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ABSTRACT OF THE DISSERTATION 

 

Lensfree Computational Microscopy Tools and their Biomedical Applications 

 

by 

Ikbal Sencan 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2013 

Professor Aydogan Ozcan, Chair 

Conventional microscopy has been a revolutionary tool for biomedical applications since 

its invention several centuries ago. Ability to non-destructively observe very fine details of 

biological objects in real time enabled to answer many important questions about their 

structures and functions. Unfortunately, most of these advance microscopes are complex, bulky, 

expensive, and/or hard to operate, so they could not reach beyond the walls of well-equipped 

laboratories. Recent improvements in optoelectronic components and computational methods 

allow creating imaging systems that better fulfill the specific needs of clinics or research related 

biomedical applications. In this respect, lensfree computational microscopy aims to replace 

bulky and expensive optical components with compact and cost-effective alternatives through 

the use of computation, which can be particularly useful for lab-on-a-chip platforms as well as 

imaging applications in low-resource settings. Several high-throughput on-chip platforms are 

built with this approach for applications including, but not limited to, cytometry, micro-array 

imaging, rare cell analysis, telemedicine, and water quality screening.[1]–[6] 

The lack of optical complexity in these lensfree on-chip imaging platforms is 

compensated by using computational techniques. These computational methods are utilized for 

various purposes in coherent, incoherent and fluorescent on-chip imaging platforms e.g. 

improving the spatial resolution, to undo the light diffraction without using lenses, localization of 
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objects in a large volume and retrieval of the phase or the color/spectral content of the 

objects.[3], [5] For instance, pixel super resolution approaches based on source shifting are 

used in lensfree imaging platforms to prevent under sampling, Bayer pattern, and aliasing 

artifacts. Another method, iterative phase retrieval, is utilized to compensate the lack of lenses 

by undoing the diffraction and removing the twin image noise of in-line holograms. This 

technique enables recovering the complex optical field from its intensity measurement(s) by 

using additional constraints in iterations, such as spatial boundaries and other known properties 

of objects. Another computational tool employed in lensfree imaging is compressive sensing (or 

decoding), which is a novel method taking advantage of the fact that natural signals/objects are 

mostly sparse or compressible in known bases.[7] This inherent property of objects enables 

better signal recovery when the number of measurement is low, even below the Nyquist rate[8], 

and increases the additive noise immunity of the system.  
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Chapter 1 Introduction 

Conventional optical microscope has been a revolutionary tool for biomedical 

applications since its invention. Over the last decades, it has been significantly advanced to 

meet the high spatial and temporal resolution demands [9]–[12]. However; most of these 

advanced optical microscopy methods could not pass beyond the walls of high-end clinical and 

research settings due to their high cost and complexity. Computational microscopy, on the other 

hand, offers more accessible optical imaging platforms by replacing costly and complex optical 

hardware with computational software [6]. Lensfree on-chip imaging and sensing platforms are 

among the best examples of this practice. 

 

Figure 1: Partially coherent, on-chip holographic microscopy setup 

Lensfree microscopy platforms also aims providing portability for field-use, compatibility 

with lab-on-a-chip devices and extremely wide field-of-view without sacrificing the resolution 

towards effectively addressing specific needs of applications like telemedicine, microfluidics and 
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high-throughput screenings.[1]–[5], [13]–[16] The lack of expensive optical components(e.g. 

lasers, high NA lenses), simplistic design, and effective use of widely available cameras and 

cellphones are the key factors of these platforms enabling these unique advantages. On the 

other hand, this approach also brings some challenges that needed to be computationally 

addressed not to trade-off the resolution.  

 

Figure 2: Fluorescent, Lensfree, Ultra-wide field-of-view, On-Chip, High-throughput Imaging 
Platform (FLUOCHIP) 

The first immediate challenge is due to the absence of lenses: dealing with diffracted 

brightfield and fluorescent signatures, and twin image artifacts of inline-holograms. I employed 

iterative phase retrieval and compressive decoding algorithms to resolve these issues. Also, I 

further tailored them to provide computational solutions for insufficient temporal coherence of 

LEDs or sunlight and demultiplexing of simultaneous multicolor lensfree fluorescent signatures.  
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Figure 3: Microscopy with On-chip Nano-Apertures (MONA) Setup 

The second challenge of performing on-chip microscopy is a result of placing the objects 

very close to the detector as demonstrated in Figures 1, 2 and 3. This short distance  (<1mm) is 

necessary to maintain enough signal to noise (SNR) ratio and also allows all of the active area 

of the detector array to become the imaging field of view, which is uncoupled from the spatial 

resolution of the system. However, this also causes the pixel size of the detector to be a 

potential limiting factor towards achieving high spatial resolution. Although for most applications 

and biological objects of interest, this limitation is not significantly pronounced as demonstrated 

throughout Chapter 3.1 and 3.2; under-sampling and aliasing artifacts are observed for 

holographic imaging of objects like high resolution gratings as shown in Figure 4. These artifacts 

are well addressed by implementing pixel super resolution methods on lensfree geometries 

based on source [17] or object shifting [18]. I tailored and implemented this method for my 

holographic recoveries in Chapter 3.3 and 3.4.  
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Figure 4: Effects of under-sampling and lack of temporal coherence for lensfree holographic on- 
chip microscopy. The use of pixel super resolution to overcome under-sampling issue 

  
This dissertation is organized as follows: After providing a brief theoretical background 

on iterative phase retrieval, pixel super-resolution, and compressive sensing in Chapter 2, a set 

of lensfree computational microscopy tools, their applications are listed in two main categories 

in Chapter 3 and 4 based on the coherency levels of the imaging system. Finally, Chapter 5 

provides a general conclusion on the reported lensfree computational microscopy tools and their 

biomedical applications. 

  



5 

Chapter 2 Methods 

Computational on-chip microscopy provides compact, cost-effective, and robust imaging 

geometries for telemedicine and lab-on-a-chip applications, since it does not use any lenses or 

highly coherent light sources such as lasers. The lack of these components is successfully 

compensated using computational methods: Diffraction and twin-image artifacts are corrected 

by compressive decoding algorithms or iterative phase retrieval techniques whereas spatial 

under-sampling and aliasing problems are mitigated by pixel super resolution methods as 

mentioned in the introduction chapter.  

This section will focus on the theoretical aspects of three methods that are mainly 

employed in lensfree computational microscopy platforms: Iterative Phase Retrieval, Pixel 

Super-Resolution, and Compressive Decoding. 

2.1 Iterative Phase Retrieval 

 Iterative phase retrieval [19], [20] is a quite mature field vastly studied while 

several decades. There are various approaches to iteratively retrieve the lost phase information, 

from the recorded intensity pattern(s) by enforcing additional constraints [19]–[23] These 

constraints include but not limited to multiple intensity images recorded in different depths, 

assumptions about the optical nature of the object (e.g. phase or amplitude only objects), 

multiple intensity images recorded under different illumination conditions (e.g. wavelength, 

spatial distribution), known phase or amplitude modulations before the detection, and known 

field outside a rough object mask. I adapted an object support based phase retrieval approach 

for lensfree holographic imaging applications listed in this dissertation since the objects of 

interest were sparse.[3] The constraint applied here is that the objects have finite spatial 

confinement, and surrounding background is known. By enforcing this condition, this technique 

is capable of iteratively recovering the phase of the diffracted field incident on the detector from 

a single intensity measurement. As a result, the complex field (amplitude and phase) of the 
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lensfree holograms can be back-propagated and focused to the object plane, thereby allowing 

reconstruction of the objects free from twin-image contamination. This approach can be briefly 

explained as follows: First, the raw holograms are interpolated by a factor of four to six, using 

cubic spline interpolation. Though this interpolation step does not immediately enrich the 

information content of the holograms, it still helps towards achieving more accurate phase 

recovery and higher resolution in the reconstructed image. It helps to create a better object 

support mask by smoothing the objects in the initial back-projection of the hologram. It also 

introduces higher spatial frequencies in the hologram, which initially do not carry energy. Then 

gradually, the frequency content is extrapolated to these higher spatial frequencies as iterative 

phase reconstruction steps detailed below are followed. Then the detected intensity is back-

propagated to the object plane with the Rayleigh-Sommerfeld integral without any 

approximations (like paraxial or far-field) by using the angular spectrum method, assuming a 

field phase of zero as an initial guess [24]. Specifically, after taking the 2D Fourier Transform of 

the square root of the measured intensity it is multiplied with the optical transfer function that for 

propagation:  

 (     )   {
   (    (

 

 
)√    (
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)                        √  
    

    
 

 

                                                                                                   

 (1) 

, where z is the forward propagation distance; λ is the illumination wavelength; fx and fy are the 

spatial frequencies along the x- and y-directions, respectively; and n is the refractive index of 

the propagation medium.  

Since the on-chip platforms introduced in Figure 1 detect partially coherent inline 

holograms, this back-projection of recorded intensity serves as a great initial estimation of the 

object field to feed the phase retrieval algorithm; although the recorded image is not necessarily 

treated as a hologram. The object support mask is simply created at this first backprojection. 

