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a three-year dataset supporting 
research on building energy 
management and occupancy 
analytics
Na Luo1, Zhe Wang  1,2, David Blum1, Christopher Weyandt1, Norman Bourassa1, 
Mary ann Piette1 & tianzhen Hong  1 ✉

This paper presents the curation of a monitored dataset from an office building constructed in 2015 
in Berkeley, California. the dataset includes whole-building and end-use energy consumption, HVaC 
system operating conditions, indoor and outdoor environmental parameters, as well as occupant counts. 
The data were collected during a period of three years from more than 300 sensors and meters on two 
office floors (each 2,325 m2) of the building. a three-step data curation strategy is applied to transform 
the raw data into research-grade data: (1) cleaning the raw data to detect and adjust the outlier values 
and fill the data gaps; (2) creating the metadata model of the building systems and data points using 
the Brick schema; and (3) representing the metadata of the dataset using a semantic JSON schema. This 
dataset can be used in various applications—building energy benchmarking, load shape analysis, energy 
prediction, occupancy prediction and analytics, and HVaC controls—to improve the understanding and 
efficiency of building operations for reducing energy use, energy costs, and carbon emissions.

Background & Summary
Buildings consume approximately 40% of the primary energy in the United States1 and about one-third glob-
ally. Today’s technologies (e.g., energy efficiency, sensors, and advanced controls) could reduce energy use in 
buildings by up to 50%2. Reducing energy waste in buildings and optimizing building operations require access 
to a diverse and integrated set of data3,4. However, it is currently time consuming and hard to find datasets that 
have adequate data coverage (e.g., indoor and outdoor environmental parameters, occupant parameters, energy 
end uses, building system operational parameters), good data quality, and clear documentation (e.g., metadata 
description).

Measuring ground truth at high resolution in all buildings is impractical and challenging5,6. Therefore, it is 
critical to collect, curate, and make publicly available high-resolution data from a small number of buildings that 
have broad applicability to a variety of high-impact use cases. Such datasets can provide a common, high-quality 
benchmark against which competing algorithms can be fairly compared.

The great majority of energy in residential and commercial buildings is used to deliver services for occu-
pants7. Numerous studies emphasize the role that occupants play in influencing energy consumption in build-
ings8,9. An accurate prediction of occupant counts can largely improve building energy efficiency through 
demand flexibility control (DFC)10 and model predictive control (MPC)11. Despite the significance of occupant 
information, data collection is still challenging due to cost and privacy concerns.

In 2020, an unprecedented global lockdown was enforced to control the spread of COVID-19 in many 
countries. The impact of pandemic lockdown on building energy use is complicated due to different building 
types, climate conditions, and control and operating policies. The restriction on occupants’ activities tended to 
reduce energy consumption in office buildings, particularly in electric devices such as lighting and plug loads12. 
However, the lingering effects of the lockdown may hamper the goal of improving building energy efficiency by 
adding uncertainty and additional requirements to minimize the spread of the virus13. Therefore, it is critical to 
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identify how the COVID-19 pandemic is influencing building and system operations, and to understand build-
ing energy use and efficiency in these times.

This paper presents the curation and development of a building performance dataset and related metadata 
semantic models of the building and systems. The uniqueness of this dataset includes:

•	 A rich high-resolution three-year time-interval data of a real office building, which includes two years of 
pre-pandemic data, and the year of 2020 when the COVID-19 pandemic started.

•	 The building was used for model predictive control research and field testing.
•	 The dataset has camera-based occupant count measurements as well as proxy virtual sensing from the 

WiFi-connected device count.
•	 A Brick model14, which is an open-source effort to standardize semantic descriptions of the physical, logical, 

and virtual assets in buildings and the relationships between them, was developed to represent the metadata 
of the sensors, meters, and HVAC systems.

•	 A semantic description of the dataset (including building and system characteristics, and information on data 
curation, data quality, data categories, and application aspects) was developed.

The dataset can be used to support various use cases, including:

•	 Building energy benchmarking at the whole-building and end-use levels to understand relative energy effi-
ciency compared with peer buildings (same use type, same climate zone) and improvement opportunities to 
reduce energy use15–17.

•	 Load shape analysis to understand whole-building and end-use level demand profiles18.
•	 Building energy prediction using statistical or machine learning algorithms19.
•	 Occupancy analytics to understand occupancy patterns and correlation between occupancy level and build-

ing energy use20.
•	 Development and validation of building thermal simulation models for use in model predictive control21.
•	 Fault detection and diagnostics to identify HVAC operational issues22.
•	 Prediction and validation of occupant count using WiFi connected device count23.

