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Abstract 

This paper presents a full set of numerical methods for predicting the effective 

thermal conductivity of natural fibrous materials accurately, which includes a random 

generation-growth method for generating micro morphology of natural fibrous materials 

based on existing statistical macroscopic geometrical characteristics and a highly efficient 

lattice Boltzmann algorithm for solving the energy transport equations through the 

fibrous material with the multiphase conjugate heat transfer effect considered. Using the 

present method, the effective thermal conductivity of random fibrous materials is 

analyzed for different parameters. The simulation results indicate that the fiber 

orientation angle limit will cause the material effective thermal conductivity to be 

anisotropic and a smaller orientation angle leads to a stronger anisotropy. The effective 

thermal conductivity of fibrous material increases with the fiber length and approach a 

stable value when the fiber tends to be infinite long. The effective thermal conductivity 

increases with the porosity of material at a super-linear rate and differs for different fiber 

location distribution functions. 

 

Keywords: effective thermal conductivity; natural fibrous material; statistical modeling; 

lattice Boltzmann method. 
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1. Introduction 

Porous fibrous composites have many other important applications than those in 

textile engineering because of their ease of fabrication, relatively low cost and superior 

mechanical and thermal properties [1-5]. For example, the combination of reinforcement 

with high thermal conductivity embedded in a resin matrix with low thermal conductivity 

is desirable to replacing metal materials to dissipate the heat flux for electronic packaging 

components [2]. Very recently, the scanning electron micrographs of the carbon paper 

based porous transport layer (PTL) have shown that the microstructure in PTL has 

strongly fibrous nature but not the granular porous media as expected before [6]. Thus the 

heat and mass transportation characteristics through the PTL should be reconsidered for 

accurate predictions. 

Generally speaking, thermal properties of a fibrous material depend on: (i) thermal 

properties of each phase (fiber and air), (ii) fiber volume fraction, and (iii) fiber size, 

orientation and mass distribution. A number of analytical models have been proposed to 

predict the thermal conductivity of short fiber composites [2, 7-11], however most of 

which only involve the influences of factor (i) and (ii). Recently Fu and Mai [12] have 

introduced the effects of the fiber length distribution and orientation distribution into the 

analytical model through the laminate analogy approach (LAA) [13] for predicting the 

effective thermal conductivity of short-fiber-reinforced polymer composites. It was 

observed that the thermal conductivity of the composite increases with mean fiber length 

but decreases with mean fiber orientation angle with respect to the measured direction. 

This model is more suitable for dilute short-fiber composite because it becomes very 

complicated when the inter-fiber connections are in large number. To our knowledge, 

there is no effective analytical method yet that can predict, with acceptable accuracy, the 

effective thermal conductivity of fibrous materials while taking into account the effects of 

material structure. Owing to the rapid development of computer and computational 

techniques in the past a couple of decades, numerical modeling methods have provided 

an alternative in dealing with the properties of fibrous materials with complex geometries. 

To achieve a reliable prediction, one needs to work on two aspects: a full description of 
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the structural details of fibrous materials, and an efficient numerical method for the 

solution of energy equations through the fibrous structures.  

By and large, it is extremely difficult, if not impossible, to completely describe the 

internal structure of a fibrous medium due to its complex and stochastic nature. One often 

can only acquire the statistic-based average information such as the mean porosity, the 

mean fiber contacting length and the orientation range. Nonetheless using computers 

there have been some attempts to re-produce the statistic-stochastic characteristics of 

fibrous composite materials through several different methods [9, 12, 14-19]. For 

instance, recently the tessellation-based Voronoi cells have been extracted for generating 

the fiber distribution [9]; Torquato et al. [20-22] simulated disordered arrangements of 

composite media by using the statistical means and high-order correlation functions; 

Eichhorn and Sampson [15] and Scharcanski et al. [14] investigated the stochastic 

characteristics of the internal structure of fibrous materials and suggested relationships 

between the statistical mean porosity and the micro-structural characteristics which could 

be helpful for fibrous structure generation. 

