W )⇔ log | det(W )| =
∑
i

log(σi(W )) (4.5)

where σi(W ) are the singular values of W . For affine blocks, same method as RealNVP is
adopted.

Flow models with ODE based Density Estimators

Recent works on flow models such as [135,143,144] employ variants of ODE based density
estimators. The following formulation is applicable to find per-dimensional likelihood contri-
butions for such flow models. In the above works, the flow is modelled as F (x), such that
z = F (x) = (I + g)(x), where g(x) is the forward propagation function. The log-det of the
jacobian is expressed as a power series,

ln | det JF (x)| = tr
(
ln
(
I + Jg(x)

))
=

∞∑
k=1

(−1)k+1
tr(Jkg )

k

where tr denotes the trace. Due to computational constraints, the power series is computed
up to a finite number of iterations with the tr(Jkg ) term stochastically approximated by
hutchinson’s trace estimator, tr(A) = Ep(v)

[
vTAv

]
, with E[v] = 0 and Cov(v) = I. The com-

ponent corresponding to each dimension that becomes part of the log-det term is the diagonal
element of Jkg , so the per-dimension contribution to the likelihood can be approximated as
the diagonal elements of Jkg , summed over the power series upto a finite number of iterations
n. The diagonal elements are obtained with the hutchinson’s trace estimator without any
extra cost, i.e. if v = [v1, v2, · · · , vs×s×c]T ,

∞∑
k=1

(−1)k+1
tr(Jkg )

k
=

∞∑
k=1

(−1)k+1
Ep(v)

[
vTJkg v

]
k

=
∞∑
k=1

(−1)k+1
Ep(v)

[
(vTJkg )v

]
k
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Algorithm 1: LCMA Implementation and Training for Generative Flow models
Pre-training Phase: Pre-train a flow model with no multi-scale architecture (no
dimensionality reduction) to obtain the log-det terms ([L(l)

d ]s×s×c) at each layer l
Dimension Factorization Phase: Initialize the input dimensions ϕ× ϕ× ψ
←− s× s× c
while 1 ≤ l ≤ K do

Select [L
(l)
d ]ϕ×ϕ×ψ corresponding to input dimensions.

[L
(l)
d ]ϕ×ϕ×ψ

Local Max- & Min-Pooling−−−−−−−−−−−−−−−→
(Figure 1)

[L
(l)
d ]ϕ

2
×ϕ

2
×4ψ

Channelwise−−−−−−−→
Splitting

[L
(l,Max)
d , L

(l,Min)
d ]ϕ

2
×ϕ

2
×2ψ

Gaussianize the dimensions corresponding to L(l,Min)
d and pass the dimensions

corresponding to L(l,Max)
d to more flow layers

ϕ× ϕ× ψ ←− ϕ
2
× ϕ

2
× 2ψ

end
Training Phase: Flow model with proposed LCMA is trained using maximum
likelihood.

In the above equation, (vTJkg ) is the vector-jacobian product which is multiplied again with v.
The individual components which are summed when (vTJkg ) is multiplied with v correspond to
the diagonal terms in jacobian, over the expectation Ep(v). So those terms are the contribution
by the individual dimensions to the log-likelihood and are expressed as [L

(l)
d ]s×s×c at flow

layer l.

Dimension Factorization using Proposed Heuristic

At every flow layer, an ideal factorization method should,

1. (Quantitative) For efficient density estimation: Early gaussianize the dimensions
having less log-det and expose the ones having more log-det to more flow layers. In
this manner, selectively enhanced expressivity can be provided to dimensions which
capture meaningful representations (and are more valuable from a log-det perspective).

2. (Qualitative) For qualitative reconstruction: Capture the local variance over the flow lay-
ers, i.e. the dimensions being exposed to more flow layers should contain representative
pixel variables from throughout the whole image.

We perform a hybrid dimension factorization taking both of the above criterias into
account. A s× s× c tensor is converted to s

2
× s

2
× 4c tensor, by using local max and min

pooling operations on corresponding per dimensional log-det terms as obtained in Sec. 4.3
(which was averaged over the training set, so the learned splitting remains same for all data
points). Then the s

2
× s

2
× 4c tensor is split along channel dimension to form two s

2
× s

2
× 2c

tensors, one corresponding to low log-det dimensions and one corresponding to high ones.
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min(5,6) min(7,8)

1 2 3 4

5 6 7 8

max(1,2) max(3,4)

max(5,6) max(7,8)

min(1,2) min(3,4)

Figure 4.1: Likelihood contribution based squeezing operation: (On left) The tensor [L
(l)
d ]s×s×c

representing log-det of variables in a flow layer. (On right) It is squeezed to s
2 × s

2 × 4c with local
max and min pooling operation. The green (orange) marked pixels represent dimensions having
more (less) log-det locally.

The local min and max pooling operations (illustrated in Fig 4.1) preserve the local spatial
variation of the image in both parts of the factorization, leveraging both enhanced density
estimation as well as qualitative reconstruction.

Factorization for Flows involving Squeezing Operation: If squeezing operation
(which is nothing but reordering of dimensions) is involved, we keep track of which dimensions
belong to the half that get gaussianized early and which dimensions belong to the other
half that passes through more flow layers. At the next layer, only the log-det terms for the
dimensions which came through flow layers are considered for further splitting operation.

We refer to the multi-scale architecture obtained by the above data-dependent dimension
splitting method as Likelihood Contribution based Multi-scale Architecture (LCMA).

Integration of LCMA with Flow Model Training

Training of flow models with LCMA implementation is summarized in Algorithm 1.

Pre-training Phase involves training a non-multi-scale (NMS) flow model to obtain the
individual contribution of dimensions ([L(l)

d ]s×s×c) towards the total log-likelihood (Section
4.3). Training a NMS model is computation heavy, but better training leads to improved
density estimation score for resulting LCMA. So, there remains a trade-off between the
amount of NMS pre-training and the density estimation performance for resulting LCMA. We
train the NMS model partially (we report the results for varying levels of NMS pre-training
and resulting density estimation performance for one of the flow training in the supplementary
materials).

Dimension Factorization Phase involves deciding the dimensions to be factored out
at each flow layer using proposed log-det heuristic. The dimension splittings are decided
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recursively for all the flow layers based on their likelihood contribution obtained in the
previous phase.

Training Phase is the final stage where the flow model with LCMA is trained. Since the
decision for factorization of dimensions at each flow layer occurs before the training starts,
and the decision remains unchanged during training, change of variables formula can be
applied. In fact, this allows the use of non-invertible operations (e.g. max and min pooling)
for efficient factorization (Sec. 4.3).

Time Complexity: The time complexity associated with original multi-scale architecture
is not affected by LCMA implementation as no additional time consuming blocks were
added. Our data-dependent dimension splitting operation can be interpreted as replacing the
conventional checkerboard/channel split masking with likelihood contribution based masking.

4.4 Related Work
For multi-scale architectures in generative flow models, our proposed method performs
factorization of dimensions based on their likelihood contribution, which in another sense
translates to determining which dimensions are important from density estimation and
qualitative reconstruction point of view. Keeping this in mind, we discuss prior works on
generative flow models which involve multi-scaling and/or incorporate permutation among
dimensions to capture their interactions.

A number of generative flow models implement a multi-scale architecture, such as [1, 134–
136,143,145,146] etc. [134] introduce an 1× 1 convolution layer in between the actnorm and
affine coupling layer in their flow architecture. The 1× 1 convolution is a generalization of
permutation operation which ensures that each dimension can affect every other dimension.
This can be interpreted as redistributing the contribution of dimensions to total likelihood
among the whole space of dimensions. So [134] treat the dimensions as equiprobable for
factorization in their implementation of multi-scale architecture, and split the tensor at each
flow layer evenly along the channel dimension. We, on the other hand, take the next step
and focus on the individuality of dimensions and their importance from the amount they
contribute towards the total log-likelihood. The log-det score is available via direct/indirect
decomposition of the jacobian obtained as part of computations in a flow training, so we
essentially have an easily available heuristic. Since LCMA focuses individually on the
dimensions using easily available heuristic, it can prove to be versatile in being compatible
with generic multi-scale architectures. [147] extend the concept of 1 × 1 convolutions to
invertible d × d convolutions, but do not discuss multi-scaling. [1] also mention a type
of permutation which is equivalent to reversing the ordering of the channels, but is more
restrictive and fixed.

Flow models such as [135, 143, 144] involve ODE based density estimators. They also
implement a multi-scale architecture, but the splitting operation is a static channel wise
splitting without considering the importance of individual dimensions or any permutations.
[136,137,145,146] use multi-scale architecture in their flow models, coherent with [1,134],
but still perform the factorization of dimensions using static masking. For qualitative
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Table 4.1: Improvements in density estimation (in bits/dim) using proposed method for RealNVP

Model CelebA CIFAR-
10

ImageNet
32x32

ImageNet
64x64

RealNVP 3.02 3.49 4.28 3.98

RealNVP with LCMA 2.71 3.43 4.21 3.92

sampling along with efficient density estimation, we also propose that factorization methods
should preserve spatiality of the image in the two splits, motivated by the spatial nature of
splitting methods in [134] (channel-wise splitting) and [1] (checkerboard and channel-wise
splitting). Summarizing, we propose a data-dependent approach to dimension factorization
in a multi-scale architecture, unexplored by prior works.

4.5 Experiments
In this section we present the detailed results of proposed LCMA adopted for the flow model
of RealNVP [1], Glow [134],i-ResNet [135] and Residual Flows [143]. For direct comparison,
all the experimental settings such as data pre-processing, optimizer parameters as well as flow
architectural details (coupling layers, residual blocks) are kept the same, only the factorization
of dimensions at each flow layer is performed as per LCMA. The computations were performed
in NVIDIA Tesla V100 GPUs. For RealNVP, we perform experiments on four benchmarked
image datasets: CIFAR-10 [148], Imagenet [149] (downsampled to 32× 32 and 64× 64), and
CelebFaces Attributes (CelebA) [150]. The scaling in LCMA is performed once for CIFAR-10,
thrice for Imagenet 32 × 32 and 4 times for Imagenet 64 × 64 and CelebA. We compare
LCMA with conventional RealNVP and report the quantitative and qualitative results. For
Glow, i-ResNet and Residual Flows with LCMA, we perform experiments on CIFAR-10 and
report improvements over baseline bits/dim (BPD).

Quantitative Comparison

The bits/dim scores of RealNVP with conventional multi-scale architecture and RealNVP
with LCMA are given in Table 4.1. It can be observed that the density estimation results
using LCMA is in all cases better in comparison to the baseline. We observed that the
improvement for CelebA is relatively high as compared to natural image datasets. This
observation was expected as facial features often contain high redundancy and the flow model
learns to put more importance (reflected in terms of high log-det) on selected dimensions
that define the facial features. Proposed LCMA exposes such dimensions to more flow layers,
making them more expressive and hence the significant improvement in BPD is observed. The
improvement in bits/dim is less for natural image datasets because of the high variance among
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Table 4.2: Density estimation results (in bits/dim) for various flow models with LCMA on CIFAR-10

Type of Multi -scale
Architecture (MA)

RealNVP Glow i-ResNet Residual
Flows

Conventional MA 3.49 3.35 3.45 3.28

LCMA 3.43 3.31 3.40 3.25

features defining them, which has been the challenge with image compression algorithms.
Note that the improvement in density estimation is always relative to the original flow
architecture (RealNVP in our case) over which we use our proposed LCMA, as we do not
alter any architecture other than the dimension factorization method.

The quantitative results of LCMA implementation for several state-of-the-art flow models
with CIFAR-10 dataset is summarized in Table 4.2. The density estimation score for flow with
LCMA outperforms the same flow with conventional multi-scale architecture. We also achieve
state-of-the-art density estimation results for CIFAR-10 dataset with LCMA implementation
for Residual Flows.

Qualitative Comparison

For LCMA implementation, we introduced local max and min pooling operations (to preserve
spatiality) on log-det heuristic to decide which dimensions to be gaussianized early (Section
4.3). Fig. 4.2(a) shows samples from original datasets, Fig. 4.2(b) shows the samples from a
trained RealNVP flow model with conventional multi-scale architecture and Fig. 4.2(c) shows
the samples from RealNVP with LCMA, trained on various datasets. The finer facial details
such as hair styles, eye-lining and facial folds in Celeba samples generated from RealNVP
with LCMA were perceptually better than the baseline. The global feature representation
observed is similar to that in RealNVP, as the flow architecture was kept the same. The
background for natural images such as Imagenet were constructed at par with the original
flow model. As it has been observed, for flow models, the latent space holds knowledge
about the feature representation in the data. We performed linear interpolations in latent
space to ensure its efficient construction. The interpolations observed (Fig. 4.3) were smooth,
with intermediate samples perceptibly resembling synthetic faces, signifying the efficient
construction of latent space.