Methods
Description of the building and systems. Building. The target building (Fig. 1) is a medium-sized 
office building (i.e., Building 59 or Wang Hall) located inside the Lawrence Berkeley National Laboratory 
(Berkeley Lab) campus in Berkeley, California. The building has 10,400 m2 of conditioned spaces on four floors. 
The lower level provides space for mechanical systems, the second level is the National Energy Research Scientific 
Computing Center (NERSC), and the third and fourth levels are office spaces. The ground office floor (third floor) 
is primarily closed office space, while the second office floor (fourth floor) is primarily open office space.

The building structure is steel-framed with an exterior metal curtain wall system with integrated windows 
and foamed insulation core. There are vertical sunshades on the exterior. In office areas, finished floors with 
carpeting are raised above structural concrete slabs, creating the plenum for the underfloor air distribution 
(UFAD) HVAC system. R30 insulation is added between the bottom of the ground office floor and the top of the 
high performance computing area, while a dropped ceiling plenum separates the ground level office area from 
the second level office area as well as the second level office area from the roof. The roof is a white single ply PVC 
roofing membrane over ½” cover board and insulation layers on a concrete roof deck.

The building is divided into 57 thermal zones. Thermal zones with exterior walls and windows are classified 
as exterior zones; others are classified as interior zones. The temperatures of exterior zones are measured by the 
wall-mounted sensors installed within each zone served by an under-floor terminal (UFT) as part of the build-
ing automation system (BAS). The temperatures of interior zones are measured by 16 sensors that were added 

Fig. 1 The office building in Berkeley, California.
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by the research team at desk level, which are built with Raspberry Pi Zero W and DS18B20 Digital Temperature 
Sensors. These temperature sensors are located as close as possible to where occupants stay, for instance, at 
their workstations. In addition, to measure occupant counts, we deployed camera-based sensors manufactured 
by TRAF-SYS at the six entrances/exits of the southern wing of the building. Figure 2 presents the locations of 
temperature sensors and occupant sensors.

HVAC Systems. Heating and cooling are provided to the offices by a UFAD system. The system uses four 
roof-top units (RTUs) located on the roof with water-cooled direct expansion (DX) coils to supply cool air to 
the underfloor plenums. Each RTU serves the ground level and second level offices between particular col-
umn lines of the building, as depicted in Fig. 3, though the areas of service are not separated by internal wall 
partitions. The four RTUs operate their supply fans at the same speed, instead of separately controlling to their 

Fig. 2 Location of temperature sensors and occupant sensors.

Fig. 3 Elevation schematic of RTU service coverage of the office levels.
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own sensors and setpoint. The thermal zones served by each RTU are summarized in Table 1. The design airflow 
of each RTU is 33,980 m3/hr (20,000 cubic feet per minute or cfm), with minimum outdoor air of 8,495 m3/hr 
(5,000 cfm). The supply fan motor is 20 horsepower (HP) (16.4 brake horsepower or BHP) and the return fan 
motor is 7.5 HP (3.7 BHP), each equipped with variable speed drives. The cooling capacity of each RTU is 356 
MBH (30 tons or 105.5 kW) with two 13-HP R410A scroll compressors. Submittals indicate requirements for 
variable speed control of each compressor from 10% to 100%. There are 50 fan-powered terminal units (UFTs) 
with hydronic heating coils to provide reheat. Air from the RTU is supplied to the underfloor plenum and 
then delivered to interior and exterior zones directly through floor diffusers and additionally to exterior zones 
through fan-powered UFTs. The UFTs reheat this perimeter air if necessary. The condenser water from the 
RTUs is cooled by heat exchangers connected to the induced draft crossflow cooling towers located next to the 
building on the mechanical level. These cooling towers are shared with the high performance computing (HPC) 
cooling equipment, which dominate the load on the cooling towers. UFT heating is produced by a 117 kW (400 
MBH) (nominal) heat pump (air-source type before March 2019, later replaced with water-source) located on 
the mechanical level of the building and two 3 HP variable frequency drive (VFD) pumps.

HVAC systems are controlled by an Automated Logic (ALC) WebCTRL building management system (BMS) 
(Automated Logic 2017) with an extensive array of sensors. BMS sensors and controllers are networked to a 
NERSC network firewall protected server hosted within the Building 59 computer room facility. Read access to 
the ALC BMS logic and data trends is provided through a web-hosted graphical user interface (GUI). Figure 4 
shows the typical control schematic for each RTU.

