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Fluctuating hydrodynamics (FHD) provides a framework for modeling microscopic fluctua-

tions in a manner consistent with statistical mechanics and nonequilibrium thermodynamics.

This paper presents an FHD formulation for isothermal reactive incompressible liquid mix-

tures with stochastic chemistry. Fluctuating multispecies mass diffusion is formulated using

a Maxwell–Stefan description without assuming a dilute solution, and momentum dynamics

is described by a stochastic Navier–Stokes equation for the fluid velocity. We consider a

thermodynamically consistent generalization for the law of mass action for non-dilute mix-

tures and use it in the chemical master equation (CME) to model reactions as a Poisson

process. The FHD approach provides remarkable computational efficiency over traditional

reaction-diffusion master equation methods when the number of reactive molecules is large,

while also retaining accuracy even when there are as few as ten reactive molecules per hy-

drodynamic cell. We present a numerical algorithm to solve the coupled FHD and CME

equations and validate it on both equilibrium and nonequilibrium problems. We simulate

a diffusively-driven gravitational instability in the presence of an acid-base neutralization

reaction, starting from a perfectly flat interface. We demonstrate that the coupling between

velocity and concentration fluctuations dominate the initial growth of the instability.

http://arxiv.org/abs/1806.03389v1
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I. INTRODUCTION

Thermal fluctuations in fluids arise from random molecular motions, driving both microscopic

and macroscopic behavior that deterministic models fail to predict. In diffusive mixing experiments,

velocity fluctuations lead to giant fluctuations in concentration in the presence of concentration

gradients [1]. Buoyancy-driven instabilities can be triggered or affected by thermal fluctuations [2,

3]. In reaction-diffusion systems, thermal fluctuations can accelerate the formation of Turing

patterns on a macroscopic time scale [4], and induce long-time memory in the chemical kinetics of

a diffusion-limited system [5].

In this paper, we develop a formulation and numerical methodology for the stochastic simulation

of reactive microfluids. Here we incorporate a stochastic description of chemical reactions based on

the chemical master equation (CME) [6] into an isothermal fluctuating hydrodynamics (FHD) [7, 8]

description of diffusive and advective mass transport. The use of the CME enables us to correctly

capture large fluctuations of composition, going beyond the Gaussian approximation inherent in

the chemical Langevin equation (CLE) used in our prior work [9]. While our previous work on

reaction-diffusion systems [4] also employed the CME, it was restricted to dilute solutions. Here we

generalize the CME to non-dilute ideal mixtures with a complete Maxwell–Stefan formulation of

diffusive transport in multispecies mixtures. This includes cross-diffusion coupling among distinct

species and can account for deviations from ideality, unlike the standard reaction-diffusion master

equation (RDME) approach. Finally, by including the fluctuating Navier–Stokes equations in the

model we account for advection by thermal velocity fluctuations, which is necessary to capture

giant nonequilibrium composition fluctuations [10, 11].

Our approach is related to, but also distinct from, prior work on fluctuating hydrodynamics for

reactive liquid mixtures. An alternative Langevin-based approach proposed in [12], and extended

to full hydrodynamics in [13], represents reactions as a diffusion process along an internal reaction

coordinate, driven by Gaussian noise. This description is fully consistent with nonequilibrium ther-

modynamics and fluctuating hydrodynamics, but is not easily extensible to multispecies mixtures,

and, importantly, is expensive to use in numerical simulations because it requires introducing an

additional reaction coordinate, thus effectively increasing the dimensionality of the problem. In-

stead, in our approach we only consider the reactant and product states and consider reactions

as a jump process between these two states, driven by Poisson noise. The deterministic (macro-

scopic) as well as a linearized version of the FHD equations we consider here are the same as those

obtained from a quasi-stationary approximation of the model developed in [13] (see Eq. (26) in
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[13] and the book by Keizer [6]) as we have discussed in more detail in prior work [9]. The key

difference is that here we describe chemical fluctuations using a nonlinear FHD description based

on a master equation, rather than a linearized Langevin description. This is common in stochastic

reaction-diffusion models used in biochemical modeling [14, 15], as we have discussed in more detail

in prior work [4]. However, traditional RDME descriptions have been restricted to dilute solutions

and do not account for velocity (momentum) fluctuations. More broadly, biochemical reaction-

diffusion models have largely been developed without input from the field of (non)equilibrium

thermodynamics, and especially fluctuating hydrodynamics. Here we bridge this gap by combining

features of the RDME with FHD, thus delivering on the promise made in [4] to “explore combining

Langevin and CME approaches together, thus further bridging the apparent gap between the two.”

Giant nonequilibrium fluctuations, which arise due to the coupling with velocity fluctuations, have

been studied theoretically using linearized FHD for a dimerization reaction in [16, 17]. Here we

study giant fluctuations in a liquid mixture undergoing a dimerization reaction numerically, and

show that a quantitatively-accurate theoretical description is difficult due to the nonlinearity of

the macroscopic steady state.

In this work we simplify our previous variable-density low Mach FHD formulation by restricting

it to miscible liquid mixtures [3] in which the density is essentially independent of composition at

fixed pressure and temperature. The resulting Boussinesq (incompressible) approximation of the

momentum equation enables us to construct an efficient numerical method that accounts for inertial

effects important in buoyancy-driven fluid flows, yet remains robust for small Reynolds numbers

and large Schmidt numbers. The spatio-temporal discretization of the FHD equations is based on

our previous work [3] but with some important improvements necessary for simulating complex

reactive mixtures at small length scales. Notably, we extend our previous work on reaction-diffusion

systems [4] to general multispecies mixtures so that large deviations of composition are handled

accurately and robustly, and negative densities are avoided.

We follow a general framework for the systematic construction of FHD numerical methods based

on the stochastic version of the method of lines approach [18]. Using this framework, we have

previously developed stochastic simulation methods for gas mixtures [19] and quasi-incompressible

miscible liquid mixtures [3, 20, 21]. For liquid mixtures, we have developed a computationally

efficient low Mach number model that eliminates fast pressure waves while preserving the spatio-

temporal spectrum of the slower diffusive fluctuations [21]. To avoid severe restriction on time

step size when the Schmidt number is large, we have developed an implicit temporal discretization

of viscous dissipation [20] that relies on a variable-coefficient multigrid precondition to solve the
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coupled velocity-pressure Stokes system [22].

In this paper we make three novel contributions to the numerical methodology developed in

our prior work. First, by incorporating a second-order midpoint tau-leaping scheme [23] into our

prior algorithms for multispecies miscible liquid mixtures [3], we construct a numerical method

that efficiently samples reactions at a cost no larger than that of integrating the chemical Langevin

equation. Because our novel midpoint temporal integrator solves the CME by using tau leaping [24],

it is robust for large composition fluctuations, while also being efficient for weak fluctuations.

Second, the midpoint scheme is constructed to be robust for large Schmidt numbers, i.e., much

faster momentum diffusion compared to mass diffusion, as is typical in liquid systems. In particular,

the numerical method reproduces the correct spectrum of giant nonequilibrium fluctuations even for

time step sizes much larger than the stability limit dictated by fast momentum diffusion, while also

preserving the slow inertial momentum dynamics at large scales. Third, we take careful attention

to handling vanishing species robustly both in the formulation of the multispecies diffusion model

and in the numerical algorithm.

The rest of the paper is organized as follows. In Section II, we present the formulation of

the FHD equations coupled with the CME formulation of reactions. In Section III, we present a

numerical scheme that can solve these equations accurately and robustly even in the presence of

large composition fluctuations and vanishing species. In Section IV, we present numerical results

for four examples and discuss various aspects of our numerical method and the effects of thermal

fluctuations. First, we verify that for dilute solutions our algorithm preserves the robustness and

accuracy properties of our previous method for reaction-diffusion systems [4] by modeling the

hydrolysis of sucrose at micrometer scales. Second, to assess the fidelity of our approach in a

non-dilute setting, we consider a binary mixture undergoing a dimerization reaction 2A ⇋ A2 at

thermodynamic equilibrium with a small number of molecules per cell. Third, we also study such a

mixture out of equilibrium in the presence of giant nonequilibrium fluctuations with a large number

of molecules per cell. Fourth, we use our numerical algorithm to simulate a diffusively-driven

gravitational instability in the presence of an acid-base neutralization reaction recently studied

experimentally [2], and show that the coupling between velocity and concentration fluctuations

triggers and drives the instability at early times. In Section V, we conclude the paper with a brief

summary and a discussion of future directions.
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II. REACTIVE FLUCTUATING HYDRODYNAMICS

Our formulation relies on several approximations appropriate for many isothermal miscible

liquid mixtures. First, we neglect the effects of thermodiffusion and barodiffusion on mass transport

and assume constant temperature T and thermodynamic pressure P . Second, we assume that

density variations due to composition are small enough that they have no effect on the flow field

except through a buoyancy force. Hence, we formulate our FHD system as an isothermal Boussinesq

simplification of the low Mach number multispecies model used in [3]. While a numerical method

can be potentially constructed without these approximations, the Boussinesq formulation greatly

reduces the complexity of the numerical scheme without losing essential physics.

Given these approximations, we recast the continuity equation for mass density as a divergence-

free constraint on velocity and assume a constant density ρ0,

ρ0
∂v

∂t
+ ∇π = −ρ0∇·(vvT) + ∇·(η∇̄v + Σ) + f ,

∇·v = 0,

ρ0
∂ws

∂t
= −ρ0∇·(wsv) − ∇·Fs + Ωs.

(1)

(2)

(3)

Here, v is the fluid velocity, π is the mechanical pressure (a Lagrange multiplier that ensures the

velocity remains divergence free [25]), η(w) is the viscosity, ∇̄ = ∇ + ∇T is a symmetric gradient,

and Σ is the stochastic momentum flux. By denoting the number of species with Nspec, the vector

of mass fractions (concentrations) is given by w = (w1, . . . , wNspec
), where ws is the mass fraction

of species s and
∑

s ws = 1. We compute the mass density of each species using ρs = ρ0ws and

thus the total mass density
∑

s ρs = ρ0 is strictly constant. The buoyancy force f(w) is a problem-

specific function of w. The total diffusive mass flux Fs of species s is decomposed into a dissipative

flux F s and fluctuating flux F̃s,

Fs = F s + F̃s, (4)

and Ωs is a source term representing stochastic chemistry. Note that by summing up (3) over

all species we recover (2) since
∑

s Fs = 0 and
∑

s Ωs = 0. Based on the fluctuation-dissipation

relation, the stochastic momentum flux Σ is modeled as

Σ =
√

ηkBT
[
Z

mom + (Zmom)T
]

, (5)

where kB is Boltzmann’s constant, and Z
mom(r, t) is a standard Gaussian white noise (GWN)

tensor field with uncorrelated components having δ-function correlations in space and time.