Ablation Study

We perform two types of ablation studies to compare LCMA with other methods for dimension
factorization in a multi-scale architecture. In our first study, we consider 4 variants, namely
fixed random permutation (Case 1), multiscale architecture with early gaussianization of high
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(a) Examples from the dataset (b) Samples from trained Real-
NVP [1]

(c) Samples from trained Real-
NVP flow model with LCMA

Figure 4.2: Samples from RealNVP [1] and RealNVP flow model with proposed LCMA trained on
different datasets. The datasets shown in this figure are in order: CIFAR-10, Imagenet(32× 32),
Imagenet (64× 64) and CelebA (without low-temperature sampling).

Figure 4.3: Smooth linear interpolations in latent space between two images from CelebA. The
intermediate samples perceptibly resemble synthetic faces.

log-det dimensions (Case 2), factorization method with checker-board and channel splitting
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Table 4.3: Ablation study results for multi-scale architectures with various factorization methods
trained on CelebA dataset

Evaluations Fixed Random
Permutation

Early gaussianization of
high log-det dimensions RealNVP Early gaussianization of

low log-det dimensions

Quantitative
(BPD)

3.05 3.10 3.02 2.71

Qualitative

as introduced in RealNVP (Case 3) and multiscale architecture with early gaussianization of
low log-det dimensions, which is our proposed LCMA (Case 4). In fixed random permutation,
we randomly partition the tensor into two halves, with no regard to the spatiality or log-det
score. In case 2, we do the reverse of LCMA, and early gaussianize the high log-det variables
at each layer. The bits/dim score and generated samples for each of the methods are given in
Table 4.3. As expected from an information theoretic perspective, gaussianizing high log-det
variables early provides the worst density estimation, as the model could not capture the
high amount of important information. Comparing the same with fixed random permutation,
the latter has better score as the probability of a high log-det variable being gaussianized
early reduces to half, and it gets further reduced with RealNVP due to channel-wise and
checkerboard splitting. LCMA has the best score among all methods, as the variables more
sensitive to changes in input (hence carrying more information) are exposed to more flow
layers. Fixed random permutation has the worst quality of sampled images, as the spatiality
is lost during factorization. The sample quality improves for Case 2 and RealNVP. The
sampled images are perceptually best for LCMA.

We perform a second ablation study to reconfirm that early gaussianization of high log-det
dimensions has a deteriorating effect on the density estimation score. The flow model in
our experiment has 3 layers where dimensions splitting is being performed. We consider all
permutations of early gaussianization of high/low log-det dimensions at each of the 3 layers.
The density estimation scores for all 23 permutations trained on CelebA dataset are presented
in Table 4.4. The best score corresponds to early gaussianization of low log-det dimensions
at each flow layer (proposed LCMA), and the score deteriorates with permutations involving
early gaussianization of high log-det dimensions at any flow layer. Summarizing, LCMA
outperforms multi-scale architectures based on other factorization methods, as it improves
density estimation scores and generates qualitative samples.
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Table 4.4: Ablation study results for permuting factorization of high/low log-det dims

Permutation of high/low log-
det dimensions

Bits/dim

High-High-High 3.10
High-High-Low 3.09
High-Low-High 3.07
High-Low-Low 3.05
Low-High-High 3.00
Low-High-Low 2.92
Low-Low-High 2.79
Low-Low-Low (LCMA) 2.71

4.6 Conclusions
We propose a novel multi-scale architecture for generative flows which employs a data-
dependent splitting based on the individual contribution of dimensions to the log-likelihood.
Implementations of the proposed method for several flow models such as RealNVP [1],
Glow [134], i-ResNet [135] and Residual Flows [143] were presented. Empirical studies
conducted on benchmark image datasets validate the strength of our proposed method, which
improves log-likelihood scores and is able to generate qualitative samples. Ablation study
results confirm the power of LCMA over other options for dimension factorization. A line
of future work can be to design/learn a masking scheme for factorization online during flow
training (or possibly a parallel training process), while preserving flow properties.
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Part II

Conditional Synthetic Data Generation
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Chapter 5

Conditional Synthetic Data Generation

5.1 Introduction
In Section 1.2, we covered the data scarcity and class-imbalance challenge observed at the
onset of a pandemic, since the availability of data corresponding to the new disease is scarce.
In this chapter, we present a novel conditional synthetic data-generation method to augment
the available pandemic data of interest. Our proposed method can also help organizations
release synthetic versions of their actual data with similar behavior in a privacy-preserving
manner. At the onset of a pandemic, when the availability of disease data is limited, our
proposed model learns the distribution of available limited data and then generates conditional
synthetic data that can be added to the existing data in order to improve the performance
of machine learning algorithms. To tackle the challenge of label scarcity, we propose semi-
supervised learning methods to leverage the small amount of labeled data and still generate
qualitative synthetic samples. Our methods can enable healthcare ML tools to rapidly adapt
to a pandemic.

We apply this method to generate conditional CT scan images corresponding to COVID
cases (Fig. 5.1), and conduct qualitative and quantitative tests to ensure that our model
generates high-fidelity samples and is able to preserve the features corresponding to the
condition (COVID/Non-COVID) in synthetic samples. As a downstream use of conditional
synthetic data, we improve the performance of COVID-19 detectors based on CT scan data

Figure 5.1: Synthetic CT scans generated by our proposed model, with Non-COVID (normal and
pneumonia cases, with green border)/ COVID (with red border) as the condition.
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Figure 5.2: Illustration of the proposed conditional synthetic generation. (Best viewed in color)

via synthetic data augmentation. Our results show that the proposed model is able to
generate synthetic data that mimic the real data, and the generated samples can indeed be
augmented with existing data in order to improve COVID-19 detection efficiency.

The proposed methods are developed such that they are generalizable across applications.
To illustrate this, we implement the above algorithm to generate synthetic personal thermal
comfort data, based on the data collected in [8], and described in Section 2.2.

5.2 Methodology
We present a hybrid model consisting of a conditional generative flow and a classifier for
conditional synthetic generation. We also introduce a semi-supervised approach, to generate
conditional synthetic samples when a few samples out of the whole dataset are labeled.

COVID and Non-COVID Classifier

Our model is characterized by the efficient decoupling of feature representations corresponding
to the condition and the local noise. Suppose we have N samples X with labels Y , with 2
possible classes, COVID/Non-COVID. We first train a classifier C (consisting of a feature
extractor network denoted by g(·), and a final fully-connected and softmax layer, denoted by
h(·), i.e. C(x) = h(g(x))) to classify the input sample (which in our case are CT Scans) and
associated labels as COVID and Non-COVID. Mathematically, this step solves the following
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minimization with backpropagation:

min
C
LC(X, Y ) = −E(x,y)∼(X,Y )

2∑
l=1

[
I[l=y] logC(x))

]
(5.1)

By virtue of the training process, the classifier learns to discard local information and
preserve the features necessary for classification (conditional information) towards the down-
stream layers. Once the classifier is trained, we freeze its parameters, and use it to extract
the conditional (COVID/Non-COVID) feature representation z = g(x) (as a vector without
spatial characteristics) at the output of the feature extractor network for input image x. The
dimension of z is chosen such that dim(z) << dim(x).

Conditional Generative Flow

During the training phase for the flow model, the conditional feature representation z is fed
to the conditional generative flow. The flow model is trained using maximum-likelihood,
transforming x to its local representation ν, i.e.

fθ(x, z) = ν ∼ N (0, I) (5.2)

with ν having the same dimension as x by the inherent design of flow models. We use the
method introduced by [151] to incorporate the conditional input z in flow model. Coupling
layers in affine flow models have scale (s(·)) and shift (b(·)) networks [139, 152], which are
fed with inputs after splitting, and their outputs are concatenated before passing on to the
next layer. We incorporate the conditional information z in the scale and shift networks.
Mathematically, (with x as the input, D as input dimension, d as the split size,and y as
output of the layer),

x1:d, xd+1:D = split(x)
y1:d = x1:d

yd+1:D = s(x1:d, z)⊙ xd+1:D + b(x1:d, z)

y = concat(y1:d, yd+1:D)

Since flow models are bijective mappings, the exact x can be reconstructed by the inverse
flow with z and ν as inputs. During the generation phase, for an input sample x, we compute
the conditional feature representation z. Keeping the conditional feature representation the
same, we sample a new local representation ν̃, and generate a conditional synthetic sample x̃,
i.e.

ν̃ ∈ N (0, I), x̃ = f−1
θ (ν̃, z) (5.3)

Here, x̃ has the same conditional (COVID/Non-COVID) features as x , but has a different
local representation. An illustration of the proposed model is provided in Fig. 5.2 and the
steps for the inference and generation phases are summarized in Table 5.1.
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Semi-supervised Learning for Conditional Synthetic Generation
under Label Scarcity

In reality, often a small amount of the already limited pandemic data available are labeled.
Consider this case when a few of the datapoints are labeled, denoted by {Xl, Y l}. The rest
of the data (unlabeled) is denoted by Xu. To generate conditional synthetic samples under
such label scarce situations, we propose a semi-supervised method to modify the classifier
design process, in order to effectively decouple the feature representations corresponding to
the conditions.

Label learning algorithm

We first design a label learning algorithm to assign presumptive labels Ỹ l to the unlabeled
samples Xu. Assuming ki labeled samples are available for class i, we train the classifier
network using the labeled samples only and compute in the embedded (z) space (1) the centroid
vector ci for each class and (2) a similarity metric between each unlabeled target sample
xu ∈ Xu and the specific centroid. Depending on the dimension of the transformed feature
space, this similarity metric can simply be a Gaussian kernel to capture local similarity [153],
or the inverse of Wasserstein distance [154] for better generalization with complex networks.

Semi-supervised model training

Ideally, the semi-supervised scheme should be able to (1) identify the correct labels of
unlabeled target samples, and (2) update the classifier with the additional information. We
establish an alternating approach that recursively performs (1) fixing the feature mapping g
and propagating presumptive labels using a greedy assignment, i.e., an unlabeled sample is
presumed to have the same label to its closest centroid, and (2) updating the feature mapping
(the classifier) as supervised learning by treating the presumptive labels as true labels.

Inference Phase Generation Phase

1. (Classifier) Train the COVID and Non-COVID
classifier.

1. (Classifier) Corresponding to an input
sample x, find its conditional feature repre-
sentation z using the trained classifier.

2. (Flow) For each input sample x, 2. (Flow) Sample a local representation ν̃ ∼
N (0, I).

2.1 Feed x to the classifier and extract the conditional 3. (Flow) Get a synthetic sample x̃ =
feature representation z from its penultimate layer. f−1

θ (ν̃, z).
2.2 Get the local representation as ν = fθ(x, z)
2.3 Train the flow model with maximum-likelihood.

Table 5.1: Summary of steps for conditional inference and generation
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The proposed greedy propagation, intuitively simple and practically easy to implement, in
fact has theoretical guarantees since the entropy objective is approximately submodular when
the feature mapping is fixed. Please refer to [155] for a detailed theoretical analysis. The
above is conducted alternately until the convergence of the feature mapping and presumptive
label assignment. In practice, the convergence is usually achieved in a few iterations. Once
the classifier has been trained with this semi-supervised approach, the conditional generative
flow training is performed as specified before in conditional generation section.

5.3 Experiments

Data Collection and Pre-processing

We conduct experiments on chest CT scan data based on the COVIDx CT-1 dataset [57],
publicly available in Kaggle1.

CT Scan Data: The dataset consists of 45,758 images corresponding to healthy indi-
viduals, 36,856 images corresponding to individuals afflicted with common pneumonia, and
21,395 images corresponding to individuals with COVID-19.

Pre-processing: We combine the images in the Normal and Pneumonia classes into a
single Non-COVID class. We use the train, validation, and test splits defined by the official
annotation files. In addition to class labels, the annotations include bounding boxes for the
lungs region in the whole CT scans image. We crop the images as per the bounding box and
resize them to 64× 64.