During the data collection periods (2018–2020), two control modes were applied: conventional rule-based 
control (RBC) and model predictive control (MPC). The starting and ending dates of the MPC testing are listed 
in Table 2. RBC used a predetermined zone temperature setback schedule (second floor office, Saturdays) to 
select the temperature setpoint of each UFT as well as the minimum outside air flow damper position. In late 
summer 2020, more functions were introduced to the RBC control, including a fresh air flow rate setpoint and 
a smoke mitigation mode for wildfire season, which, when enabled, would close the outside air damper to a 
minimum to prevent economizer operation. MPC adopted an optimization-based approach to determine the 
optimal setpoints for RTU supply air temperature and fan speed based on the current states and predicted dis-
turbances. Local controllers continued to track their set points using the pre-existing RBC, except for the fan 
speed controller. MPC mode was on in the fall and winter of 2020, which will be further illustrated in Table 2.

Electrical systems. Two transformers feed the building’s office and HVAC main switchboards. The office main 
switchboard (4000A, 277/480V) serves lighting and receptacle panels on the ground and second level office 
floors, along with other panels for common areas, special rooms, and emergency power. The HVAC main 
switchboard (4000A, 277/480V) serves mechanical equipment throughout the building. Table 3 summarizes the 
services provided by six key electrical panels.

Electrical systems are metered at the panel level by NERSC Center for purposes of data center energy con-
sumption monitoring and benchmarking. The two main plug load panels, two main lighting panels, and two 
main HVAC panels are metered using General Electric Trip units. The two plug and lighting panels serve the 
north and south wing of the two office floors (e.g., one panel serves one wing of both floors), while the two 
HVAC panels contain the RTU units, two on each, as well as the building elevators. Electrical meter data are 
accessible through a Grafana (Grafana Labs 2017) web-hosted GUI and can be downloaded into CSV files.

Lighting systems. The lighting system in the offices is composed of Philips T8 32W fluorescent light fixtures, 
occupancy/vacancy sensors, photocell light detectors, and a dedicated lighting control server with workstation. 
The light fixtures are controllable through a Quantum Light management hub with Ecosystem Energi Savr 

Lighting zone RTU Thermal zones

North Wing 1 36, 37, 38, 39, 40, 41, 42, 64, 65, 66, 67, 68, 69, 70

North Wing 2 19, 20, 27, 28, 29, 30, 31, 32, 33, 34, 35, 43, 44, 49, 50, 57, 58, 59, 60, 62, 63, 71, 72

South Wing 3 18, 25, 26, 45, 48, 55, 56, 61

South Wing 4 16, 17, 21, 22, 23, 24, 46, 47, 51, 52, 53, 54

Table 1. Key Electrical Panels.

Event number Starting date Ending date Event

1 2018/11/12 2018/11/20 Wildfire

2 2020/03/18 2020/12/31 Shelter-in-place

3 2020/08/24 2020/09/06 Wildfire

4 2020/10/20 2020/10/27 MPC testing

5 2020/11/02 2020/11/06 MPC testing

6 2020/11/13 2020/11/19 MPC testing

7 2020/12/04 2020/12/14 MPC testing

Table 2. Key timeline of events for the building and data collection.

https://doi.org/10.1038/s41597-022-01257-x
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Nodes. The photocell light detectors are placed in perimeter zones, while occupancy sensors are placed through-
out the office zones. The occupancy sensors are used to control the on/off state of lights in a lighting zone. There 
are manually controlled roller shades on the inside of windows serving office and meeting spaces. Lighting sys-
tems are metered through the Lutron Quantum Vue (Lutron 2017) browser-based GUI. Energy consumption 
data of each lighting zone can be downloaded via the GUI into CSV files.

Data collection. Data from Building 59 comes from various sources and systems. Figure 5 shows the group 
of data points and their collection systems. To store the data in a central database, all the data streams are pulled 
from their sources and systems and integrated into an influxdb database, an open source time series database. In 
this way, the data collection from different data sources is independent: i.e., the crash of one data source will not 
influence others.

For HVAC systems operational data, the ALC SOAP web interface is used to retrieve data of specified points 
from the ALC WebCTRL Building Automation System. For the electrical consumption data, the ElasticSearch 
database, on which the data is held for specific points through a web endpoint, is queried. For the site weather 

Fig. 4 Control schematic for the RTU HVAC systems. Important temperature (T) and pressure (P) sensors and 
associated control points available through the ALC BMS interface are labelled.

https://doi.org/10.1038/s41597-022-01257-x
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data, HTTP RESTful requests are made to the Synopticlabs web application programming interface (API) to 
gain access to data from the weather station located on the Berkeley Lab campus.