We formulate multispecies diffusion in Section II A, and chemistry in Section II B. It is important
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to note that both the diffusion and chemistry formulations are obtained from a general form of the

specific chemical potential for each species,

µs(x, T, P ) = µ0
s(T, P ) +

kBT

ms
log(xsγs), (6)

where µ0
s(T, P ) is a reference chemical potential and γs(x, T, P ) is the activity coefficient (for an

ideal mixture, γs = 1). Here x denotes mole fractions, which can be expressed in terms of w as

x = m̄

(
w1

m1
, . . . ,

wNspec

mNspec

)
, (7)

where ms is the molecular mass of species s and m̄ is the mixture-averaged molecular mass,

m̄ =

(
∑

s

ws

ms

)−1

. (8)

In Section II C, we confirm the thermodynamic consistency of our formulation by showing that

thermodynamic equilibrium is determined by the chemical potentials, and that transport processes

and reactions do not change equilibrium statistics. In Section II D, we discuss the simplification of

our model for dilute solutions.

A. Multispecies Diffusion

Here we summarize the FHD description of multispecies diffusion formulated in [3]. Neglecting

thermodiffusion and barodiffusion, the Maxwell–Stefan formulation of the diffusion driving force

gives

Γ∇x = −ρ−1
0 ΛW −1F , (9)

where Γ is the matrix of thermodynamic factors that becomes the identity matrix for ideal mixtures,

and W is a diagonal matrix with entries w. The symmetric matrix Λ is defined via

Λss′ = −xsxs′

Ðss′

if s 6= s′ and Λss = −
∑

s′ 6=s

Λss′ , (10)

where Ðss′ is the Maxwell–Stefan binary diffusion coefficient between species s and s′. Denoting a

pseudo-inverse of Λ with χ, we can rewrite (9) as

F = −ρ0W χΓ∇x. (11)

The stochastic mass fluxes F̃ are given by the fluctuation-dissipation relation,

F̃ =
√

2m̄ρ0 W χ
1
2 Z

mass, (12)

where χ
1
2 is a “square root” of χ satisfying χ

1
2 (χ

1
2 )T = χ, and Z

mass(r, t) is a standard GWN
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field with uncorrelated components. Modifications of this formulation in the presence of trace or

vanishing species are discussed in Section III A.

B. Chemical Reactions

We consider a liquid mixture undergoing Nreact elementary reversible reactions of the form

Nspec∑

s=1

ν+
srMs ⇋

Nspec∑

s=1

ν−
srMs (r = 1, . . . , Nreact), (13)

where ν±
sr are molecule numbers, and Ms are chemical symbols. We define the stoichiometric

coefficient of species s in the forward reaction r as ∆ν+
sr = ν−

sr − ν+
sr and the coefficient in the

reverse reaction as ∆ν−
sr = ν+

sr − ν−
sr. We assume that mass conservation holds in each reaction

r; i.e.,
∑

s ∆ν±
srms = 0 for all r. It is important to note that all reactions must be reversible for

thermodynamic consistency.

To sample Ωs, we need propensity density functions a±
r for the forward/reverse (+/−) rates of

reaction r. Specifically, the mean number of reaction occurrences in a locally well-mixed reactive

cell of volume ∆V during an infinitesimal time interval dt is given as a±
r ∆V dt. Accordingly, the

mean production rate of species s is given as

Ωs = ms

∑

r

∑

α=±

∆να
sraα

r . (14)

In Section II B 1 we give a generalized law of mass action (LMA) based on thermodynamically

consistent a±
r , and in Section II B 2 we present a CME-based stochastic formulation of chemical

reactions.

1. Generalized Law of Mass Action

Here we adopt the canonical form for the rate of chemical reactions [6]. Propensity density

functions are expressed as [9]

a±
r = λr

∏

s

eν±
srµ̂s , (15)

where λr(T, P ) ≥ 0 is a reaction rate parameter assumed to be independent of the composition,

and µ̂s = msµs/kBT is the dimensionless chemical potential per particle. For the general form of

chemical potential (6), we have

a±
r = κ±

r

∏

s

(xsγs)ν±
sr , (16)
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where κ±
r (T, P ) = λr

∏
s exp(ν±

srµ̂0
s) denotes the forward/reverse reaction rate constant. From the

condition a+
r = a−

r at chemical equilibrium, we can express the equilibrium constant as a purely

thermodynamic quantity,

Kr(T, P ) =
κ+

κ−
= exp

(
−
∑

s

∆ν+
srµ̂0

s

)
, (17)

as required by statistical mechanics.

It is important to note that propensity density functions and equilibrium constants are expressed

in terms of mole fractions xs (for ideal mixtures) or activities xsγs. This generalized LMA has

a different form compared to the number density based LMA used for ideal gas mixtures in our

prior work [9]. However, this does not imply any incompatibility between the two forms of LMA.

For isothermal gas mixtures, pressure changes significantly upon reaction due to changes in mole

numbers and thus κ±
r (T, P ) cannot be assumed to be constant. On the other hand, in liquid

mixtures, where pressure changes are not significant, κ±
r (T, P ) can be assumed to be constant.

2. CME-based Stochastic Chemistry

We believe that an accurate mesoscopic chemistry description should be based on a master equa-

tion approach, which leads to the CME [14] for well-mixed [26] systems. As will be demonstrated

in Section II C 1, both the CME description and the generalized LMA are crucial for achieving ther-

modynamic consistency. Note, however, that our CME-based description itself does not require

reversible reactions. For modeling purposes, one can exclude some forward or reverse reactions

by assuming they have zero rates. However, we remind the reader that this is inconsistent with

equilibrium thermodynamics.

For reactions in a closed well-mixed cell of volume ∆V , the CME describes the time evolution

of the system in terms of the temporal change in the probability of the system to occupy each state

(specified by the number of molecules of each species). We use an equivalent, but more direct,

trajectory-wise representation [4], which is related to the computationally efficient tau leaping

method [24]. The change in the number of molecules Ns of species s in a given cell during an

infinitesimal time interval dt is expressed in terms of the number of occurrences P(a±
r ∆V dt) of

each reaction r,

dNs = m−1
s Ωs∆V =

∑

r

∑

α=±

∆να
srP(aα

r ∆V dt), (18)

where P(m) denotes a Poisson random variables with mean m. Note that the instantaneous rate

of change is written as an Ito stochastic term. The tau leaping method discretizes (18) with a
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finite time step size ∆t. To faithfully model the discrete nature of reactions, we sample integer-

valued reaction counts using Poisson random numbers as in the traditional tau leaping algorithm.

However, it is important to note that we use continuous-ranged number densities for advection-

diffusion, and therefore cells are not guaranteed to have an integer number of molecules.

We note that a Gaussian approximation of the Poisson random number P(a±
r ∆V dt) in (18) leads

to the chemical Langevin equation (CLE). In this Langevin (Gaussian noise) approximation [4, 9],

ΩCLE
s = ms

∑

r

∑

α=±

∆να
sr

(
aα

r +
√

aα
r Zreact

r

)
, (19)

where Zreact
r (r, t) denotes a standard GWN field. The Langevin description is justified in the limit

of small Gaussian fluctuations with respect to average concentrations [14]. However, the Langevin

description predicts an unphysical equilibrium state with negative densities, and does not correctly

model large deviations of chemical fluctuations [9].

C. Thermodynamic Consistency

We now demonstrate the thermodynamic consistency of our formulation for ideal mixtures at

thermodynamic equilibrium. For the simplicity of exposition, we consider a binary liquid mixture

of A atoms and A2 molecules undergoing a dimerization reaction

2A ⇋ A2, (20)

noting that this analysis also applies to multispecies ideal mixtures. In Section II C 1, we con-

sider the single-cell (homogeneous) case. We obtain the thermodynamic equilibrium distribution

of monomers and dimers to show that our chemistry model satisfies detailed balance with respect to

the correct Einstein equilibrium distribution. In Section II C 2, we consider the spatially extended

case. We show that the governing Boussinesq equations give flat structure factors at thermody-

namic equilibrium in the Gaussian approximation, in agreement with statistical mechanics.

1. Single-Cell System

We denote the number of monomers and dimers as N1 and N2, respectively. By the constant

density approximation, N1 and N2 satisfy N1 + 2N2 = ρ0∆V/m ≡ N0, where m is the mass of a

monomer and N0 is the total number of A atoms in a cell of volume ∆V . Hence, we denote the

equilibrium distribution of the composition with P (N2).

Statistical mechanics predicts that the equilibrium distribution is given by the Einstein distri-
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bution, P ∼ eS/kB , where S denotes the entropy of the system at a given state. Note that even

though we consider isothermal systems, we can still use the Einstein distribution since the only

contribution to the free energy that depends on composition is the entropy of mixing. For a binary

ideal mixture, the entropy of mixing is given as

Smix(N1, N2) = kB log
(N1 + N2)!

N1!N2!
, (21)

and the entropy of the system is

S(N1, N2) = Smix(N1, N2) − kB(N1µ̂0
1 + N2µ̂0

2). (22)

Hence, we obtain the equilibrium distribution

P (N2) ∼ eS(N0−2N2,N2)/kB (23)

with
∑N0/2

N2=0 P (N2) = 1. Note that it is straightforward to obtain the ratio of occupation probabil-

ities of adjacent states,

P (N2 + 1)

P (N2)
=

(N0 − 2N2)(N0 − 2N2 − 1)

(N0 − N2)(N2 + 1)
exp(2µ̂0

1 − µ̂0
2). (24)

We now analyze when detailed balance is achieved for the dimerization reaction (20) with respect

to the equilibrium distribution P (N2). The detailed balance condition is given as

P (N2)a+(N2) = P (N2 + 1)a−(N2 + 1), (25)

where a±(N2) denote the forward/reverse rates at the state with N2 dimers, which are to be

determined. By using (17) and (24), one can show that the detailed balance condition (25) exactly

holds for

a+(N2) ≡ κ+
(

N1

N1 + N2

)(
N1 − 1

N1 + N2 − 1

)
,

a−(N2) ≡ κ−
(

N2

N1 + N2

)
,

(26a)

(26b)

with N1 = N0 − 2N2. It is important to note that (26) reduces to a+ = κ+x2
1 and a− = κ−x2

in the thermodynamic limit. Hence, (26a) can be considered as an integer-based correction to the

generalized LMA (16); this correction makes sense because the probability of choosing a second

monomer is (N1 − 1)/(N1 + N2 − 1). Such integer corrections are well known for low density

solutions and used in most RDME models of reaction-diffusion systems, but to our knowledge they

have not previously been formulated for non-dilute ideal mixtures.