Next, to predict the effective thermal conductivity of a fibrous medium with given 

structure, the energy equations must be solved through the multiphase structure. The 

structural complexities bring two challenges when the governing equations are to be 

solved by conventional numerical tools such as the finite difference [23,24] and finite 

element methods [9]. The first is the constraint on inter-phase conjugate heat transfer: for 

steady pure heat conduction through multiple phases, temperature and heat flux 

continuities have to be ensured at the interfaces only if the contact thermal resistance is 

negligible [25-29] when solving the governing equations, thus demanding extremely high 

computational resources for a fibrous medium with innumerable interfaces in the 

structure. The second is the requirement of grid refinement for complex structures: the 

accuracy of a conventional numerical method is strongly dependent on the grid size so an 

extra fine grid is needed whenever the transport process is complex in physics and/or in 

geometry. When dealing with such multi-phase conjugate heat transfer problems in 

fibrous materials with complex geometries, this requirement will confine the 

computational domain into a very limited area. To overcome these two difficulties, Wang 

et al. [30] proposed a much more efficient thermal lattice Boltzmann algorithm to solve 
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the energy equations in multiple phases where the continuity constraints are self-satisfied 

owing to this new approach and much less grid number is required for the same accuracy. 

The predictions agreed well with the experimental data for different structures [31]. 

The objective of this paper is to develop a robust computer simulation model for 

predicting the effective thermal conductivity of fibrous materials reflecting the influences 

of the structural characteristics. The model will enable conduction of parametric 

simulations to investigate the effects of various related factors on the effective thermal 

conductivity. The model, once completed, should provide a powerful tool for various 

fibrous product designs and thermal performance optimizations. 

In the following sections, we first develop a method for generating stochastic 

microstructures based on macroscopic statistical information, and then introduce the 

efficient lattice Boltzmann approach for solving the energy equations through a 

multiphase structure. Next, we present two-dimensional (2D) results of mesoscopic 

simulations addressing the influence of fiber orientation angle, fiber length, mean 

porosity, and the fiber location distribution function on the effective thermal conductivity. 

2. Numerical Methods 

The numerical methods introduced in this section include a random generation-

growth algorithm for constructing the internal structure of fibrous materials and a lattice 

Boltzmann model for solving the energy equations through the materials. 

 
Fig. 1  Internal structure of fibrous material under SEM [32] 

2.1.  Structure generation of fibrous materials 
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To investigate the influences of the internal structure, one needs first a detailed 

description of the structure. However, given the stochastic nature of the structure, it 

would be extremely complex to derive such an analytical description either theoretically 

or experimentally. Thus we propose a stochastic generation-growth method to produce 

the fibrous material structures based on the given fiber properties and distribution 

requirements.  

Consider a two-dimensional and two-phase (fiber/air) fibrous material, whose 

internal structure is shown as Fig. 1 under SEM [32]. We assume each fiber is 

represented by a straight line with given diameter d and length l, and located by its core 

position and orientation angle  , as illustrated in Fig. 2. The structure generation process 

is conducted as follows: 

 
Fig. 2  Schematic illustration of grown fibers and parameters 

i) randomly locate the fiber cores based on a core distribution probability, dc , and the 

core position distribution function, F . The core distribution probability dc  is defined as 

the probability of a point to become a core of fiber. The value of dc  is strongly relative to 

the fiber number density. The core position distribution function F could be a uniform, a 

normal or any other distribution function of position (x,y); 

ii) randomly assign an orientation angle   to each fiber core, and if the value of 

angle limit is given other than 0 ~  , the orientation angle of a fiber can be any value 

within [- lim , lim ]; 

iii) grow fibers from the cores along both directions of the orientation   for length 

and grow the fiber sections for width; 
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iv) stop growth once fiber dimensions, d  and l , reach the specified values, or the 

porosity attains the given level  . 

Thus there are six parameters, dc , F , lim , d, l , and   controlling the resulting 

structure, yet the porosity,  ,  is dependent on the other five parameters, strongly by dc , 

d, and l , and slightly by F  and lim  which actually influence the inter-fiber contacts. 

Fig. 3 shows five examples of generated morphologies in 200×200 grids for various 

values of parameters. The white represents the fiber and the dark the gas or other fluids. 