In addition to the existing BAS data points, occupant sensors and indoor air quality (IAQ) sensors were 
installed in the building. Camera-based occupancy sensors were deployed to collect occupant count data. The 
camera-based sensor can detect the number of people entering and leaving the space. Integrating the net flow 
of people entering the border can inform the number of occupants in the target area. The sensor accuracy was 
validated by sending a crew of researchers to manually count the net number of people through each entrance. 
Additionally, Wi-Fi data were collected with the help of Berkeley Lab’s IT department. The total number of 
connected devices at each Wi-Fi Access Point (AP) were collected and aggregated at the floor level based on the 
location of each AP. The Wi-Fi connection counts could serve as a proxy variable of occupant counts.

There are 16 air temperature sensors built with Raspberry Pi Zero W and DS18B20 Digital Temperature 
Sensors. The Raspberry Pis are running Raspbian Lite (no GUI) and are connected to a power source. The 
communication is done through Berkeley Lab’s WiFi network: the Raspberry Pis push the measured indoor 
air temperature to the database every 10 minutes. Temperature sensors are located as close as possible to where 
occupants stay, for instance, at their workstations.

Historical weather data for the building are available through SynopticLabs (MesoWest and SynopticLabs 
2017) from a tower-mounted weather station located at the Berkeley Lab’s campus, approximately 300 meters 
northeast of the building. Measurements include outdoor air temperature, dew point, precipitation, pressure, 
relative humidity, solar irradiation, wind speed, and wind direction. The measurement timestep is 15 minutes. 
Data can be downloaded from a web-hosted GUI into CSV files or through the SynopticLabs RESTful HTTP API.

Key timeline of building operational changes and data collection. There are operational changes to the building 
during the three-year data collection period. Table 2 lists seven major building operational changes, which can 
be categorized into three types: wildfire, shelter-in-place due to the COVID-19 pandemic, and MPC testing 
to enhance building operation efficiency. In about three weeks during 2018 and 2020, the building closed the 
outdoor air dampers to minimize outdoor air flow rate due to air pollution caused by the wildfires. In late March 
2020, most staff in the building started working from home, which significantly reduced the occupancy of the 
building. In about five weeks during 2020, MPC was tested in the building to optimize the operation of the 
HVAC systems to reduce energy use.

Data curation. Data curation workflow. The cleaning and curation process of the raw dataset follows the 
proposed workflow as shown in Fig. 6. First, the data are cleaned to generate a clean version of the time-series 
data. This process includes identifying and dropping large gaps, filling small gaps using multiple interpolation 
algorithms based on the gap size, smoothing anomalous values, as well as anonymization if necessary. Then, 

Panel Label Service

590A1A North Office Lighting with Compute Lighting

590A15A South Office Lighting with Compute Lighting

590A2A North Plug Loads

590A14A South Plug Loads

596A1A1A RTU 3–4 (North) with Elevator

596A1A2A RTU 1–2 (South) with Elevator

Table 3. Key Electrical Panels.

Fig. 5 Data collection systems and the central influxDB database.
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https://restfulapi.net/
https://synopticdata.com/mesonet-api


7Scientific Data |           (2022) 9:156  | https://doi.org/10.1038/s41597-022-01257-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

two metadata models/files are generated to describe the semantic information of the building assets and data 
points at different levels of detail. More granularly, the Brick model provides semantic information of the physical, 
logical, and virtual assets, as well as their relationships in buildings; the self-documented Metadata JSON file 
helps streamline data sharing and significantly increase data interoperability between data providers, users, and 
applications.

Data cleaning. Data gaps and outlier values were identified and modified to generate the clean version of the 
time-series raw data. Multiple imputation methods via linear interpolation, K-nearest neighbors, and matrix 
factorization were proved to be effective when cleaning the time-series data of building electricity and HVAC 
operations in previous literatures24,25. Considering the length of data gap and the sampling frequency of each 
data point, three possible scenarios are identified as follows:

•	 Gaps that extend for no more than a few consecutive sampling frequencies (smaller gaps): In most cases 
these correspond to data gaps that are scattered through the dataset, which can be addressed by filling the 
gaps using simple linear interpolation.