Depending on how complicated the objects are, the mask is defined either by global or local 
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thresholding the intensity of the field at the object plane or by locating its regional maxima 

and/or minima. Then it is iterated back and forth between the object and detection planes by 

enforcing the constraints at each level. The individual cell is treated to be illuminated with a 

coherent light and due to their microscopic cross-sections, and the incident wave on each cell is 

assumed to be a plane wave. On the object plane (z=zo), I enforce the background outside the 

finite object support (S) while preserving the field inside the support. This background (B) can 

either be the back-projected intensity image of the same field of view captured before loading 

the object or simply the mean value of the field at the object plane as a flat background. The 

updated field in ith iteration on the object plane can be written as follows, where the superscripts 

denote the iteration step and the subscripts denote the distance z from the detector. 
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         (   

        )      (   
     ) (3) 

On the detector plane (z=0), I enforced the square root of the measured intensity image 

in each iteration while keeping the phase. 

  
            |  

   
     |      (       (  

      )) (4) 

 

Using this spatial-mask-based greedy phase retrieval method on partially coherent on-

chip holograms; recovery results converge with only 5-10 iterations without stagnations or local 

minima problems [cite] to a complex object field cleaned from twin image artifacts. Because I 

preferred to use the angular spectrum method for propagations between planes by employing 

multiple Fast Fourier Transforms (FFT), the recoveries are also quite fast, in terms of 

computation time. This image reconstruction time can be as low as <1 s, up to an image size of 

∼20 megapixels using a graphics processing unit (GPU) (CUDA-enabled NVIDIA GeForce GTX 

285). 
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  Using such a phase retrieval algorithm instead of a regular holographic reconstruction 

method has certain advantages. For large and highly scattering objects, the scattered light 

cannot always effectively interfere with the reference, so that self-interference terms become no 

longer negligible, which is very commonly assumed to be negligible in holographic 

reconstructions. However, unlike the holographic reconstruction methods, the phase recovery 

approach treats the detected quantity as the intensity of the complex field and tries to iteratively 

recover its phase. Therefore, the phase-recovery-based reconstruction approach is especially 

useful for lensfree imaging of highly scattering cells or larger-scale organisms where the self-

interference terms start to dominate over holographic terms.  

2.2 Pixel Super-Resolution  

 When the lensfree holograms of the objects contain very high frequency fringes that 

cannot be well sampled with the physical pixel size, undersampling and aliasing artifacts are 

observed in the lensfree holograms and this reflects as resolution loss to the microscopic 

recoveries as demonstrated in Figure 4. To address this problem, a de-aliasing approach called 

“pixel super resolution” is adapted to lensfree holographic imaging geometry. Pixel super 

resolution is widely used in real life, for security applications since infrared cameras are quite 

low-resolution compared to the imaging standards in visible range. It is important to clarify that 

this approach is different than the famous super-resolution methods like STED, PALM, or SIM 

[9]–[11], [25] which does aim to beat the diffraction limit. The main idea behind „pixel-super 

resolution‟; however, is to beat the undersampling and aliasing limitations and it is practiced by 

capturing multiple slightly shifted low resolution frames from a scene and fusing them in a way 

that they will form a well-sampled, high-resolution image of the same filed-of-view.  These low 

resolution frames with relative translational sub-pixel shifts are mostly captured either by moving 

the detector or the objects. Due to the unique geometry of lensfree, on-chip, holographic 

imaging platforms, these subpixel shifts are very practically achieved by moving the light 
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sources, as well. [17] As a result of the z1 and z2 ratio in Figure 1, a millimeter range shift in 

source level is projected as micrometer level object signature shifts on the detector level. 

 In this dissertation, I employed pixel super resolution on RGB (Red, Green, Blue) 

lensfree on-chip holograms of objects illuminated with broadband light sources. I used a 

modified version of the algorithms reported in [6], and [17], which can be summarized as 

follows: Since my holograms are recorded with a color sensor and illuminated with broadband 

light sources, all red, green and blue channels of my lensfree images contained information. 

First, RGB pixels are separated and low resolution frames (L) are grouped based on which color 

channels that they are read. Then a small region that contains a reference circular object is 

selected from the wide field of view to estimate the relative shifts of all Ls with respect to the first 

frame. These shifts are estimated by running cross-correlating between these selected regions 

for a color channel (for instance green) and then locating the peaks in these correlation maps. 

After the shifts for each color channels are calculated based on these estimated shifts, a high 

resolution frame (H) is reconstructed per color channel by minimizing the following cost function 

(regularized maximum likelihood estimation), where k represents the shift number, Lk is the 

measured low resolution image, Hhpf is the high-pass filtered high resolution image, and α is the 

regularization parameter.  

     (
 

 
) ‖    ̃  ‖

 

 
 (

 

 
) (    
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2.3 Compressive Sensing  

Digital revolution in sensing provided us the ability to collect massive amounts of data 

from various types of sensors, spanning the electromagnetic spectrum e.g. visible, acoustic, 

infrared, radio frequency ranges. This ability also brings an increasing pressure on sensors, 

hardware, and algorithms and requires finding efficient ways of acquiring, storing and 
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processing this deluge of data. 

Transform coding [26] is one of the most widely used approaches to handle this 

problem. In this approach, a signal (e.g. N-pixel image x) is first completely acquired. Then its 

set of coefficients are computed for a chosen domain such as Fourier, wavelet etc. After 

locating the most significant K coefficients, the transform coder discards all the value and 

location information except ones belong to these K chosen elements. So transform coding can 

be shortly described as “Sample first, question later” type of approach which is very inefficient 

when N>>K. For a long time, it has been tried to directly estimate the set of large coefficients 

that will not be discarded by the transform coder. During the last decade, compressive sensing 

made significant progress towards achieving this goal as a very clever way of acquiring the 

compressed data by replacing the regular sampling with more general measurements. 

Compressive sensing can be described as a “Sample less, compute later” type of approach, 

unlike transform coding. 

 

Figure 5: Elements of Compressive Sensing [8] 
 

Compressive sensing theory [27], [7] relies on the fact that most of the natural or 

manmade signals are sparse or at least compressible in a transformation domain. The sorted 

transform coefficients of a “sparse” signal contain only a few (K<<N) nonzero components 

whereas these coefficients from a “compressible” signal show an exponentially decaying 

characteristic. For instance, while smooth images are usually sparse in Fourier domain, images 
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with sharp corners and edges are sparse in wavelet domain. There are also many examples 

where the object itself is already sparse in spatial domain like distribution of fluorescently 

labeled cells or particles, which will be shown later in this prospectus.  

Once assuring the signal can be represented sparsely in a certain basis, the 

measurement matrix should be chosen whose rows represent M (M = O(Klog(N/K))<<N) 

number of individual linear measurements. The measurement matrix should be chosen such 

that it is incoherent with sparsifying matrix and they should satisfy the “Restricted Isometry 

Property (RIP) [28]”. In other words, these two bases (measurement and sparsifying) together 

should form a linear orthogonal transform set in order to successfully recover the signal x from 

its reduced dimensional projection y. Although it is very hard to design/test arbitrary pairs of 

bases satisfying RIP, it is shown that a uniformly distributed random basis is incoherent with any 

fixed basis with high probability. This practically means that M random projections (K<M<<N) 

can be used to acquire data.  

The last step is to recover the signal back from these linear measurements.  

          . (6) 

For this end, several algorithms are suggested like ℓp norm minimization, which can be defined 

as 

             ‖ ‖  (∑ |  |
  

   )
   

   (7) 

Using the pure least square minimization (p=2) is not a preferable method for finding a sparse    

such that  

            (8) 

 since it is minimizing the energy and almost never provides sparse solutions. When p=0, the 

recovered value of sparse representation of the signal becomes the  

s‟= arg min||s||0, (9) 

which simply means to minimize the number of nonzero values. However this problem is very 
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complex to solve, as it requires checking all 








K

N
possible subspaces. At this point, recovery 

algorithms minimizing the ℓ1 norm (Basis Pursuit) are ideal because they can easily minimize 

magnitude summation which also provides the sparsest solution with a high probability. As a 

result of great efforts for finding the optimum way of recovery, there are several powerful code 

packages available. In this work, ℓ1 or total variation (TV) regularized least-square minimization 

algorithms are preferred (ℓ1_ls [29] and TwIST[30]) both specially because of their performance, 

speed and, ease of use for large scale data. 

 ̃         ‖        ‖ 

 
        (10) 

                         ∑ √(  
  
 )

 
 (  

  
 )

 

  (11) 

               ‖ ‖   ∑ |  |
 
    (12) 

 

Incoherent lensfree imaging applications are quite straightforward to approach with 

compressive sensing techniques because they are linear in intensity and fluorescent objects are 

mostly sparse in spatial domain. Thus, I widely employed compressive decoding approaches in 

different incoherent lensfree imaging platforms by tailoring the forward model –measurement 

matrix- as it will be mentioned later in this prospectus. It is also shown that CS can be applied to 

coherent imaging systems [31], [32], [33], which are nonlinear in intensity measurements. In 

Chapter 3.4, I also used it to demultiplex sunlight holograms into narrow spectral channels, 

which requires solving a deeply underdetermined problem.  

In the following two chapters, I introduce some lensfree computational microscopy tools 

and their biomedical applications. I preferred to present them under two broad categories based 

on the coherence level of their imaging methods: Partially-Coherent Imaging and Sensing 

Applications and Incoherent Imaging Applications.  
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Chapter 3 Lensfree Partially-Coherent Imaging and Sensing Applications 

 The methods and applications reported in this chapter are already published as journal articles 
in the following references: [1]–[4], [34]. 

 

On-chip imaging of biological objects based on partially-coherent holography has a great 

potential to complement the conventional optical microscopy with its compact and high-

throughput solutions. Along this line, the lensfree, inline holography with a compact geometry 

particularly is utilized in the computational microscopy tools presented in this manuscript. This 

geometry makes them mechanically robust and field-portable systems opt for applications like 

telemedicine. I will briefly explain the basics of this lensfree, partially-coherent, on-chip imaging 

platforms, before giving some examples of their applications. 

