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Abstract

Efficient and Trustworthy Algorithm Design for Large-Scale Simulation and Inference

by

Jingxu Xu

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Assistant Professor Zeyu Zheng, Chair

In the areas of operations research and industrial engineering, the objective function in many
optimization and decision-making problems involves complicated system measures that need
to be evaluated by simulation. The procedures of evaluating and optimizing stochastic sys-
tems via simulation present several critical challenges: i) The stochastic systems typically
involve uncertainties that are captured by a set of input distributions to be estimated from
real-world input data, and the estimation error from the input distributions may propagate
and cause uncertainties in the evaluation of the objective function; ii) Under complicated
system logic, the exact simulation of the objective function can be computationally expen-
sive or impossible; iii) Simulations need to be conducted on multiple values of the decision
variable or across various systems to facilitate optimization and selection. These challenges
exacerbate issues about the allocation and management of computational resources. This
thesis aims to propose effective algorithm design for simulation-based decision making, with
the goal of optimizing the stochastic systems and saving computational resources at the
same time. In particular, our contributions are threefold: i) With the objective of selecting
the system with the best performance, we propose a general framework to analyze the joint
resource allocation problem for collecting input data and generating simulation replications;
ii) For continuous optimization via simulation (COvS) problems, we propose gradient-based
algorithms that sequentially utilizes multi-resolution approximations to optimize systems for
which exact simulation is costly or impossible. iii) We provide new time-parallel simulation
algorithms, so that simulation can be executed quickly to inform time-sensitive decisions.
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Chapter 1

Introduction

In the areas of industrial engineering and operations research, the need to compare multiple
stochastic systems, or optimize a single stochastic system, is a common challenge due to
the complexity of such systems. Simulation serves as an important and commonly employed
tool to evaluate the performance of complex stochastic systems and inform decisions. For
example, in the fields of transportation and logistics, simulation is applied for traffic signal
timing optimization [111, 14]. In the fields of manufacturing, simulation is applied to opti-
mally specifying inventory management policies and stock levels for supply chain networks
[88]. In the fields of healthcare, simulation is applied to comparing the effectiveness of dif-
ferent configurations of servers and facilities in hospitals [19]. In this thesis, we focus on two
decision-making tasks based on simulation: i) selecting the system with the best expected
performance, ii) optimizing the expected value of a stochastic objective function with con-
tinuous multi-dimensional decision variable. The two tasks are often referred to within the
framework of simulation optimization: see [10, 80, 28, 59, 106, 115, 63, 57, 15, 53].

In the context of simulation-based decision making, the management and allocation of
computing resources consistently emerge as an essential consideration. Several pertinent
concerns are outlined below. Firstly, the stochastic systems typically involve uncertainties
that are captured by a set of probability models. The associated probability distributions are
estimated from data, and there exists a statistical estimation error due to the finite amount
of data collected. The statistical estimation error from the input distributions may propagate
and cause uncertainties in the evaluation of system performance, known as input uncertainty.
Given that both data collection and simulation are costly, optimal resource allocation strikes
a balance between input data collection and simulation. Secondly, for complicated stochastic
systems, the exact simulation of system performance can be computationally expensive or
even impossible. For associated optimization of the system, the computational resource
need to be allocated to implement the difficult simulation on multiple values of the decision
variable to find a good solution. Thirdly, simulation can be time-sensitive, specially when we
want to evaluate the performance of the system over a long time horizon. Contrarily, many
decisions need to be made in real time and are time-sensitive. This poses requirements on
parallel simulation with the challenge of efficiently managing multiple processors.
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This thesis targets to make advancements in addressing these concerns and provide new
algorithm designs that achieve optimal balance between accuracy and resource efficiency. In
the following sections of this chapter, we present a brief summary of our contributions, as
well as related publications and working paper referenced throughout the dissertation.

1.1 Summary of Contributions

In this section, we provide a brief summary of our contributions to the simulation literature.