•	 Gaps that extend for one hour up to a few hours or 1 day (small gaps): This kind of data gap lasts for a few 
hours and can be due to the sensors’ brief blackout. However, compared with the sampling frequency, data 
might be variously changed during these few hours. A simple linear regression is not sufficient to capture the 
dynamic pattern25. Therefore, we used more advanced linear interpolation, such as the K-nearest neighbors 
(KNN) algorithm. KNN is a generalization of the classic linear interpolation and is widely used in cases where 
relations among the dimensions of the data are complex. It imputes values using the weighted mean of the k 
most similar rows, weighted by their similarity.

•	 Gaps that extend from a few hours up to several days (large gaps): This is the case when a portion of the 
system or sensors is paused or faulted. In this dataset, the large gap only occurs for a subset of measurements 
and not the entire set of measurements; only the missing data corresponding to impacted measurements 
need to be dealt with to keep the data from the other measurements intact. Therefore, a more computation-
ally intensive method is applied called matrix factorization (MF) to fill the large gap. MF was widely used to 
impute missing data. The algorithm assumes that different days of measurements (different rows of matrix) 
are generated from a shared subspace; thus, the data matrix of different days can be decomposed using a 
common factor.

Table 4 summarizes gap-filling strategies for smaller gaps, small gaps, and large gaps, based on the sampling 
frequency of each measurement. Normally, for data points with the sampling rate of 1 min, the upper thresholds 
for smaller gaps, small gaps and large gaps are set at 1 hour, 10 hours, and unlimited, respectively. For data points 
with the sampling rate of 5–15 minutes, upper thresholds are set at 10 hours, 1 day, and unlimited, respectively.

Table 4 summarizes outlier values following multiple criteria for different measurements. Generally, for elec-
tricity data, any value less than zero is considered an outlier value. For temperature data, any value less than 0 °C 
(32 °F) or larger than 50 °C (122 °F) is considered an outlier value, since Berkeley’s climate is considered to be 
mild. For other HVAC operational measurements (e.g., fan speed, air flow rate) and occupant measurements 
(e.g., occupant count, WiFi connected device count), any value less than zero is also considered as an outlier 
value. Since outlier values are all scattered for less than a few consecutive sampling frequencies through the 
dataset, the basic linear interpolation algorithm is applied to modify them.

After filling the data gaps and adjusting the outliers, the cleaned dataset has no more missing data.

Data records
As illustrated in Fig. 6, the dataset is organized in a three-layer pyramid structure. The final dataset is composed 
of the cleaned time-series operation data, the Brick model representing the metadata of the data measurements, 
and the JSON file representing the metadata of the dataset. The total size of the original data is about 2.38 
GB (about 263 MB in a compressed file in zip format). The dataset is hosted at Dryad website26: https://doi.
org/10.7941/D1N33Q.

time-series data. The time-series measured data collected from Building 59 can be organized into five 
major categories: energy use data, outdoor environmental data, indoor environmental data, HVAC operational 

Fig. 6 Diagram of the dataset curation workflow.
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Data File name Column name Description
Number of 
data points Unit

Sampling 
frequency

Missing rate 
for 3 years 
measurement

Specific 
available 
time 
period (if 
not Jan 
2018–Dec 
2020)