3.1 High-throughput Holographic On-chip Imaging Platform 

 
Figure 6: Schematic of the lensfree, on-chip, holographic imaging of different objects with unit 

fringe magnification over the whole sensor active area[4] 

 
As illustrated in Figure 6, objects of interest are placed directly on the top of the 

optoelectronic sensor array (CCD or CMOS). So, the typical distance between the objects and 

the sensor active area (z2) is below 2 mm. A partially-coherent light source e.g. LED, which is 

placed 40-100 mm above the objects (z1) is first filtered with a large pinhole with a diameter of 

d=0.05-0.1mm before it uniformly illuminates the objects. While a small portion of the 
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illumination is scattered by the objects, s(x,y), the remaining form the unperturbed reference 

light r(x,y). So, the intensity to be detected by the optoelectronic sensor can be written as  

  |                   |
  

 |         |
   |         |

                                             (13) 

The pure scattered light intensity carrying the information about the fine details of the 

objects is usually too weak to detect and buried under the strong uniform reference light 

intensity. However interference of them within a coherence diameter that is typically larger than 

the signature of biological objects, allows the heterodyne detection of these details. To recover 

the complex field right after the object plane, I utilized a phase retrieval algorithm which 

iteratively improves the field estimation by forcing the rough guess of object boundaries and the 

intensity measurement as constraints. It is important to remind that these intensity 

measurements are also partially-coherent inline holograms, providing a very good initial 

estimation of the complex object field. This property allows the code to quickly converge without 

facing stagnation of local minima problems. Thus, the phase and amplitude images which are 

clean from twin-image artifacts are recovered, using only 5-20 iterations, within <1sec using a 

graphics processing unit (GPU).  

The performance of these platforms for biomedical applications is first demonstrated on 

blood. Figure 7 shows the lensfree hologram of red blood cells (RBC) with sample 

concentrations of ∼102 000 cells/μL and 394 000 cells/μl. Despite the severe overlap of the 

RBC signatures, the reconstruction matches well with the 10X microscope comparison. [3] 
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Figure 7: (a1 and a2). The lensfree holographic image of RBCs with density of 102 000 cells/μL  
and ∼394 000 cells/μl., cropped from a much larger field of view of ∼24 mm2. Individual 

holographic signatures of the cells at such high cell densities severly overlap. (c1 and c2) Thje 
phase retrieval results and their microscope comparisons (10x objective) (b1 and b2) are well 

matching. [3] 
 

Then these experiments are repeated with various concentration levels and counting 

and volume estimation results are compared against the manual microscope counts and coulter 

counter (Model Coulter LH750, Beckman Coulter) results. An automated RBC count up to 

400000 cells/μl with <5% accuracy is reported with reconstructed images. Also the total cell 
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volume is quite accurately estimated (Figure 8, top inset) by using the unwrapped phase images 

of the cells [35] assuming that RBCs are phase only objects with refractive index of ~1.4. Also, 

automated white blood cell (WBC) count results are demonstrated using the lens-free 

holographic imaging platform shown in Figure 8 (bottom), as a function of the whole blood 

dilution factor (8×, 12×, and 16×, 24 samples per dilution factor). The average WBC density of 

this patient is estimated to be 4875, 4805, and 4251 WBCs/μL, respectively. These results show 

a nice agreement with the Coulter Counter result, 4700 WBCs/μL. [3] 

Next, this geometry is used for demonstration of high-throughput, color imaging of C. 

elegans worms which are widely studied microscopic model organisms [1]. This platform is very 

suitable for such an application because of its integration with microfluidics is straightforward, 

and it can simultaneously image ~100 worms through its wide FOV (24 mm2). Moreover, in this 

application, color of the objects is also demonstrated as shown in Figure 9 for the stained C. 

elegans sample. Color imaging is achieved by digitally combining recoveries of three RGB 

(wavelengths of 450, 550 and 650 nm) sequentially recorded holograms.[1] 
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Figure 8: (Top) Automated holographic counting of RBCs in the hologram domain (pink curve) 
and the reconstructed image domain (blue curve) compared against manual microscope counts. 

The counting error of reconstructed signatures remains within 5% range up to 400k cells/μL 
(Top, inset) Shows calculated volume histogram of RBCs compared against a Coulter counter 
(Model Coulter LH750, Beckman Coulter), result. (Bottom) WBC counts and density estimation 

from a patient for 3 different whole blood dilution factors (8x, 12x, 16x). [3] 
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Figure 9: (left) A lensfree, partially-coherent hologram of C. Elegans worms that is captured with 
the platform shown in Figure 6. Digital processing of this raw hologram permits simultaneous 
on-chip imaging of C. Elegans samples over >24 mm2 FOV. Using a state of the art GPU, this 

digital reconstruction process takes <1 s over the entire imaging FOV. (right) Digitally 
reconstructed holographic images of a C. Elegans sample stained using Ponceau S red, 

captured with illumination wavelengths at 450 nm, 550 nm and 650 nm, respectively (FWHM = 
15 nm in each case). Lensfree color image obtained by fusing the reconstructions at each 

wavelength is compared against the brightfield microscope image obtained with a 10X 
objective-lens.[1] 

 

3.2 Portable Holographic On-Chip Microscopes for Telemedicine Applications 

After some initial bench-top applications for clinical and research settings, this 

computational microscopy approach is also used to develop a tool that better fulfills the imaging 

needs of resource-limited settings. For this end, a compact, light-weight and cost-effective 

telemedicine microscope is demonstrated.[2] This lensfree on-chip microscope is smaller than 

4.2cm × 4.2cm × 5.8cm, weights ~46 grams, and achieves sub-cellular resolution over a large 

field of view of ~24 mm2 as shown in Figure 10. Since this compact and light-weight microscope 

is based on digital in-line, partially-coherent holography, it does not need any lenses, bulky 

optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple 

LED and a compact optoelectronic sensor-array to record lensfree holograms of the objects, 

which then permits rapid digital reconstruction of transmission objects. Furthermore, due to its 
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large pinhole size, this lensfree incoherent holographic microscope has orders-of-magnitude 

improved light collection efficiency and is very robust to mechanical misalignments; it may offer 

a cost-effective tool especially for telemedicine applications involving various global health 

problems in resource limited settings. Figure 10 shows the images of various blood cells 

recorded with this standalone platform and their reconstructions matching well to the 40x 

microscope comparisons. It is important to note that these entire objects are digitally cropped 

from the wide FOV of ~24 mm2 in order to show the imaging performance.  

 

Figure 10: (Left) The lensfree telemedicine microscope utilizing an LED source (λ = 591 nm) 
with a photon-efficient (50–100 μm diameter) aperture of in front. The LED and the sensor are 

powered through USB connection from the side. The cylindrical structure is simply a hollow tube 
that the spatially filtered light propagates within before illuminating the objects. Light tubes of 

different lengths can be interchangeably used to achieve different degrees of spatial coherence 
depending on the requirements of the application. Objects are loaded onto the sensor-chip 

using the sample tray. (Right) Various objects imaged using the lensfree telemedicine 
microscope on the left are illustrated and compared against 40× objective-lens (NA=0.6) images 
of the same FOV. The bottom row shows the recorded intensities that are digitally processed to 

reconstruct the middle row images. [2] 
 

This platform is further improved to several compact handheld microscopes like the high-

resolution handheld microscope based on pixel super resolution [36] and the handheld 

tomography device [37] which will not be covered in this manuscript. Another dimension of this 

work which is going to be mentioned here is the lensfree cellphone microscope [13], where the 

on-chip, lensfree, partially-coherent holography method is used to turn a regular camera phone 
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into a microscope with a simple ~38 gram attachment as shown in Figure 11 (a) and (b). This 

attachment is very similar to the handheld unit except that this custom made plastic piece 

carrying a battery-powered LED source, is specially designed to fit to the cellphone like its back 

cover. It also utilizes the RGB sensor of the cellphone to record the raw format, Bayer patterned 

intensity images. Since an LED with 587 nm center wavelength is used for illumination, the blue 

channel is highly corrupted by noise. Therefore, preprocessing is needed before the rough 

boundary estimation and initial estimation of the object. The two high SNR channels (red and 

green) channels of the acquired raw holographic image are balanced using a background 

image. The missing blue pixels are estimated by using a demosaicing algorithm [38] not 

penalizing the edges in order to initially guess the object and automatically detect its rough 

boundaries. Then specially tailored iterative phase retrieval algorithm is used to enforce the 

object mask and the measured intensity at red and green channels as two constraints to 

converge the final microscopic image. The complete recovery process is summarized in Figure 

11-c. Several experiments is conducted using this cellphone microscope on various biological 

samples like blood cells, platelets and waterborne parasites and compared its performance 

against regular microscope images as illustrated in Figure 11-d. 
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Figure 11:  (a) The lensfree cellphone microscope which operates based on incoherent in-line 
holography is shown. The additional hardware installed on the cellphone weighs <38 grams 
(<1.4 ounces) and is composed of an inexpensive light emitting diode (at 587 nm) with an 

aperture of ~0.1mm butt-coupled to the LED. This cellphone microscope does not utilize any 
lenses or other bulky optical components and operates with a unit fringe magnification to claim 
the entire active area of the sensor as its imaging field of view. The samples to be imaged are 

loaded from the side through a mechanical sample holder. (b) Schematic diagram of the 
microscope attachment shown in (a) is illustrated. (c) De-Bayering algorithm developed to 

create monochrome holographic images from Bayer patterned, raw-RGB output of the lensfree 
cellphone microscope is summarized. Red and green channels of the acquired raw holographic 

image are equalized using a background image that was recorded with identical illumination 
conditions as the object. Blue pixels are estimated from their red and green neighbors using an 
edge-aware interpolation approach and are further refined through an iterative recovery process 

with the help of an automatically generated object support mask. Finally, the recovered 
hologram is up-sampled and fed into the object-support based phase retrieval algorithm to 

create the corresponding microscopic images of the objects. (d) Imaging performance of the 
lensfree cellphone microscope shown in (a) is compared against a regular microscope (10X 
objective lens, 0.25 numerical aperture) for red blood cells, white blood cells (monocytes and 

granulocytes), platelets, and Giardia lamblia cyst. The lensfree holograms captured by the 
cellphone sensor are digitally processed within less than 30 msec to reconstruct microscopic 

images of the specimen as shown on the middle column.[13] 
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3.3 Spectral Demultiplexing of On-chip Polychromatic Holograms  

Computational microscopy platforms reported so far in this manuscript all use partially 

coherent on-chip holographic imaging geometries. In these geometries, light emitting diodes 

(LED) are preferred over lasers for illumination to avoid multiple reflections and speckle noise. 