• Chapter 2

With the objective of selecting the system with the best performance, we propose a
general framework to analyze the joint resource allocation problem for collecting input
data and generating simulation replications. Two commonly arised features, correlation
in input data and common random numbers in simulation, are jointly exploited to
save costs. For input data collection, in presence of the correlation structure among
different sources, options are available to either jointly collect data simultaneously from
the different sources, or to collect data solely from a particular source. For simulation,
one has the option to either use common random numbers to simultaneously evaluate
performance for different systems or to evaluate independently a single system. We
provide closed-form optimal resource allocation solutions that maximize the asymptotic
probability of correct selection, given fixed resource budget. Our results explicitly show
that how the correlation structure is exploited to save costs and improve performance,
and how the optimal resource allocation strategy depends on the correlation structure.

• Chapter 3

We propose gradient-based simulation-optimization algorithms to optimize systems
that have complicated stochastic structure. The presence of complicated stochastic
structure, such as the involvement of infinite-dimensional continuous-time stochastic
processes, may cause the exact simulation of the system to be costly or even impos-
sible. On the other hand, for a complicated system, one can sometimes construct a
sequence of approximations at different resolutions, where the sequence has finer and
finer approximation resolution but higher and higher cost to simulate. With the goal
of optimizing the complicated system, we propose algorithms that strategically use
the approximations with increasing resolution and higher simulation cost to construct
stochastic gradients and perform gradient search in the decision space. To accommo-
date scenarios where approximations cause discontinuities and lead path-wise gradient
estimators to have an uncontrollable bias, stochastic gradients for the proposed al-
gorithms are constructed through finite difference. As a theory support, we prove
algorithm convergence rate, central limit theorem, and optimality of algorithm de-
sign under the assumption that the objective function for the complicated system is
strongly convex, while no such assumptions are imposed on the approximations of the
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complicated system. We then present a multilevel version of the proposed algorithms
to further improve convergence rates, when in addition the sequence of approximations
can be naturally coupled.

• Chapter 4

Simulations on single processors can be time-consuming and often need to be completed
within short time frames. To address this challenge, we explore the design of algo-
rithms for time-parallel simulation of stochastic models, specifically non-homogeneous
Markov chains. Our objective is to efficiently estimate the expected performance of
these Markov chains over extended periods within constrained simulation times. We
introduce a framework that allocates specific simulation tasks to individual processors
and aggregates the simulation results. As a theory support, we prove central limit
theorem, and optimality of assignment policy under the assumption that the state
space of the Markov chain is finite. We also develop a two-stage parallel simulation
procedure that dynamically learns and applies the optimal assignment policy during
the simulation period. We prove theoretically and then show empirically that the pro-
posed two-stage procedure improves the simulation efficiency compared to standard
assignment policy.

1.2 Related Publications and Working Papers

• Chapter 2

Main Paper:

– Jingxu Xu, Zeyu Zheng, and Peter W. Glynn.“Joint Resource Allocation for Input
Data Collection and Simulation”, 2020 Winter Simulation Conference (WSC).
IEEE, 2020.

• Chapter 3

Main Paper:

– Jingxu Xu, and Zeyu Zheng. “Gradient-based Simulation Optimization Algo-
rithms via Multi-Resolution System Approximations”, INFORMS Journal on
Computing 35.3 (2023): 633-651.

Related Paper:

– Haoting Zhang, Jinghai He, Jingxu Xu, Jingshen Wang, and Zeyu Zheng. “En-
hancing Language Model with Both Human and Artificial Intelligence Feedback
Data”, submitted to 2024 Winter Simulation Conference (WSC).

• Chapter 4
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– Jingxu Xu, and Zeyu Zheng. “Optimal Policies for Time-Parallel Simulation of
Time-Varing Systems”, working paper.
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Chapter 2

Joint Resource Allocation for Data
Collection and Simulation

The need to compare the expected performance of two or multiple stochastic systems natu-
rally arise in the areas of healthcare, supply chain, logistics, production, queueing systems,
portfolio management, among others. The stochastic systems under consideration typically
involve uncertainties that are captured by a set of probability models. The associated prob-
ability distributions are either specified by domain experts or estimated from data. These
probability models, serving as inputs to the stochastic system, can be the customer arrival
and service processes in a service system or the daily demands and lead times in a supply
chain system. After the input probability distributions are specified or estimated, simula-
tion is often used to evaluate the expected system performance, particularly in cases where
analytical solutions are not available.