Hyperparameters:
Classifier

• Batch size: 64

• Optimizer: AdamW optimizer

• Learning rate: 1e− 5

• Learning rate decay parameters: 0.99, 0.998, 0.999, 0.9998 for classifiers trained on
100% of the training set, 5%, 1%, 0.5%, 50 samples, and 20 samples, respectively.
The decay parameter was set to 0.99 during epochs with presumptive labels during
semi-supervised training.

• Weight decay rate: 1e− 7

• Beta parameters: (0.9, 0.999)

Conditional Generative Flow

• Batch size: 320 across 4 GPUs
1The CT scan dataset can be accessed at www.kaggle.com/hgunraj/covidxct/version/1

www.kaggle.com/hgunraj/covidxct/version/1
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• Optimizer: AdamW

• Learning rate: 5e− 4

• Learning rate decay: It had a warm-up period of 10 epochs and was decayed on an
exponential schedule with decay parameter 0.99.

• Weight decay: 1e− 6

• Beta parameters: (0.5, 0.999)

• Temperature for Gaussian Noise Sampling: 0.9

Network Architecture
Classifier Our classifier network is based on COVIDNet, by [156]. It is composed of

lightweight projection-expansion-projection-extension (PEPX) modules. The PEPX modules
consist of 1× 1 convolutions for first stage projection that projects input features to a lower
dimension, 1× 1 to expand the features to a higher dimension different than that of the input
features, a depth-wise representation of features to learn spatial characteristics with 3× 3
convolutions, 1× 1 convolutions to project features back to a lower dimension and finally
1× 1 convolutions to extend the channel dimensionality to produce the final features. We
take the dimension of the conditional input (z) to be 32, and perform l2-normalization on it
before feeding it to the conditional generative flow. The network architecture also leverages
selective long-range connections. One disadvantage of long-range connections is complexity
and memory overhead so we use these long-range connections sparingly, this is exhibited by
the existence of only four densely connected convolution layers. The network design choices
allow COVID-Net to achieve high representational capacity and improves ease of training
while maintaining computational and memory efficiency.

Conditional Generative Flow We use a variant of Glow [134] model that features a
reorganized flow step, designed to reduce the number of invertible 1×1 convolutions, together
with a fine-grained multi-scale architecture. Each coupling layer consists a 3× 3 convolution
with ELU [157] non-linearity, a 1× 1 convolution, a channel-wise summation with a condition
vector, a non-linearity, and a final 3× 3 convolution. The condition vector is obtained by
taking the embedding of the image at the penultimate layer of our classifier and projecting it
to the hidden dimension of the 1× 1 convolution layer.

We use a 4 level flow, with granularity factor M = 4. The first and last levels consist of 8
flow steps, and the two internal levels each consist of a sequence of 3 blocks of 8 flow steps.
The hidden dimension of the affine coupling layer at each level is 24, 512, 512, 512.

Computation: We used 4 NVIDIA Tesla V100 GPUs for the experiments.

Testing Procedure

We performed both quantitative and qualitative testing for conditional synthetic data genera-
tion by our model. A test set is held out from the real dataset to be used for quantitative
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Figure 5.3: Illustration of quantitative testing pro-
cedure for conditional synthetic generation.

Model FID

[151] 0.2504
ACGAN 0.0986
CAGlow 0.0483
Ours 0.0077

Table 5.2: Qualitative (Fréchet Information
Distance) scores for synthetic data generated
by various models (the lower the better).
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Figure 5.4: Classification metrics for classifiers trained on synthetic data generated by various
models. The error bars indicate the variation in classifier performance when the synthetic datasets
used to train them were generated multiple times with different seeds. Real data classifier does not
involve multiple synthetic data generation, so its error bars are not included.

testing. We then compare the classification performance (COVID/Non-COVID) on this test
set for a classifier trained on real data vs a classifier trained on the generated synthetic data.
This testing procedure is illustrated in Fig. 5.3. Since the datasets are imbalanced, we report
the precision, recall and macro-F1 score (together referred to as classification metrics) along
with the accuracy. For more information on the metrics, please refer to [158]. Closeness of
the classification metrics of classifiers trained on synthetic and real data indicates an efficient
design of the conditional synthetic generator. To evaluate the quality of generated samples,
we report the Fréchet Inception Distance (FID) [159] for the synthetic samples. For FID
calculation, we use the embeddings from our classifier trained using real data, in place of the
official inception network [160], since the latter is not trained on medical imaging data.
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Figure 5.5: Original and generated synthetic CT scan samples. The top row consists of original
samples, and corresponding image in the bottom row is the synthetic sample obtained by preserving
the original conditional feature representation, and varying the local noise. Image pairs with a red
border: COVID samples, and a green border: Non-COVID samples.

Results: Conditional Synthetic Data Generation

The classification results for a classifier trained on the real data vs a classifier trained on
purely conditional synthetic data, and tested on a hold-out set of real data, is given in Fig. 5.4.
Across the existing methods for conditional synthetic generation, the classifier trained with
synthetic data from our proposed model has the closest accuracy, F1 score, precision and
recall to that of the classifier trained on real data. This shows the capability of our method to
generate synthetic samples with a distribution that closely matches the real conditional data
distribution. The qualitative results (FID scores) for synthetic data generated by various
models are tabulated in Table 5.2. The FID scores for our model is the lowest among all
models, demonstrating that the quality of the generated samples closely matches the real
ones.

It is worth noting that the accuracy/F1 score of the classifier trained with synthetic
data generated by [161] is much smaller as compared to those by other models, not to
mention the classifier trained on real data. This can be justified from the fact that [161]
relies on an unsupervised method of decoupling global and local information. But for
conditional synthetic generation applications, such as the one presented in this paper, the
model needs information on what the model designer/ domain experts consider as the
conditional information (COVID/Non-COVID in our case). ACGAN and CAGlow have
different generators, but both include an auxiliary supervision signal to conditionally guide
the generation process. Hence, performance of classifiers trained on synthetic data generated
by them are close. We encode the conditions using feature extractors to feed to the generator,
leading to state-of-the-art results.

The original samples along with the synthetic samples generated by preserving original
conditional feature representation and a different local noise for CT scans are shown in
Fig. 5.5. The characteristic features for COVID CT scan samples, i.e., ground-glass opacity
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Table 5.3: Results for classifiers trained via semi-supervised learning and tested with different sets
of labeled samples and test set bootstrapping. Number of training set samples: 61782.

Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)

20 samples 84.84± 2.91 76.32± 5.24 77.15± 4.87 76.35± 5.87
50 samples 90.87± 1.31 85.86± 1.73 86.48± 2.68 85.43± 1.32

0.5% of training samples 93.90± 0.46 90.49± 0.61 91.30± 1.28 89.8± 0.68
1% of training samples 95.06± 0.49 92.14± 0.69 93.94± 1.30 90.62± 0.48
5% of training samples 95.80± 0.20 93.24± 0.28 95.09± 0.84 91.23± 0.50

100% of training samples 96.30± 0.11 93.98± 0.17 97.05± 0.38 91.56± 0.20

are well preserved in the synthetic samples. At the same time, the non-conditional local
features, e.g. axial plane position for CT scans are considered as local noise. Since original
samples for normal and pneumonia cases are merged together to form a single Non-COVID
class, sometimes the corresponding synthetic image for a normal sample is a sample with
pneumonia characteristics and vice-versa. This occurs since the conditional model learns
to treat them as local information. The ability to decouple the feature representations for
given conditions from other information in the data, as exhibited by our model, should be
considered the strength of an effective conditional generative model.

Results: Conditional Synthetic Generation under Label Scarcity

Previously, we proposed a semi-supervised learning approach to efficiently generate conditional
synthetic samples when the number of samples labeled out of the available pandemic data
is less. To test our approach, we retained the assigned label (COVID/Non-COVID) for a
few samples, and discarded the label for rest of the samples. The amount of labeled samples
was varied from 20 samples to 50 samples to 0.5%, 1%, and 5% of the total training data.
The ratio between COVID and Non-COVID samples was maintained among the labeled
samples. We conducted the presumptive-labeling and classifier training in an iterative manner,
and followed by this, trained the conditional generative flow using the conditional feature
embeddings obtained using the feature extractors. We then generated conditional synthetic
data using the above trained generative model. To show the robustness of our method,
we perform bootstrapping on the test set and repeat our experiments using different sets
of labeled samples from the training data. For each model, we also evaluated on multiple
synthetic sets generated using random seeds. The results of classification models trained on
the synthetic data under different bootstraps and seeds is given in Table 5.3 and 5.4.

As is apparent from the table, using even a few labeled samples, our method is able to
achieve results on par with the case when all the labels are available. This further reinforces
the strength of our approach in generating conditional synthetic data to rapidly adapt ML
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Table 5.4: Results for classifiers trained via semi-supervised learning and tested with multiple
synthetic sets generated using random seeds.

Amount of labeled data Accuracy (%) F1 Score (%) Precision (%) Recall (%)

20 samples 85.70± 0.32 78.65± 0.65 77.96± 0.49 79.48± 1.18
50 samples 90.74± 0.77 85.27± 0.88 86.93± 2.03 83.98± 0.68

0.5% of training samples 94.66± 0.86 91.41± 1.27 93.93± 2.02 89.39± 0.80
1% of training samples 95.04± 0.32 92.00± 0.47 94.53± 0.88 89.96± 0.42
5% of training samples 95.62± 0.21 92.95± 0.28 95.33± 0.77 90.99± 0.18

100% of training samples 96.30± 0.11 93.98± 0.17 97.05± 0.38 91.56± 0.20

models to a new pandemic at its onset, when there is scarcity of such labels. As expected,
at lower levels of labeled data, the uncertainity associated with synthetic data generation is
high, as is apparent from Table 5.3, which dies down as we increase the labeled data amount.
The uncertainity associated with classification models trained on synthetic set generated by
our model using different seeds is low. Both the above observations establish the robustness
of proposed method.

An important point to note here is that the closeness of results obtained by utilizing 5%
of labels as compared to using 100% of labels do not denounce the importance of the rest
95% of labels. In healthcare, improvement of even 1% of accuracy/F1 score corresponds to a
significant number of samples classified accurately, important especially during a pandemic.
Thus, our proposed semi-supervised approach should be considered as a remedy for cases
when labels are scarce, not as an alternative to fully-supervised approach.

Example Use of Synthetic Data: Robust Detection of COVID-19 via
Data Augmentation

Generated synthetic data can be utilized in a number of downstream tasks. We conduct exper-
iments on one of the tasks: robust detection of COVID-19 via synthetic data augmentation.
The training data is inherently highly class-imbalanced, with limited samples of COVID and
abundant samples for pneumonia and normal cases. To design a robust COVID-19 detection
mechanism under such class imbalance scenario, we augment the training data with synthetic
COVID samples generated using the proposed model to increase the % of COVID samples
and balance the dataset. The augmentation process and the testing procedure is illustrated
in Fig. 5.6. The classification metrics for classifiers trained on the augmented training data
are given in Fig 5.7.

Examining the classification results, the classifier trained on augmented training data
have better performance as compared to classifiers trained only on limited real training data
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Figure 5.6: Illustration of synthetic data augmentation and testing process. Improvement in
performance of classifiers trained on augmented data as compared to that trained on original training
data is a step towards robust COVID-19 detection.
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for all augmentation levels. Note that even slight improvement in the recall score translates to
numerous samples classified correctly (e.g. 1% improvement in recall for CT scan corresponds
to 200 more correctly classified samples), leading to better diagnosis leading to accurate and
timely treatment.

5.4 Related Work
In the field of healthcare, synthetic data generation has been proposed to expand the diversity
and amount of the existing training data, often to improve the robustness of machine learning
models. [162] propose a generative adversarial network (GAN)-based synthetic data generator
to improve the diversity and the amount of skin lesion images. [163] synthesize pathology
images for cancer with realistic out-of-focus characteristics to evaluate general pathology
images for focus quality issues. [164] propose synthetic generation to produce high-resolution
artificial radiographs. In the space of combating COVID-19, [165] propose a method
of strengthening the COVID-19 forecasts from compartmental models by using short term
predictions from a curve fitting approach as synthetic data. Similarly, [166] and [167] propose
a conditional GAN-based generator for synthetic chest X-ray/CT scan data generation and
augmentation for robust COVID-19 detection. Above works do not focus on the case where
data with proper labels might be unavailable or sparsely available, whereas we tackle this
challenge using a semi-supervised approach. We also show the robustness achieved using our
model via experiments with several bootstrapping methods.