In the thermodynamic limit, we can apply Stirling’s approximation to (21) and express chemical
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potentials in (22) in terms of equilibrium mole fractions xeq
s , to give

SStirling = Seq − kBN
∑

s

xs log(xs/xeq
s ), (27)

where Seq denotes the entropy at xeq and N =
∑

s Ns. We can further approximate SStirling up

to second order in δxs = xs − xeq
s (s = 1, . . . , Nspec − 1), to get a Gaussian approximation to the

Einstein distribution. This Gaussian approximation is described by linearized FHD and we study

it in more detail, including spatial dependence, next.

2. Spatially Extended System

We can extend the dimerization results obtained for the single-cell case to the spatially extended

case. For an ideal mixture the total entropy of the system is additive over the individual cells,

Stot =
∑

i

S(N0 − 2N
(i)
2 , N

(i)
2 ), (28)

where N
(i)
2 denotes the number of dimers in cell i. Therefore, the Einstein distribution for the

spatially extended system is the product distribution

Ptot =
∏

i

P (N
(i)
2 ). (29)

This means that the number of dimers in each cell is independent of those in the other cells and

has the same distribution as the single-cell case.

We note that our FHD model of multispecies diffusion is constructed so that it reproduces

the correct Einstein distribution under Stirling’s approximation, i.e., our model is consistent with

(27) and (28). Hence, the combined chemistry and FHD model is expected to give the correct

equilibrium distribution, as long as there are sufficiently many molecules of all species in each cell

to justify the continuous approximation. In Section IV B, we numerically confirm that our method

gives an accurate approximation to (29) even when there are significant fluctuations of composition,

with as few as N2 ∼ 10 dimers per cell.

At the level of a Gaussian approximation, we can investigate the system analytically using the

linearized FHD equations. We denote the mass fractions of monomers and dimers as w and 1 − w,

respectively. We assume that w fluctuates around w̄. At equilibrium, our FHD equations (1)–(3)
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are linearized for v = δv and w = w̄ + δw as follows:

∂t(δv) = −ρ−1
0 ∇π + ν∇2(δv) +

√
νkBT ρ−1

0 ∇·
[
Z

mom + (Zmom)T
]

,

∇·(δv) = 0,

∂t(δw) = D∇2(δw) +
√

2DkBT ρ−1
0 µ−1

w ∇·Zmass + ρ−1
0 Ωlin

1 ,

(30a)

(30b)

(30c)

where ν = η/ρ0, D = Ð12, and µw is the second order derivative of Gibbs free energy with respect

to concentration w, given as µw = kBT/[mw̄(1 − w̄2)] for an ideal mixture. The linearized reaction

term is denoted by Ωlin
1 .

We denote the equilibrium structure factors (spectra) by Seq
v,v(k) = 〈δv̂δv̂∗〉 and Seq

w,w(k) =

〈δŵδŵ∗〉, where hat denotes a Fourier transform, and asterisk denotes a conjugate transpose.

Noting that the concentration equation is uncoupled from the momentum equation, these structure

factors can be obtained separately. For the non-reactive case, they are independent of k [21],

Seq
v,v =

kBT

ρ0
I, Seq

w,w =
kBT

ρ0µw
=

m

ρ0
w̄(1 − w̄2). (31)

It is easy to show that the spatial correlations of the composition fluctuations Seq
w,w are fully

consistent with the Gaussian approximation of (29).

For the reactive case, (30c) contains the stochastic chemistry term

ρ−1
0 Ωlin

1 = −r(δw) +

√
8m2(1 − w̄)

ρ2
0(1 + w̄)

κ− Z
react, (32)

where the linearized reaction rate is

r =
4m

ρ0w̄(1 + w̄)2
κ−. (33)

This is obtained by linearizing the Langevin expression (19). One can easily show that the inclusion

of the reaction term does not change Seq
w,w, consistent with thermodynamic equilibrium. This

explicitly confirms that our formulation is consistent with equilibrium statistical mechanics at the

level of a Gaussian approximation of the fluctuations.

D. Dilute Limit

One of the common assumptions in traditional reaction-diffusion modeling is that each chemical

species is dilute and thus diffuses independently of other species. In this section we explain how

our formulation simplifies in the dilute limit. We consider a solution where all solute species are

dilute (i.e., xs ≪ 1) but the solvent is possibly a homogeneous mixture. We use index s here

to denote only solute species. In the dilute limit, γs → 1 and the solute number densities are
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linearly proportional to their mole fractions, ns ≈ (ρ0/m̄sol)xs, where m̄sol is the mixture-averaged

molecular mass among solvent species, see (8). Hence, µ̂s can be expressed in terms of ns,

µ̂s =

(
µ̂0

s + log
m̄sol

ρ0

)
+ log ns, (34)

and consequently, the generalized (mole fraction based) LMA can be cast into the form of the

traditional (number density based) LMA,

a±
r = k±

r

∏

s

nν±
sr

s , (35)

where k±
r denote reaction rate constants.

In the dilute limit, multispecies diffusion also becomes simpler. In Appendix A, we consider the

dilute limit of a single solute species dissolved in a solvent mixture and show that the diffusion of

the solute species is decoupled from solvent species, see (A8). It is straightforward to extend this

result to multiple solute species. The diffusion coefficient of each solute species s then becomes a

constant, that is, decoupled from the other species, yielding

∂

∂t
ns = Ds∇2ns + ∇·

[√
2DsnsZs

]
+ m−1

s Ωs, (36)

where m−1
s Ωs represent stochastic chemistry terms based on the LMA (35). Therefore, in the

absence of fluid flow, our formulation is reduced to our previous reaction-diffusion model [4] in the

dilute limit.

III. NUMERICAL METHOD

In developing a numerical method to solve (1)–(3), we seek an approach that

• Exhibits second-order accuracy in space and time deterministically, and second-order weak

accuracy in time for the linearized FHD equations [27].

• Reduces to our previous method for reaction-diffusion systems [4] in the dilute limit, in the

absence of fluid flow.

• Generates accurate structure factors for both equilibrium and giant fluctuations, even for

large Schmidt numbers.

• Is robust in presence of trace or vanishing species.

We explain below how our design decisions satisfy these requirements. In Section III A, we review

our spatial discretization scheme and discuss robust numerical approaches for avoiding negative

densities and treating vanishing species. In Section III B, we present our temporal integration

scheme. In Section III C, we analyze the weak accuracy of our temporal integrator.
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A. Spatial Discretization

Our spatial discretization is identical to the one used in our previous work on non-reactive

FHD [3, 20, 21, 28], with a few modifications noted below. The numerical framework is a structured-

grid finite-volume approach with cell-averaged densities and pressure, and face-averaged (staggered)

velocities. We use standard second-order stencils for the gradient, divergence, and spatial averaging

in order to satisfy discrete fluctuation-dissipation balance [18].

For the densities, we construct all mass fluxes on faces and employ the standard conservative

divergence. For the advective mass fluxes, we implement two options. Centered advection uses

two-point averaging of densities to faces, and is nondissipative and thus preserves the spectrum

of fluctuations [18]. However, in order to prevent unphysical oscillations in mass densities in

high Péclet number flows with sharp gradients, we can also use the Bell–Dawson–Shubin (BDS)

second-order Godunov advection scheme [29, 30]. We note that BDS advection adds artificial

dissipation and does not obey a fluctuation-dissipation principle, but is necessary for simulations

where centered advection would fail due to insufficient spatial resolution. All simulations in this

paper use centered advection unless otherwise noted. The discretization of the momentum equation

is the same as our previous work [3, 20]. We allow for periodic boundary conditions, impermeable

walls, and no-flow reservoirs [21, 28] held at fixed concentrations.

The first modification relative to our previous work [3] is that for the stochastic mass fluxes

F̃ , we compute the matrix
√

2m̄ρ0W χ
1
2 directly on the face using spatially averaged densities,

rather than computing this matrix at cell centers and averaging to faces. To compute the spatial

averages, we use a modified arithmetic averaging function [4],

ñ(n1, n2) =
n1 + n2

2
H(n1∆V )H(n2∆V ), (37)

where n1 and n2 denote number densities at the cell centers of two neighboring cells, and H is a

smoothed Heaviside function defined as

H(x) =






0 for x ≤ 0,

x for 0 ≤ x ≤ 1,

1 for x ≥ 1.

(38)

Specifically, we first convert cell-centered mass fractions to number densities, then apply ñ to obtain

face-centered number densities, and finally convert these back to mass fractions that are used to

compute
√

m̄W χ
1
2 . We note that ñ drives the average (and thus stochastic flux) to zero if the
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number of molecules in either neighboring cell is sufficiently small (i.e., ni∆V ≤ 1), which prevents

the occurrence of negative number densities. In most cases of interest, small numbers of molecules

per cell correspond to dilute species. For dilute species (see (36)), the validity of using ñ has been

justified in [4]. In Section IV B, we numerically confirm that our approach is robust even when the

total number of molecules in a cell is O(10).

Another key modification is the computation of the diffusion matrix χ for the deterministic

and stochastic mass fluxes in the absence of some species, or, in the presence of vanishing species.

In the vanishing limit, where one or more concentrations become zero, the diffusion matrix χ is

not well conditioned since the corresponding diagonal component χss diverges. This can cause

numerical issues when one attempts to compute F and F̃ since they depend on W χ and W χ
1
2 ,

respectively. Unlike χ, however, the matrices W χ and W χW are well defined in the vanishing

limit, and we can construct W χ using a special procedure. The basic idea is that we first compute

a diffusion sub-matrix χsub of χ with the rows and columns corresponding to each vanishing species

omitted. Then we expand this sub-matrix into the full matrix W χ and approximate the remaining

components using the mathematical limit of vanishing species, ws → 0+ for all vanishing species s.