Comparisons between (a) and (c), and (b) and (d) indicate that both c
d

 and  l  have strong 

influence on the porosity of the materials. The anisotropy will change by the values of 

both  lim
 and  F  from comparing between (a) and (b), and (d) and (e). 

 

(a)  cd
=0.0025, d=  x

,  l =100  x
,  lim

= /2,  

Uniform distribution 

(b) c
d

=0.0025, d=
x

, l =100  x
,   lim

= /4, 

Uniform distribution 
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(c)  cd
=0.005, d=  x

,  l =100  x
,  lim

= /4,  

Uniform distribution 

(d) c
d

=0.0025, d=
x

, l =50  x
,  lim

= /4, Uniform 

distribution 

 

(e)  cd
=0.0025, d=

x
, l =50

x
, 

lim
= /4,  

Normal distribution and symmetric to axis  x =100 

Fig. 3  Generated fibrous materials with different parameters 

2.2 Statistical solution of energy equations － the Lattice Boltzmann Model (LBM) 

To calculate the effective thermal conductivity of fibrous materials, we have to solve 

the energy equations for the temperature and heat flux fields. Consider a pure thermal 

conduction through a fibrous structure with the following assumptions:  two phases only 

and no phase change; no convection and radiation - the former is true when the pore sizes 

are small and the external flow velocity is low. When the contact thermal resistance 

between fibers is negligible, the energy equations under such assumptions for thermal 

conduction through fibrous structures without heat sources are 
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where subscript f  represents the fiber and g the gas, and int the interfaces; T  is 

temperature,  is density, k is the thermal conductivity, and pc  is the specific heat 

capacity. Eqs (1)-(4) describe a classical case of the multiphase conjugate heat transfer 

problem [33]. At the fiber/air interfaces, both the temperature and heat flux continuities 

have to be satisfied. As stated above, this interface constraint increases the computational 

costs tremendously when using the conventional numerical methods. Moreover, since 

there are huge numbers of such interfaces in fibrous media, this further pushes the 

computational cost into prohibitive.  

Recently, the lattice Boltzmann method (LBM) has been developed to solve 

effectively the fluid-solid conjugate heat transfer [30], which is intrinsically a mesoscopic 

approach based on the evolution of statistical distribution on lattices[34, 35]. Due to its 

easy implementations of multiple interparticle interactions and complex geometry 

boundary conditions [36-38], the LBM has gained several successes in predicting the 

effective thermal conductivities of conventional porous media [31, 39]. We thus propose 

to adopt the highly efficient LBM approach, which can easily tackle the multiple 

component/phase interactions and complex structural boundary conditions, while being 

auto-conservative.  Furthermore, because of the requirement of temperature and heat flux 

continuities at phase interfaces, the volume thermal capacities ( pc ) at different phases 

have to be maintained as the same [33]; therefore the conjugate heat problem between 

different phases is thus solved. Here we follow our previous work using the lattice 

Boltzmann algorithm for the fluid-solid conjugate heat transfer problem [30], and believe 

this is the first such attempt on fibrous materials. 

 

For the pure thermal conduction in fibrous materials governed by Eqs. (1)-(4), the 

temperature evolution equation for a two-dimensional nine-speed (D2Q9) LBM in both 

fiber and gas phases can be generally given as [30], 

   
g r  e t

,t  
t  g r,t   1


g r,t  g

eq r,t   ,   (5) 

where  r  is the location vector, t the real time, 
t
the time step, geq the equilibrium 

distribution of the evolution variable g  
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and   the dimensionless relaxation time for each phase which is determined by the 

thermal conductivity of each phase, 
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where  we have to set ( )p fc  equal to ( )p gc  in the simulations to assure the continuity 

at the interfaces [33];  c  is the pseudo sound speed, defined as 
x


t
 where   x

 is the 

lattice constant (i.e., the grid size), whose value can take any positive value theoretically 

only to insure the values of   within (0.5, 2) [30]. 