In the area of conditional generation, a hybrid flow and a GAN-based model have been
proposed in CAGlow [168]. In general, GAN-based methods are known to be hard to
train [169] and do not provide a latent embedding suitable for feature manipulations [134].
In contrast, we proposed a conditional generation method with efficient decoupling of the
conditional information and local noise over an embedding space, along with a flow based
generator, which recently have proved efficient in synthetic data generation [170,171]. We
compared results for our proposed method over CAGlow and ACGAN for synthetic COVID
CT scan generation, and showed improved results.

Decoupling of global and local representation for synthetic generation has been pro-
posed in [151], where the global information is decoupled using a Variational AutoEncoder
(VAE) [172]. For conditional synthetic generation, it is necessary that the feature representa-
tions salient to the given conditions (COVID/Non-COVID) are decoupled from local noise,
which is not guaranteed while extracting the same using a VAE. By employing a classifier
network for the same, we ensure the relevant conditional information is not lost into the local
noise.

Semi-supervised learning based approaches to enhance classification models has been
prominent in domain adaptation tasks, where except for a few samples, knowledge about the
labels are generally unavailable in the target domain. A number of domain adaptation models,
such as FADA [173], [174], [48], [175] etc. employ few-shot learning approach, leveraging
the few labeled data available to make the model efficient. In the space of healthcare, semi-
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Subject ID
1 2 3 4 5

Classification Metrics
Cohen’s Kappa 28.77%/27% 24.59%/23.12% 19.23%/17.91% 33.65%/31.78% 18.37%/15.49%

Accuracy 84.3%/79.56% 79.22%/75.76% 63.47%/59.03% 77.19%/77.01% 63.22%/61.42%
AUC 0.81/0.79 0.8/0.77 0.67/0.62 0.78/0.77 0.76/0.74

Table 5.5: Thermal Preference classification performance with classifiers trained on real and
synthetic data. The first number among the pair in each box is performance with a classifier trained
on real data, while the second number is with a classifier trained on synthetic data generated by our
proposed model.

supervised learning approaches have been used for skin disease identification from limited
labeled samples in [176], to enhance X-ray classification in [177] and in COVID-19 detection
from scarce chest x-ray image data in [178]. We proposed the use of semi-supervised learning
in the space of synthetic data generation, to adapt our proposed generative model to label
scarce scenarios, common at the onset of a pandemic.

5.5 Synthetic Data Generation for Personal Thermal
Comfort

In our previous work [8], we conducted an experiment to collect physiological signals (e.g.,
skin temperature at various parts of the body, heart rate) of 14 subjects (6 female and 8
male adults) and environmental parameters (e.g., air temperature, relative humidity) for 2–4
weeks (at least 20 h per day). The subjects also took an online survey, where they reported
their thermal sensation (on a scale of -3 to +3) and thermal preference (Warmer, Cooler, No
Change) among other parameters.

For this work, we generated synthetic data for the 3 thermal preference classes (Warmer,
No Change, Cooler) for 5 of the subjects [63, 179]. We designed fully-connected neural
networks for the feature extractor, classifier, and conditional generator blocks. A test set
is held out from the real dataset to be used for quantitative testing. We then compare the
classification performance on this test set for a classifier trained on real data vs a classifier
trained on the generated synthetic data. Since the datasets are imbalanced, we report the
cohens kappa, accuracy and AUC score (together referred to as classification metrics).

The classification results for a classifier trained on the real data vs a classifier trained
on purely conditional synthetic data, and tested on a hold-out set of real data, is given
in Table 5.5. The classifier trained with synthetic data from our proposed model has the
close classification performance to that of the classifier trained on real data. This shows
the capability of our method to generate synthetic samples with a distribution that closely
matches the real conditional data distribution.
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5.6 Discussion
We presented a novel conditional synthetic generative model aimed at multiplying the samples
of interest at the onset of a pandemic. We conducted extensive experiments on chest CT
scan dataset to show the efficacy of the proposed model, and improvements in COVID-19
detection performance achieved via synthetic data augmentation. We also proposed and
experimented on a semi-supervised learning approach to efficiently generate conditional
synthetic data under label scarce conditions. One of the limitations of our proposed method
is that it does not exert selective control over the choice local noise, which can sometimes
contain information for important interactions in the data, e.g., in our experiments, we
extract conditional information salient to COVID/Non-COVID, whereas the information
corresponding to everything else, such as CT scan axial positions, variations of pneumonia
etc. are all considered to be the noise for the model. In general, this can be attributed to
the way conditional generative models e.g. ACGAN, CAGlow function. By implementing
our model for personal thermal comfort synthetic data generation, we demonstrated the
generalizability of our proposed model. By doing certain changes, our model can be used
to generate synthetic data in a wide range of application domains. There can be numerous
variations of synthetic samples that can be created using our model, keeping the conditional
information same, hence a potential negative societal impact of our work can be misuse of
synthetic data to spread misinformation.



64

Part III

Tackling Data and Model Inconsistencies
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Chapter 6

Improved Tabular Data Pre-Processing
Methods

6.1 Introduction
The data obtained in smart buildings can be broadly divided into four classes [180]: occupant
data, facility data, enterprise data, and distributed energy resources (DER) data. Occupant
data refers to the data collected from occupants pertaining to their occupancy, thermal comfort
preferences, energy usage, etc. For instance, to ensure occupants are thermally comfortable
in buildings, there is an array of research [8,21,181–184] focusing on understanding which
parameters affect the thermal preference of an individual or a group, and design physics-based
or machine learning based predictors to predict them. The data collected from occupants and
their immediate environment include environmental variables [54, 185,186] such as standard
effective temperature, air temperature, relative humidity, and air velocity, occupant specific
variables [8, 187] such as clothing level, metabolic rate, and in some cases, physiological
signals such as heart rate and temperatures at different key body points. All of the above
readings can be taken as instantaneous readings for several subjects, or by performing a
field experiment with a set of subjects over a period of time. In both the cases, the data is
organized into a tabular form, with the above features as columns and each row representing
data at a time stamp for an occupant. Some of the above features are continuous and some
discrete. Thermal comfort is a key example of smart building components that prevalently
have tabular data [19, 24]. Other occupant data, such as the CO2 concentration of the
return air (used to measure occupancy in buildings [49]), infrared radiation changes using
PIR sensors (used to reflect the movement information of objects, and hence detect both
occupancy and presence [188]), and energy resource consumption data (used to monitor
the usage and encourage energy-efficient behavior by providing incentives [189]), are also
organized in the form of tables and hence classified as tabular data.

The second class of data in smart buildings is facility data. This corresponds to the
data obtained primarily from and for the various mechanical systems present in the building.
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The data collected might be used to optimize the operation of different systems such as the
Heating, Ventilation, and Air Conditioning (HVAC), or to diagnose faults in the system
for predictive maintenance. For example, for monitoring and opportunistically optimizing
HVAC system, the energy consumption, temperature and humidity in different zones [190] in
a building are collected. For diagnosing faults in the system, parameters such as flow-rate
for water systems, actuator statuses (e.g., valve, pump) [6] etc. are collected. All the above
datasets are tabular in nature since they are readings that are coming as a stream with a
particular frequency from sensors fitted in various appliances.

The third class is enterprise data, which includes data from software systems governing a
smart building. For example, data streams from digital twins of a building might contain
synthetic measurements of building parameters [191]. The fourth class is DER data, which
comprises of data corresponding to renewable energy (mostly solar) generation and con-
sumption measurements [192], occupant/building energy consumption schedule and patterns
throughout the day [193], and data corresponding to demand response programs [194]. All of
the above datasets are tabular in nature. In retrospect, we realize that a significant number of
datasets collected and utilized by machine learning algorithms in smart buildings are tabular
in nature and demand specialized methods for pre-processing.

Data pre-processing is a vital step in the machine learning implementation process since
inconsistencies among the diverse features in a dataset can cause any algorithm to be
suboptimal. Data pre-processing involves a number of operations, such as data cleaning
to get rid of or replace missing and/or noisy data, data transformation to convert the
data to a common data type as is warranted by the downstream machine learning model,
dimensionality reduction (if needed) etc. There has been significant advances on data
cleaning and dimentionality reduction operations in existing research works. However, data
transformation, which involves steps such as normalization, encoding and dequantization etc.
has not received much attention in the machine learning implementation process especially in
applied domains such as smart buildings. Data transformations steps such as normalization
are necessary to scale the features to common limits (e.g. min-max normalization), and
also to model them to follow a known distribution (e.g. standard/gaussian normalization).
At the same time, dequantization of discrete features is also necessary for models to learn
the data distribution efficiently. Based on our study, we observed that most of the prior
works treat continuous and discrete features alike. The most common continuous feature
transformation step in existing works are gaussian or min-max normalization. However, real-
life continuous feature distributions comprise of several inherent modes, and many machine
learning algorithms are sensitive to the modes present, in which case, above normalization
methods prove to be sub-optimal. On the other hand, many prior works do not treat discrete
features differently, and just consider them as a special case of continuous features with values
present just at the discrete markers. In the best case, a few works convert the discrete features
to one-hot vectors, which are again discrete in nature. If we fit a continuous distribution
(using ML models such as neural networks since they are smooth function approximators) to
these discrete values, the model can learn to achieve high likelihood by placing large spikes at
these discrete values, while making the likelihood low everywhere else. This is an unnatural
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distribution we would like to discourage our model from overfitting to the discretization.
In this work, we focus on the above challenges for tabular data, and propose the use of two

novel data transformation methods (the other steps in data pre-processing that precede data
transformation, such as data cleaning are kept the same), namely mode-based normalization
for continuous features, and uniform and variational dequantization for discrete features.
Dequantization refers to adding noise to the discrete variables before they are fed to the
machine learning models. By considering thermal comfort datasets as representative tabular
datasets for smart buildings, we show that using our proposed methods for data pre-processing
leads to significant improvement in thermal comfort prediction performance as compared
to the state-of-the-art model with conventional data pre-processing. Needless to say, the
proposed methods, being designed in a generic manner for tabular datasets, extend seamlessly
for use by other smart building tabular datasets. To the best of our knowledge, we are the
first to propose and conduct an extensive study into the data pre-processing methods for the
most commonly found data in smart buildings, i.e. tabular data.

In the following sections, we compare our contribution with the existing works (Sec 6.2),
describe the proposed data pre-processing methods (Sec 6.3), conduct experiments to test
the efficacy of our approach (Sec 6.4), and conclude with practical considerations and future
works (Sec 6.5).

6.2 Related Works
Since we focus on the data transformation step in the whole data processing pipeline, we
discuss and compare our proposed methods with data transformation methods used in the
previous works. For continuous features, gaussian or min-max normalization have been the
gold standard in previous works. For instance, authors in [195] use gaussian normalization or
z−normalization and apply it to the subjective response data to scale it uniformly and to
better determine the overall response trends. In [196], gaussian normalization is used for
metadata normalization in design of a dynamic multi-task thermal comfort prediction model.
Min-max normalization has also been used in [197] to normalize the data for use in K-nearest
neighbor based thermal model. Another work that focuses on study of HVAC control strategies
using personal thermal comfort and sensitivity models [198] uses min-max normalization to
scale the thermal comfort readings. Authors in [199] use min-max normalization on occupant
behavior data to study the influence the same on building energy consumption. There are
additional ways for normalization as done in [13], where authors perform normalization
of skin temperature (continuous feature) by specifically designing a factor that indicates
the unclothed/exposed body surface area. They also show that normalization improves the
stratification of thermal classes. In our work, we state the shortcomings of the above methods
(Sec 6.3) for continuous features, and propose the use of a novel method, namely, mode-based
normalization (Section 6.3). The above method, originally proposed in [200], is used to
generate synthetic samples for tabular datasets among other possible applications.