To formally describe the procedure for computing W χ in the vanishing limit, we introduce a

mapping, m(i), used to expand/contract a subsystem matrix to/from a full matrix. For example,

in a 6-species system having vanishing species w2 and w4, we have m(i) = (1, 0, 2, 0, 3, 4), i =

(1, . . . , 6). As graphically illustrated using the 6-species system in Fig. 1, there are four cases to

consider when one populates (W χ)ij :

(W χ)ij =





wiχ
sub
m(i)m(j), m(i) 6= 0, m(j) 6= 0 (yellow), (39a)

miDi

m̄
, m(i) = 0, j = i (red), (39b)

0, m(i) = 0, j 6= i, (39c)

wiDj

[
∑

k
m(k)6=0

xk

Ðkj
χsub
m(i)m(k) − mj

m̄

]
, m(i) 6= 0, m(j) = 0 (blue), (39d)

where

Dj =

[
∑

k
m(k)6=0

xk

Ðkj

]−1

. (40)

Note that color names in the parentheses in (39) correspond to the colors in Fig. 1. A derivation

of (39) and (40) is presented in Appendix A. The full matrix W χ
1
2 can be obtained from the

Cholesky decomposition of the symmetric matrix W χW . We note that if species s is vanishing,

then (W χW )is = (W χW )sj = 0, so no stochastic mass flux is generated for species s.
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(39a) (39d)

0 (39b) 0 0 0 0

0 0 0 0 0

FIG. 1. Graphical depiction of the expansion of sub-matrix χsub into a full matrix W χ for a 6-species

system having vanishing species w2 and w4. Depicted is the full matrix W χ where the colors correspond

to the cases in (39).

We note that for each vanishing species only the diagonal element of W χ remains nonzero.

Hence, the diffusion of a dilute species s (ws ≪ 1) becomes decoupled from other species (see

(A8)) and the effective diffusion coefficient Ds in (40) corresponds to the trace diffusion coefficient

of s in the given fluid mixture. It is also important to note that the construction (39) guarantees

that F s = F̃s = 0 for vanishing species, and ensures the mass conservation condition over all

species,
∑

s′ F s′ =
∑

s′ F̃s′ = 0. Therefore, this procedure is robust to roundoff errors.

In our double-precision implementation, we treat any species s with ws < 10−14 as a vanishing

species.

B. Temporal Integration Scheme

The spatial discretization of the non-reactive FHD equations for the mass densities yields a set

of stochastic ordinary differential equations. It is straightforward to incorporate our CME-based

chemistry model from Section II B via additional Poisson-noise terms,

ρ0
dws,i

dt
=
[

− ρ0∇·(wsv) − ∇·Fs

]

i
+

[
ms

∑

r

∑

α=±

∆να
sr

P(aα
r ∆V dt)

∆V dt

]

i

. (41)

where ws,i denotes the mass fraction of species s in cell i.

Our overall temporal integration strategy is a predictor-corrector approach for both species

and velocity. Our goal is to develop a scheme that is second-order accurate in space and time

deterministically, exhibits second-order weak accuracy in time for the linearized FHD equations,

and treats reactions in a manner consistent with the CME [4]. As explained below in detail, we

treat viscous momentum dissipation implicitly and species diffusion explicitly. This is because in

liquids the time step size is limited by the viscous Courant–Friedrichs–Lewy (CFL) condition (i.e.,
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momentum diffusion) due to the large Schmidt number.

To combine a second-order midpoint tau-leap reaction sampling [23, 31] with a predictor-

corrector scheme for FHD, we adopt mass density updates from the ExMidTau (explicit midpoint

tau leaping) scheme we previously developed for reaction-diffusion systems [4]. Hence, our new

scheme uses a midpoint predictor for mass densities, which differs from our earlier trapezoidal

scheme for non-reactive FHD systems [3, 20]. We have compared several combinations of mass and

momentum updates to identify the variant of the scheme that gives the most accurate spectrum

of the fluctuations (structure factors) in both equilibrium and giant fluctuation settings. In Sec-

tion III C, we provide an analysis of the structure factors, which both guides and verifies the design

decisions we made to ultimately choose this particular temporal integration scheme, and demon-

strate the advantages of the midpoint scheme. One important observation is that our temporal

integrator is robust in the large Schmidt number limit, Sc = ν/D → ∞, where ν = η/ρ0, unlike

the trapezoidal scheme used in [3, 20].

We advance the system from time tn = n∆t to time tn+1 = (n + 1)∆t in four steps:

1. Perform a predictor Stokes solve for the velocity vn+1,∗ at tn+1.

2. Calculate predictor mass densities ρ
n+1/2,∗
s at the midpoint time t = tn + 1

2∆t.

3. Calculate corrector mass densities ρn+1
s at time tn+1.

4. Perform a corrector Stokes solve for velocity vn+1 at tn+1.

These steps are elaborated in detail in Algorithm 1. In the algorithm description, superscripts are

used to denote a time level where a given quantity is evaluated, e.g., fn = f(wn). Also,
(
W

mom)n

and
(
W

mass
(i)

)n
(i = 1, 2) denote collections of i.i.d. (independent and identically distributed)

standard normal random variables generated on control volume faces independently at each time

step, and W
mom ≡ W

mom +
(
W

mom)T. We denote collections of independent Poisson random

variables generated at cell centers independently at each time step with P(i) (i = 1, 2), and denote

[•]+ ≡ max(•, 0).

In our time-advancement scheme, each Stokes problem couples a Crank–Nicolson discretization

of viscous dissipation to the divergence-free constraint on velocity, to simultaneously solve for

the velocity and mechanical pressure. To solve the Stokes system we use a variable-coefficient

(tensor) multigrid-preconditioned GMRES (generalized minimal residual) solver [22], as we have

done previously [3, 20]. The difference between the predictor and corrector Stokes solves is the

temporal discretization of the advective term (explicit vs. trapezoidal) and the forcing term (explicit

vs. midpoint); both Stokes solves are required for second-order deterministic accuracy.

As mentioned above, Steps 2 and 3 of the present scheme become essentially the same as
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Algorithm 1 Advancing the mass densities ρn
s = ρ0wn

s and velocity vn from time tn to

tn+1 = tn + ∆t. We list both centered and BDS options for advection; the BDS notation is

defined in Section III.B. in [20].

1. Solve a predictor Stokes problem for the updated velocity vn+1,∗ and mechanical pressure πn+1/2,∗:

ρ0vn+1,∗ − ρ0vn

∆t
+ ∇πn+1/2,∗ = −∇·

(
ρ0vvT

)n
+

1

2
∇·
(
ηn

∇̄vn + ηn
∇̄vn+1,∗)

+ ∇·
(√

ηnkBT

∆V ∆t

(
W

mom)n

)
+ fn,

∇·vn+1,∗ = 0.

(42a)

(42b)

2. Calculate predictor mass densities ρ
n+1/2,∗
s at the midpoint using the total diffusive mass fluxes F n as

well as the reaction source term Rn
s evaluated over the first half time step:

ρn+1/2,∗
s = ρn

s + ∆t
2 [−∇·F n

s + msRn
s ] − ∆t

2 ∇·





ρn
s

[
v

n+v
n+1,∗

2

]
(centered),

BDS
(

ρn
s , v

n+v
n+1,∗

2 , ∇·F n
s , ∆t

2

)
(BDS),

∇·F n ≡ ∇·
[
−
(
ρ0W χΓ∇x

)n
+
√

2m̄ρ0

∆V ∆t/2

(
W χ

1
2

)n
(

W
mass
(1)

)n]
,

Rn
s ≡ 1

∆V ∆t/2

∑
r

∑
α=± ∆να

srP(1)

(
(aα

r )n∆V ∆t/2
)
.

(43)

(44)

(45)

3. Calculate corrector mass densities ρn+1
s at time tn+1 using the total diffusive mass fluxes ∇·F n+1/2,∗ as

well as the reaction source term R
n+1/2,∗
s evaluated over the full time step:

ρn+1
s =ρn

s +∆t
[
−∇·F n+1/2

s +msR
n+1/2

s

]
−∆t∇·





ρ
n+1/2,∗
s

[
v

n+v
n+1,∗

2

]
(centered),

BDS
(

ρn
s , v

n+v
n+1,∗

2 , ∇·F n+1/2

s , ∆t
)

(BDS),

∇·F n+1/2,∗ ≡ ∇·
[
−
(
ρ0W χΓ∇x

)n+1/2,∗
+
√

2m̄ρ0

∆V ∆t (W χ
1
2 )n+1/2,∗

(
(W

mass
(1) )n

+(W
mass
(2) )n

√
2

)]
,

Rn+1/2,∗
s ≡ 1

2

[
Rn

s + 1
∆V ∆t/2

∑
r

∑
α=± ∆να

srP(2)

([
2(aα

r )n+1/2,∗ − (aα
r )n
]+

∆V ∆t/2
)]

.

(46)

(47)

(48)

4. Solve a corrector Stokes problem for the updated velocity vn+1 and mechanical pressure πn+1/2:

ρ0vn+1 − ρ0vn

∆t
+ ∇πn+1/2 = −1

2
∇·
[(

ρ0vvT
)n

+
(
ρ0vvT

)n+1,∗]
+

1

2
∇·
(
ηn

∇̄vn + ηn+1
∇̄vn+1

)

+
1

2
∇·
[(√

ηnkBT

∆V ∆t
+

√
ηn+1kBT

∆V ∆t

)
(
W

mom)n

]
+ fn+1/2,∗,

∇·vn+1 = 0.

(49a)

(49b)
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the ExMidTau scheme in the dilute limit in the absence of advection. The only difference is a

Stratonovich-type update of the stochastic mass flux in (47). While our previous analysis for

RDME systems [4] adopted the Ito interpretation, we choose the Stratonovich-type update here

since a general analysis for weak fluctuations (linearized FHD) [32] guarantees second-order weak

accuracy of the overall scheme for this choice. It can be shown that the Stratonovich and Ito

interpretations become identical in the dilute limit. Hence, our numerical method not only achieves

second-order weak accuracy for weak fluctuations but also inherits nice features of the ExMidTau

scheme carefully designed for strong fluctuations.