Moreover, their compactness, low-cost, and durability make them ideal light sources for lensfree 

on-chip microscopy.  

When the illumination source is not perfectly monochromatic, the recorded hologram is 

incoherent superposition of weighted monochromatic hologram intensities.  

   
 |   
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The spectrum of the illumination source and sensor spectral response curve defines the 

contribution (c) of each wavelength. This overlapping causes a smearing effect in the measured 

hologram, decrease the fringe visibility and cause all the high resolution information embedded 

within these fringes to be buried under background noise as represented in Figure 4. Another 

way to explain this is that the temporal coherency diameter shrinks as the source bandwidth 

(Δλ) gets wider.  

                     
        

     
  (16) 

As a result, the lack of temporal coherence and artifacts due to the quasimonochromatic 

assumptions in recoveries of polychromatic holograms limits the maximum spatial resolution 

and cause artifacts as the source spectral bandwidth gets broader and broader. Although 

regular bandwidth of LEDs (~15nm) is mostly enough to provide a reasonable resolution for 

many biological objects, these limitations and artifacts become more pronounced as the spatial 

resolution demands get higher.  
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Some optical setup modifications can be considered to mitigate or at least reduce these 

limitations: using shorter wavelengths, closer object-sensor distances or narrowband spectral 

filters with LEDs. However these modifications cannot effectively address the need because of 

the following reasons: Common image sensors are not sensitive enough for lensfree imaging in 

very short wavelengths. Further reducing the object-to-sensor distance is not applicable for 

most of the sensor structures. Even so, it causes severe under-sampling of the holographic 

signatures, insufficient shifts for pixel super resolution, and lack of thermal isolation from the 

sensor chip, which is a significant issue for imaging live biological objects. Especially for 

conditions, which shorter object to detector distances and wavelengths are not applicable; 

narrowing the bandwidth of the source is the only solution to relax the temporal coherence 

limitation. Filtering high power LEDs by using narrow band (3-10nm, cost around $70-300) 

spectral filters works for high resolution imaging of static objects; although, it causes a very 

photon inefficient process and requires long image acquisition time. Thus, a computational 

solution is highly preferred to resolve artifacts due to the polychromatic nature of the LED 

illumination in lensfree imaging. 

 

Figure 12: General Idea of Polychromatic phase retrieval (PolyPR) 



24 

To address this need, I use a polychromatic phase retrieval method (Figure 12, 13) to 

demultiplex the superimposed spectral characteristics of the object. This method partially 

relaxes the temporal coherence limitation without hardware restrictions and enables the use of 

illuminations with a wider spectral bandwidth. As a result, the improved light efficiency allows 

shorter image acquisition times and longer object-sensor distances. This algorithm iteratively 

converges into the complex multispectral field distribution by using the super-resolved 

polychromatic intensity measurement, source and detector spectra and additional constrains 

like rough spatial boundaries of the object of interest or multiple intensity measurements at 

different heights. It starts with the super-resolved intensity measurement, which is a weighted 

superposition of many monochromatic, in-line holograms. The weight factor for each wavelength 

is determined by the spectra of the illumination source and the sensor response. The initial 

hologram is scaled with each wavelength weighting factor and their square roots are propagated 

to the object level to enforce the object level constraint. Then the fields are propagated to the 

detector level, the total intensity is calculated and compared to the measured intensity to 

calculate the error. After enforcing the intensity level constraint, the fields are propagated back 

to the object level. Iterations continue up to 100 or as long as the mean square error is smaller 

than the previous iteration and the tolerance defined whichever happens first. Propagations in 

both directions are done by using angular spectrum method with i number of wavelength 

specific transfer functions. 
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Figure 13: Details of the object support based Polychromatic Phase Retrieval approach used for 
lensfree holographic on-chip imaging 

A similar approach was reported earlier for lensfree imaging using broadband X-ray 

sources which successfully reported 60 fold reduction in integration time by implementing 

polychromatic coherent diffraction imaging algorithm. [39] My method is different from the later 

in many ways. The first and most obvious difference is  operating in the visible wavelengths and 

with on-chip geometry providing unit magnification inline holograms of the objects. I do not 

assume spectrally invariant objects, so I recover multispectral image cubes. I also do not use 

any the small angle and far-field assumptions, so instead of rescaling and interpolating, so I 

calculate each hologram per wavelength by using angular spectrum method. Initial estimation is 

the back-projection and it takes approximately 50-100 iterations to converge to the final 

recovery. 
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Figure 14: Modified Polychromatic phase retrieval (PolyPR) improves the resolution by relaxing 
the limitations due to the incorrect assumptions and lack of temporal coherency. Regular and 

polychromatic phase retrieval results from a 1.5μm-period grating hologram, which is illuminated 
with wide(15nm) and narrow(3nm) bandwidth (BW) LEDs compared against the SEM  image of 

the grating 
 

 

3.4 Portable Holographic On-Chip Imaging Platform Using Sunlight Illumination 

Newton‟s experiments with a pair of prisms decomposed sunlight into its colors and 

combined it back to explain the refraction and dispersion of sunlight through a glass prism 

interface. Since this milestone experiment, the use of sunlight as a source in optical 

experiments continued to be quite common until other light sources such as incandescent light 

bulbs were invented. Providing us an easy-to-access and rather broad spectral content, the 

sunlight still presents a rich source that could potentially be used in multispectral imaging to 

extract the wavelength-dependent features of microscopic objects of interest.  Along the use of 

broadband light sources for on-chip holography, I further demonstrate a field-portable, on-chip 
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platform performing color/multispectral imaging with white light and ultimately with sunlight 

illuminations over a wide field-of-view of e.g., 15-30 mm2.  

In this compact and light-weight partially-coherent holographic imaging geometry, the 

objects are placed at ~0.5 mm away from the active region of a color (RGB) CMOS sensor-

array and are homogenously illuminated by the sunlight, which is first collected by a simple light 

collection unit adapted from conventional solar cell technologies. After trying some static 

collection approaches like wide angle lenses or compound parabolic condensers[40], I decided 

on a dynamic, angle scanning collection approach as seen in left of Figure 15, where I use a 

flexible light pipe (1mm diameter glass core).  

 

Figure 15: Some static and dynamic sunlight collection mechanism considered for the portable 
lensfree microscope unit. 

I placed a plastic diffuser after the light pipe to prevent imaging the projection of the sky 

like a pinhole camera. After the sunlight passes through a plastic diffuser, it is spatially filtered 

by a 0.1 mm diameter pinhole/aperture. This pinhole is positioned at ~7.5cm away from the 

objects, and is controlled using a simple screw-based x-y translation stage, which permits 

capturing of slightly shifted in-line holograms of the objects. These lensfree images captured 

under sunlight are digitally combined using pixel super-resolution algorithms to form a finely 
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sampled in-line hologram per color channel (i.e., at red, green and blue channels). These pixel-

super-resolved holograms are then processed with the knowledge of the spectral response 

curves of the sensor-array as well as the spectral content of the sunlight to digitally remove the 

cross-talk between color channels and retrieve the multispectral spatial features of the objects.  

 

Figure 16: The field-portable lensfree holographic microscope using sunlight 

Although spectral demultiplexing and phase retrieval for the on-chip holograms are 

addressing different problems, polychromatic phase retrieval introduced in previous section is a 

combined method performing both within a single recovery run for moderately wide illumination 

bandwidths. However when the source bandwidth is wider, as in sunlight, it is preferred to 

perform both these processes separately. For this end, instead of a polychromatic phase 

retrieval approach, I use a two-step recovery method for lensfree holograms recorded with 

sunlight illumination. 
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Figure 17: The redundant nature of the multispectral data is used to decode the sunlight 
holograms into narrower spectral bands. 

The first step is the spectral demultiplexing method; where I estimate the weights of 

monochromatic holograms from super-resolved, polychromatic holograms at three color 

channels (red, green and blue). I approached this underdetermined problem with a compressive 

decoding method by using the knowledge of combined spectra of sunlight and sensor sensitivity 

since multispectral spatial data are naturally redundant. I minimize the squared l2 norm of the 

mismatch between the measurement and the estimation, regularized with the total variation of 

the multispectral object [30] Then the demultiplexed holograms are individually processed either 
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by using iterative monochromatic phase retrieval or a simple back-projection if the twin image 

noise is weak. In Figure 17, the recovery process is summarized (top) and the performance of 

the portable device is demonstrated (bottom) by using a US Air Force Resolution Target.  

3.5 On-chip Sensing Platform Using Plasmonic Nano-apertures 

After all these partially-coherent imaging applications of lensfree computational 

microscopy tools, I conclude this section with an on-chip, high-throughput platform for sensing 

applications. For this end, a microfluidic channel with plasmonic nano-aperture array at the 

bottom surface is demonstrated.[34] The system is illuminated by a partially coherent 

quasimonochromatic source (λcenter = 550 nm, 20 nm bandwidth), and the lensfree diffraction 

patterns of the metallic apertures are recorded by an optoelectronic sensor array (Figure 18-a). 