When it comes to transformation for discrete features, not much special attention has
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Figure 6.1: Illustration of the proposed data-preprocessing method.

been given to dequantize them before feeding them into machine learning models such as
neural networks that are designed to approximate a smooth function with desirable accuracy
provided sufficient neurons are used. At best, one-hot encoding has been used to encode
categorical variables. For example, Wang et al. [201] study the thermal comfort models
designed using ASHRAE database [54], and state that one-hot encoding is commonly used to
encode categorical variables such as building type. Authors in [202] also perform one-hot
encoding of the categorical features during data pre-processing. Similar is the case for
works on data-driven optimization of building designs [203], modeling of energy demand
response in buildings [204], etc. This does not only result in high-dimensional data when the
categorical variables have many levels, it also gives rise to multiple more variables that are
discrete in themselves. To the best of our knowledge based on extensive literature search,
there are no existing works that focus on using dequantization methods for discrete feature
transformation for machine learning applications in smart buildings. We propose two methods
for dequantizing discrete features, namely uniform and variational dequantization [141]. We
discuss the ways and cases where the proposed methods can be used, and implement them
for a real-life smart building dataset to test for their strength.

6.3 Methodology
In this section, we describe the proposed pre-processing steps for tabular data. Data pre-
processing involves a series of steps, such as data cleaning to get rid of or replace missing and/or
noisy data, data transformation, dimensionality reduction (if needed) etc. We particularly
focus on the data transformation part, keeping the other steps same as others existing in the
literature.

Let us assume the dataset in hand is represented by X ∈ Rn×p, which means we have n sam-
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ples, and p features. The p features are be a mix of both continuous and discrete/categorical
columns. Let us represent the continuous feature vectors by Xc

1, X
c
2, · · · , Xc

α, and the dis-
crete feature vectors by Xd

1 , X
d
2 , · · · , Xd

β . Note here that α+ β = p, and each of the above
feature vectors have the dimension of n× 1. A continuous feature comprises of values from a
continuous domain (e.g., R). A discrete feature takes a value from a discrete set and can
either be nominal or ordinal. The number of possible values for each discrete feature can
vary among the set of discrete features. Both the continuous and discrete features must be
processed in specialized ways for it to be compatible for machine learning (especially neural
network) models. Therefore, we propose two data pre-processing methods towards the above
goal: mode-specific normalization for continuous features, and variational dequantization for
discrete features. An illustration of above pre-processing is shown in Fig. 6.1.

Mode-specific Normalization for Continuous Features

Continuous features in tabular data are usually non-Gaussian and have a number of modes
from where the data samples might come from. Gaussian distribution has a single mode,
and thus applying transformations that has been used in prior works, such as gaussian or
min-max normalization will lead to vanishing gradient problem [200]. Detecting the modes
present in the data and using their parameters to normalize the data will help in handling
features with complex distributions, a process referred to as mode-specific normalization [200].
In mode-specific normalization, unlike conventional min-max or gaussian normalization, we
first detect a mode of the feature distribution from which a particular data sample is highly
probable to have come from, and then normalize it with the mean and standard deviation of
that particular mode. Post normalization, each feature vector is transformed into two feature
vectors, one corresponding to the mode-normalized values which is continuous in nature, and
another to the identifier of the mode which was selected for normalization which is discrete
in nature. The steps of this process are as follows:

1. A variational gaussian mixture model (VGM) [205] is trained to estimate the number of
possible modes for continuous features Xc

1, X
c
2, · · · , Xc

α. For illustration, let us assume
for ith continuous feature Xc

i , m number of modes were found. For jth data sample (i.e.
jth row of the dataset), the probability of occurrence of the value xcij in feature Xc

i is,

PXc
i
(xcij) =

m∑
k=1

ηkN (xcij;µk, ϕk)

where, ηk, µk, ϕk are the weight, the mean and the standard deviation of mode k.

2. To choose a mode to normalize data xcij, we compare the probability of that value
coming from each of the possible modes, i.e. mode k∗ is chosen for normalization as
per,

k∗ =
m

argmax
k=1

ηkN (xcij;µk, ϕk)
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3. Finally, the normalized output and identifier are:

Mode-normalized value =
xcij − µk∗
4ϕk∗

Mode Identifier = k∗

We represent the feature vector with mode-normalized values (which is a continuous feature)
for Xc

i as Xcc
i , and the feature vector with corresponding mode-identifiers (which is a discrete

feature) as Xcd
i . Effectively, Xc

i is transformed into Xcc
i and Xcd

i .

Uniform and Variational Dequantization for Discrete Features

Dequantization refers to adding noise to discrete values to make them continuous. Since many
of the machine learning models such as neural networks are smooth function approximators,
making the discrete features continuous by adding small amounts of noise helps the machine
learning model learn the discrete feature distribution efficiently. The distribution from which
the noise is extracted brings in the novelty among the dequantization methods. We use
two methods for dequantization, namely uniform, and variational dequantization [141]. In
uniform dequantization, noise from a compatible uniform distribution is added to the discrete
features, whereas, in variational dequantization, the amount of noise that has to be added
is dependent on the original data distribution. At this stage, we dequantize the original
discrete features that were present in the dataset (Xd

1 , X
d
2 , · · · , Xd

β), along with the hybrid
discrete features that were created as part of the mode-based normalization process before
(Xcd

1 , X
cd
2 , · · · , Xcd

α ). Let us denote the union of both the above sets of discrete features as
X̃d.

For dequantization, we add noise u to the feature set X̃d, i.e.

X̃d
dequantized = X̃d + u

In uniform dequantization, u is sampled from an uniform distribution [0, 1]α+β. As it can be
observed, the noise added does not have any relation with the data to which it gets added,
which although solves the problem of fitting continuous distribution to discrete data but still
makes it sub-optimal to learn the data distribution due to the step function in uniform noise
distribution. On the other hand, in variational dequantization, u comes from a variational
posterior distribution q(u | X̃d). Variational dequantization is powerful as compared to
uniform dequantization because the noise added is dependent on the data, hence producing a
smooth processed data distribution that is easier for the downstream machine learning model
to learn. We model the posterior distribution as a conditional generative flow as u = qx̃d(ϵ),
where ϵ ∼ N (0, I) is gaussian noise. The conditional flow model is jointly trained with the
downstream neural network model being trained on the pre-processed data.

We model the conditional flow with coupling transformations as has been proposed in
[141]. The coupling transformations (F ) are designed to follow the cumulative density function
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(CDF) of mixture of M logistic distributions, represented by LMCDF, i.e.

FLMCDF (y; π, µ, s) =
m∑
i=1

πiσ((y − µi) exp(−si))

where, π, µ, s ∈ Rdim(y) are the parameters of logistic mixture distribution corresponding to
mixture weight, component means, and component scales, respectively, and σ(.) denotes the
sigmoid function. The input noise vector ϵ is partitioned into two parts, ϵ = [ϵ1, ϵ2], as is
done for affine flow models. The dequantization noise u is formulated as,

y = NNθ(x̃
d)

π, µ, s = NNδ([ϵ1,y])

u1 = ϵ1,u2 = FLMCDF ((ϵ2; π, µ, s)

u = σ([u1,u2])

where, NN(θ) and NN(δ) are neural networks parametrized by θ and δ respectively. We
stack multiple such layers in a cascaded manner to generate the dequantization noise u.

An important observation here is that in variational dequantization the networks generating
noise are trained in tandem with the downstream model that gets fed with the pre-processed
data. Additionally, variational dequantization is designed using neural networks as noise
generators. Hence, above method should be used when the downstream model used is a
neural network itself that trains using stochastic gradient descent, which essentially holds
true for all the deep learning applications in buildings. In cases where the downstream
model is not a neural network, uniform dequantization can be a good choice for discrete data
transformation.

After the above preprocessing steps, the original data X becomes,

X = Xcc
1 ⊕ · · · ⊕Xcc

α ⊕Xcd
1,dequantized ⊕ · · · ⊕Xcd

α,dequantized⊕
⊕Xd

1,dequantized ⊕ · · · ⊕Xd
β,dequantized

which is then used for downstream tasks such as forecasting, prediction, segmentation or
synthetic data generation.

6.4 Experiments
In this section, provide the features metadata of datasets we use, and then share the
experimental settings and results.

Datasets

As representative tabular datasets available in smart buildings, we choose two publicly
available thermal comfort datasets (obtained from right-here-right-now readings as well as
personal thermal comfort field experiments) for testing our pre-processing methods. We test
our methods independently for each of the above datasets.
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Table 6.1: List of continuous and discrete features for the datasets used in the experiment

Dataset Continuous Features Discrete Features
Comfort
Database

Standard Effective Temperature, air temper-
ature, relative humidity, air velocity

Clothing level, metabolic rate

Wearables
Dataset

Temperature, humidity, wind velocity, phys-
iological parameters: temperature at wrist,
ankle, and pant, heart rate

Vote time (morning (7am-12pm), after-
noon (12pm-5pm), evening (5pm-10pm),
night (10pm-7am)), location during vote (in-
doors/outdoors)
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Figure 6.2: Subject wise distribution of data samples in each of the thermal preference classes.
Here, “-1”represents “Prefer cooler”class, “0”represents “Prefer no change”class, and “1”represents
“Prefer warmer”class.

Comfort Database/ASHRAE Global Thermal Comfort Database II

The ASHRAE Global Thermal Comfort Database II [54], or as we will call “comfort database”,
is one of the large and mostly used dataset when it comes to designing and testing thermal
comfort algorithms, as well as to study the thermal comfort distribution across building
types, geographies etc. It is built up of the data from thermal comfort studies conducted
around the world in the last two decades from the time the paper was published. It provides
thermal comfort measurements, as well as the preference label. We picked six of the most
significant variables for data-driven thermal comfort in line with previous researches using
this dataset [60]. Specifically, the features chosen are Standard Effective Temperature
(SET), clothing level, metabolic rate, air temperature, relative humidity, air velocity. The
characteristic type (continuous/discrete of these features is given in Table 6.1. Post data
cleaning to get rid of missing values/ NaNs, the total number of data samples remaining was
56148. The distribution of data samples in the three thermal preference classes was “Prefer
cooler”: 17794, “Prefer no change”: 28195, “Prefer cooler”: 10159.
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Wearables Dataset

We refer wearables dataset to the data collected from personal thermal comfort experiment
using wearable sensors by Liu et al. [8]. The authors have performed feature engineering to
obtain the mean, standard deviation and gradient of physiological features over last 5 mins,
15 mins, and 60 mins of the vote time, which we use in our work. We ranked the features
in the dataset as per the amount of missing values/NaNs existing in them, and got rid of
those with large number of missing values. After data cleaning, we had approximately 210
samples available per subject. We also converted the vote time variable to a categorical
variable as per the following mapping: “Morning”(7am to 12pm), “Afternoon”(12pm-5pm),
“Evening”(5pm-10pm), “Night”(10pm to 7am). The distribution of continuous and discrete
features that we use for experimentation using this dataset is given in Table 6.1. The subject
wise distribution of data samples in each of the thermal preference classes is shown in Fig 6.2.
As it can be observed, the dataset for every subject is highly class-imbalanced with the “Prefer
no change”class being the most frequent class.

Experimental Settings

Testing Procedure:

For the comfort database, we designed classifiers to classify the thermal preference classes.
For the wearables dataset, we designed personal thermal comfort models (specific to each
subject) to classify their individual thermal preference. As per standard practice [8], for each
classifier, we conducted 5-fold cross validation repeated 20 times to estimate the average
predictive performance. We report the classification accuracy. Since the datasets are highly
class-imbalanced, accuracy alone is not a correct representative of classification performance.
So, along with accuracy, we report the cross-validated macro F-1 score [158].

Table 6.2: Thermal preference classification performance with standard deviation bounds for
comfort database using various machine learning models and data pre-processing methods.