C. Structure Factor Analysis

We analyze our new temporal integrator by investigating time integration errors in the spectrum

of giant concentration fluctuations for a binary mixture undergoing a dimerization reaction. We

assume that a weak uniform concentration gradient is applied along the y-axis with gravity pointing

in the positive y-direction. The Fourier-transformed linearized equations for δv‖ ≡ δvy and δw (see

Appendix C in [9]) take the form:

∂t(δv̂‖) = −νk2(δv̂‖)+
√

2νkBT ρ−1
0 ik·Ẑmom

+gζ(δŵ),

∂t(δŵ) = −h(δv̂‖)−Dk2(δŵ)+
√

2DkBT ρ−1
0 µ−1

w ik·Ẑmass−r(δŵ)+
√

2rkBT ρ−1
0 µ−1

w Ẑreact.

(50a)

(50b)

Here k ≡ k⊥ is a wavevector in the plane perpendicular to the gradient, g is the gravitational

acceleration, ζ = ρ−1(∂ρ/∂w) is the solutal expansion coefficient, and h is the concentration

gradient, ∇w = hey. Using the method developed in [18], we analytically compute the resulting

structure factors when our temporal integrator is used to solve (50). For the non-reactive case

(r = 0), we also compute structure factors obtained from two schemes developed in our previous

work [3, 20]. The overdamped scheme (see Algorithm 2 in [20]) uses the steady Stokes equation,

i.e., eliminates the inertial term ∂tv = 0 by taking an overdamped limit. We refer to the previous

scheme for solving the inertial equation as the inertial trapezoidal scheme (see Algorithm 1 in [20]),

and to our new scheme as the inertial midpoint scheme (see Algorithm 1).

We set ∆x = 1 and kBT/ρ0 = 1. To denote how fast momentum diffusion, species diffusion,

and reaction are, we define the following dimensionless Courant numbers:

α =
ν∆t

∆x2
, β =

D∆t

∆x2
, γ = r∆t. (51)

To consider the case of a relatively large ∆t with a large Schmidt number Sc = 103 (as is typical

of liquid mixtures), we set α = 250 and β = 0.25. For the reactive case, we consider two reaction
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, reaction, no gravity

Slow reaction (γ = 0.025)
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Fast reaction (γ = 0.1)

Exact, fast reaction

FIG. 2. Structure factors for giant concentration fluctuations. Panel (a) shows Sw,w for the non-reactive case

with gravity. Results from our numerical scheme (inertial midpoint) and two earlier schemes are compared

with the exact result. Panel (b) shows Sneq
w,w = Sw,w − Seq

w,w for the reactive case with no gravity. For two

rate constants, results from our numerical scheme are compared with the exact result. The x-axis is the

dimensionless wavenumber K = k∆x.

rates γ = 0.025 and γ = 0.1, corresponding to penetration depths ξ =
√

D/r =
√

10∆x and ξ =

1
2

√
10∆x, respectively. Other parameters are chosen so that µwh2∆t2 = 100, and gζh∆t2 = 0.025

if gravity is present.

The structure factor can be decomposed into the sum Sw,w = Seq
w,w + Sneq

w,w, where Seq
w,w is the

equilibrium structure factor (31) and Sneq
w,w is the nonequilibrium enhancement. In the non-reactive

case with no gravity, the nonequilibrium enhancement exhibits a k−4 power law in the entire range

of wavenumbers k,

Sneq
w,w =

kBT

ρ0D(D + ν)k4
h2. (52)

However, the power law is suppressed at small k by gravity [21] or reaction [9].

For the non-reactive case with gravity, we compare Sw,w obtained from the three schemes

with the exact result in Fig. 2 (a). A power-law spectrum Sw,w ∼ k−4 develops for intermediate

wavenumbers k. At small wavenumbers, Sw,w becomes constant due to gravity. At large wavenum-

bers, the k−4 decay in the nonequilibrium part is hidden due to the flat equilibrium structure factor

Seq
w,w. Our numerical scheme reproduces Sw,w accurately for all but the largest k values, whereas

both earlier schemes exhibit significant deviations at either large or small k values. Significant

deviations of the previous inertial scheme at large k are due to temporal integration errors in the

nonequilibrium part Sneq
w,w, as can be seen more clearly by examining the cross-correlation between
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fluctuations of w and v (not shown). The divergence of Sw,w for the overdamped scheme at small

k demonstrates that the overdamped limit does not apply for sufficiently small k with gravity.

Thus, our new scheme combines the favorable features of our previous trapezoidal inertial scheme

(correct behavior for small k with gravity) and the overdamped scheme (correct behavior for large

k).

In Fig. 2 (b), we show the nonequilibrium enhancement Sneq
w,w in the structure factor for the

reactive case with no gravity. We obtain the exact Sneq
w,w by analyzing (50) without the stochastic

mass fluxes and with deterministic reaction (see also Eq. (58) in [16] or Eq. (44) in [17]),

Sneq
w,w =

kBT

ρ0(Dk2 + r)[(D + ν)k2 + r]
h2. (53)

Our midpoint scheme reproduces Sneq
w,w accurately for both rate constants. We emphasize that these

results are remarkable given that α = O(102). Our new scheme remains accurate for α = βSc ≫ 1

because the relative error in Sneq
w,w for our midpoint scheme has the form [1 + O(Sc−1)]O(∆t2),

indicating robust behavior for large Schmidt numbers. On the other hand, the relative error for

the trapezoidal scheme has an O(Sc)O(∆t4) term, which results in significant deviations at large

k as observed in Fig. 2 (a).

IV. NUMERICAL EXAMPLES

In this section, we consider four examples that demonstrate the capabilities of our numerical

methodology. In Section IV A, we model the hydrolysis of sucrose in an aqueous solution with very

dilute solutes. In Section IV B, we investigate a binary liquid mixture undergoing a dimerization

reaction at thermodynamic equilibrium. In Section IV C, to verify the correct coupling of mass

and momentum fluctuations, we study nonequilibrium giant fluctuations in a mixture undergoing

a dimerization reaction. In Section IV D, to demonstrate the scalability and practical utility of our

method, we investigate the effects of fluctuations for a reactive fingering instability.

A. Hydrolysis of Sucrose

We consider a dilute solution of sugar in water at equilibrium, undergoing the reversible hy-

drolysis reaction

sucrose + H2O ⇋ glucose + fructose. (54)
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Sucrose is particularly dilute, with only ∼ 10 molecules per computational cell, whereas there

are ∼ 107 glucose and fructose molecules and ∼ 1010 water molecules per cell. We investigate

the equilibrium distribution of the number of sucrose molecules in a cell to demonstrate that our

approach correctly models the dilute limit.

We use cgs units and choose physical parameters assuming T = 293, atmospheric pressure,

ρ0 = 1, and η = 0.01. The four species are glucose (s = 1), fructose (s = 2), sucrose (s = 3), and

water (s = 4). Using the trace diffusion coefficients of the solutes, Ds (s = 1, 2, 3) [33, 34], and the

self-diffusion coefficient of water Dwater [35], the Maxwell–Stefan binary diffusion coefficients are

assigned as in [36],

Ðs4 = Ds, Ðss′ =
DsDs′

Dwater
(s, s′ = 1, 2, 3). (55)

Since we consider the dilute limit, we assume that the system is an ideal mixture and obeys

the traditional LMA, with forward rate a+ = k+n3, reverse rate a− = k−n1n2, and equilibrium

constant K = neq
1 neq

2 /neq
3 . The reaction equilibrium lies almost completely in the direction of the

formation of glucose and fructose [37], but uncatalyzed sucrose hydrolysis is extremely slow (with

a half-life of 500 years) [38]. While we use an experimental value of K [37], we artificially increase

the reaction rates to k+ = 10 and k− = K/k+ so that the forward reaction occurs about 100 times

per cell per simulation.

We set up a two-dimensional system consisting of 32×32 cells with dimensions ∆x = ∆y = 10−4

and periodic boundary conditions. The thickness of the system is ∆z = 10−4 and the cell volume

∆V = ∆x∆y∆z. We consider the case where there are ten sucrose molecules per cell. Hence,

neq
3 is determined from neq

3 ∆V = 10 and neq
1 = neq

2 are subsequently determined from equilibrium.

The resulting equilibrium mass fractions are weq
1 = weq

2 = 4.9 × 10−3, weq
3 = 5.7 × 10−9, and

weq
4 = 0.990. We use two time step sizes, ∆t = 10−5 and 10−4, to check the continuous-time

limit and quantify time integration errors. Note that the larger ∆t corresponds to diffusive CFL

numbers Ds,max∆t/∆x2 = 0.07 for species diffusion and ν∆t/∆x2 = 100 for momentum diffusion.

For each value of ∆t, we ran 16 independent samples up to time T = 1, collecting data every

t = 10−4 for t ≥ T /10.

We recall that the number of sucrose molecules in a cell N = n3∆V has a continuous range in

FHD simulations. We define its discrete distribution as P (N) =
∫N+ 1

2

N− 1
2

ρ(N ′)dN ′, where ρ(N) is

the continuous distribution of N . Figure 3 shows that for the smaller ∆t, P (N) is remarkably close

to the physically correct Poisson distribution PPoisson(N), and ρ(N) is essentially zero for negative

values of N . We note that PPoisson(N) is significantly different from its Gaussian approximation
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FIG. 3. Equilibrium distribution for a dilute sugar solution undergoing a hydrolysis reaction. Numerical

results for the distribution (histogram) P (N) of the number of sucrose molecules in a cell N are compared

with the physically correct Poisson distribution PPoisson(N), and its Gaussian approximation PGauss(N).

In the inset, numerical results for the continuous distribution ρ(N) are shown near N = 0. Results from

a smaller time step size ∆t = 10−5 are plotted with error bars corresponding to two standard deviations,

whereas those from a larger time step size ∆t = 10−4 are plotted without errorbars for clarity.

PGauss(N). For the larger ∆t, while the remarkable agreement with the Poisson distribution

is still observed, negative values of N start to appear, yielding
∫ 0

−∞ ρ(N)dN ≈ 3 × 10−5, see

the inset in Fig. 3. The same results were obtained in our previous reaction-diffusion model of

dilute solutions [4], confirming that our treatment of the stochastic mass flux coefficients (see

Section III A) is consistent with the dilute limit, even in the presence of random advection. We

have also confirmed that the equilibrium structure factor of each species (not shown) has a flat

spectrum (as predicted by theory [3]), indicating that there are no spurious correlations between

cells.