The spatial and temporal coherency diameter of the system is adjusted to be larger than each 

diffraction pattern; therefore the complex field after the apertures can be retrieved using the 

object support constraint. This field distribution is very sensitive to any refractive index change 

in the vicinity of the aperture arrays because of their plasmonic behavior. By cross-correlating 

these patterns through time, very fine refractive index changes can be sensed. Moreover the 

geometry of the setup allows to multiplex thousands of apertures simultaneously, making this 

system very suitable for high-throughput, label-free sensing applications. As a proof of concept, 

lensfree sensing of refractive index changes as small as 2x10-3 are experimentally 

demonstrated as illustrated in Figure 18-b. 
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Figure 18: (a) Lensfree on-chip sensing setup. A plasmonic nano-aperture array, as shown in 
the SEM image, is illuminated with a quasimonochromatic source e.g., 550 nm center 

wavelength with ~20 nm bandwidth located 10–30 cm away from its surface. The lensfree 
transmission pattern of this plasmonic structure is sampled by a CMOS chip placed at z=~1 mm 
away from the aperture plane. The yellow surface indicates the detector active area (6.4 mm2). 
The plasmonic nano-aperture array shown above is composed of uniformly spaced slits each 
with a length of 6 μm where the slit width varied -from left to right- between 80 and 200 nm in 
discrete steps of 20 nm. The physical gap between two neighboring slits is kept constant at 

~200 nm.  Cross correlation coefficients are calculated between the first lensfree transmission 
pattern and the subsequent patterns for the detector plane (z=1100 μm) (b) and the 

reconstruction plane (z=1 μm) (c), as illustrated with the blue dotted lines. The same plots also 
show the running averages of these cross correlation coefficients over 50 frames as shown with 
the black solid lines. The intensities of the lensfree transmission patterns used in these graphs 

are normalized to the instantaneous illumination intensity, which is also detected using the same 
CMOS chip through a large aperture. The initial refractive index of these sensing experiments 

(n) is 1.333 corresponding to DI water. Top row: A-C illustrate the raw lensfree diffraction 
patterns of the nano-aperture array at three different refractive indices within the microfluidic 
channel n, n+3x10-3, and n+5x10-3, respectively, where all the lensfree transmission patterns 

extend over a width of ~50 μm. Top row D-F illustrate the reconstructed transmission patterns of 
the same nano-aperture array at z=1 μm plane, right underneath the aperture region.  

(d)The cross-correlation coefficients vs. refractive indexes calibration of system based on 
Fourier Domain Time Domain (FDTD) simulations for lensfree transmission patterns at z= 1mm 

(solid line) and at z=1μm. [34] 
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3.6 Discussion 

In Chapter 3, partially coherent imaging and sensing applications of lensfree holographic 

microscopes, which all use visible wavelengths, are reported. A next step in this direction is 

transferring benefits of lensfree on-chip holographic imaging to long infrared wavelengths. 

Thermal range of the electromagnetic spectrum is very valuable for security and quality 

inspection applications since it allows imaging with objects and settings like visibly dark, turbid, 

scattering, or even opaque mediums, which visible light cannot be effectively used for.[1]–[4]. 

Therefore, developing a lensfree holographic imaging platform operating at long-infrared 

wavelength range is highly desirable.  

 

Figure 19: Lensfree long-infrared holographic imaging setup 

For this end, I construct a basic setup shown in the figure above with an IR camera 

(DRS Infrared, Tamarisk™ 320 ) and a continuous wave CO2  laser (λ = 10600nm). The iris in 

front of the laser aperture serves to attenuate the laser beam whereas the IR camera lens 



33 

focuses and then expands the beam for the camera sensor. Object is placed immediately in 

front of the detector of the camera (z2 <1.5cm). Active area of the camera is 240x320 pixels with 

17 micrometer pitch size. Output images of the camera are 600x800 pixels with 6.8 micrometer 

pixel size. I performed a proof-of-concept experiment with a metallic needle tip to show the 

performance of this platform. The raw hologram, the backprojected object amplitude and phase 

images are reported in Figure 20.  

 

Figure 20: Lensfree raw hologram of a metallic needle tip recorded with the setup shown in 
Figure 19 (top) and its backprojected amplitude and phase images. 

 With the implementation of pixel super resolution based on object shifting, this platform 

can achieve diffraction-limited spatial resolution, and be used for applications like volumetric 

micrometer scale defect analysis of opaque objects.  

After the working principles and applications of the partially coherent imaging/sensing 

tools are discussed in Chapter 3, Chapter 4 is focused on the incoherent lensfree imaging 

platforms (FLUOCHIP and MONA). 
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Chapter 4 Lensfree Incoherent Imaging Applications 

The methods and applications reported in this chapter are already published as journal articles 

in the following references:[5], [14]–[16], [41], [42], [43] 

In the former chapter, I report several computational microscopes, which are working 

based on partial coherence of their illumination sources to perform imaging and sensing by 

mostly using holography. There are also biomedical applications involving fluorescent imaging, 

which can greatly benefit from computational microscopy methods to achieve ultra-wide field of 

view (FOV), high-resolution, on-chip fluorescent imaging with lower complexity and cost 

compared to conventional approaches. In this section, I introduce incoherent, computational 

microscopy platforms designed to achieve this goal. These lensfree imaging platforms have the 

potential to optimally serve for large area of applications, that each has different requirement 

levels in throughput, spatial resolution, and structural simplicity. I report five different 

applications of two main incoherent computational microscopy techniques: FLUOCHIP 

(Fluorescent, Lensfree, Ultra-wide field-of-view, On-Chip, High-throughput Imaging Platform) 

and MONA (Microscopy with On-Chip Nano-Apertures). These applications are presented in a 

flow that the main objective of the imaging platform shifts from maintaining ultra-wide field-of-

view with structural simplicity towards maintaining high throughput with higher spatial resolution.  

4.1 Fluorescent, Lensfree, Ultra-wide field-of-view, On-Chip, High-throughput Imaging 

Platform (FLUOCHIP) 

Before the applications, the basic working principle of FLUOCHIP can be summarized as 

follows: As illustrated in Figure 19, the fluorescent samples within a micro-channel are 

illuminated by using a rhomboid prism which allows coupling the light into the channel over a 

wide area with a fairly uniform power distribution. After this incoming light excites the sample, 

the excitation light and some portion of scattering light have been rejected by the total internal 
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reflection (TIR) occurring at the air glass interface of the bottom cover slip. While the fluorescent 

emission transferred onto the sensor array, leftover scattered light absorbed by the 30-100µm 

thick absorption filter placed right before a charge coupled device (CCD) or a complementary 

metal oxide semiconductor (CMOS) sensor without the use of any lenses, thin-film interference 

filters or mechanical scanners. This compact design enables to use the entire sensor active 

area as an ultra-wide imaging field-of-view (FOV) as shown in Figure 19. 

 

Figure 21: Schematic of FLUOCHIP with dual mode (fluorescent and holographic) imaging capability. 

Fluorescent excitation is achieved through the side facet of a rhomboid prism using an incoherent source 
(i.e. spectrally filtered Xenon lamp); and holographic illumination is achieved through the top facet of the 

same prism using an Light Emitting Diode (LED) (632 nm peak wavelength and 20 nm spectral 
bandwidth)[42] 

Before any  processing on raw lensfree fluorescent images, there is a need to know the 

response of the system to an incoherent point source located at a constant height within the 

object chamber, namely the point spread function (PSF). This space-invariant PSF of the 

system is determined experimentally, by aligning and averaging statistically enough number of 

isolated signatures from very small diameter fluorescent beads. Since the lensfree fluorescent 

detection occurs at extremely oblique angles on the sensor chip, depending on the opto-
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electronic design of the pixels and the underlying circuitry of a given chip, the fluorescent point-

spread functions (PSF) would exhibit a noticeable variance in its 2D pattern from one sensor-

chip to another, which requires calibration of each chip by measuring its unique PSF. Because 

fluorescent emission rapidly diverges, such raw fluorescent images recorded on a chip look 

blurred due to broad point-spread-function of this lensfree platform. To combat this resolution 

challenge, I used optimization based on a compressive sensing algorithm[44], [30] to decode 

the recorded lensfree fluorescent patterns into higher resolution images.  

          ‖    ‖ 
   ‖ ‖   (17) 

This approach can be understood as a simultaneous multicolor deconvolution operation 

with additional sparsity constraint. „A‟ here represents the forward model of the system, y is the 

raw measurement, λ is the regularization parameter and the x is the estimated object 

distribution. More specifically, in this cost function I minimize the mismatch between the 

measured and estimated values, which is regularized by the l1-norm of the object. This 

regularizer is assuring the convergence to a sparse solution. Compressive decoding of raw 

lensfree images (using the measured PSFs) permits close to an order-of-magnitude increase in 

the resolving power by rapid digital reconstruction of the fluorescent distribution at the object. 

The performance of this compressive decoding approach is quantified in Figure 21 (for KAF-

8300 and KAF-39000 chips, respectively), which both indicate a resolution of ~10 µm that is 

independently confirmed using conventional fluorescent microscope images of the same 4µm 

particle pairs (Figure 21, inset). These experimental results successfully demonstrate the 

sensor-chip independent decoding performance of the lensfree fluorescent imaging 

platform.[42] 

The resolution limit in this lensfree imaging results is mainly dictated by the detection 

signal-to-noise-ratio (SNR), since the tails of the measured PSF, after certain signal strength, 

fall below the noise floor of the sensor. In these reported experiments (Figure 20) the CCD chips 
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were kept in room temperature, and therefore further improvement in resolution (beyond 

~10µm) can potentially be achieved by active cooling of the opto-electronic sensors without a 

trade-off in the imaging FOV, which spans the entire active area of the CCD, i.e., ~2.4 cm2 for 

KAF-8300 and ~8 cm2 for KAF-39000 (Figure 20). It also should be noted that, with larger area 

sensors, the imaging FOV of this platform can be even further increased while maintaining a 

similar resolution level. 