The temperature and the heat flux can be then calculated by [30,40] 

 
T  g
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        (11) 

For the isothermal boundary treatment, we follow the bounce-back rule of the non-

equilibrium distribution proposed by Zou and He [41] 

 
g  g

eq   g  g
eq         (12) 
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Initialize the temperature evolution scalar 
in each node and each direction 

Spread/evolve the temperature along each 
direction between neighbors 

Interact with interfaces 

Relax for each time step and update the 
new scalar in each node 

Judge the error limit 
No 

Output the results 

Yes 

Stochastically distribute fiber core positions 
based on given probability 

Generate the orientation angle for each core for a 
given distribution 

Grow the fiber line from the core along each 
chosen orientation 

End growth when the length of fiber or the 
volume fraction reaches the desired value 

(a) Flow chart of the generation of fibrous structures generation 

(b) Flow chart of the Lattice Boltzmann model 

where  and   represent opposite directions, and the equilibrium distribution can be 

calculated by the local boundary temperature. 

For the insulated boundary, a specula reflection treatment is implemented in this 

paper to avoid energy leak along the surfaces. After the temperature field is solved, the 

effective thermal conductivity, 
 
k

eff
, can be determined: 

 

k
eff


L  q  dA
T dA

         (13) 

where  q  is the steady heat flux through the media cross section area  dA  between the 

temperature difference  T  with a distance L . All of these parameters can be theoretically 

determined, and thus there are no empirical factors existed in the model. 

3. Results and Discussion 

The suggested approaches include a stochastic generation-growth algorithm for 

producing the practical structures of fibrous materials, and a lattice Boltzmann model for 

solving the energy equations through the materials. The flowcharts corresponding to the 

two parts are shown below in Figures 4(a) and (b).  

 

Fig. 4  Flow charts of the present algorithms 
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In this paper, we focus on the effects of fiber orientation angle limit,   lim
, fiber 

length,  l , fiber volume fraction (1- ) or porosity,  , and the fiber location distribution 

function F on the effective thermal conductivity of fibrous materials by assuming the 

fiber width maintains constant. In the following simulations, 200×200 grids are employed 

for the generations of two-dimentional fibrous networks where the grid size is x =15 

m . The thermal conductivities of fiber and gas are set to 0.5 W/m·K and 0.025 W/m·K 

respectively. For anisotropic cases, if only the effective thermal conductivities at x-

direction are concerned, we will set the left (x=0) and right (x=200) boundaries to be of 

Dirichlet/isothermal type and the up (y=200) and down (y=0) boundaries to be insulated. 

If the y-directional ones are concerned, the up and down boundaries will be isothermal 

and the left and right will be insulated. We then set the temperatures at the two isothermal 

boundaries to 100 and 200 K respectively to form a temperature gradient. 

Since the stochastic factors have been introduced during the material structure 

generation process, the calculated effective thermal conductivity will not be identical in 

every trial, but fluctuate around an average value. In following work therefore, we 

perform five simulations for each case and take the averaged value as the final result. 

Fig. 5 shows the calculated effective thermal conductivities as functions of the fibers 

orientation angle limit. The case 
lim

= 0º means all the fibers are parallel to the x axis, 

which leads to the strongest anisotropy. On the contrary, an isotropy is reached at the case 

 lim
=90º where all the fibers have equal probability to lie in any direction. In Fig. 5, the 

circles represent the effective thermal conductivities in x direction and the squares in y 

direction. The two effective thermal conductivity values differ by over 2.5 times at 

 lim
=0º and almost equal to each other at 

lim
=90º. We performed 2 or 3 calculations for 

each  lim
 value. The random characteristics of microscopic positions and connections of 

fibers made the resulted effective thermal conductivity fluctuate around an average value 

for same macroscopic parameters. The uncertainty of results is mainly dependent on the 

grid number used. For our cases, the maximum relative deviation from the average value 

is less than 10% and the averaged relative deviation is about 5% for the 200200 grid. 
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Fig. 6 shows the effective thermal conductivity changing with the length l of fibers 

when other factors are fixed. Because the simulations are performed in a finite domain 

(200×200), a fiber by a length l =400
x
 almost means infinite long to the domain. As a 

result, when the length approaches 400
x
, the calculated effective thermal conductivity 

tends to level off.  Either x-directional or y-directional results has the same shape of 

curve that rises sharply at short fiber length and slows down at long length, then stabilizes 

when the limit approaches the domain size: in the present simulation, that stable value is 

about 0.16 W/m·K. 