B. Dimerization: Equilibrium Distribution

We next consider a liquid mixture undergoing the dimerization reaction (20). This binary

system contains monomers A (s = 1) and dimers A2 (s = 2) and is representative of cyclic

dimer formation in pure liquid acetic acid. We demonstrate here our ability to model a system

with strong fluctuations in the absence of a dominant solvent by considering a small number of
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molecules (∼ 10) of each species per cell. As in the sugar solution example, we investigate the

equilibrium distribution of monomers and dimers; however, since the system is not dilute, the

distribution of each species is not Poisson. The numbers of monomers and dimers in a cell (N1

and N2), do not vary independently due to the constant density assumption N1 + 2N2 = ρ0∆V/m,

where m is the mass of a monomer. Therefore, we investigate the equilibrium distribution of N2,

P (N2), for N1 + 2N2 = 40.

We simulate a two-dimensional system consisting of 32 × 32 cells under periodic boundary

conditions. Here we use arbitrary units that give ∆x = ∆y = ∆z = 1, Ð12 = 1, and m = 1 with

kB = 1. We set ρ0 = 40 with weq
1 = weq

2 = 0.5 so that N1 +2N2 = 40 with N eq
1 = 20 and N eq

2 = 10.

We set the reaction rates a± as in (26) with a modification

a+ = κ+

(
N+

1

N+
1 + N+

2

)(
(N1 − 1)+

N+
1 + N+

2 − 1

)
, (56)

where N+ = max(N, 0). Note that (56) turns off unphysical reactions when 0 < N1 < 1. The

rate constants κ+ = 0.8724 and κ− = 1.125 are chosen as follows. The ratio K = κ+/κ− = 0.7755

is determined so that the resulting theoretical distribution gives 〈N2〉 =
∑

N2
N2P (N2) = N eq

2 .

The magnitude of κ± is determined so that the linearized reaction rate r = 0.1 (see (33)) gives

a penetration depth ξ ≡
√

Ð12/r =
√

10∆x. We set η = 103 and T = 103. We use a small

∆t = 10−2 to minimize temporal integration errors. For 16 independent samples with 105 time

steps, we collect data every 102 time steps, discarding the first 104 time steps.

In Fig. 4, we compare the simulation result for the equilibrium distribution P (N2) with theo-

retical results obtained in Section II C 1. We denote the exact Einstein distribution obtained from

the entropy expression (22) by Pexact, the Stirling’s approximation result obtained from (27) by

PStirling ∼ exp(SStirling/kB), and the Gaussian approximation of PStirling by PGauss. Note that Pexact

is a discrete distribution whereas PStirling and PGauss have continuous ranges, 0 < N2 < 20 and

−∞ < N2 < ∞, respectively. Significant deviations of PGauss from Pexact indicate that the system

is subject to strong fluctuations, as expected from the small number N eq
2 = 10. Over a remarkably

wide range, our numerical method accurately matches Pexact. Even beyond this range, it gives

sensible values with accuracy better than or comparable to PStirling. Measurable deviations are

observed only for larger values N2 = 19 and 20, for which the occupation probabilities are already

very small (Pexact(N2) < 10−6).

It is important to note that statistically identical results for P (N2) are obtained from the corre-

sponding non-reactive system with κ± = 0 (not shown). This confirms thermodynamic consistency

of our overall formulation. In addition, this also confirms the validity of our overall numerical treat-
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FIG. 4. Equilibrium distribution for a binary ideal mixture undergoing a dimerization reaction. The

distribution P (N2) of the number of dimers in each cell N2 is computed using our numerical method and

compared with various theoretical results (see text). Error bars correspond to two standard deviations.

ment for diffusion with strong fluctuations. In particular, considering that our multiplicative GWN

modeling for strong fluctuations was developed in the dilute limit [4] and analyzed only for this

case, the validity of its extension to non-dilute solutions cannot be taken for granted.

C. Dimerization: Giant Fluctuations

We now investigate a system where velocity fluctuations are coupled to diffusion. We consider

the same dimerization reaction, but examine giant fluctuations in the presence of a weak concen-

tration gradient with no gravity. We focus on the nonequilibrium contribution to the structure

factor, Sneq
w1,w1

= Sw1,w1
− Seq

w1,w1
, for wavevectors perpendicular to the concentration gradient. We

neglect stochastic mass fluxes and use deterministic chemistry so that we eliminate the equilibrium

fluctuations, and thus obtain Sneq
w1,w1

with greater statistical accuracy. We have previously consid-

ered a gas mixture in a similar setting [9]; here we consider a liquid mixture with a large Schmidt

number Sc = 103, which quantitatively changes the spectrum of giant fluctuations.

A detailed theoretical analysis of giant fluctuations using linearized FHD first appeared in [16]

assuming that the system is near chemical equilibrium everywhere. It was later extended in [17]

to account for the nonlinearity caused by the fact that the system is not everywhere in chemical
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equilibrium; this theoretical analysis assumes a liquid mixture so it was not applicable for the gas

mixture we considered in [9]. In these theoretical studies the concentration gradient was imposed

via the Soret effect by applying a temperature gradient, unlike the case we consider here where

the concentration is fixed at the y-walls using reservoir boundary conditions. Furthermore, the

theoretical studies in [9, 16] did not account for the boundary conditions for the fluctuating fields.

We consider a two-dimensional square domain of side length Lx = Ly = 64 (in arbitrary units),

and periodic boundary conditions in the x-direction. The system is divided into 128 × 128 grid

cells with grid spacing ∆x = ∆y = 0.5. To remain in the linearized FHD regime, we increase

the cell depth to ∆z = 106 so that there are sufficiently many monomers and dimers in a cell,

N1 + 2N2 = 2.5 × 105 for ρ0 = 1 and m = 1. We set Ð12 = 1, η = 103, and kBT = 103.

For the dimerization reaction, the equilibrium constant K = κ+/κ− = 0.75 is chosen to give a

reference equilibrium state with weq
1 = weq

2 = 0.5. Two sets of reaction constants are considered:

(κ+, κ−) = (8.438 × 10−2, 0.1125), corresponding to linearized reaction rate r = 0.4 and penetration

depth ξ =
√

10∆x; and (κ+, κ−) = (8.438 × 10−3, 1.125 × 10−2), corresponding to r = 0.04 and

ξ = 10∆x. The time step size is set to ∆t = 0.025, which gives Courant numbers Ð12∆t/∆x2 = 0.1

and ν∆t/∆x2 = 100. We ran 105 steps discarding the first 104 steps, and computed the steady-state

monomer concentration profile w̄1(y) and Sneq
w1,w1

(kx).

To impose a concentration gradient in the y-direction, no-slip reservoir conditions [21] are

imposed with (w1, w2) = (0.49, 0.51) at y = 0 and (w1, w2) = (0.51, 0.49) at y = Ly. While a linear

concentration profile is formed in the steady state for the non-reactive case, a nonlinear profile is

generated by the dimerization reaction. In Fig. 5 (a), the profiles of w̄1(y) for reaction rates r = 0.4

and 0.04 are compared with the one for the non-reactive case. As r increases, the nonlinearity in

w̄1(y) becomes more evident. This is because a larger region around y = Ly/2 is constrained to

be in chemical equilibrium due to faster reactions, resulting in larger concentration gradients at

the boundaries. Identical concentration profiles are obtained from the corresponding deterministic

reaction-diffusion systems (not shown).

In Fig. 5 (b), we show numerical results of Sneq
w1,w1

. To account for errors in the discrete approx-

imation to the continuum Laplacian, the modified wavenumber [28]

k̃x =
sin(kx∆x/2)

∆x/2
(57)

is used instead of kx. For the non-reactive case (r = 0), a clear k−4 power law is observed until the

confinement effect becomes significant for small kx ≪ L−1
y . For the reactive cases, the k−4 power

law is only observed at large kx ≫
√

r/Ð12. For larger r, the k−4 power law appears in a narrower
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FIG. 5. Giant fluctuations with a dimerization reaction. Panel (a) Steady-state monomer concentration

profile w̄1(y). Results from two linearized reaction rates r and the non-reactive case are compared. Panel (b)

Nonequilibrium enhancement Sneq
w1,w1

in the structure factor of the monomer mass fraction. Numerical results

(depicted by symbols) are compared with theoretical predictions obtained under a linear gradient setting

(depicted by a solid line for r = 0.4, dashed for r = 0.04, and dotted for r = 0). A slope marker for the k−4

decay is drawn and arrows denoting kx =
√

10r/Ð12 are depicted for r = 0.4 (solid) and r = 0.04 (dashed).

Note that nonlinear gradients develop in reactive cases, which explains discrepancies between numerical and

theoretical results at small to intermediate wavenumbers.

range of kx values and the prefactor of the power law becomes larger.

For the non-reactive case, the prefactor of the power law is accurately predicted by the theo-

retical prediction (53). By multiplying (53) by the confinement factor [39]

1 +
4 [1 − cosh(kxLy))]

kxLy [kxLy + sinh(kxLy)]
, (58)

the theoretical prediction is further improved at small kx as shown in Fig. 5 (b). We note, however,

that this factor is obtained for impermeable walls and the resulting correction is not exact for our

reservoir boundaries. For the reactive cases, the validity of (53) is questionable due to the nonlinear

concentration gradients. In fact, how to estimate the value of h2 is not obvious. Considering that

Sneq
w1,w1

is an averaged structure factor for different values of y, we estimate the value of h2 from

the profile of w̄1(y) using a spatial average,

h2 =
1

Ly

∫ Ly

0

(
dw̄1

dy

)2

dy. (59)

Theoretical results obtained from (53), (58), and (59) are shown in Fig. 5 (b). Remarkably, the

k−4 power law region is accurately predicted. However, the theoretical prediction overestimates
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Sneq
w1,w1

at small kx by several orders of magnitude for the reactive cases. This is expected since

the local linear gradient approximation eventually fails at large length scales. The FHD equations

linearized around a nonlinear stationary profile were studied in [17]; however, an explicit result for

the static structure factor that we could compare with our numerical result was not obtained.