On a related note, it is important to emphasize that the pixel size in lensfree compressive 

imaging is “not” a fundamental limitation for spatial resolution if the detection SNR is sufficiently 

high. Considering lensfree imaging of two fluorescent points that are directly located on a single 

pixel. Under this condition, it is theoretically and practically impossible to resolve these two 

fluorescent points that fall within a single dummy pixel. However, the same two sub-pixel 

fluorescent points can be resolved from each other using lensfree compressive imaging if 

several pixels could detect weighted averages of their fluorescent emission. Therefore, under an 

appropriate detection SNR, if the physical gap between the fluorescent objects and the sensor 

plane can be increased to perform efficient spatial encoding of the fluorescent objects, resolving 

of arbitrarily sub-pixel point sources would be feasible. The fundamental limitation to this 

resolving power is therefore the detection SNR, which determines how many pixels can 

independently and accurately measure the lensfree fluorescent contributions of the particles. 

Therefore, for a practical SNR level, there is always an optimum gap range between the object 

and sensor planes, which is optimized to be ~50–200 µm for the CCD chips at room 

temperature.  
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Figure 22: Lensfree fluorescent imaging is demonstrated over 2 cm2 using KAF-8300 sensor 
(Full Frame CCD with pixel size of 5.4 µm) and over 8cm2 using KAF-39000 sensor (Full Frame 
CCD with a pixel size of 6.8 µm). The fluorescent C. elegans samples were excited through a 
prism interface as shown in the experimental setups, where index matching oil was used to 

assemble the chip and the prism. Only the fluorescent emission emerging from gene-expressed 
parts of the worm body is detected by the sensors.[42] 
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Figure 23: Wide-field lensfree fluorescent imaging results for 4 µm fluorescent beads recorded 
using KAF-8300 and KAF-39000 sensor chips. The point-spread-function (PSF) crossections of 

the systems are also shown at the top left for each CCD type. (Middle and Bottom Rows) 
Lensfree fluorescent images of various 4 µm bead-pairs are shown, the inset images in each 

frame also show conventional fluorescent microscope images of the same closely-packed 
beads for comparison. The center-to-center distances (dmic) between the fluorescent particles 

are calculated based on these microscope images. Using compressive sampling (CS), lensfree 
fluorescent raw images are decoded to resolve the individual fluorescent particles. These 
decoding results nicely match to the corresponding microscope comparison images for 

dmic≥10µm. dCS refers to the center-to-center distances of these resolved fluorescent particles in 
the decoded lensfree images.[42] 
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After this resolution discussion, the first application of FLUOCHIP reported in this 

chapter is lensfree, on-chip fluorescent imaging of transgenic Caenorhabditis Elegans (C. 

elegans) worms. C. elegans is an important model organism that has been widely studied in 

various fields such as genetics, oncology, and neurobiology. Wide-field optical imaging of C. 

elegans is an essential need for all these fields to enable high-throughput screening of this 

model organism. While several high-throughput imaging platforms have been successfully 

demonstrated so far, the main stream for this application involves the use of lens-based 

conventional optical microscopes which can only provide a limited field-of-view (FOV) of e.g., 

≤1mm2, and therefore require mechanical scanning to provide a larger imaging FOV. In addition 

to this, such conventional optical microscopy platforms are rather bulky, and do not provide a 

decent match in terms of compactness to micro-fluidic technologies that are becoming widely 

used today in high-throughput screening of C. elegans. With this alternative on-chip approach 

proposed here, for the first time that a lensfree, on-chip platform has successfully imaged 

fluorescent C. elegans samples over such an ultra-wide FOV. The sparse nature of the genetic 

expressions allowed compressively decoding the objects without representing them in any 

sparsifying basis and achieving the spatial resolution around of 10µm. 

As shown in Figure 22, raw lensfree fluorescent signatures of the worms are highly 

blurred due to the broad PSFs. However, using the measured PSF of each platform, these 

lensfree signatures can be compressively decoded to digitally yield much higher resolution 

images of the fluorescent regions located within the C. elegans body, which very well agree with 

the images obtained using a regular lens-based fluorescent microscope. These experimental 

results successfully demonstrate the efficacy of the compressive decoding approach to image 

transgenic C. elegans samples using lensfree fluorescent on-chip imaging over an ultra-wide 

FOV that covers the entire active area of the CCD chip (e.g., >2–8 cm2). 
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FLUOCHIP can also perform sequential bright-field imaging of the same samples using 

partially-coherent lensfree digital in-line holography that is coupled from the top facet of the 

same prism used in fluorescent excitation as shown in Figure 19. This unique combination 

permits ultra-wide field dual-mode imaging of C. elegans (Figure 22, f) on a chip which could 

especially provide a useful tool for high-throughput screening applications in biomedical 

research. 

 

Figure 24: Lensfree fluorescent and holographic transmission imaging of C. elegans is shown 
for an individual animal using KAF-8300 sensor. (d)  illustrates the lensfree raw fluorescent 

image that all looks blurry at the detector plane. Compressive decoding of these blurry patterns 
enabled digital reconstruction of much higher resolution fluorescent image of these C. elegans 
sample as shown in (e). 10X objective-lens fluorescent microscope images of the same worm 
shown in (b) agree well with the decoded lensfree fluorescent image. In addition to fluorescent 

imaging, the same lensfree platform also permits holographic transmission imaging of the same 
sample such that a hybrid image can be created by superimposing the decoded lensfree 
fluorescent image and the reconstructed holographic image as shown in (f).  Microscope 

comparison of the same sample is also provided in (a) Slight rotation of the worm is observed 
between the lensfree decoded image and its microscope comparison image since they are 

acquired at different experiments. 
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4.2 Color-FLUOCHIP 

 

Figure 25: Lensfree, on-chip multicolor fluorescence cytometry platform 

This subsection is on how to achieve simultaneous multicolor fluorescent cytometry on a 

chip. Performing fluorescence detection without lenses by using on-chip geometry can provide 

extreme throughputs as discussed in previous section. Further increasing the multiplexing 

capabilities and specificity of the on-chip fluorescent cytometers by performing simultaneous 

multicolor detection is highly desirable. For this end, I preferred to use a color sensor (KAF-8300 

RGB CCD with 5.4µm pixel pitch), and then experimentally characterized the red, green and 

blue point spread functions of the imaging system with smallest observable fluorescent micro-

particles. The measured fluorescent intensities from multiple isolated particles are interpolated, 

aligned, and averaged, as done for single color signatures. These intensity profiles depend on 

the structure of the sensor, filter response and the distance between the particles and the 

detector. The point spread functions for each color channel and the Bayer pattern arrangement 

type of the sensor are used to decode the color and high resolution spatial distribution of the 

fluorescent emitters from a single raw image by using the same optimization used for single 

color signatures. However, this time I modified the forward model to take into account different 

PSFs for different colors, down-sampling due to the large pixel size and the Bayer pattern type, 

in other words the distribution of the pixel color filters. Figure 24 summarizes color FLUOCHIP 

recovery process. 



43 

In this recovery process, sparsity is particularly effective as an additional constraint while 

processing lensfree fluorescent cytometry data since the object distribution in spatial and color 

domain is already sparse without any additional domain representation. However this logic can 

be easily extended into various imaging applications, since almost all of the natural and 

manmade objects of interest can be sparsely represented.   

 

Figure 26: Lensfree, simultaneous multicolor fluorescence cytometry based on sparse signal 
recovery using the system point spread function and sensor spectral response information 

The performance of simultaneous on-chip color imaging approach is tested with 4 µm green 

fluorescent beads and 10 µm red and green fluorescent beads as shown in Figure 25. The raw 

signatures were corrupted with the Bayer pattern artifact and severely overlapped and due to 

the lensfree nature of the platform. The color of the objects and their spatial distribution are 

successfully recovered and verified with fluorescent and bright field microscope images. This 

simultaneous multicolor imaging feature further boosts up the throughput and multiplexing 

capability of FLUOCHIP. This unique platform with its extreme throughput can be very useful for 

applications like biological assays, high volume rare event screenings, and imaging cytometry. 
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Figure 27: Raw, lensfree fluorescence signatures of microbeads are cropped from an extremely 
wide field-of-view of ~2.42 cm2. They are decoded to achieve color and high-resolution spatial 
distribution information. Decoding results are verified with regular or fluorescent microscope 

images. The debayered images are showing the limit of the color sensor before the 
demultiplexing. a, b) Decoding results for 4 μm green fluorescent beads compared against 

bright-field (a4 and b4 insets) and fluorescence microscope images (a4 and b4). c, d) Decoding 
results for 10 μm red and green fluorescent beads compared against bright-field (c2 and d2) 

and fluorescent microscope images (c3,c4 and d3,d4). The arrows are highlighting two regions, 
where the decoding method effectively resolves the spatial and color overlapping issues of 

lensfree fluorescent signatures. 
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4.3 FLUOCHIP with Fiber-optic Faceplates and Tapers  

The next FLUOCHIP implementation is designed to further improve of the system and 

make it better suit for applications like high-throughput cytometry, micro-array imaging, and rare 

cell detection, e.g. circulating tumor cells. For this end, a fiber-optic faceplate is added between 

the bottom end of the object chamber and the detector as shown in Figure 26. 