 
Fig. 5 The effective thermal conductivity versus the fiber orientation angle limit. The 

other parameters are c
d

=0.0025, d=
x
, l =50

x
, and the fiber locations are follow a 

uniform distribution function. 

 

Fig. 6 The x-directional effective thermal conductivity versus the fiber length l . The 

other parameters are  cd
=0.0025, d=

x
, 

lim
= /8, and the fiber locations follows a 

uniform distribution function. 
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As mentioned before, the porosity of a fibrous material is dependent not only on the 

fiber distribution density (mainly controlled by the value of c
d

), but also on the fiber 

shape and fiber-fiber contacts. Therefore the porosity could differ significantly even for 

the same value of  cd
, especially at high level. In this work, we vary  cd

 from 0.001 to 

0.01 when  lim
= /4,  l =100  x

, and the fiber locations are uniformly distributed. The x-

directional effective thermal conductivity versus the porosity is provided in Fig. 7. The 

results indicate the effective thermal conductivity increases with the porosity at a near-

linear rate, which is consistent with the experimental curves in the literature [42,43], for 

increasing fiber amount reduces air in the system which has higher thermal resistance 

when convection is negligible.  

 
Fig. 7  The x-directional effective thermal conductivity versus the volume fraction of 

fibers. The other parameters are 
lim

= /4, d=
x
, l =100

x
, and uniform fiber location 

distribution. 

Finally, the effects of the fiber location distribution function (local fiber distribution 

uniformity) on the effective thermal conductivity are studied. Both a uniform and a 

normal distribution functions are compared, the differences in the structures generated are 

already shown in Fig. 3 (d) and (e). It is clear that any non-uniform fiber location 

distribution function will lead the fibrous material to a greater anisotropy. Here we set the 

same parameters  cd
=0.0025,  l =50

x
 and 

lim
= /4 for both distribution functions. The 

calculated x-directional and y-directional effective thermal conductivities are 0.0667 

W/m·K and 0.0278 W/m·K respectively for the uniform distribution case, and the 
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corresponding values are 0.0599 W/m·K and 0.0281 W/m·K for the normal distribution 

one. The results indicate the effective thermal conductivity changes due to the fiber 

orientation and fiber-fiber contacts changed by the different location distributions. Fibers 

are inherently anisotropic and this anisotropy will translate into the system anisotropy 

differently when fiber orientation changes and the condition 
lim

= /4 also alters the 

otherwise x-y symmetry. The x-directional effective thermal conductivity for uniform 

distributed fibers (0.0667 W/m·K) is remarkably larger than that for normal distributed 

fibers (0.0599 W/m·K). Whereas the y-directional value for a uniform distribution is 

(0.0278 W/m·K ) slightly smaller than that for a normal distribution (0.0281 W/m·K ), 

statistically insignificant. 

4. Conclusions 

This paper presented a stochastic-statistic-mechanics scheme for modeling the 

effective thermal conductivity of fibrous materials, which includes a structure generation-

growth method for analytically constructing a fibrous material based on given statistical 

macroscopic information, and a lattice Boltzmann algorithm for solving the energy 

transport equations through the fibrous material with the multiphase conjugate heat 

transfer effect considered. 

Using the present method, the effective thermal conductivity of 2-dimentional 

fibrous networks is analyzed for different given parameters. The results indicate that the 

inherent fiber anisotropy will translate into the system anisotropy through different fiber 

orientations. The fiber orientation angle limit will also cause the material effective 

thermal conductivity to be anisotropic and a smaller angle limit leads to a greater 

anisotropy.  Also, the fiber orientation angle range less than 0 ~ �/2 will alters the 

otherwise x-y symmetry. 

The effective thermal conductivity of fibrous material increases with the fiber length 

and approach a stable value when the fiber length is sufficiently long. The effective 

thermal conductivity increases with the porosity of material at a near-linear rate, for 

increasing fiber amount reduces the air in the system, which has higher thermal resistance 

when air convection is negligible. The effective thermal conductivity differs for different 

fiber location distribution functions (i.e. local fiber distribution uniformity) as well. 
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