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Abstract

Lattice QCD studies of hadron-hadron interactions are performed by computing the energy

levels of the system in a finite box. The shifts in energy levels proportional to inverse powers of

the volume are related to scattering parameters in a model independent way. In addition, there

are non-universal exponentially suppressed corrections that distort this relation. These terms are

proportional to e
−mπL and become relevant as the chiral limit is approached. In this paper we

report on a one-loop chiral perturbation theory calculation of the leading exponential corrections

in the case of I = 2 ππ scattering near threshold.
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I. INTRODUCTION

Except in the case of infinitely heavy baryons, where an adiabatic potential can be defined,

the interaction between two hadrons is studied with lattice QCD by numerically calculating

energy levels of the system in a finite box. This is because in the infinite volume limit and

away from kinematical thresholds, the two-hadron Euclidean correlator gives no information

about the Minkowski space amplitude [1]. The alternative is to consider the system in a

finite box, as is the case with numerical calculations anyway. The energy levels of a system

composed of two hadrons are not simply the sum of the energies carried by each hadron, but

there is an additional (usually small) shift that arises due to the interaction between them.

The smaller the box, the larger the shift in energy levels. This volume dependence is inversely

proportional to the volume and furthermore, there is a relation between the energy level shifts

and the scattering phase shifts [2–4]. This relation, valid for energies below the first inelastic

threshold is a consequence of unitarity and is thus model independent.1 In addition to this

power law shift in the energy levels, there are exponentially suppressed corrections which are

not model independent and are the analogue of the exponentially suppressed corrections to

the mass, decay constants, etc., in the single-hadron sector [5–9]. These exponential volume

effects arise because the off-shell propagation of intermediate states is altered by the presence

of the finite box, which allows them, for instance, to “wrap around” the lattice. As such,

these effects are dominated by the lightest particle, the pion in QCD, and are proportional

to e−mπL with mπ the pion mass and L the linear dimension of the box. For simulations

done with small enough quark masses such that the pions are within the chiral regime, these

soft pion effects can be computed using the chiral perturbation theory (χPT) [13, 14]. The

ππ scattering phase shifts have been computed using lattice QCD following the universal

finite volume method mentioned above [15–31]. As the chiral limit is approached [31] and

more precise calculations appear, these exponentially suppressed corrections will need to be

understood.

Our goal in this paper is first to show the modification of the universal scattering formula

for a hadron-hadron system in a box due to the exponentially suppressed finite volume

corrections. Second, we compute the dominant exponential volume dependence explicitly

1 By model independent relation we mean a relation valid whether one is considering QCD or some other

theory, as long as this theory obeys unitarity, locality, etc.
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for the two-pion system in I = 2 channel near threshold by use of the leading loop-order

two-flavor χPT.

II. FINITE VOLUME ππ SCATTERING

A. Power law and exponential volume dependence

As discussed above there are two types of volume dependence of the energy levels of two

hadrons in a box: power law (proportional to 1/L3) and exponential (proportional to e−mπL).

The first is exploited by the finite volume method to extract information about scattering

parameters [2–4]. The second, usually numerically smaller, appears as a correction to the

relation between energy levels in a box and scattering parameters. In order to compute

the exponentially suppressed terms we need to separate them from the larger power law

contribution.

Figure 1 shows all ππ scattering diagrams which contribute at one-loop order. As we will

discuss in more detail in the next section, the power law corrections arise only from s-channel

diagrams as shown in Fig. 1 (a), where the intermediate particles can be on-shell, and thus

propagate far and “feel” the finiteness of the box. In all other diagrams the intermediate

particles are very off-shell, cannot propagate farther than a distance of order 1/mπ and

therefore have only small, exponentially suppressed sensitivity to the size of the box.

Let us now discuss the general form of finite volume corrections. Consider first the

pion propagator at finite volume which is a function of the spatial momentum ~k = 2π~n/L

and the energy E. It will have poles for values of E corresponding to the values of the

energy of a pion in the box. In particular, for ~k = 0 the pole will be at mπ(L) (the “finite

volume mass”), differing from the (infinite volume) mass of the pion mπ by an exponentially

small quantity proportional to (m2
π/(4πf)2) e−mπL/L

√
mL [6, 7, 9]. The extra suppression

factor m2
π/(4πfπ)

2 is due to the fact that only loop diagrams contribute to the finite volume

corrections.