Data Pre-processing Method ML Models Accuracy (%) F-1 Score (%)

Gaussian normalization for continuous features and
One-hot encoding for discrete features

(Conventional Method)

LDA 53.8± 0.4 38.9± 0.5
K-Nearest Neighbors 52.8± 0.4 46.7± 0.5
Gaussian Naive-Bayes 52.5± 0.4 43.1± 0.5

Extra Trees 57.1± 0.5 50.1± 0.5
Random Forest 57.2± 0.5 50.1± 0.5
Neural Network 59.7± 0.7 53.4± 0.8

Mode-based normalization for continuous features and
uniform dequantization for discrete features (Our Work) Neural Network 61.3± 0.6 57.5± 0.6

Mode-based normalization for continuous features and
variational dequantization for discrete features (Our Work) Neural Network 63.6± 0.6 59.9± 0.4
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Machine Learning Models and Data Pre-Processing:

We experimented with a number of machine learning models ranging from kernel based and
tree based methods, to neural networks. Specifically, we use Linear Discriminant Analysis
(LDA), K-Nearest Neighbors (KNN), Gaussian Naive-Bayes (GNB), Extra Trees, Random
Forest, and feed-forward neural networks. Based on our literature review, we found that
random forest (also a tree-based classifier) performs at par or better as compared to Gradient
Boosted Trees (GBM) or Extra Trees algorithm [8], which is why it is considered the state-
of-the-art in thermal preference prediction models. Hence, we used random forest as a
representative algorithm for tree-based model family. Neural Network models, owing to
the way they are designed and trained (using Stochastic Gradient Descent), are compatible
with a range of advanced machine learning algorithms such as transfer learning- adversarial
domain adaptation, synthetic data generation, variational inference etc. Implementing neural
network models thus opens the door to otherwise impossible enhancements from the machine
learning world that can be used to improve algorithms in smart buildings. We use gaussian
normalization for continuous features, and one-hot encoding for discrete features as the
baseline pre-processing methods, as the above choice is commonly used for tabular data pre-
processing in existing works. We then test our proposed pre-processing methods: mode-based
normalization for continuous features, and uniform/variational dequantization for discrete
features along with the neural network models, and compare them against the above baseline.
The neural network architecture for the classifier was kept the same between the baseline
pre-processing method, and our proposed methods. For variational dequantization, we use 4
layers of flow models with each layer having feed-forward neural networks representing the
NN as mentioned in Sec. 6.3. For wearables dataset, we report results from random forest as
the kernel-methods baseline (since it is considered as the state-of-the-art model for thermal
preference prediction), and neural network models for a better presentation of the results
across multiple subjects. We run the neural network models in a NVIDIA V100 GPU, and
use Adam optimizer with a learning rate of 1e− 4.

Results

The classification metrics accuracy and F-1 scores with their standard deviation bounds for
different machine learning models combined with different data pre-processing methods for
comfort database are given in Table 6.2. Among the kernel and tree-based methods, it can
be observed that random forest performs the best in terms of accuracy and F-1 score among
other models. With a feed-forward neural network, which comes with better expressivity
potential, while keeping the data preprocessing method the same, we see a 4.37% relative
improvement in accuracy, and a 6.59% relative improvement in F-1 score as compared to the
random forest results. With our proposed pre-processing methods, mode-based normalization
for continuous features, and uniform dequantization for discrete features along with the same
neural network model, we see a relative performance improvement of 7.17% in accuracy
and a significant 14.77% improvement in F-1 score over random forest. It is to be expected



CHAPTER 6. IMPROVED TABULAR DATA PRE-PROCESSING METHODS 75

because effectively by dequantizing and normalizing, we are smoothing the distribution for
the continuous neural network models to learn. In the above combination, if we replace
uniform dequantization with variational dequantization, we observe a relative improvement
of 11.19% in accuracy, and a 19.56% improvement in F-1 score over random forest. This
improvement in scores is indicative of the potential of the proposed data transformation
methods for tabular data.

In the case of wearables dataset, we designed personal thermal comfort predictors using
the above machine learning models. The accuracy and F-1 scores for various models for each
subject is given in Fig 6.3. Across all subjects, the average relative improvement over random
forest in accuracy was 0.72%, and in F-1 score was 2.79% for a neural network model with
gaussian normalization for continuous features, and one-hot encoding for discrete features.
When we implemented our proposed mode-based normalization, and uniform dequantization,
the average relative improvement over random forest increased to 2.71% in accuracy and 7.33%
in F-1 score. Finally, with mode-based normalization and variational dequantization with a
neural network model, we observed the highest average relative improvement over random
forest: 4.51% in accuracy and 11.22% in F-1 score. It can be observed that the improvement
in F-1 score with our proposed methods is significant as compared to that in accuracy. It can
be attributed to better encoding of the minority classes, an added benefit for imbalanced
datasets commonly found in smart buildings. An important observation to note is that for
subjects 4,8,9, and 14, the classification accuracy degrades with the implementation of neural
networks and proposed pre-processing methods. One of the reasoning for the the same can be
the extreme class-imbalance found in thermal preference classes for those subjects as observed
in Fig 6.2. The ratio between sum of all the minority classes and the single majority class for
these subjects is as high as 1:7. However, the F-1 score always improves with implementation
of proposed pre-processing methods. Since our methods are specifically designed for neural
networks and not random forest models, a fair separation and ablation study of machine
learning models and the pre-processing method to understand the contribution of each towards
the improvement/degradation is difficult in this particular case. However, keeping the neural
network model fixed, when we implement gaussian normalization, mode-based normalization
+ uniform dequantization, and mode-based normalization + variational dequantization, the
classification scores increases in that order across all of the subjects. This proves that the
combination of the above proposed methods is beneficial for tabular data pre-processing in
smart buildings. The choice of transformation method to be used depends on the particular
application, and the machine learning models that are planned to be implemented (Sec 6.3).

6.5 Conclusion and Future Work
In this research, we proposed the use of several novel data transformation methods for use in
tabular data pre-processing, namely mode-specific normalization (for continuous features), and
uniform and variational dequantization (for discrete features). We conducted experimental
analysis of thermal comfort prediction models (both group-based and personal thermal
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comfort) with the above data pre-processing methods, and showed significant improvement in
classification accuracy and F-1 score as compared to state-of-the-art results. In Sections 6.3,
and 6.3, we also summarized the scenarios when the above methods can be used. Focusing
on the practical usability of our methods, all the pre-processing methods we proposed, except
for variational dequantization are compatible with both kernel-based (LDA, KNN, GNB,
RF, GBM) and neural network models. However, the variational dequantization is only
compatible with neural networks. Hence, the choice of pre-processing method for discrete
features should be made based on the machine learning model (kernel-based/neural network)
chosen for the downstream task. With the above consideration taken into account, since the
methods proposed are generalizable for any tabular data, they can be seamlessly used for any
smart building tabular dataset, and can aid in efficient machine learning system design.

In the current work, we mainly focused on one of the main classes of structured data found
in smart buildings, namely tabular data, and conducted experiments on some representative
datasets. A line of future work include the study of performance improvement by using the
proposed pre-processing methods in several other smart building and energy system machine
learning tasks, e.g. time-series based energy use forecasting [206], demand response [207],
occupancy and activity detection [45, 48, 53], HVAC control [208], building retrofits [122], or
synthetic data generation for several building related datasets [209] etc. As stated in this
work, the methods can be used with certain modifications for other structured data such as
graphical data, and unstructured data such as images. Hence, another line of research can be
to study the required modifications, and implementations for use cases in smart buildings
and energy systems involving such datasets, e.g. power transmission in grids organized as
graphs, and satellite imagery for buildings etc.
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Figure 6.3: Personal thermal preference classification performance with standard deviation bounds
for various ML models and data pre-processing methods.
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Part IV

Transfer Learning: Cross-Domain
Prediction and Generation
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Chapter 7

Cross-Domain Classifier Adaptation

7.1 Introduction and Related Works
Humans spend more than 90% of their day indoors, where their well-being, performance and
energy consumption are demonstrably linked to thermal comfort. But, study shows that only
40% of commercial building occupants are satisfied with their thermal environment [210].
There has been significant amount of research done to develop models to accurately predict
thermal comfort metrics for occupants in a building. Contrary to conventional group-based
thermal comfort models, personal thermal comfort models [8] focus on developing thermal
comfort predictors at a building occupant level. They have proved effective in human-centric
cyber-physical systems to efficiently regulate the building control systems, as well as to
understand the correlation between human factors affecting comfort. The general process
is to conduct experiments with human subjects and collect their physiological signals along
with other environmental parameters, and thermal sensations and preference, to develop
models to predict them. In general, such labels are hard to obtain for general occupants
in a building. At the same time, the above developed models for experimental subjects do
not generalize very well to others, as we will show later in the experiments. We propose an
adversarial domain adaptation based method to transfer the knowledge from subjects with
thermal preference labels available (hereby referred as the source) to those without the labels
available (hereby referred as the target) and develop a thermal comfort model for the target
occupant in an unsupervised manner.

Transfer learning for thermal comfort prediction has been studied at a city-level in [211].
Authors in [212] study transfer learning for personal thermal comfort, but do not focus
on underlying assumptions on domain relatedness or few-shot learning cases. Adversarial
domain adaptation has been extensively studied in various spaces, such as computer vision
and smart buildings [48,213].
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Figure 7.1: Schematic diagram of the proposed method

7.2 Methodology
The objective of this work is to improve the generalization capability of a personal ther-
mal comfort classifier across multiple occupants without collecting labeled data for target
occupant(s). Without loss of generalization take the case of two domains, a single source
occupant, and a single target occupant. We start by training the source encoder and classifier
end-to-end using supervised data from source. For transfer learning, we embed the data
from both the domains into a common feature space, and align the target encoder with the
source via ADA, in a completely unsupervised manner. At equilibrium, the target and source
encoders are aligned, so the previously trained source classifier can be used along with the
target encoder for testing in the target domain. The schematic is illustrated in Fig. 7.1, and
the training steps are summarized below.

Step 1: Suppose Ns samples Xs with labels Ys are collected in the source domain with L
possible classes. Train a source encoder Ms and a source classifier Cs

min
Ms,Cs

−E(xs,ys)∼(Xs,Ys)

L∑
l=1

[
I[l=ys] logCs(Ms(Xs))

]
Step 2: Train a target encoder Mt with Xt unlabelled target samples and fine-tune the

source encoder Ms adversarially with a domain discriminator D. Discriminator
loss:

min
Ms,Mt

max
D

Exs∼Xs [logD(Ms(xs))] + Ext∼Xt [log(1−D(Mt(xt)))]

Encoder loss for Ms (similarly for Mt with target data Xt):

min
Ms

−Exs∼Xs [logD(Ms(xs))]
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Figure 7.2: Comparison of thermal preference classification accuracy on target data using a trained
source encoder+classifier vs a transfer learning based target encoder+source classifier. Green/Red
blocks: Accuracy increases/decreases after ADA.

With aligned the target encoder, thermal comfort prediction for the target domain can be
done using the target encoder + Cs.

7.3 Experimental Study
In our previous work [8], we conducted an experiment to collect physiological signals (e.g.,
skin temperature at various parts of the body, heart rate) of 14 subjects (6 female and 8
male adults) and environmental parameters (e.g., air temperature, relative humidity) for 2–4
weeks (at least 20 h per day). The subjects also took an online survey, where they reported
their thermal sensation (on a scale of -3 to +3) and thermal preference (Warmer, Cooler, No
Change) among other parameters.

For this work, we developed deep learning based thermal preference classifier for 7 of
the subjects, specifically using fully-connected neural networks for the encoder and classifier
blocks. We consider permutations of subjects as source and target, i.e. (source,target) =
(i, j), i, j ∈ {1, 2, · · · , 7}, i ̸= j, to test the extent of transfer learning between the subjects.
We start by training a classifier for the source subject, and then align encoders for source and
target as described in Sec. 7.2, finally performing testing in target domain using the aligned
target encoder and previously trained source classifier. As a baseline, we directly test the
source classifier in the target domain, without any knowledge transfer between the domains.
The thermal preference classification accuracy is summarized in Fig. 7.2. We observed that for
majority of the source/target pairs, the classification accuracy improves after there is transfer
learning between the domains, and we are able to design a thermal comfort predictor in the
target domain without using any labels. But, for some source/target pairs, the accuracy
diminishes.
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7.4 Discussion and Future Work
While aligning multiple domains, there is an inherent assumption that the domains share
the same set of features at a common feature space. The objective is to obtain a space in
which the domains are close to each other while maintaining good performance on the source
labeling task. For the above case, the thermal comfort at a personal level depends on a wider
range of feature variations. Under such scenario, it is not guaranteed that models developed
for a specific subject/occupant of a building can be adapted to be used for any other occupant.
This is empirically proved by the diminishing accuracies for some source/target pairs. The
underlying closeness between various subjects at a common feature space must be established
before adapting thermal comfort classifiers.

This work has a number of future directions, as summarized below.

• Thermal comfort datasets are inherently class-imbalanced. Since adapting personal
thermal comfort model of one subject to another does not necessarily lead to improved
performance, we conducted a comparison for accuracies. A similar comparison can be
done for metrics that reflect imbalance, e.g. F-1 score.

• Domain adaptation can be studied at a group level as source to person level as target
and vice-versa.