In this chapter, we presumes that there is independent and identically distributed data
available or that can be collected that faithfully represents the true input distributions.
When the input probability distributions are estimated from data, there exists a statistical
estimation error due to the finite amount of data collected. The statistical estimation error
from the input distributions may propagate and cause uncertainties in the evaluation of sys-
tem performance. The resulting uncertainty in the performance evaluation caused by using
an incorrectly specified input distribution (due to estimation error) is called input uncer-
tainty. The input uncertainty cannot be eliminated by increasing the number of simulation
replications used to evaluate the system performance, but can potentially be reduced by
collecting more data. In many applications, the data to be collected is multi-dimensional
and is usually generated sequentially from real operations. Therefore typically the available
data that can be collected in one operational period is corrected. Consider a site selection
problem where a manager chooses one out ofm sites to run a new branch store. The manager
may need to run simulation to evaluate revenues for each site with different store designs.
One of the key input distributions is the daily traffic flows. On day i, the full set of data
that may be collected is Ai = (Ai,1, Ai,2, . . . , Ai,m) in which Ai,j denotes the traffic flow at
the j-th site on day i. Due to the nature of the data generation process, (Ai,1, Ai,2, . . . , Ai,m)
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are typically correlated, possibly due to common unobserved features from the same day and
other observed dependencies such as the adjacency between sites. Ideally, collecting this full
set of data Ai is preferred and provides the best possible information, but this can be costly
or even inaccessible. On the other hand, when the correlation structure within the full set
of input data generated in the same period is exploited, it may not be necessary to collect
the full set of data. Therefore this correlation structure may be used to save input data
collection cost.

In this chapter, we propose a general framework to study the joint resource allocation
problem for input data collection and simulation. The objective is appropriately allocating
resource to maximize the probability of correctly selecting the system with the best per-
formance. Two commonly arised features, correlation in input data and common random
numbers in simulation, are jointly exploited to save costs. For input data collection, in
presence of the correlation structure among different sources, options are available to either
jointly collect data simultaneously from the different sources, or to collect data solely from a
particular source. For simulation, one has the option to either use common random numbers
to simultaneously evaluate performance for different systems or to evaluate independently a
single system. We provide closed-form optimal resource allocation solutions that maximize
the asymptotic probability of correct selection, given fixed resource budget. Our results
explicitly show that how the correlation structure is exploited to save costs and improve
performance, and how the optimal resource allocation strategy depends on the correlation
structure.

Two scenarios are considered in our framework. First, we consider scenarios (in Section
2.2) where the “monetary” cost of generating a simulation replication is much smaller than
the cost of collecting a sample of input data. For example, these situations happen when
the scale and structure of the problem permits the generation of simulation replications
efficiently even on personal computers, while the input data needs to be purchased from a
data vendor at a significant price or needs to be collected by multiple staff throughout a
number of days. One may then assume a simplification that once the input distributions
are estimated, the expected performance evaluation via simulation is immediately available
at no cost. Therefore in these situations, the resource allocation problem focuses entirely
on the input data collection part. Second, we consider scenarios (in Section 2.4) where
the simulation cost is not negligible compared with the input data collection cost. These
scenarios arise in performance evaluation for complicated systems, in which high performance
computing resources are needed for simulation. Otherwise if not using designated high
performance computing resources, the simulation may take too long a time. The simulation
costs therefore may be evaluated by monetary costs for purchasing computing resources or
by the opportunity costs for long simulation time. In these scenarios, the optimal resource
allocation strikes a balance between the input data collection costs and simulation costs, to
jointly control input uncertainty and simulation error.
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2.1 Related Work

Comparing the expected performance of two or multiple systems via simulation is a fun-
damental component in the problems of Ranking and Selection (R&S) and Discrete Opti-
mization via Simulation (DOvS). When one knows explicitly the input distributions, or has
the ability to generate simulation replications from the true input distributions, the focus
of these problems is then on developing efficient simulation procedures to select the best
system. Procedures developed in the literature typically adopt a frequentist or a Bayesian
view. See [65] and [11] for an overview. This chapter follows a frequentist perspective.