The volume corrections for systems with more than one hadron are more subtle. The

reason is that there are two kinds of volume corrections to the energy levels: a power law

one described by the Lüscher formula and the exponentially suppressed ones. To understand

how to separate them let us first look at the infinite-volume, S-wave scattering amplitude,
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T (s), with on-shell external pions. It is given at one loop by2:

T (s) ≃ T (0)(s) + T
(1)
t,u (s) + T

(1)
s,R(s) + iT

(1)
s,I (s)

≃ (T (0)(s))2

T (0)(s) − T
(1)
t,u (s) − T

(1)
s,R(s) − iT

(1)
s,I (s)

, (1)

where T (n) is n-th loop contribution, the s-channel contribution is separated into its real

part, T
(1)
s,R(s), and imaginary part, T

(1)
s,I (s), and all other contributions at one-loop including

t- and u-channels are denoted by T
(1)
t,u (s). The imaginary part, T

(1)
s,I (s), comes from picking

in the loop integration, the particle poles in both pion propagators, such that both the loop

pions are on-shell. The loop integral is then proportional to the phase space volume and is

given by

T
(1)
s,I (s) =

(T (0)(s))2

32π
√

s

√

s − 4m2
π. (2)

The fact that the imaginary part is determined by the tree level amplitude is a consequence

of the optical theorem.

p4 p2

p3 p1

p4 p2

p1p3

p2p4

p3 p1

(a) (b) (c)

p3

p4 p2

p1

p4

p1p3

p2

ZZ

Z Z

(d) (e)

FIG. 1: The one-loop diagrams which contributing to the ππ scattering amplitude. Only the s-

channel diagram, (a), contributes to the power-law volume dependence. Diagrams (b) and (c) are

the t-, and u-channel diagrams, respectively. Diagram (d) has a single vertex to which one loop is

attatched, and diagram (e) represents wavefunction renormalization. All these diagrams contribute

to the exponential volume dependence.

2 We are considering the s-wave projected amplitude and disregarding the mixing with higher partial waves

induced by the breaking of rotational symmetry.
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It is useful to define the K-matrix [10], which at one-loop is given by:

K(s) ≃ T (0)(s) + T
(1)
t,u (s) + T

(1)
s,R(s) ≃ (T (0)(s))2

T (0)(s) − T
(1)
t,u (s) − T

(1)
s,R(s)

. (3)

Since the scattering amplitude can be written in terms of the phase shift, δ(s), as

T (s) =
32π

√
s

√
s − 4m2

π

1

cot δ(s) − i
=

32π
√

s
√

s − 4m2
π

eiδ(s) − 1

2i
, (4)

the relation between the K-matrix and the phase shift is then given by

1

K(s)
=

1

32π

√

s − 4m2
π

s
cot δ(s). (5)

Now we look at the finite volume amplitude T (s)3. It is computed in the same way as

the infinite volume amplitude, except the loop integrals are substituted by sums over the

momenta allowed in a finite box. The important point to keep in mind is that sums where

the summand is regular are, at large enough L, well approximated by the analogous integral,

up to exponentially small terms. If the summand, however, contains a singularity, power law

dependence on the volume arises. As mentioned before, only the kinematics of the s-channel

diagram allows for both of the intermediate pions to be on-shell simultaneously. This implies

that the summand in the sum over the loop momentum contains a singularity and leads to

power law volume corrections. For the remaining diagrams no singularities are present and

only exponentially suppressed corrections can arise. As it will be shown explicitly below, the

finite volume amplitude then has the following form: the tree term remains the same, the t-,

u- and the real part of the s-channels pick only exponential corrections but the imaginary

part turns into the term with power law L-dependence (and is real at finite L):

T (s) ≃ T (0)(s) + T
(1)
t,u (s) + T

(1)
s,R(s) + ∆T (1)

exp(s) +
(T (0)(s))2

16π2L
√

s
S

(
k2L2

4π2

)

≃ (T (0)(s))2

T (0)(s) − T
(1)
t,u (s) − T

(1)
s,R(s) − ∆T

(1)
exp(s) − (T (0)(s))2

16π2L
√

s
S

(
k2L2

4π2

) . (6)

where s = 4(k2 + m2
π), ∆T

(1)
exp(s) is the finite volume correction to T

(1)
t,u (s) + T

(1)
s,R(s), and S is

a universal (independent of the interaction) function of s [11, 12]:

S
(

k2L2

4π2

)

= 4π2L




1

L3

∑

~q= 2π~n

L

−
∫

d3q

(2π)3




1

~q2 − k2
= lim

Λn→∞

∑

|~n|<Λn

1

~n2 − k2L2

4π2

− 4πΛn. (7)

3 By finite volume scattering amplitude we mean the amputated four-point correlator since, of course, there

is no scattering at finite volume.
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Combining Eqs.(1,3,5,6) we have

T (s) ≃ 1

1
K(s)

− ∆T
(1)
exp(s)

(T (0)(s))2
− 1

16π2L
√

s
S

(
(s−4m2

π)L2

16π2

)

=
16π

√
s

k cot δ(s) − 16π
√

s
∆T

(1)
exp(s)

(T (0)(s))2
− 1

πL
S

(
(s−4m2

π)L2

16π2

) . (8)

The energy of the states in the box are determined by the location of the poles of the finite

volume amplitude determined by the solution of

k cot δ(s) − 16π
√

s
∆T

(1)
exp(s)

(T (0)(s))2
=

1

πL
S

(
(s − 4m2

π)L2

16π2

)

. (9)

We recognize in Eq. (9) the familiar form of the Lüscher relation modified by the finite volume

correction: the quantity −16π
√

s
∆T

(1)
exp(s)

(T (0)(s))2
is the sought-after (exponentially small) correction

to k cot δ(s). In this work, we will focus on the 2-pion correlator near threshold in the center

of mass frame, for which the infinite volume energy is given by
√

s = 2mπ. The solution of

Eq. (9), s∗, will be away from threshold by an amount given by
√

s∗−2mπ ≈
√

s∗−2mπ(L) ∼
1/f 2

πL3. Therefore, for s ≈ s∗ the correction term, ∆(k cot δ(s)) = −16π
√

s
∆T

(1)
exp(s)

(T (0)(s))2
, can be

approximated by −32πmπ
∆T

(1)
exp(4m2

π)

(T (0)(4m2
π))2

, the difference being suppressed by ∼ 1/L3.

It is customary to expand Eq. (9) in powers of k2 ∼ 1/L3. Up to the first three orders

of this expansion (near threshold), k cot δ can be approximated by the inverse scattering

length, 1/a, resulting in

√
s∗ − 2mπ =

4πa

mπL3

(

1 + c1
a

L
+ c2

( a

L

)2

+ · · ·
)

, (10)

where c1,2 are known numerical factors. A generalization of this formula including the expo-

nentially suppressed corrections, however, is not useful. The error in using Eq. (10) instead

of Eq. (9), that is, the error in the extrapolation from s∗ to 4m2
π, is of order 1/L3, which

is parametrically larger than the exponential corrections we are interested in. Numerically,

it may be the case that, for a set of simulation parameters, the exponential term is larger

than the 1/L3 terms. But the analogue of Eq. (10) one would obtain by formally counting,

for instance e−mπL ∼ 1/L2, would involve the effective range in addition to the scattering

length. In any case, it is unclear a priori that a set of simulation parameters exist where

this kind of expansion is useful and we will not pursue this line of thought in this paper.

We now will compute the exponential corrections to k cot δ(s).
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B. The ππ scattering amplitude

The ππ finite volume correlator in the I = 2 isospin channel, for arbitrary momentum

(in the chiral regime) is given by

T2 = − 2

f 2

{
(3s − 2m2 −

∑4
i=1 p2

i )

3
+

[10s

9f 2
− 6m2

f 2

]

iI +
4

9f 2
pµ

sp
ν
s iJµν(ps)

+
[ 4

9f 2
pµ

t p
ν
t +

2

9f 2

(

pt + 3(p1 + p3)
)µ(

pt + 3(p2 + p4)
)ν]

iJµν(pt)

+
[ 4

9f 2
pµ

up
ν
u +

2

9f 2

(

pu + 3(p1 + p4)
)µ(

pu + 3(p2 + p3)
)ν]

iJµν(pu)

+
4(s − 3m2)2

9f 2
iJ (ps) +

[m4

f 2
− 4tm2

3f 2
+

2t2

3f 2

]

iJ (pt)