Gap filling 
strategy

Outlier 
criteria

Energy use 
data ele.csv

mels_S Miscellaneous electric 
load for the South Wing 1 kW 15 min 0.33

<10 hours: 
Linear 10 
hours to 1 
day: KNN 
>1 day: 
MF

<0

mels_N Miscellaneous electric 
load for the North Wing 1 kW 15 min 0.20

lig_S+ Lighting load for the 
South Wing 1 kW 15 min 0.18

hvac_S
Heating Ventilation and 
Air Conditioning load for 
the Sorth Wing

1 kW 15 min 0.08

hvac_N
Heating Ventilation and 
Air Conditioning load for 
the Nouth Wing

1 kW 15 min 0.08

Outdoor 
environmental 
data

site_weather.csv

air_temp_set_1 Outdoor air temperature 
from sensor 1 1 °C 15 min 0.003

<0 °C or 
>50 °Cair_temp_set_2 Outdoor air temperature 

from sensor 2 1 °C 15 min 0.005

dew_point_
temperature

Outdoor air dew 
temperature of sensor 2 1 °C 15 min 0.011

relative_
humidity_set_1

Outdoor air relative 
humidity from sensor 1 1 % 15 min 0.009

<0
solar_radiation_
set_1

Outdoor solar radiation 
from sensor 1 1 W/m2 15 min 0.009

Indoor 
environmetnal 
data

zone_temp_sp_c.
csv

zone_*_cooling_
sp

Cooling temperature 
setpoint of Zone * 41 °F 5 min 0.05–0.07

Sep 2018–
Dec 2020

<32°F 
or 
>122°F

zone_temp_sp_h.
csv

zone_*_heating_
sp

Heating temperature 
setpoint of Zone * 41 °F 5 min 0.05–0.06

zone_temp_
interior.csv

cerc_
templogger_*

Zone temperature of 
interior zone 16 °F 10 min 0.01–0.21 Feb 2018–

Dec 2020

zone_temp_
exterior.csv zone_*_temp Zone temperature of 

exterior zone 51 °F 1 min 0.15–0.20

<1 hour: 
Linear 1 
hour to 
10 hours: 
KNN >10 
hours: MF

zone_co2.csv zone_*_co2 CO2 concentration of 
each zone 13 ppm 1 min 0–0.1

Aug–Dec 
2019, 
Apr–Dec 
2020

<0

HVAC 
operational 
data

hp_hws_temp.csv hp_hws_temp Heat pump heating water 
supply temperature 1 °F 1 min 0.14

<32°F 
or 
>122°F

rtu_sa_t_sp.csv rtu_*_sat_sp_tn
Roof Top Unit * supply 
air temperature setpoint 
(*: 001, 002, 003, 004)

4 °F 1 min 0.15

rtu_sa_t.csv rtu_*_sa_temp
Roof Top Unit * supply 
air temperature (*: 001, 
002, 003, 004)

4 °F 1 min 0.14

rtu_ra_t.csv rtu_*_ra_temp
Roof Top Unit * return 
air temperature (*: 001, 
002, 003, 004)

4 °F 1 min 0.14

rtu_ma_t.csv rtu_*_ma_temp
Roof Top Unit * mixed 
air temperature (*: 001, 
002, 003, 004)++

4 °F 1 min 0.14

rtu_oa_t.csv rtu_*_oa_temp
Roof Top Unit * outdoor 
air temperature (*: 001, 
002, 003, 004)

4 °F 1 min 0.14

rtu_sa_fr.csv rtu_*_fltrd_sa_
flow_tn

Roof Top Unit * filtered 
supply air flow rate (*: 
001, 002, 003, 004)

4 CFM+++ 1 min 0.14

<0rtu_oa_fr.csv rtu_*_oa_
flow_tn

Roof Top Unit * outdoor 
air flow rate (*: 001, 002, 
003, 004)

4 CFM+++ 1 min 0.02 Apr–Dec 
2020

rtu_oa_damper.
csv

rtu_*_oadmpr_
pct

Roof Top Unit * outdoor 
air damper position (*: 
001, 002, 003, 004)

4 % 1 min 0.15

rtu_econ_sp.csv rtu_*_econ_
stpt_tn

Roof Top Unit * 
economizer setpoint (*: 
001, 002, 003, 004)

4 °F 1 min 0.14
<32°F 
or 
>122°F

rtu_sa_p_sp.csv rtu_*_pa_static_
stpt_tn

Roof Top Unit * air 
pressure static setpoint 
(*: 001, 002, 003, 004)

4 psi++++ 1 min 0.15 <0

Continued

https://doi.org/10.1038/s41597-022-01257-x
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Data File name Column name Description
Number of 
data points Unit

Sampling 
frequency

Missing rate 
for 3 years 
measurement

Specific 
available 
time 
period (if 
not Jan 
2018–Dec 
2020)

Gap filling 
strategy

Outlier 
criteria

rtu_plenum_p.
csv

rtu_*_fltrd_**_
plenum_press_tn

Roof Top Unit * plenum 
air pressure at floor ** 
(*: 001, 002, 003, 004; **: 
gnd_lvl, lvl2)

8 psi++++ 1 min 0.14

rtu_fan_spd.csv

rtu_*_sf_vfd_
spd_fbk_tn

Roof Top Unit * supply 
fan speed (*: 001, 002, 
003, 004)

4 % 1 min 0.14

rtu_*_rf_vfd_
spd_fbk_tn

Roof Top Unit * return 
fan speed (*: 001, 002, 
003, 004)