When the input distributions are not explicitly known, or when one does not have the
ability to generate samples from the true input distributions, a series of works discuss the
quantification of input uncertainty and its impact on the comparison of system performance.
See [12, 13, 5, 104, 91, 16, 102, 101] among others. The closest to our work are [102] and
[90]. Song and Nelson [90] exploits the effect of common input distribution to reduce the
uncertainty in system performance comparison, when the input data set is given. They con-
struct valid confidence intervals for system comparison that incorporate input uncertainty,
the common input distribution effect, and simulation uncertainty. Wu and Zhou [102] allows
the collection of additional input data from multiple independent sources and discusses the
optimal resource allocation for input data collection and simulation. Our work is different
to the literature in three folds: (1) we exploit the correlation structure in the input data to
reduce the input data collection cost, and show how the correlation structure impacts the
optimal resource allocation strategy. (2) we propose a general framework that integrates
input data collection and simulation in which the data collection and simulation costs them-
selves can be random; (3) we investigate the joint optimal resource allocation when both
the correlation in the input data and the use of common random numbers in the simulation
procedures are exploited.

When the performance of each system is evaluated independently, the best system selec-
tion problem shares the same formulation as the best arm identification problem; see [61, 62,
38, 87, 86] among others. In fact, if we separate the input data collection problem and the
best system selection problem, each problem shares a very similar formulation with a best
arm identification problem, provided that the observation of each dimension in the data is
independent and that the performance evaluation of each system is independent. Differences
emerge when correlation is present either in the input data collection or among simulation
evaluations.

The use of common random numbers (CRN) in the simulation procedures for R& S and
DOvS have been widely discussed. See [109, 37, 77, 17, 66] among others. Specifically, Fu
et al. [30] discusses the optimal allocation of simulation replications on each system when
the CRN technique is used. Their work did not discuss errors created from input data.
We propose an alternative framework that allows the simulation costs to be random, and
consider the joint resource allocation problem for both input data collection and simulation.
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2.2 A General Framework

We introduce a basic and general framework that allows us to integrate simulation for per-
formance evaluation and input data collection for input distribution estimation. In this
framework, the costs for simulation and input data collection can be random. We first focus
on describing the input data collection and input distribution estimation in the framework.

Consider a set of systems labeled by index set [m] = {1, 2, . . . ,m}. When m = 2, for
example, there are two systems to compare. For i ∈ [m], the expected performance for
system i is given by αi(θ

∗
i ), where αi : Rdi → R is a continuously differentiable function,

and θ∗i ∈ Rdi is the true input distribution parameter associated with system i (e.g., arrival
and service rates, lead time expectation, shape parameters, etc.). We first consider scenarios
where the simulation cost is negligible compared to input data collection cost, so that the ex-
pected performance function αi(·)’s are viewed to be available at no cost whenever the input
distribution is specified. We recognize that the input distribution parameters θ∗1, θ

∗
2, . . . , θ

∗
m

need to be estimated. This can be based on common observations (X̃ij : i ∈ [m], j ≥ 1) or
based on independently gathered observations (Xij : j ≥ 1) for i ∈ [m]. We assume that
the cost of collecting the j-th copy of a set of common observations (X̃ij : i ∈ [m]) collected
simultaneously is given by τ̃j, while the cost of collecting individual Xij is given by τij. These
data collection costs can be random variables themselves. Then, with a budget c in hand,
we can either collect

Ñ(c) = max{n ≥ 0 : τ̃1 + . . .+ τ̃n ≤ c}

copies of “common observations” or

Ni(c) = max{n ≥ 0 : τi1 + . . .+ τin ≤ c}

copies of observations solely from system i. In this framework, we assume that

1. (τ̃j, (X̃ij : i ∈ [m]) : j ≥ 1), (τ1j, X1j : j ≥ 1), . . ., (τmj, Xmj : j ≥ 1) are independent
sequences.

2. (τi, (X̃ij : i ∈ [m]) : j ≥ 1) is i.i.d. in j.

3. For each i ∈ [m], ((τij, Xij) : j ≥ 1) is i.i.d. in j.

4. X̃i1
D
= Xi1 for i ∈ [m]. Var(Xi1) < ∞ for i ∈ [m].

5. E τ̃1 < ∞, E τi1 < ∞, for i ∈ [m].

In practice, it is often the case that E τi1 < E τ̃1 for i ∈ [m] and E τ̃1 ≤
∑m

i=1 E τi1. Since
Ñ(·) and Ni(·)’s are renewal counting processes, it is known that

1

c
Ñ(c)

a.s.→ λ ≜
1

E τ̃1
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and
1

c
Ni(c)

a.s.→ λi ≜
1

E τi1
.