+
[m4

f 2
− 4um2

3f 2
+

2u2

3f 2

]

iJ (pu) −
8(s − 3m2)

9f 2
pµ

s iJµ(ps) +
4(m2 − t)

3f 2
pµ

t iJµ(pt)

+
4(m2 − u)

3f 2
pµ

u iJµ(pu) −
4ℓ1

f 2

[

(t − 2m2)2 + (u − 2m2)2
]

− 2ℓ2

f 2

[

2(s − 2m2)2 + (t − 2m2)2 + (u − 2m2)2
]

− 32

3
ℓ3

m4

f 2

}

. (11)

In the above expression, m is the (volume independent) tree level pion mass, f ≈ 132 MeV

is the (volume independent) tree level decay constant and the ℓi’s are the Gasser-Leutwyler

coefficients of counter terms appearing in the chiral Lagrangian at next-to-leading order

(NLO) [13]. The loop integrals/sums are given by I, J (P ), Jµ(P ), and Jµν(P ) and will be

defined below shortly. The external momenta pi, i = 1 · · ·4 are described in Fig. 1, and the

Mandelstam variables are employed: s = p2
s with ps = p1 + p2, t = p2

t with pt = p1 − p3,

and u = p2
u with pu = p1 − p4. In the above equation, the first term is the leading-order

(LO) tree level contribution, and the remaining terms come from the one-loop diagrams

shown in Fig. 1 and tree level diagrams with vertices of the O(p4) Lagrangian [13, 14]. In

the NLO contributions, we have approximated p2
i = m2

π, as the corrections to this at finite

volume are beyond the order we are working. In the one-loop terms, we have expressed

all contributions in terms of the bare pion mass as the difference is higher order in the

chiral expansion. One can, of course, choose to express the scattering amplitude in terms

of the “lattice quantities” such as mπ(L) and fπ(L), which are measured directly from

Euclidean correlation functions by lattice simulations. Converting the bare quantities into

lattice quantities involves additional tadpole loops, which will affect the form of ∆T (1)
exp , the

finite volume corrections to the two-pion amplitude. The exponential volume dependence
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of course doesn’t depend upon whether one expresses the amplitude in terms of either the

bare of physical parameters, and so it is useful to use the form which is simplest, that in

terms of bare parameters. In what follows, we will be interested in the 2-pion correlator

near threshold, for which the external pion momentum are given by pi ≃ (1
2

√
s,~0).

C. Loop integrals/sums at one-loop

The loop integrals/sums appearing in Eq. (11) are defined by

I =

∫
dq0

2π

1

L3

∑

~q= 2π~n

L

1

q2 − m2
, (12)

J (P ) =

∫
dq0

2π

1

L3

∑

~q= 2π~n

L

1

q2 − m2

1

(P + q)2 − m2
, (13)

Jµ(P ) =

∫
dq0

2π

1

L3

∑

~q= 2π~n

L

qµ

q2 − m2

1

(P + q)2 − m2
, (14)

and

Jµν(P ) =

∫
dq0

2π

1

L3

∑

~q= 2π~n

L

qµqν

q2 − m2

1

(P + q)2 − m2
. (15)

Note that an integral is taken along the 0th component whereas sums over discrete momenta

are taken with cubic symmetry. Finite volume effects in the loop integrals/sums in Eqs. (12)-

(15) can be computed by first evaluating the q0 contour integral and then using the Poisson

resummation formula,

1

L3

∑

~q= 2π~n

L

f(~q) =

∫
d3q

(2π)3
f(~q) +

∑

~n 6=0,~n∈N3

∫
d3q

(2π)3
f(~q)eiL~q·~n. (16)

The difference between the finite volume and infinite volume loop integrals/sums is given

by the second term in the right-hand side of Eq. (16), and is always ultraviolet finite. If

the function f(~q) is regular, this difference is exponentially suppressed in the large L limit.

Power law dependence on L can however appear if f(~q) has a singularity, i.e., the case when

P = ps.