4 % 1 min 0.14

ashp_meter.csv aru_001_power_
mbtuph

Heat meter for air source 
heat pump 1 mbtuph+++++ 5 min 0.29

Aug–Dec 
2020

<10 hours: 
Linear 10 
hours to 1 
day: KNN 
>1 day: 
MF

ashp_cw.csv

aru_001_cws_
temp

Evaporator/Cold water 
supply temperature 1 °F 5 min 0.01 <32°F 

or 
>122°Faru_001_cwr_

temp
Evaporator/Cold water 
return temperature 1 °F 5 min 0.01

aru_001_cws_
fr_gpm

Evaporator/Cold water 
fow rate 1 CFM+++ 5 min 0.02 <0

ashp_hw.csv

aru_001_hws_
temp

Condenser/Hot water 
supply temperature 1 °F 5 min 0.16

Oct 2019–
Dec 2020

<32°F 
or 
>212°Faru_001_hwr_

temp
Condenser/Hot water 
return temperature 1 °F 5 min 0.16

aru_001_hws_
fr_gpm

Condenser/Hot water 
fow rate 1 CFM+++ 5 min 0.01

<0

uft_fan_spd.csv zone_*_fan_spd Supply air fan speed of 
Zone * 44 % 1 min 0.15–0.23

<1 hour: 
Linear 1 
hour to 
10 hours: 
KNN >10 
hours: MF

uft_hw_valve.csv zone_*_hw_
valve

Heating water valve 
position of Zone * 51 % 1 min 0.15–0.25

Occupant data

occ.csv
occ_third_south Occupant counts in the 

south half of third floor 1 / 1 min 0.0004 May 
2018–Feb 
2019occ_fourth_

south
Occupant counts in the 
south half of forth floor 1 / 1 min 0.0004

wifi.csv

wifi_first_south
Wifi connection counts 
in the south half of first 
floor

1 / 10 min 0

May–July 
2018, 
Feb–Dec 
2020

<10 hours: 
Linear 10 
hours to 1 
day: KNN 
>1 day: 
MF

wifi_second_
south

Wifi connection counts 
in the south half of 
second floor

1 / 10 min 0

wifi_third_south
Wifi connection counts 
in the south half of third 
floor

1 / 10 min 0

wifi_fourth_
south

Wifi connection counts 
in the south half of forth 
floor

1 / 10 min 0

Table 4. Identification of outlier values and gap-filling strategies for all data points, and their missing rates. 
+No record for the lighting electricity in the north wing. Note that north and south wings are similar in both 
floor area and lighting systems. ++The Mixed Air Temp sensors on the RTUs were proven to be inaccurate due 
to poor installation and were replaced in early 2021. +++1 CFM ~ 1.699 m3/h ++++1 psi ~ 6895 Pa +++++1 btuph ~ 
0.293 W

data, and occupant data. After the data cleaning process, the entire dataset is compiled into 27 separate data files 
in the CSV format, containing 337 data points in total. Table 4 summarizes the available data points, as well as 
their locations in the data files, descriptions, sampling frequency, unit, and missing rate for the three-year meas-
urement (specific available time period if applied).

Metadata JSON File. A semantic metadata file is generated in the JSON format to represent the high-level 
data curation, contextual information, and application perspectives of the dataset. Four major aspects of the 
building and dataset information are summarized in the JSON file:

•	 Building information: information about the building and its service systems, including the geographic 
information, building, and systems characteristics

•	 Data governance: contextual information about the dataset, including the creation and curation logs of the 
dataset, as well as the sharing policy and contact information
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•	 Data category: basic information about the available data points in 10 categories, including data format, data 
period, spatial and temporal resolution, as well as data quality indicators

•	 Applications: potential use cases of the dataset, reference publications, and access link.

Brick model. In addition to the metadata from the whole building dataset, metadata from sensors and equip-
ment is critical when using the dataset for further building operation analysis since it provides semantic infor-
mation about the physical, logical, and virtual assets, as well information about their relationships in buildings. 
In this dataset, a Brick model represents the hierarchical structure of the building, systems, and sensors. Brick 

Fig. 7 Illustration of the Brick model for the dataset.
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C 2018 2019 2020

kJ/m2/year (SI unit) 465,617 317,983 340,696

kBtu/ft2/year (IP unit) 41 28 30

Table 5. EUI of the target building during the measurement periods.

schema is an open-sourced data schema for standardizing semantic description of building assets14. It provides an 
extensible dictionary of terms and concepts, a set of relationships for linking and composing concepts together, 
and a flexible data model27 based on semantic web technologies. Figure 7 illustrates entity classes of the building 
and their relationships generated by the Brick TTL Viewer. Each entity has multiple instances with other entities. 
For example, the zone entity has a relationship with the VAV entity under the relationship of feeds; it also has 
relationships with indoor environmental sensors (e.g., Zone_Air_Temperature_Sensor, CO2_Sensor) under the 
relationship of hasPoint. The detailed Brick model is stored in the TTL file format.

technical Validation
Whole-building energy use. Building 59 is an all-electric building, its energy use intensity (EUI) values of 
the two office floors were calculated for the three years (Table 5), and are compared with other office buildings in 
the state of California using the Building Performance Database (bpd.lbl.gov). The EUI of 2018 is higher than that 
in 2019 and 2020, which is due to the building retrofit for improving the building efficiency in 2019.