• Few-shot transfer learning, where few of the target samples are labeled, improving
target classification model can be studied.

• Domain adaptation can be studied for cases where only some of the features have labels
available, e.g. publicly available features such as room temperature etc.
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Chapter 8

Cross-Domain Conditional Synthetic
Generation

8.1 Introduction
Prior works on cross-domain translation involve construction of a mapping between two (or
more) unpaired domains. The translation consistency is maintained by introducing some form
of inductive bias terms such as cycle consistency [214], semantic consistency [215], entropic
regulation [216] etc. Most of the proposed models for domain translation are generative
adversarial network (GAN) [217] based and involve many-to-one/one-to-many mappings,
making the cycle consistency only approximate. A recent work, Alignflow [218] achieves
exact cycle consistency by modeling the domains with normalizing flows via a common latent
space. Normalizing flows [1, 134] are a class of generative models which map an unknown
and complex data distribution to a latent space with a simple (e.g. standard gaussian) prior
distribution via invertible mappings. Another benefit with having flow model mappings is
that they offer a rich latent space, which is suitable for a number of downstream tasks, such
as semi-supervised learning [125], synthetic data augmentation and adversarial training [126],
text analysis and model based control etc.

Conditional synthesis has been explored by CGAN [219] by augmenting the conditions
with the data and processing it via GAN and by ACGAN [125] by introducing an auxilliary
classifier for the conditions. This becomes challenging for flow models which are bijective in
nature, and hence indirect methods must be adopted to jointly model data and the conditions.
[168] propose an encoder-discriminator-classifier-decoder based approach on flow latent space
which can generate synthetic samples for a domain by passing its conditions via encoders and
the data via a flow network. They show improvements in varying the quality of generated
images for handles relating to various features of the dataset.

We present CDCGen, a generative framework that is capable of transferring knowledge
across multiple domains and using it to generate synthetic samples for domains lacking
information about labels/attributes. We model the label/attribute scarce domain as the
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Table 8.1: Comparison of CDCGen with state-of-the-art cross domain translation and conditional
syntheis models. Across the board, CDCGen features all the advantages over other models.

Model Cross-
Domain
Translation

Cycle Consis-
tency

Independent Condi-
tional Synthesis

Availability of Latent
Space Embeddings

XGAN [215] ✓ Approximate ✗ ✗

CycleGan [214] ✓ Approximate ✗ ✗

[220] ✓ Approximate ✗ ✗

Alignflow [218] ✓ Exact ✗ ✓

CGAN [219] ✗ – ✓ ✗

ACGAN [221] ✗ – ✓ ✗

CAGlow [168] ✗ – ✓ ✓

CDCGen (ours) ✓ Exact ✓ ✓

target, and a related domain with available information about its labels/attributes as the
source. We model the source and target domain via normalizing flows with a common latent
space. For conditional synthesis, we introduce a variant of ACGAN by using it on the learned
latent space rather than the data space, and train it with only the data and available labels
from the source domain. The features can be manipulated easily in the latent space, which
is learnt by the conditional synthesis network. During the inference phase, CDCGen offers
independently specifying conditions, encoding them to a common latent space and moving
through the inverse flow to generate conditional synthetic samples in the target domain.
Table 8.1 summarizes the comparison between CDCGen and other related models for different
feature availability. CDCGen comes out to be an amalgamation of all features available
among the model selections.

We establish the CDCGen framework and conduct empirical evaluations with benchmarked
image datasets. CDCGen shows encouraging performance in domain alignment, as well as
conditional generation for all source and target combinations.

8.2 Related Work
We discuss the related work from two perspectives relevant to the CDCGen framework,
namely cross-domain translation and conditional synthesis.

Cross-Domain Translation

Cross-domain translation involves construction of mappings between two or more domains, by
training on unpaired data samples in both the domains. Such a problem is under-constrained
and involves aligning the domains in feature space via mappings. Several research works in
this space [214, 215, 222] introduce a form of cycle consistency loss which ensures that by
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translating an image from one domain to another domain via mappings and then applying
reverse mappings to translate back yields the same image. XGAN [215] uses additional
loss terms to incorporate semantic consistency across domains, to match the subspace for
embedding from multiple domains and prior knowledge via pre-trained models. However, since
all the above models involve GAN based architectures, they lack a latent space embedding
useful for downstream manipulation tasks [134]. Moreover, since the mappings are not
guaranteed to be invertible, the cycle consistency is only approximate.

Alignflow [218] involves modeling each of the domains via normalizing flow mappings
to a common latent space. It has a hybrid training objective constituting both maximum
likelihood estimation and adversarial training. Moreover, since flows are invertible mappings,
Alignflow achieves exact cycle consistency. However, flow models, by virtue of the training
procedure, face a challenge to align domains which are apart in terms of semantics and/or
style, apparent from the generated samples quality in comparison with GANs. For CDCGen,
we use the best of both worlds: flow model mappings for the domains to a common latent
space, along with loss terms useful to align the domains in the embedding space. CDCGen
offers a rich latent space, which is further utilized for conditional synthesis in label/attribute
scarce domains (Sec. 8.2).

Conditional Synthesis

Conditional generative models have been introduced to generate desired synthetic data
by incorporating conditions information in model design. From CGAN [219] which is a
modification of conventional GANs and works by feeding the label/attribute information to the
generating block, conditional synthesis has seen different algorithmic variations [125,223,224].
A notable work, ACGAN [125] employs an auxilliary classifier for the discriminator to classify
the class labels. A recent work, CAGlow [168] proposes a variant of ACGAN with an encoder-
decoder network, adding ability to model unsupervised conditions. Additionally, above works
deal with conditional generation in a single domain. We use a variant of ACGAN over a
shared latent space for multiple domains, thereby transferring knowledge from label-rich
domains to perform conditional synthesis in label-scarce domains.

8.3 The CDCGen Framework
In this section, we will present the CDCGen framework capable of generating conditional
synthetic samples for a domain in an unsupervised setting. We select a domain with availability
of information about the labels/attributes (namely source domain) and has shared attributes
with the domain for which we don’t have information about labels/attributes (namely target
domain). Under this setting, the framework consists of two major networks: one for domain
alignment and one for conditional synthesis. We consider the case of two domains, but under
the assumption of having shared attributes between the source and target domains, proposed
method generalizes to multiple domains seamlessly.
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Domain Alignment

The first step in CDCGen is to align the source and the target domains. Let the source
and target domain be denoted by Ds and Dt with unknown marginal densities ps and pt
respectively. Both the domains are mapped via invertible transformations (normalizing flows)
Fs and Ft to a common latent space Z, which serves as a shared feature space for alignment.
We assume the shared latent space follows a normal gaussian distribution p(z), common for
training of most of the state-of-the-art flow models. The relationship between the sample
space and latent space can be represented as,

Ds Fs−→ Z
Ft←− Dt

Note that the invertible nature of the flow model is helpful in two different ways,

• It provides a mechanism to translate between source and target domains, with invertible
mappings Fs→t = F−1

t ◦ Fs and Ft→s = F−1
s ◦ Ft.

• It helps achieve exact cycle consistency (as introduced in CycleGAN [214] to ensure
accurate representation of the mappings) between the domains, since Fs→t ◦ Ft→s =
F−1
t ◦ Fs ◦ F−1

s ◦ Ft = I, where I is the identity matrix.

We use a hybrid training objective involving both maximum likelihood estimation and
adversarial training. Flow models are trained with an unsupervised maximum likelihood loss,
with a normal gaussian prior on the latent space Z. Since there are two flow models involved
for the two domains, the maximum likelihood loss is expressed as,

LMLE(Fs) + LMLE(Ft)

For cross-domain mappings, adversarial loss terms are introduced. These terms introduce
inductive bias required for cross domain translation [214]. We employ critics Cs and Ct for
source and target domains respectively, which distinguish between real samples (sampled
from the same domain) vs. generated samples (obtained via cross-domain mappings). For
example, the adversarial loss for source domain can be expressed as,

LADV (Cs,Ft→s) = Exs∼ps [log Cs(xs)] + Ext∼pt [log(1− Cs(Ft→s(xt)))]

We also use a domain-adversarial loss [225] which forces the embeddings learnt by the flow
models Fs and Ft to lie in the same subspace. This is achieved by training a classifier CDAL
which takes the latent space embeddings for each domain and classifies the sample to be
coming from Ds or Dt. It is trained in an adversarial manner, with a classification loss
function ℓ(·, ·), such as cross-entropy. LDAL can be expressed as,

LDAL(Fs, CDAL) = Exs∼psℓ(Ds, CDAL(Fs(xs)))
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Figure 8.1: Illustration of training and inference methods in CDCGen. The networks inside the
dashed box are for domain alignment and those outside are for conditional synthesis.

Finally, for domain alignment, the overall loss term is,

LDomain Alignment(Fs,Ft, Cs, Ct, CDAL;λs, λt, γs, γt) = LADV (Cs,Ft→s) + LADV (Ct,Fs→t)

+ γsLDAL(Fs, CDAL) + γtLDAL(Ft, CDAL)− λsLMLE(Fs)− λtLMLE(Ft)

where, hyperparameters λs and λt dictate the relative contribution of maximum likelihood
loss, and γs and γt correspond to contribution of domain adversarial loss, both as compared
to the adversarial loss. The objective is minimized w.r.t. the parameters of the flow models
Fs and Ft and maximized w.r.t. parameters of Cs, Ct and CDAL. This procedure is illustrated
in the dashed box in Fig. 8.1(a).

Conditional Synthesis

For conditional synthesis, we propose a variant of ACGAN [221]. Instead of using class/attribute
conditioning on the sample space as done in ACGAN, we use it in the shared latent space.
Under the setting of our problem, we don’t have any information about the labels/attributes
in the target domain. So, for the conditional synthesis part, only the attributes available
from the source domain are used for training.

We denote the available source attributes/conditions as cs ∼ p(cs), represented as one-
hot encodings. Our network consists of an encoder to model the conditions, a critic to
differentiate between the real and generated latent vectors, and an auxiliary classifier to
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classify the encoded conditions. We will introduce each of the above components and their
associated loss functions separately.

Encoder: An encoder network E encodes the conditions (cs, ϵ) into a latent space Z∗

(separate from the shared latent space Z for aligned domains), where ϵ is sampled from
standard gaussian distribution (p(ϵ)) and is helpful for incorporating stochastic behavior
among condition vectors. Let the distribution for above mentioned latent space be denoted as
p∗(z). Our objective is to minimize the Jensen-Shannon (JS) divergence between the encoded
distribution p∗(z) and the shared latent distribution p(z) for aligned domains Ds and Dt. So,
the encoder loss is represented as,

LE = Eϵ∼p(ϵ),cs∼p(cs)[log C(E(cs, ϵ))]

where, C is a critic, more about which we describe now.
Critic: A critic C discriminates between the latent vectors coming from generated

conditional distribution p∗(z) and real shared latent distribution p(z) for aligned domains.
This is an adversarial loss which is trained so as it is unable to distinguish the latent vectors
at equilibrium, thus enabling the encoder E to generate latent vectors close to the real shared
latent distribution p(z). The loss function for C is,

LCRITIC = Ez∼p∗(z)[log C(z)] + Ez∼p(z)[1− log C(z)]

Classifier: A classifier takes the latent vectors (z ∼ p∗(z) and z ∼ p(z)) as input and
classifies the conditions (cs). The classifier loss is a cross entropy loss between the predicted
and true conditions. If the class posterior probabilities are q(cs|z), the classifier loss function
can be expressed as,

LCLASSIFIER = Ez∼p∗(z),cs∼p(cs)q(cs|z) + Ez∼p(z),cs∼p(cs)q(cs|z)

The overall loss function for the conditional synthesis part is,

LConditional Synthesis = βELE + βCrLCRITIC + βClLCLASSIFIER

where βE, βCr, βCl are hyperparameters. The critic and the classifier networks share their
parameters except for their output blocks. Conditional synthesis procedure is illustrated in
Fig. 8.1(a).

Inference

CDCGen can generate conditional samples in the target domain, even when the training
process does not utilize its class/attribute information. To generate samples with conditions
c̃s, a latent vector z̃ is generated by encoding the one-hot conditions c̃s and ϵ̃ ∼ p(ϵ) via
the encoder network, i.e. z̃ = E(c̃s, ϵ̃). Then the latent vector z̃ is passed via the inverse
flow F−1

t to generate the desired sample in the target domain, i.e. F−1
t (z̃). The inference

schematic is illustrated in Fig. 8.1(b).
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8.4 Experiments
In this section, we empirically evaluate CDCGen for synthetic generation in label scarce
domains.