Let us now evaluate the difference between the finite and infinite volume integrals/sums

given in Eqs. (12)-(15). We shall define the difference between the finite and infinite volume
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integrals/sums as

∆f ≡ f(FV ) − f(∞) =

∫
dq0

2π




1

L3

∑

~q= 2π~n

L

−
∫

d3q

(2π)3



 f(~q), (17)

where it is implicit that we regulate the sum and integral in the same manner such that the

UV divergences cancel. The tadpole integral in Eq. (12), which contributes to mπ and fπ

and the loop diagrams of Fig. 1, has the following volume correction;

i∆I =

∫
dq0

2π




1

L3

∑

~q= 2π~n

L

−
∫

d3q

(2π)3




i

q2 − m2

=




1

L3

∑

~q

−
∫

d3q

(2π)3




1

2ωq

,

=
m

4π2L

∑

~n 6=0

1

|~n|K1(|~n|mL). (18)

where ωq =
√

~q 2 + m2. The mass and decay constant measured in lattice simulations are

thus given to NLO by [7]4

m2
π(L) = m2

π

[

1 +
i∆I
f 2

π

]

= m2

[

1 +
iI(L = ∞) + i∆I

f 2
+

4ℓ3m
2

f 2

]

, (19)

fπ(L) = fπ

[

1 − 2i∆I
f 2

π

]

= f

[

1 − 2iI(L = ∞) + 2i∆I
f 2

+
2ℓ4m

2

f 2

]

. (20)

Using the asymptotic form of the Bessel function, one can see that for large mL, the volume

shift of the pion mass is exponential [6, 7],

∆m2
π

m2
π

=
i∆I
f 2

π

=
1

25/2π3/2

mπ

Lf 2
π

∑

n=|~n|6=0

e−n mπL

n3/2

c(n)√
mπL

[

1 +
3

8

1

n mπL
+ . . .

]

, (21)

where the ellipses denote more terms in the asymptotic expansion of the Bessel function

and c(n) is the multiplicity factor counting the number of times n = |~n| appears in the

3-dimensional sum. Note, this sum is not over integers, but rather over the square-roots of

integers. In Table I, we list the first few values of the multiplicity factors.

Power law L-dependence can only occur through the integrals/sums in Eqs. (13)-(15)

when P 2 > 0. For the center-of-mass scattering kinematics we are considering here this can

4 This relation is known up to two loops [9, 32].
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TABLE I: Here we list the first few multiplicity factors which arise when converting the three-

dimensional sum to a scalar sum.

n 1
√

2
√

3
√

4
√

5

c(n) 6 12 8 6 24

only occur for P = ps, since p2
s = s > 0. As argued above we will only need the amplitude

at threshold, i.e., ps = (2mπ,~0) and pt = pu = 0, except for the terms with power law

L-dependence. Consequently, we will need only the values of ∆J (P = 0), ∆J0(P = 0), and

∆J00(P = 0) for t- and u-channels as well as ∆J (P = ps), ∆J0(P = ps), and ∆J00(P = ps)

for s-channels. The J integrals/sums at P = 0 can be shown to be related to I, giving the

volume difference:

i∆J (0) = −1

4




1

L3

∑

~q

−
∫

d3q

(2π)3




1

ω3
q

=
d

dm2
(i∆I) , (22)

i∆J0(0) = 0, (23)

and

i∆J00(0) = i

∫
dq0

2π




1

L3

∑

~q

−
∫

d3q

(2π)3





[
1

q2 − m2
+

m2

(q2 − m2)2
+

~q 2

(q2 − m2)2

]

= i∆I + m2i∆J (0) + 3

(

−1

6
i∆I − 1

3
m2 d

dm2
i∆I

)

=
1

2
i∆I. (24)

The power law volume dependence appears in the remaining integrals/sums. In those we

keep s away from the threshold value and take
√

s = 2
√

k2 + m2. After performing the q0

integral, we separate the singular piece of the summand from the rest as

iJ (ps) = − 1

4L3

∑

~q

1

ωq

1

~q 2 − k2
= − 1

4ωkL3

∑

~q

1

~q 2 − k2
+

1

4L3

∑

~q

1

ωqωk

ωq − ωk

~q 2 − k2
. (25)

The first term contains a singularity when the internal momentum coincides with the external

momentum, while the second term is regular. The difference ∆J (ps) is then

i∆J (ps) = − 1

8π2L
√

s
S

(
k2L2

4π2

)

+
∑

~n6=0

∫
d3q

(2π)3
eiL~q·~n ωq − ωk

~q 2 − k2

1

4ωkωq

︸ ︷︷ ︸

i∆Jexp(ps)