 

Figure 28: Schematic diagram of the lensfree on-chip fluorescent imaging platform is shown. 
Drawing is not to scale. This imaging platform has unit magnification such that the imaging field-

of-view equals to the entire active area of the sensor array (i.e., >8 cm2). The Total Internal 
Reflection condition occurs at the glass-air interface at the bottom facet of the coverglass. To 

avoid detection of scattered pump photons a plastic absorption filter is used after the faceplate. 
Typical dimensions: w1 x w2 = 25mm x 35mm; p = 1.7 cm; k =10-100 μm; f = 1-2 cm. (Inset) 
The microscope image of the faceplate is shown in the left bottom. The numerical aperture of 

each fiber is ~0.3. [5] 
 

This dense bundle of fibers provided several advantages: It provided the thermal and 

mechanical isolation of the objects from the very proximity of the sensor which is an important 

advantage while working with sensitive objects like living cells. It also increased the signal-to-

noise ratio (SNR) of the system by narrowing down the PSF. Although this narrowing behavior 

reduced the incoherency between sampling and sparsifying bases; it also increased SNR 
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significantly simplified the decoding problem by narrowing down the PSF of the system.  As a 

result, spatial resolution of 10 µm even with a larger pixel size of 9µm is achieved. [5]  

 

Figure 29: (a-b) Lensfree fluorescent images of 10 μm particles are compared with and without 
the faceplate. With the use of the faceplate, the spatial spreading of the fluorescent signatures 

at the CCD plane is reduced from ~180 μm down to ~36 μm (FWHM). This improvement is also 
evident in the comparison that is provided by the digitally zoomed regions shown in (c1-f1) and 

(c2-f2), which correspond to experiments “without the faceplate” and “with the faceplate”, 
respectively. The same zoomed images of (c2-f2) are also decoded using a compressive 

sampling algorithm to yield (c3-f3). [5] 
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Figure 30: (a1) shows a digitally zoomed lensfree fluorescent image of 10μm particles that is 
obtained without the use of a faceplate. (a2) illustrates the output of the compressive decoder 
for the same image in (a-1). (a3) shows the same region of interest imaged this time using a 
faceplate as shown in Fig. 1(a). The compressive decoder output of image (a3) is shown in 
(a4). The same story is repeated in (b1) through (b4) for a different region of interest. The 

arrows in these images specifically point to regions where the improvement due to the faceplate 
becomes apparent to better resolve closely spaced fluorescent particles. 
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Figure 31: (Top Row) shows raw lensfree fluorescent images of different pairs of 10 μm 
diameter particles imaged using the set-up of Figure 26. As the particles get closer each other, 
their signatures in the raw lensfree image become indistinguishable to the bare eye. The inset 
images in the top row (bottom right corner of each image) illustrate transmission microscope 

images of the same particles from which the center-to-center distance (g) in each case is 
calculated only for comparison purposes. (Middle Row) illustrates the results of the compressive 

decoding process for each lensfree image of the top row. gCS refers to the center-to-center 
distance of the resolved fluorescent particles in each image, where CS denotes “compressive 

sampling”. Even for g = 10μm case (far right column), the fluorescent particles are clearly 
resolved from each other with gCS = 9μm. The pixel size in the decoded image is 3μm, whereas 

the raw lensfree image has been sampled with a pixel size of W = 9μm at the detector array, 
i.e., N = 9M. The reason that the reconstructed points for gCS = 9μm case do not touch each 
other (unlike the microscope image shown in the inset) is that the incoherent point-spread 
function of the system has been estimated using 10μm diameter fluorescent particles. The 
computation times of these decoded images vary between 0.1 min to 0.5 min on an Intel 

Centrino Duo Core, 1GHz PC. (Bottom Row) illustrates the deconvolution results of the Lucy-
Richardson algorithm for the same set of lensfree images shown in the top row. gLR refers to the 
center-to-center distance of the resolved fluorescent particles in each image, where LR denotes 
“Lucy-Richardson”. The number of iterations in these deconvolution results ranged between 200 

and 400, matching with the overall computation time of the CS results for each image. These 
results indicate that the LR algorithm can resolve particles with g~18 μm, whereas the CS 

decoder can clearly resolve particles with g~10 μm. 
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Figure 32: The raw lensfree images are decoded to resolve closely spaced particles from each 
other. The inset images (bottom right corner of each decoded image) illustrate regular 

transmission microscope images of the same particles from which the center-to-center distance 
(g) in each case is calculated for comparison purposes. The bottom row illustrates resolving 

2µm particles that are separated by g ~12µm and 8µm. The pixel size in the raw lensfree 
fluorescent images is W = 9µm, whereas the pixel size of the decoded images is 2µm, i.e., 
N~20M. The point-spread function of the system has been estimated using 2 µm diameter 

fluorescent particles imaged at a low concentration. (2µm fluorescent particles) except with a 
pixel size of W = 18µm at the detector-array, such that 4 pixels of the CCD are now binned 

together. Similar to Figure 29, the raw lensfree images are decoded to resolve closely spaced 
fluorescent particles from each other. The pixel size of the decoded images is still 2µm, same as 

in Figure 29, which this time implies N = 81M. Because of a significant reduction in M when 
compared to Figure 29, the performance of the compressive decoding is relatively degraded, 

which is especially visible for reconstruction of g = 8µm case (bottom right corner). Regardless, 
even with N = 81M, decoding of sub-pixel objects as shown in e.g., g = 12 µm case is achieved. 
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It should also be noted that the fibers are dense and aligned regular enough for these 

fluorescent images to assume a shift-invariant PSF over each object plane, although they 

distorted the holographic images. Moreover, the presented lensfree approach is also able to 

reconstruct the distribution of fluorescent micro-objects located at multiple micro-channels that 

are stacked vertically as demonstrated in Figure 31. This increased the throughput of 

FLUOCHIP multiple folds by enabling to decode the 2D lensfree fluorescent image at the 

detector-array into a 3D distribution through compressive sampling.  

  

Figure 33: (a) Lensfree fluorescent imaging of 2 layers that are vertically separated by ~50μm is 
illustrated. (b1) shows a digitally cropped region of the large FOV that are imaged without the 

use of a faceplate. The compressive decoding results of this raw lensfree image for each 
vertical channel are illustrated in (b2-b3). The same region is also imaged using the faceplate as 

shown in (c1). The compressive decoding results of this lensfree image for each vertical 
channel are also illustrated in (c2-c3). 
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Figure 34: Same as in Figure 31, except for 3 fluorescent layers that are vertically separated by 
~100 μm from each other. Two different regions are imaged using a faceplate, and the raw 

lensfree images are then decoded to reveal the distribution of the fluorescent particles at each 
layer. In the raw lensfree images, the fluorescent signatures from the 3rd layer are rather faint 
and need careful examination to see them with the bare eye, whereas the decoder output for 
the 3rd layer faithfully resolves their location. Such a computational strength would be quite 

significant to further increase the throughput in e.g., imaging cytometry experiments. 
 

A descent spatial resolution of 10 µm for such a high-throughput device is already quite 

useful; however, some biological applications simply require seeing smaller objects or finer 

details. As a step towards satisfying this need, the system is modified by replacing the regular 

faceplate with a tapered faceplate such that the density of the fiber-optic waveguides on the top 

facet is ~5 fold larger than the bottom one (Figure 33).[14] 

 

Figure 35: The schematic diagram of the lensfree fluorescent on-chip imaging platform is 
illustrated. (Right) Microscopic images of the top and bottom facets of the fiber-optic taper are 

shown. (Left)  w1 = 25 mm and w2 =35 mm are used in this work. 
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Figure 36: Resolution of the lensfree fluorescent on-chip microscope with taper is quantified 
using 2 μm diameter particles. The pixelated raw lensfree fluorescent images are decoded using 

a CS algorithm to resolve the overlapping lensfree fluorescent emission patterns arising from 
the particles. For comparison purposes conventional bright-field microscope images of the same 
2 μm diameter particles are also shown on the left column. Note that because the samples were 

sequentially imaged using the microscope after their lensfree images were acquired, their 
relative orientations might be slightly rotated/ shifted between the two imaging modalities. The 

lensfree images are pseudo-colored in red. 
 

As shown in Figure 34, the spatial resolution of this system is improved to ~2 μm by 

taking advantage of the 2.4X magnification factor of the tapered faceplate. Also labeled Giardia 

muris cysts are imaged as illustrated in Figure 35. These results show the potential of 

FLUOCHIP for rapid screening of water-borne parasites in field settings with its large FOV 

within a compact on-chip platform.  
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Figure 37: Lensfree fluorescent imaging results for Giardia muris cysts are shown. A 
conventional microscope image of the same FOV is also illustrated on left. Note that because 
the samples were sequentially imaged using the microscope after their lensfree images were 
acquired, their relative orientations might be slightly rotated/shifted between the two imaging 

modalities. The lensfree images are pseudo-colored in red. 
 

4.4 Microscopy with On-chip Nano-Apertures (MONA) 

To further improve the resolution to deeply subpixel levels, there is a need to break the 

coherency between the sparsifying and measurement bases. For this end, the shift-invariant on-

chip imaging platform FLUOCHIP is turned into a position-dependent system by introducing a 

nano-structured metallic thin-film to modulate the PSF at each point on the chip. This technique 

is referred as Microscopy with On-chip Nano-Apertures (MONA). The basic working principle of 

MONA is illustrated in Figure 36.  The light emitted from incoherent objects of interest e.g. 

fluorescent labeled cells which are directly positioned onto a nanostructured thin-metallic film is 

first modulated by the nanostructures. After diffracting over a short distance, it is sampled by a 

detector-array without the use of any lenses. The detected far-field diffraction pattern is then 

rapidly reconstructed by using an algorithm based on compressive decoding. 
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Figure 38: Schematic of lensfree on-chip imaging using a nanostructured surface is illustrated. 
SEM image of a structured chip is shown on the right. 

 
This decoding process requires calibration of the nano-structured surface (Figure 36) 

serving as the object plane to form its specific measurement basis. It should be noted that the 

calibration step needs to be done only once for each chip by recording the unique diffraction 

patterns resulting from a tightly focused spot as it moves over the surface with a deeply sub-

pixel step size. These calibrations are also used to iteratively optimize the nano-patterns for 

breaking the correlation between the diffraction patterns of closely spaced points (Figure 37, b-

c).  
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Figure 39: (a) Calibration process of a nanostructured transmission surface is outlined. Several 
far-field calibration images of the patterned chip shown in previous figure are also provided. (b) 

Cross-correlation coefficients of the first calibration frame against all the other calibration 
images of the same chip are illustrated. (c) Same as part (b), except this time it is measured for 

a bare glass substrate without the nanostructures. Significantly higher cross-correlation 
observed in (c) for closely spaced points, is the reason for limited spatial resolution of 

conventional lensfree incoherent imaging without the nanostructures. Nanostructured surfaces 
break this correlation as shown in (b) to achieve a significantly better resolution. 