Figure 8(a) shows the histogram distribution of the available data points of the electric EUI for the San 
Francisco area. The data are selected from the Building Performance Database by filtering the building type 
as offices, year built within the past 30 years, and year when the data were collected within the past five years, 
using San Francisco Bay Area and the entire state of California, respectively as locations. The median value is 

Fig. 8 Electric EUI for San Francisco area (a) and state of California (b).
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374,765 kJ/m2/year (33 kBtu/ft2/year), and the EUI of Building 59 belongs to the bin of data with highest fre-
quency, from 227,131 to 454,261 kJ/m2/year (20 to 40 kBtu/ft2/year). Since the San Francisco area is generally 
cooler than the entire state of California, the EUI for the entire state is higher than that for San Francisco with a 
median value of 465,618 kJ/m2/year (41 kBtu/ft2/year), as shown in Fig. 9(b). Building 59 is still within the bin of 
data with highest frequency, from 340,696 to 454,261 kJ/m2/year (30 to 40 kBtu/ft2/year).

Energy consumption disaggregation by end-use. Figure 9 shows three-year electric EUI for HVAC, 
lighting, and miscellaneous electric loads (MELs). Electricity consumed during HVAC operation accounts for 
75%, 61%, and 88% of the total electricity consumption of the top two-floor area during 2018, 2019, and 2020, 
respectively. Lighting operations is the lowest energy consumer among end uses: less than 3% of the total elec-
tricity consumption.

Figure 10 shows the time-series energy use that breaks down to these three major end uses. There is no 
significant reduction in HVAC electricity use during the pandemic, which is due to the higher requirement of 
ventilation air and the associated heating energy because of the cool climate in Berkeley. Lighting and MELs saw 
an electricity reduction of 50–85% starting in March 2020, at the first wave of the pandemic when the building 
had no occupancy. Lighting consumption started to increase in September 2020 as a limited number of people 
returned to the office gradually.

Electrical load shape. A typical summer day (August 5, 2019) and a typical winter day (January 23, 2020) 
are used to analyze load shape before the pandemic for both the total and the major end uses of the top two floors, 

Fig. 10 Time-series energy use (kWh/day) for major end uses from 2018 to 2020.

Fig. 9 Electric EUI of major end uses from 2018 to 2020.
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Fig. 11 Load shape for both the whole building and major end uses on one typical summer day (a) and one 
typical winter day (b), before the pandemic.

as shown in Fig. 11(a,b), respectively. In summer, the HVAC demand leaps around 10am, and remains high 
during the building operating hours until 6 pm. In winter, HVAC demand is relatively flat. MEL demand starts 
to increase around 7am, when occupants start to arrive in the office. MEL demand level is similar across summer 
and winter seasons. The lighting starts to consume more energy around 5am. Similar to MELs, lighting demand 
level is consistent across summer and winter seasons.

Figure 12(a,b) show a comparison between load shape of a typical summer day before (August 5, 2019) and 
during (August 3, 2020) the pandemic. The comparison of HVAC load shape before and during the pandemic 
shows that HVAC consumed more energy during the pandemic, both during day and night, which is due to the 
higher requirement of ventilation air and the associated heating energy because of the cool climate in the San 
Francisco area. Lighting and MELs consumed much less energy during the pandemic since employees were 
mostly working remotely. Overall, the whole building level demand was similar to pre-pandemic levels.

Floor map of the ground and second office floor. To show the location of each thermal zone, we plot 
the floor map of the ground and second office floor in Fig. 13.

Fig. 12 Load shape for both the whole building and end uses on one typical summer day before the pandemic 
(a) and one typical summer day during the pandemic (b).
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Usage Notes
The time-series data are in CSV format and have a size of 2.38 GB. A more detailed note about the data cleaning 
strategy is available at the dataset’s GitHub page: https://github.com/LBNL-ETA/Data-Cleaning. An exploration 
of the metadata of equipment and sensors in the Brick model by using the Brick TTL viewer is recommended. 
Users can obtain high-level metadata about the building and dataset in the metadata JSON file.

Code availability
The Python code for detecting and filling the data gaps, as well as for modifying outlier values, is available at the 
dataset’s GitHub page: https://github.com/LBNL-ETA/Data-Cleaning.
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