(26)
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The first piece above is the promised universal function containing the power law volume

dependence. The summand in the second term contains only exponential finite volume

corrections. This term, contributing to ∆T (1)
exp , can be computed at the s = 4m2, ~k = 0

threshold point,

i∆Jexp(ps) =
1

16π2

1

L
√

m2 + k2

∑

~n 6=0

1

|~n|

∫ ∞

−∞
dy

y Imei2πy|~n|
√

y2 + m2L2

4π2

(√

y2 + m2L2

4π2 +
√

k2L2

4π2 + m2L2

4π2

)

≃ − 1

16π

∑

~n6=0

[

K0(|~n|mL)L̄−1(|~n|mL) + K1(|~n|mL)L̄0(|~n|mL) − 1

|~n|mL

]

,

(27)

where L̄ν is the Struve function. To get the second line of Eq.(27), we have neglected terms

which are suppressed by O(k2/m2) relative to the first. For the two-pion system, this is

approximately given by k2

m2 ≃ 4π|a|
m2L3 ≪ 1. The asymptotic expansion of i∆Jexp(ps) is given

by

i∆Jexp(ps) ≃
√

2π

(4π)2

1

(mL)3/2

∑

n=|~n|6=0

c(n)
e−n mπL

n3/2

[

1 − 5

8

1

n mπL
+ . . .

]

. (28)

Again, one can see that these volume corrections to the integral are exponentially suppressed.

The finite volume dependence of the other s-channel loop integral functions, i∆J0(ps)

and i∆J00(ps) become simpler to evaluate by first observing that the summands can be

separated into the following pieces:

q0

q2
0 − ω2

q

1

(q0 + ps0)2 − ω2
q

=
1

2ps0

[
1

q2
0 − ω2

q

− 1

(ps0 + q0)2 − ω2
q

− (ps0)
2

q2
0 − ω2

q

1

(q0 + ps0)2 − ω2
q

]

,

(q0)
2

q2
0 − ω2

q

1

(q0 + ps0)2 − ω2
q

=

(

1 +
ω2

q

q2
0 − ω2

q

)
1

(q0 + ps0)2 − ω2
q

.

One then obtains,

i∆J0(ps) = −
√

s

2
i∆J (ps) (29)

and

i∆J00(ps) = i∆I − 1

4L3

∑

~q

1

ωq

(

1 +
ω2

k

~q 2 − k2

)

=
1

2
i∆I +

s

4
i∆J (ps). (30)

Having these tensor integrals/sums written in terms of the scalar integrals/sums i∆J (ps)

and i∆I and using the scattering amplitude in Eqs. (1) and (11), one can now verify that

the coefficient of S(k2L2

4π2 ) in the amplitude is what was promised in Eq. (1).
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FIG. 2: Ratio of the magnitude of the exponential correction term ∆(k cot δ) = −32πmπ
∆T

(1)
exp(4m2

π)

(T (0)(4m2
π))2

to k cot δ for different values of the pion mass.

D. Exponential volume correction to the I = 2 ππ correlator

Collecting the results for the sums/integrals in Eqs. (18-30) and using the amplitude in

Eq. (11) we can now compute the correction term in Eq. (9) for I = 2 two-pion system near

threshold. We find

∆(k cot δ(s)) = −32πmπ
∆T

(1)
exp(4m2

π)

(T (0)(4m2
π))2

=
8π

mπ

[
11

3
i∆I + m2

π

∂

∂m2
π

i∆I + 2i∆Jexp(4m
2
π)

]

= − mπ√
2π

∑

n=|~n|6=0

c(n)
e−nmπL

√
nmπL

[

1 − 227

24

1

nmπL
+ . . .

]

. (31)

Equation (31) is our main result (the first line being the exact one-loop answer and the

second line the asymptotic expansion in mπL). In this expression, one can use either the

bare parameters, the physical parameters or the finite volume parameters as the difference is

higher order than we work in either the chiral expansion, or in the exponential dependence.

It is most convenient to use the values of mπ(L) and fπ(L) directly measured in a given lattice

simulation. In Fig. 2 we plot the ratio of ∆(k cot δ(s)) to the one-loop value of k cot δ(s)

using Eq. (31) as a function of L for some reasonable values of mπ. We find the finite volume

corrections to be relatively small, a few times smaller than the statistical and systematic

errors quoted in recent simulations. An error of about 10% was quoted in reference [31]

for the determination of the scattering length for a pion mass of mπ ≃ 290 MeV and a

12



box size of L ≃ 2.5 fm.5 The finite volume correction from Eq. (31) for these parameters

is approximately 1%. These corrections however grow fast with the approach to the chiral

limit, and they become non-negligible as smaller pion masses are used and statistical errors

are reduced in simulations.