Datasets: We perform experiments on 2 standard image datasets for digits, namely
MNIST [226] and USPS. MNIST contains 60, 000 training and 10, 000 test images with ten
classes corresponding to digits from 0 to 9. USPS has 7291 training and 2007 test data with
the same classes as MNIST. To address this imbalance, for each domain, we sample 542
images from the original training set for each class to form the new training set. To form the
test set, we sample 147 images from the original test sets for each class. We resize all the
images to 32× 32 for training and synthesis.

Source and Target Domain Combinations: We consider two cases, first with MNIST
as the source and USPS as the target domain, and second, with the roles interchanged, i.e.
USPS as the source and MNIST as the target. We report results for domain alignment and as
well as subsequent conditional synthesis in the target domain, all while not using any labels
from that domain.

Networks: We use architecture from RealNVP [1] for each of the domain flows (Fs
and Ft). Typical configurations for RealNVP can be specified as a tuple comprising Nscales

(number of scales), Nchannels (number of channels) in the intermediate layers, and Nblocks

(number of residual blocks in the scaling and translation networks of the coupling layers).
For MNIST ↔ USPS case, both Fs and Ft are set to RealNVP(2, 64, 8). The critics (Cs
and Ct) used convolutional discriminators from PatchGAN [227] , each with 16 filters in the
critic’s first convolutional layer. For conditional synthesis, we concatenate the one-hot vector
of labels with components of random noise as input to the encoder. The vector then passes
through one fully-connected layer and eight transposed convolutional layers with upsampling
scale 2, 2, 2, 2, 2, 1, 1, 1 and channel sizes 256, 1024, 512, 256, 128, 64, 32, 16 respectively.
The supervision block contains four convolutional layers with stride 2 and channel sizes 64,
128, 256, 512. This is followed by two separate fully-connected layers for each network head,
one for outputting probabilities of real or fake and the other for classifying the label.

Optimizer: For training the domain alignment network, we use the Adam optimizer
with β1 = 0.5, β2 = 0.999, and learning rate 1 · 10−6. For training the conditional synthesis
network, we use the Adam optimizer with β1 = 0.5, β2 = 0.999, and learning rate 2 · 10−5.

Domain Alignment

In this section we present the results for domain alignment between source and target
combinations. Fig. 8.2(a) shows the source MNIST samples and corresponding USPS samples
by translating it via the forward source and inverse target flows. The middle sample is
visualization of corresponding latent space sample. Fig. 8.2(b) depicts the same with USPS
as the source and MNIST as the target. It can be observed that the class identity is preserved
with the translation with the style adapted for the target domains. The sharpness of the
translated samples are compromised, which is a result of the flow model assigning some
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(a) Result with MNIST as source and USPS as target (b) Result with USPS as source and MNIST as target

Figure 8.2: Results for domain alignment between source and target domains. The top row has
original samples from the source domain. The middle row is the corresponding latent space mapping
and the bottom row is the sample obtained by translating it to the target domain. The USPS images
are slightly blurred due to the upscaling applied as standard pre-processing.

Figure 8.3: t-SNE representation of shared latent space for MNIST ↔ USPS. For each digit, points
for USPS are visualized with the darker colors, and points with lighter colors correspond to MNIST.

probability mass to all the samples it is fed. This is unlike pure GAN based models which
selectively assign probability mass to meaningful samples.

Another interesting observation is the appearance of digit class identity in latent space vi-
sualizations. This is particularly useful from the perspective of CDCGen, since the conditional
synthesis network works based on the latent space mappings from both the domains.

We present the t-SNE embeddings for the shared latent space in our proposed domain
alignment network for MNIST and USPS in Fig. 8.3. It can be observed that the visualization
has distinct clusters for each digit class, but the embeddings from both the source and target
domain are close and belong to the same cluster for the overall digit class clustering. The
visualization allows us to infer that the latent space has learned a subspace corresponding to
each digit, and interpolating across this subspace is effectively a conditional feature-preserving
domain transfer.
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(a) Generated samples for USPS as target (b) Generated samples for MNIST as target

Figure 8.4: Conditional synthetic samples generated by CDCGen. The rows represent conditioned
digit classes (0-9) and the columns include more samples for each class.

Conditional Synthesis

We trained the conditional synsthesis part of CDCGen (Section 8.3) with source labels to
generate conditional synthetic samples in the target domain. Fig. 8.4(a) shows the samples
generated with USPS as the target domain and Fig. 8.4(b) shows the samples generated
with MNIST as the target. Each row corresponds to the digit classes which are assigned as
conditions. It can be observed that CDCGen is able to generate synthetic samples belonging
to the digit class as conditioned. There are also variations among the samples across different
columns which shows the stochastic nature of generation by CDCGen. The compromise in
sharpness of the samples generated can be observed in the generated samples too, and is
owed from the domain alignment mappings by flow models.

Imbalance between Adversarial and Maximum Likelihood loss in
Domain Alignment
In this section we present the impact of imbalance between adversarial and maximum
likelihood loss terms, in order to highlight the design preferences for CDCGen. The results
presented in previous section are such that the maximum likelihood loss is comparable
to adversarial loss. For this section, we reduced the λs and λt terms which correspond
to proportion of maximum likelihood loss as compared to adversarial loss for source and
target respectively. We also used a Wasserstein loss with gradient penalty [228] for the
adversarial losses in domain alignment. This was done so as to selectively give more power to
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(a) Result with MNIST as source and USPS as target (b) Result with USPS as source and MNIST as target

Figure 8.5: Results for domain alignment between source and target with less weight on maximum
likelihood loss. The top row has samples from the source domain. The middle row is the corresponding
latent space mapping and the bottom row is the sample obtained by translating it to the target.

the adversarial loss as compared to the maximum likelihood loss. The samples for domain
alignment are presented in Fig. 8.5(a) and Fig. 8.5(b) for MNIST → USPS and USPS →
MNIST respectively. It can be observed that the sample quality has improved substantially,
coherent with the fact that GANs are capable of generating qualitative samples. But at the
same time, the latent space representations are lacking efficient representation, since the
flow model learning objective is underrepresented. For this case, learning the conditional
distribution becomes challenging for the conditional synthesis network. Summarizing, the
domain alignment network should be designed to have a right balance between maximum
likelihood loss (to make the latent space representative) and adversarial loss (for alignment).

8.5 Conclusions
CDCGen, a generative framework capable of generating conditional synthetic samples for
domains without the requirement of obtaining its labels/attributes was presented. We
also conducted empirical studies with standard image datasets to observe feature transfer
and independent conditional generation. In the future, making the conditional generation
models across multiple domains can be studied with varying levels of label availability (few-
shot learning) for target domain. CDCGen can also be adapted for other modalities of
data including audio and tabular data. These can be used in smart buildings for several
applications, including synthetic thermal comfort data generation across domain variations
such as climate to climate, geography to geography, and one occupant to another, synthetic
energy consumption data generation across multiple buildings in a city etc.
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Chapter 9

Conclusion and Future Works

9.1 Conclusion
In this research, we explored multitude of ways in which ML has been utilized in smart
buildings and pandemic-specific healthcare. Then we identified 3 major data-specific challenges
existing in these applications.

Our research focused on tackling the above challenges using generative modeling and
un/semi-supervised learning. We proposed conditional synthetic data generation to generate
synthetic data and use them in tandem with real data to make ML models robust and
efficient. We proposed transfer learning algorithms, namely domain adaptation, and style
transfer algorithms to tackle the challenge of domain discrepancy and unavailability of
data/labels across multiple domains. Finally, we presented data pre-processing methods
to bridge the gap between tabular data commonly found in smart buildings and their use
in many state-of-the-art ML models such as neural networks, which are smooth function
approximators.

9.2 Future Works
The proposed research opens gate to an wide array of future research. Fig. 9.1 illustrates the
methodological advances that can serve as future works for our current work, with potential
to be applied smart buildings and other infrastructures.

Generative AI for Multimodal Data/Sensor Fusion

Our research focused on Generative modeling and other ML algorithms for images, tabular,
and time-series data in buildings independently. A potential future research area can be
applying generative modeling, synthetic data generation, domain adaptation with sensor
fusion techniques for multimodal data in smart buildings, especially a mixture of

• 3D mapping data- e.g., from LiDAR sensors
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• Tabular/time series data from sensors (CO2, Lighting, Plug load)

• Images (RGB/Infrared Cameras)

In one of our past works, we explored this direction by combining data from WiFi systems,
and camera. We designed WiVi [53], a novel human activity recognition scheme that is able
to identify common human activities in an accurate and device-free manner via multimodal
machine learning using only commercial WiFi-enabled IoT devices and camera. For sensing
using WiFi, a new platform is developed to extract fine-grained WiFi channel information
and transform them into WiFi frames. A tailored convolutional neural network model was
designed to extract high-level representative features among the WiFi frames in order to
provide human activity estimation. We utilized a variant of C3D model for activity sensing
using vision. Following this, WiVi performed multimodal fusion at the decision level to
combine the strength of WiFi and vision by constructing an ensembled DNN model. Extensive
experiments were conducted in an indoor environment, demonstrating that WiVi achieves
97.5% activity recognition accuracy and is robust under unfavorable situations, as each
modality provides the complementary sensing when the other faces its limiting conditions.
This research can be extended to other modalities as described above.

Foundation Models and Multitask Learning

Foundation models, also known as pretrained models or base models, are large-scale language
models that are pre-trained on massive amounts of data. The data can come from open-source
or enterprise data. These models capture semantic and syntactic patterns in the input data.
Foundation models are useful for multitasking because they can be fine-tuned or adapted to
perform specific tasks by providing additional task-specific training data. Instead of training
a model from scratch for each task, which would require a large amount of task-specific
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data and computational resources, fine-tuning a foundation model allows for faster and more
efficient training.

Foundation models have enormous potential in several applications in smart buildings.
Foundation models can be used to capture patterns in an unsupervised way from large corpus
of buildings data, and then can be fine-tuned for a number of applications, including,

• Energy Management: analyze energy consumption patterns and optimize building
energy management systems, including automated identification of anomalies, and
suggestion of strategies for improving energy efficiency.

• Building Design: Automated design of buildings with varying building materials and
blueprints.

• Building Codes and Regulations Enforcement: Foundation models can help assimilate
information from building codes and regulations (mostly textual data) for better building
design and operation.

By leveraging foundation models in smart buildings, various tasks can be efficiently
performed, enabling better automation, optimization, and management of building systems,
leading to enhanced occupant comfort, and energy efficiency.

Framework for Unseen Data Realization

In critical systems such as smart buildings and healthcare, many situations occur very rarely,
and cannot be emulated otherwise because of practical and ethical challenges. However,
since ML systems are data hungry, they require instantiations of those situations to train
themselves properly. In this case, extrapolation to generate unseen data can be very useful.
Hence, an area of future research can be to develop a generative modeling framework, which
provides functionalities to manipulate attributes of the original input space to generate
desired unseen synthetic samples, and at the same time, populate particular low-frequency
classes of a dataset with synthetic samples for data balancing.

For generating data samples with desired qualities, flow and GAN-based generative
models that offer a rich latent space can be used, where the manipulation of features can be
done [229,230]. For example, synthetic human behaviors that alleviate the need for a large
number of human subjects in thermal comfort studies can be generated using above approach.
An experiment might have an overweight individual with normal activity levels and a normal
weight individual with high activity levels. Using the limited information about their thermal
comfort behaviors, above proposed method can generate behaviors of an overweight individual
with high activity levels, which is not originally present among the subjects (Fig 9.2). The
behaviors will closely imitate how an actual overweight individual with high activity levels
would have had their thermal comfort signature. Above synthetic data generation can be
adopted for other smart infrastructure applications such as occupancy detection (how rooms
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Generative
Model

High BMI Individual with 
Normal activity Levels

Normal BMI Individual 
with High activity Levels

High BMI Individual with 
High activity Levels

Figure 9.2: Illustration of proposed methodology with example showing unseen thermal comfort
signature generation.

of different types be occupied during different times of the day), activity patterns for building
control (how different occupants engage with the building) etc.
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