D. Fingering Instability with a Neutralization Reaction

In this section we examine the development of asymmetric fingering patterns arising from a

diffusion-driven gravitational instability in the presence of a neutralization reaction. We per-

form three-dimensional large-scale simulations of a double-diffusive instability occurring during

the mixing of HCl and NaOH solution layers in a vertical Hele-Shaw cell (two parallel glass plates

separated by a narrow gap). This system has been studied experimentally and theoretically us-

ing a two-dimensional Darcy advection-diffusion-reaction model [2, 40]. Thermal fluctuations may

play a key role in triggering the instability. To the best of our knowledge, our simulations are

the first ones to use a three-dimensional model and the first to include thermal fluctuations. We

investigate the effects of each stochastic component (mass flux, momentum flux, and chemistry)

on the evolution of the system. We initialize our simulations with natural mass and momentum

fluctuations without any artificial perturbation, and therefore our simulation can be regarded as

an ideal experiment.

1. Model Setup

For the model setup and physical parameters, we follow the experiment of Lemaigre et al. [2].

We use cgs units unless otherwise specified and assume T = 293 and atmospheric pressure. The

isothermal approximation has been justified by a linear stability analysis showing that the heat

generated by the neutralization reaction

HCl + NaOH → NaCl + H2O (60)

plays a negligible role in this problem [40]. We consider a Hele-Shaw cell with side lengths Lx =

Ly = 1.6 and Lz = 0.05, with the y-axis pointing in the vertical direction, and the z-axis being

perpendicular to the glass plates. The domain is divided into grid cells with grid spacing ∆x =

∆y = ∆z = 6.25 × 10−3 so there are 256×256×8 cells. We impose periodic boundary conditions in

the x-direction and no-slip walls in the z-direction. In the y-direction, we impose free-slip reservoir

boundary conditions with concentrations that match the initial conditions of each layer.
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We start with a gravitationally stable initial configuration, where an aqueous solution of NaOH

with molarity 0.4 mol/L is placed on top of a denser aqueous solution of HCl with molarity 1 mol/L.

Each reactant and product is treated as a single charge-neutral species, giving the four species HCl

(s = 1), NaOH (s = 2), NaCl (s = 3), and water (s = 4). Under the approximation that the

solution density ρ is linearly dependent on the solute concentrations [2], the buoyancy force is

expressed as

f(w) = −ρ0

(
3∑

s=1

αs

Ms
ws

)
gey, (61)

where αs is the solutal expansion coefficient, and Ms is the molecular weight (in g/mol) of solute

s. We set g = 981, ρ0 = 1, and η = 0.01. The initial density difference between the two layers

is approximately 4 × 10−4. The Maxwell–Stefan binary diffusion coefficients are determined using

(55) from the known trace diffusion coefficients of the solutes and the self-diffusion coefficient of

water. The values of αs and the trace diffusion coefficients are obtained from Table II in [2].

Since the neutralization equilibrium lies far to the product side, we only consider the forward

reaction. We assume that the rate is given by the traditional LMA for a dilute solution, a+ = kn1n2.

However, we note that neutralization is a diffusion-limited reaction. In other words, reaction occurs

extremely fast (with rate λ ∼ 1011 s−1), as soon as reactants encounter each other. Because of

this, the validity of the local LMA is questionable [5]. The estimated value of k ∼ 10−11 cm3s−1

is impractically large (converted using (31) in [41]), and would require an unreasonably small ∆t

for numerical stability. For our simulations, we choose a smaller value k = 10−18 and ∆t = 10−3

based on a deterministic numerical study presented in Appendix B.

The initial mass fractions in each cell are generated as the sum of mean values w0 and natural

fluctuations δw. The mean mass fractions w0 are set to w0,upper = (0, 0.0157, 0, 0.9843) in the

upper half-domain and w0,lower = (0.0358, 0, 0, 0.9642) in the lower half-domain. Assuming that

natural fluctuations are Gaussian, we sample them using the known equilibrium structure factor

at the mean state (Eq. (D4) in [3]),

δw =
1√

ρ0∆V
(I − w01T)(W 0M)

1
2 zmass, (62)

where W 0 = diag(w0
s), M = diag(ms), and zmass is a vector with i.i.d. standard normal random

variables. The initial momentum fluctuations are generated in a similar manner,

δv =

√
kBT

ρ0∆V
zmom, (63)

where zmom is a vector with i.i.d. standard normal random variables, followed by an L2 projection
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TABLE I. Four simulations performed for the buoyancy-driven instability with an acid-base neutralization

reaction.

chemistry
initial fluctuations stochastic fluxes

mass momentum mass momentum

simulation A stochastic on on on on

simulation B no reaction on on on on

simulation C deterministic off on off on

simulation D deterministic off off off on

onto the space of divergence-free vector fields.

We use the Langevin chemistry description given in (19) and the BDS advection scheme. We

can justify the use of the CLE by noting that the system is near the macroscopic limit because

fluctuations are weak. For centered advection, we observe oscillations around the interface of fingers

(not shown) for the chosen grid spacing as expected due to the high cell Péclet number. When the

grid spacing is reduced to half, oscillations become less pronounced without changing the results

significantly (not shown).

2. Effects of Thermal Fluctuations

We perform four FHD simulations changing how chemistry is treated, whether natural mass/momentum

fluctuations are initially imposed, and whether subsequently stochastic mass/momentum fluxes

are included, as summarized in Table I.

By comparing the results of simulations A, B, C, and D, we can assess the effects of chemo-

hydrodynamic coupling and thermal fluctuations on the fingering pattern formation. For a perfectly

flat initial interface, thermal fluctuations play an essential role in perturbing the interface at early

times, but once an uneven interface appears, the dynamic instability dominates and thermal fluc-

tuations are expected to play a secondary role in subsequent pattern formation, as we previously

confirmed in the absence of reactions [3].

We compare the reactive case (simulation A) with the non-reactive case (simulation B) in

Figure 6. As also seen in the experiment [2], an asymmetric growth of fingers is observed in the

reactive case. In addition, the growth of fingers is much faster when the reaction is present. This

is due to the coupling of the fast neutralization reaction and the fast diffusion of the acid species.

Disparities between the acid and base species can be also seen in the concentration profiles around
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FIG. 6. Asymmetric growth of convective chemo-hydrodynamic fingering patterns in a Hele-Shaw cell,

induced by a double-diffusive instability in the presence of a neutralization reaction. The left and middle

columns, (a) and (b), depict the mass density profiles of chemical species at t = 25 and t = 40 (simulation A),

whereas the right column (c) displays the non-reactive case at t = 40 (simulation B). The upper, mid, and

bottom rows show ρHCl, ρNaOH, and ρNaCl, respectively. For each species, two-dimensional slices of the

three-dimensional field ρs(x, y, z) are shown. The square images show ρs(x, y, z = Lz/2) (halfway between

the glass plates) and the thin vertical side bars show the slice ρs(x = 0, y, z) corresponding to the left edge of

the square images. Both simulations were initiated with natural mass and momentum fluctuations without

any artificial perturbation.
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FIG. 7. Influence of different types of thermal fluctuations on the formation of fingering patterns. We

compare the mass density profiles ρs(x, y, z = Lz/2) of NaCl at t = 30 halfway between the glass plates

for three simulations. Simulation A (left) corresponds to the full fluctuating hydrodynamics equations.

Compared with simulation A, all stochastic mass components (stochastic mass flux and stochastic chemistry)

are omitted in simulation C (middle). Simulation D (right) is similar to simulation C but with initial velocity

fluctuations also removed. Red circles indicate areas with the biggest differences.

the fingers; such disparities are not observed in the non-reactive case. We point out that the

concentration develops three-dimensional profiles that are not constant across the thickness of the

Hele-Shaw cell, as can be seen from the side bars (y −z cross-sections) in the figure. Such structure

would not be captured by the two-dimensional Darcy approximation used in prior computational

studies [2, 40].

In Fig. 7, we compare simulations C and D with simulation A to investigate the contribution of

each stochastic component. Compared with the full fluctuating hydrodynamics (simulation A), all

stochastic mass components are omitted in simulation C. However, the resulting fingering patterns

are essentially the same as in simulation A. This indicates that contributions of stochastic mass

fluxes and stochastic chemistry are negligible in this example. Instead, concentration fluctuations

driven by the stochastic momentum flux dominate the formation of an uneven interface. This can be

confirmed by the comparison of simulation A with simulation D, where initial velocity fluctuations

are turned off compared with simulation C, and only stochastic momentum fluxes are included.

The resulting fingering patterns are virtually the same with slight differences caused by differences

in the initial velocity conditions. This is consistent with the fact that any initial momentum

conditions are quickly damped out in a liquid with a high Schmidt number. In fact, in a simulation

similar to simulation C but without subsequent stochastic momentum fluxes, it takes more time

(∼ 5 s longer) for fingering patterns to start to grow. Hence, we confirm that velocity fluctuations
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driving giant composition fluctuations dominate the triggering of the instability starting from a

perfectly flat interface.

It is important to note that our simulation results show that the thermal fluctuations are

sufficiently large to kick off the instability on a time scale comparable to that when a macroscopic

initial perturbation is imposed. The fingering patterns observed in simulation A at t = 40 s are

quite comparable to the experimental result shown in Figure 1 (e) in [2] at t = 30 s. Of course,

in the actual experiments the initial interface is not perfectly flat due to imperfections in the

preparation of the initial configuration.

V. SUMMARY AND DISCUSSION

We have developed a fluctuating hydrodynamics (FHD) formulation and numerical methodology

for stochastic simulation of reactive liquid mixtures. Our approach robustly models a wide range

of microliquids, including dilute solutions as well as mixtures with no single dominant solvent. Our

multispecies transport model is based on Maxwell–Stefan cross-diffusion, incorporates a stochastic

chemistry description based on the chemical master equation (CME), and couples reaction-diffusion

with a stochastic Navier–Stokes equation for the fluid velocity. Our numerical method is based on

several techniques that helped us gain computational efficiency without compromising accuracy.

Specifically, the implicit treatment of momentum dissipation allowed us to avoid the severe restric-

tion on time step size imposed by the small Reynolds number and large Schmidt number, while

the use of the tau leaping method enabled us to sample CME-based chemistry efficiently. For a

binary liquid mixture undergoing a dimerization reaction, we demonstrated the thermodynamic

consistency of our overall formulation beyond the Gaussian approximation, and accurately repro-

duced the equilibrium Einstein distribution for both dilute solutions and liquid mixtures. Owing

to a careful treatment of strong concentration fluctuations and vanishing species, our numerical

method remained robust even for cells with as few as ten molecules; coarse-graining at such small

scales is at the limits of fluctuating hydrodynamics.