III. DISCUSSION

We have described the leading exponential volume dependence expicitly for the scattering

parameter of a I = 2 two-pion system near threshold in a box, by extending the one-loop

χPT calculation of pion scattering [13] to include the volume dependence. The exponentially

suppressed volume corrections can distort the universal relation between the infinite volume

scattering parameters and the power-law volume dependence of the two-particle system,

especially as the chiral limit is approached. An important point we want to stress is that

the useful way to add the exponential volume dependence to the relation between infinite

volume scattering parameters and the energy of the two-particle system in a box, is via

Eq. (9), which allows an understanding of the leading exponential volume dependence to

k cot δ(s). This is contrast to the notion of studying the exponential volume dependence of

the scattering length, the effective range etc., separately.

It is important to stress the limits of validity of the present calculation. On one hand, the

pion masses should be small enough so that the chiral expansion is converging. From the

experience acquired in the three flavor case, where kaon loops are a borderline case for the

convergence of the expansion, one expects chiral perturbation theory to be useful for mπ <

5 In Ref. [31], Beane et. al. determined the I = 2 ππ scattering length for various pion masses using a

mixed action simulation with Domain-Wall valence quarks and staggered sea quarks [33]. Because of the

mixed-action, the mesons composed of sea quarks and the mesons composed of valence quarks receive

different mass shifts from the finite lattice spacing. This means that even when the sea and valence quark

masses are tuned equal, there are still partial quenching effects in the simulation. In Ref. [34], the partial

quenching and lattice spacing corrections to the I = 2 ππ scattering length were worked out for this

mixed action theory. It was shown that the these two lattice artifacts were largely suppressed, and almost

non-existent for the mass tunings used in Ref. [31]. However, as shown in Ref. [34], there are still partial

quenching effects and in particular, in the t- and u-channel diagrams the hairpin contributions can be

significantly more sensitive to the boundary effects. For I = 2 these effects are only exponential, and for

the pion masses and box sizes used in Ref. [31], we have found they are the same order of magnitude as

the corrections of this paper, and thus not-significant to the work of Beane et. al. These effects are being

worked out in detail in Ref. [35]
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500 MeV (of course the exponential volume dependence for a 500 MeV pion, or kaon will be

negligible). Also, the box size has to be large enough so the usual power counting used here

(the so-called “p-counting”) is valid. When L is much smaller than the inverse pion mass,

another power counting is required such as the ǫ- [36] or the ǫ′-regime [37]. Additionally,

we have neglected corrections which occur from higher loops, all of which are suppressed by

additional factors of (mπ/4πfπ)2 and some of which are suppressed by additional exponential

factors of e−mπL. The diagrams with this extra exponential suppression result from two-

loop diagrams where intermediate states in both loops are purely off-shell and hence “going

around the box”.

We have focussed on the exponential corrections to phase shifts close to threshold. One

can easily extend this work to include the exponential volume dependence of the phase

shifts at higher energies. Alternatively, one can access non zero momenta by using twisted

or partially twisted boundary conditions to probe the low-momentum dependence of the

scattering amplitude [38–45]. This method may boost the entire two-particle system, how-

ever, requiring the extraction of scattering parameters in a boosted frame [46–48]. Our

methods generalize trivially to this case also. These methods can also be extended to other

interesting two-hadron sytems [11, 12], where these exponential volume effects may be more

significant.

Acknowledgments

A.W-L. would like to thank David Lin for useful discussions. This work was supported in

part by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics,

by the Office of Basic Energy Sciences, Division of Nuclear Sciences, of the U.S. Department

of Energy under Contract No. DE-AC03-76SF00098 and the National Science Council of

ROC. AWL is supported under DOE grant DE-FG03-97ER41014.

[1] L. Maiani and M. Testa, Phys. Lett. B 245, 585 (1990).

[2] H. W. Hamber, E. Marinari, G. Parisi, and C. Rebbi, Nucl. Phys. B 225, 475 (1983).
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