 
As a proof of concept experiment [15], nano-apertures are punched over a ~5 μm2 area 

on a gold coated glass surface and calibrated it with 0.5 μm step size. Then the raw lensfree 

diffraction images are recorded from two very close spots by using a CCD with 5.4 μm pixel 

size. Figure 38 shows the raw lensfree images and the sub-pixel decoding results together with 

microscope comparisons.  



56 

 

Figure 40: Experimental proof-of-concept of lensfree on-chip imaging using the nano-structured 
surface is demonstrated. Left column shows the lensfree diffraction images of the objects 

sampled at the CCD for two different incoherent objects. Each diffraction image contains M 
=355 pixels. Right column shows the compressive decoding results of these raw diffraction 

images to resolve sub-pixel objects on the chip. For comparison, the inset images in the bottom 
row show regular reflection microscope images of the objects, which very well agree with the 
reconstruction results. Note that the red colored regions of the inset images refer to the gold 
coated area with no transmission, and therefore the reconstructions only focus to the dark 

regions of the chip (at the center of the inset images) that are nano-patterned. 
 

To better appreciate the compressive nature of the method, the performance of the 

decoding algorithm is reported in Figure 39, when the used number of pixel is far less than the 

recovered number of points. All these results verify that MONA could especially be useful to 

create very high-resolution lensfree fluorescent microscopes on a compact chip. 
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Figure 41: Performance of the decoder for different M values. This figure indicates that 
compressive decoding of a sparse object can be achieved from its diffraction pattern at the far-

field even for an under-sampled imaging condition where N>M. 
 

4.5 Color-MONA 

 

As the next step, on-chip incoherent color imaging with MONA is demonstrated. To add 

this important property of full color imaging to the system, the calibration basis is extended by 

using red, green and blue focused spots. These point sources at each color (RGB) scans the 

surface of the structured substrate, while the sensor-array is recording the resulting lensfree 

diffraction patterns corresponding to each spot on the structured chip. Also an RGB sensor is 

preferred to use with raw output to increase the modulation as a function of color and to provide 

color comparison for better appreciation of the spatial and color resolving power of this system.   
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Figure 42: Color-MONA 
 

Figure 40 shows the raw images and the compressive decoding result of three RGB 

spots which are closely packed into a single pixel area. The agreement between the decoded 

image and the 40X microscope comparison suggest that MONA has a great potential to perform 

compact, on-chip color imaging with deeply sub-pixel resolution. This chip can be tiled up to 

cover all sensor active area and perform real fluorescent imaging experiments.   

 

Figure 43: (a) Demosaiced lensfree diffraction image of a subpixel multicolor object is illustrated. 
This object is composed of RGB spots that are separated from each other by 1–2 μm. As 

expected, the far-field diffraction pattern of closely packed RGB spots creates a white-looking 
enlarged pattern. The same subpixel object is also imaged using a conventional reflection 

microscope 40X objective lens, numerical aperture = 0.6 as illustrated in (d) for comparison 
purposes. (b) presents the same raw lensfree image as in (a) before a demosaicing algorithm is 
applied. (c) successfully demonstrates the compressive decoding results based on processing 
of the raw lensfree diffraction pattern shown in (b)Notice that the scale-bars in (a) and (b) are 

100 fold larger than the ones in (c) and (d). 
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4.6 Discussion  

In this subsection, first some possible ways to further improve the performance of the 

FLUOCHIP is discussed and then some proof of concept work is reported towards infrared 

implementation of MONA. 

The regulation parameter (β) is an effective parameter in FLUOCHIP reconstructions, 

since it balances the fidelity and regularization terms of the optimization problem as discussed 

earlier in Chapter 4. Setting very large β values(β>βmax) leads to all zero recoveries, whereas 

using extremely small β values simply results regular least square minimizations without any 

sparsity constraint applied.  

     ‖    ‖  (18) 

 

Figure 44: Effect of regularization parameter on the l1 regularized least square recoveries with 
and without Bregman step 
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This β-dependence of the l1_ls recoveries (Figure 44, middle row) can be relaxed by 

adding a Bregman step [49], [50]. 

               (19) 

              ‖  ‖  ‖       ‖ 
   (20) 

As demonstrated on simulated recoveries in bottom row of Figure 44, the l1 regularized least 

square minimizations modified with a Bregman step provided the flexibility to work over a wide 

range of β. Although for most of the FLUOCHIP recoveries reported in this dissertation, setting 

regularization parameters around ~βmax/10 gave satisfying results, this approach can be further 

studied and implemented in future for FLUOCHIP implementations, where fine tuning of 

regularization parameter may be needed.  

Another future direction in FLUOCHIP implementation is to employ structured 

illumination combined with compressive decoding to develop a higher resolution, perhaps an 

adaptive system for better addressing the needs of rare-event detection in highly scattering 

mediums e.g. circulating tumor cell detection within whole blood. Earlier work of Arpali et al. [51] 

suggests that replacing the uniform illumination with multiple known structured patterns 

(Gaussian spots) created with a spatial light modulator reduces the background caused by 

leakage of the scattered light and increases the SNR. This approach can implement it within an 

adaptive flow to improve our spatial resolution without being compromised by highly scattering 

mediums. Usage of compressive sensing with random patterns can enable us to achieve this 

goal faster by minimizing the number of illumination patterns needed.  

One future work for high resolution incoherent imaging by using nanostructured surfaces 

(MONA platform) can be the demonstration of the performance with a MONA chip scaled to 

cover whole sensor surface. Besides, the infrared (IR) implementation of MONA can be very 

valuable because it can significantly reduce the high cost of high resolution, wide-field IR 
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detectors. Moreover, it is easier to fabricate and optimize a MONA chip for IR than for the visible 

range. Towards this end, proof-of-concept, IR MONA experiments are performed.  

 

Figure 45: The microscope image of a fabricated IR-MONA chip, the tiled version and illustration 
of IR-MONA platform 

 

 
Figure 46: The raw infrared lensfree intensity detected after the structured surface (left), the 
compressive sensing based recovery result(middle) and the microscope comparison(right) 
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The IR-MONA chip is prepared as done in visible range, except that the apertures are 

wider. A pulsed laser of 1550 nm wavelength is used to calibrate the chip. Then the chip is 

illuminated with two spots of the same wavelength separated by ~5μm, which served as an 

object, which requires deeply subpixel resolution to be recovered. The raw IR-MONA image is 

successfully reconstructed by using as reported in Figure 46. This result suggests that IR-

MONA is a promising high-resolution infrared imaging platform, which can be studied more 

comprehensively and used for practical applications in future.  
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Chapter 5 Conclusion  

Lensfree computational imaging and sensing techniques provide opportunities to replace 

bulky and expensive designs of conventional microscopes with much simpler, compact and 

cost-effective on-chip imaging architectures, which can achieve decent spatial resolution and 

sensitivity over a significantly large imaging area. In this dissertation, some lensfree 

computational microscopy platforms and their biomedical applications are summarized after 

providing general background on the computational methods employed in these tools to 

compensate the shortcomings of lensfree geometries: Iterative phase retrieval methods tailored 

for lensfree geometries are used to focus the diffracted lensfree signatures, retrieve the complex 

field from intensity measurements and simultaneously eliminate the twin image noise of the 

inline holography. For objects with very high spatial frequencies, where the pixel size of the 

detector array limit the resolution, I employed pixel super resolution methods for lensfree 

imaging based on source shifting to eliminate undersampling and aliasing artifacts. Also, I used 

specially tailored Compressive Sensing based optimizations to demultiplex superimposed 

spectral content of holographic and fluorescent signatures and for high resolution incoherent 

imaging over extreme field of views.  

These platforms and their applications are presented under two main category based on 

the coherence level of the illumination source. Imaging and sensing platforms working based on 

partially coherent lensfree holography are reported in Chapter 3 in an order that the portability of 

the system gradually increases: First some initial bench top implementations are reported for 

high throughput blood analysis and small animal observations in color. Then a portable, light-

weight, and cost-effective standalone unit and a cellphone attachment are demonstrated for 

telemedicine applications like drinking water screenings or blood analysis on low resource field-

settings. After introducing the polychromatic phase retrieval as a computational solution towards 

addressing the lack of temporal coherence and artifacts due to the broadband spectral nature of 

LEDs, I demonstrated a field-portable lensfree, super-resolution, holographic microscope 
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working with sunlight illuminations. This chapter is concluded with a proof of concept on-chip 

lensfree sensing implementation for detection of bulk refractive index change in liquids. In 

Chapter 4, I listed incoherent, specifically fluorescent, imaging platforms, with microfluidics 

friendly on-chip design and extreme filed of views. I presented these platforms in an order with 

increasing complexity and improved spatial resolution. First, I introduced the monochromatic 

and multicolor FLUOCHIP and how the use of fiber optic faceplates and tapers improved the 

signal to noise ratio and the resolution of the system. Then MONA is reported showing how 

nanostructured metallic surfaces can be used to create position dependent point spread 

functions and further improve the resolution of the incoherent on-chip imaging system to deep 

subpixel level, even for multicolor. 

I strongly believe that these computational lensfree microscopy platforms, a deep and 

broad understanding about their operation ranges, advantages and limitations will serve greatly 

towards developing more unconventional imaging and sensing approaches. These devices will 

more effectively address the specific needs of several biomedical applications as the 

optoelectronic components and computational methods quickly advance and fill a gap in 

imaging area with their unique throughput and portability advantages.  
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