Our numerical results for the spectrum of giant nonequilibrium fluctuations in a binary mixture

undergoing a dimerization reaction were not in good agreement with theoretical predictions for

smaller wavenumbers. We believe that this mismatch is due to the fact that we used a very simple

theory that assumes the gradient is constant and weak. A more accurate theory requires linearizing

the FHD equations around the nonlinear steady-state solution of the macroscopic equations, and

proper treatment of the boundary conditions. Such a linearization was carried out in [17] without
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accounting for the boundary conditions (see in particular Eq.(15) in [17]). Nevertheless, analytical

computation of the structure factor proved too difficult and the authors used a perturbative analysis

for which the zeroth-order approximation is the simple approximation that the applied gradient is

constant and weak and the system is everywhere near chemical equilibrium. An explicit formula

for the next-order correction was not obtained for the static structure factor. Our computations

showed that the simple zeroth-order theory, while giving a qualitatively correct picture of how

reactions affect giant fluctuations, overestimates the fluctuations by orders of magnitude at small

wavenumbers.

We performed the first three-dimensional simulations of a buoyancy-driven instability in the

presence of an acid-base neutralization reaction. Our results demonstrate that velocity fluctuations

generate giant concentration fluctuations that are sufficiently large to drive the initial growth of

the instability, even when the initial interface is perfectly flat. In particular, we found that thermal

fluctuations can trigger the instability on a time scale comparable to that observed in recent

experiments, although a direct comparison is not possible because the exact initial condition in

experiments is hard to control or measure.

In our prior work on reaction-diffusion systems [4], we treated diffusion implicitly. This allowed

us to use time step sizes an order of magnitude larger than the stability limit imposed by species

diffusion. In this work we treated diffusion explicitly because momentum diffusion is much faster

than mass diffusion in liquids, and thus the time step size was primarily limited by the requirement

to accurately resolve momentum dynamics at small scales. Nevertheless, in a number of problems,

such as, for example, catalytic micropumps [42] or electroconvective instabilities at large applied

voltages [43], the time scales of interest are those at which diffusion reaches a quasi-steady state

in at least one direction. In this case one must treat diffusion implicitly. This is straightforward in

principle but requires the development of several nontrivial components. First, because the diffusion

of all species is coupled in generic mixtures, one must develop either temporal integrators that treat

only the diagonal part of the diffusion matrix implicity, or develop a multispecies multigrid solver

for coupled implicit discretizations. Second, the semi-implicit temporal integrators developed in [4]

must be modified to integrate the momentum equation in a way that is robust for large Schmidt

numbers. Third, boundary conditions need to be handled, both in the diffusion solver, and in the

coupling between diffusion and advection for reservoir boundaries.

In this work we assumed the validity of a Boussinesq approximation, neglecting the change

in density with composition at a given pressure and temperature, as dictated by the equation of

state (EOS) of the mixture. This is a limiting approximation in practice, especially for reactive
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mixtures in which reactions can rapidly change density locally. In prior work [3], we accounted for

the density dependence on composition using low Mach asymptotics. It is important to observe

that the multispecies low Mach model proposed in [3] applies even to ideal gas mixtures, not just

liquid mixtures. There are several difficulties with extending the formulation and algorithms we

developed in prior work to reactive low Mach number models. First, reactions can lead to local

changes in pressure which, in the low Mach limit, must get instantaneously distributed throughout

the system as a global adjustment of the background thermodynamic pressure. It is anticipated

that barodiffusion will have to be accounted for to achieve thermodynamic consistency when the

chemical potentials depend nontrivially on pressures. Second, enforcing the EOS will require a

nonlinear iteration of a coupled mass-momentum diffusion system, unlike the simpler case consid-

ered in [3] where we could enforce a linear EOS with only a decoupled linear Stokes solve. Both of

these difficulties are compounded if one wishes to treat diffusion implicitly or to account for energy

transport in a non-isothermal generalization.

In future work, we will account for electrochemistry by incorporating charged species into our

model, similar to the developments in [44] for the non-reactive case. By using electroneutral

asymptotics [45], we will be able to model the species (HCl, NaOH, and NaCl) in the acid-base

fingering instability as separate ions (H+, OH−, Na+, and Cl−), which is physically correct given

that HCl and NaOH are both strong electrolytes. Resolving the diffusion of each ion individually

is required to correctly model electrodiffusion in mixtures with more than two ions. Incorporating

charged species will also allow us to simulate weak electrolyte solutions (in which molecules do not

fully disassociate into ions), catalytic motors [42], and electrokinetic locomotion [46, 47].
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Appendix A: Diffusion Matrix with Vanishing Species

In this appendix we derive the analytic expressions (39) for the matrix W χ in the limit of

vanishing species. For simplicity, we consider a case where the last species among N species

vanishes:

wN → 0+,

wi → w0
i > 0 (i = 1, . . . , N − 1) with

N−1∑

i=1

w0
i = 1.

(A1a)

(A1b)

We show next that each component of W χ converges to

(W χ)ij → w0
i χsub

ij (i, j = 1, . . . , N − 1)

(W χ)NN → mNDN

m̄0

(W χ)Ni → 0 (i = 1, . . . , N − 1)

(W χ)iN → w0
i DN

[
N−1∑

k=1

χsub
ik x0

k

ÐkN
− mN

m̄0

]
(i = 1, . . . , N − 1)

(A2a)

(A2b)

(A2c)

(A2d)

where χsub is the diffusion matrix of the subsystem consisting of non-vanishing species with w0 =

(w0
1, . . . , w0

N−1), and x0 and m̄0 are computed from (7) and (8) using w0. We also show that the

trace diffusion coefficient DN of species N in the fluid mixture with composition w0 is expressed

as

DN =

[
N−1∑

k=1

x0
k

ÐkN

]−1

. (A3)

By rearranging the definition of χ [3],

χ = (Λ + αwwT)−1 − 1

α
11T, (A4)

where α 6= 0, and using 1TΛ = 0, χw = 0, and 1Tw = 1, we obtain

χΛ + 1wT = I. (A5)

Looking at the (N, N)-component of (A5) and using (10), we have

xN χNN

N−1∑

i=1

xi

ÐiN

(
1 − χNi

χNN

)
+ wN = 1. (A6)

Noting that χNN = O(w−1
N ) and

χNi

χNN
→ 0, (A7)

we obtain (A2b) and (A3) by taking the limit of (A6) using (7). Then (A2b) and (A7) imply

(A2c). Applying the same technique to the (i, N)-component of (A5) for i = 1, . . . , N − 1, we
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obtain (A2d).

We also observe that (A2) gives

F N = −ρ0
mNDN

m̄0
∇xN . (A8)

Hence, the diffusion of the dilute species becomes decoupled from those of other species and its

trace diffusion coefficient is given by (A3).

Appendix B: Rate Constant of Neutralization Reaction

In this appendix we determine an appropriate value for the rate constant k of the neutralization

reaction (60) for the simulations of the fingering example reported in Section IV D. As mentioned

in the main text, the estimated value of k ∼ 10−11 is too large, as it requires impractically small

time step sizes. By performing deterministic simulations, we investigate a range of values for k to

determine at what point increasing k stops changing the results. We also examine the convergence

of the results using different time step sizes.

For these deterministic simulations, we use a smaller domain (half the length in the x- and

y-directions) with the same grid spacing. To generate an initial configuration with an uneven

interface, we introduce random perturbations of composition in each cell immediately above the

interface and set

w0
s = aUw0,lower

s + (1 − aU)w0,upper
s , (B1)

where a = 0.1 and U is a standard normal random number generated independently in each cell.

We compute fingering patterns for several values of k from 10−23 to 10−15, with several values of ∆t

ranging from 10−3 to 10−2, using the same random initial configuration. To assess the similarity

of two simulation results, we compute the gross NaCl production ρ0
∫

w3(r, t)dr, as well as the

L1-norm of the vy field ‖vy‖ =
∫

|vy(r, t)|dr.

Figure 8 (a) shows the time evolution of ‖vy‖ for various values of k for ∆t = 10−3. As k

increases, ‖vy‖ grows faster, indicating that fingers grow faster. For 10−22 . k . 10−19, time

profiles change significantly depending on the value of k. On the other hand, for k & 10−19, the

change becomes less significant. Also, time profiles for k . 10−22 coincide with that of the non-

reactive case. This suggests that there are three different regimes for k: slow, intermediate, and

fast reaction regimes. The gross NaCl production shown in Fig. 8 (b) exhibits similar behavior.

While more NaCl is produced as k increases, the growth slows down around k ≈ 10−19 and a

plateau is observed beyond this value. Hence, from a modeling point of view, one can simulate the
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FIG. 8. Effects of the reaction rate constant k on the fingering instability observed when a layer of NaOH

is placed on top of HCl solution, for deterministic simulations with a randomly perturbed initial interface.

Panel (a) shows the time profiles of the norm of the vy field for various values of k. Panel (b) shows gross

NaCl production up to time t as a function of k. Solid lines denote the results for ∆t = 10−3, whereas dotted

lines in the same colors depict the results for ∆t = 10−2. Arrows indicate k = 4/(n0
HCl∆t) for ∆t = 10−2

(dotted line) and ∆t = 10−3 (solid line), where n0
HCl is the initial number density of HCl in the lower layer.

neutralization reaction using a value of k from the plateau region. It is important to note, however,

that one cannot choose an arbitrarily large value of k due to the stability limit imposed by our

explicit tau-leaping treatment of reactions. In fact, fingering patterns obtained using ∆t = 10−2

and 10−3 (not shown) are essentially the same for k . 10−18. However, both results start to show

unphysical behaviors for k∆t > 4/n0
HCl, where n0

HCl is the initial number density of HCl species in

the lower layer, as can be seen from the abrupt increase of the gross NaCl production in Fig. 8 (b).

Based on these observations, we choose k = 10−18 and ∆t = 10−3. The value of ∆t is much

smaller than the mass diffusion stability limit. As shown in Fig. 8 (b), ∆t . 10−2 is required to

guarantee stability when the reaction is stiff and k ≈ 10−18. It is noted, however, that ∆t . 10−3

is required to give a reasonable CFL number for momentum diffusion ν∆t/∆x2 = 0.256. This

is because small time-integration errors in the velocity field at early times can cause significant

perturbations at later times because of the growing instability. If the exact time evolution at early

times is not important, one can safely use ∆t = 10−2 without sacrificing physical fidelity.
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