Given an overall budget c, suppose we allocate a fraction p to collecting common observations,
and a fraction pi to collecting independent observations from system i, where

p+ p1 + p2 + . . .+ pm = 1,

with p ≥ 0, pi ≥ 0, i ∈ [m].
We now assume that one estimates θ∗i via an maximum likelihood estimator (MLE) θ̂i,

where θ̂i maximizes the likelihood

Ñ(pc)∏
j=1

fi(θ, X̃ij)

Ni(pic)∏
j=1

fi(θ,Xij),

where fi(θ, · ) is the marginal probability density function of the input data for the i’th
system. By taking the logarithm of the likelihood function

L̃ij(θ) = log fi(θ, X̃ij),

Lij(θ) = log fi(θ,Xij),

maximizing the likelihood is equivalent to maximizing the log-likelihood, given by

Ñ(pc)∑
j=1

L̃ij(θ) +

Ni(pic)∑
j=1

Lij(θ).

Under appropriate technical conditions, the maximum likelihood estimator θ̂i satisfies

Ñ(pc)∑
j=1

∇L̃ij(θ̂i) +

Ni(pic)∑
j=1

∇Lij(θ̂i) = 0

with θ̂i → θ∗i almost surely as c → ∞. Note that

Ñ(pc)∑
j=1

[
∇L̃ij(θ̂i)−∇L̃ij(θ

∗
i )
]
+

Ni(pic)∑
j=1

[
∇Lij(θ̂i)−∇Lij(θ

∗
i )
]
= −

Ñ(pc)∑
j=1

∇L̃ij(θ
∗
i )−

Ni(pic)∑
j=1

∇Lij(θ
∗
i ).

We adopt the convention that the gradient is a row vector. If Lij(·) is appropriately smooth,
then the mean value theorem implies that

√
c(θ̂i − θ∗i )

(Ñ(pc)

c
Hi +

Ni(pic)

c
Hi + op(1)

)
= −

∑Ñ(pc)
j=1 ∇L̃ij(θ

∗
i )√

c
−
∑Ni(pic)

j=1 ∇Lij(θ
∗
i )√

c
,
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where the notion oP (1) indicates a small random quantity that weakly converges to zero as
c → ∞. The Hessian matrix Hi is given by

Hi =
(
E

∂2

∂θk∂θl
Li1(θ

∗) : 1 ≤ k ≤ l ≤ di
)
.

Assume that Hi is negative definite so that detHi is non-singular. Then, when c is large,

c
1
2 (θ̂i − θ∗i ) = − 1

λp+ λipi

( Ñ(pc)∑
j=1

∇L̃ij(θ
∗)H−1

i√
c

+

Ni(pic)∑
j=1

∇Lij(θ
∗)H−1

i√
c

)
+ op(1).

Hence, we have the following result.

Theorem 1. Assume that for i ∈ [m], there exists an open subset wi that is a subset of
the feasible parameter region where the true parameter θ∗i ∈ wi, and that all third-order par-
tial derivatives of the log-likelihood functions with respect to input parameters are uniformly
bounded for θi ∈ wi. When c → ∞,

c
1
2 ((θ̂i − θ∗i ) : i ∈ [m]) ⇒

(
− 1

λp+ λipi

(√
λp G̃i +

√
λipi Gi

)
: i ∈ [m]

)
,

where:

• (G̃1, . . . , G̃m) is jointly Gaussian with mean 0.

• G̃i
D
= Gi, where the covariance matrix of Gi is given by H−1

i E∇Li1(θ
∗)⊤∇Li1(θ

∗)H−1
i .

• The random variables (rv’s) G1, G2, . . . , Gm are independent and independent of
(G̃1, . . . , G̃m).

The proof of Theorem 1 is given in the appendices. With Theorem 1 in hand,

c
1
2 (αi(θ̂i)− αi(θ

∗
i )) = (θ̂i − θ∗i )∇αi(θ

∗)⊤ + op(1)

= − 1

λp + λipi
(
√

λpG̃i +
√

λipiGi)∇αi(θ
∗)⊤ + op(1)

= − 1

λp + λipi
(
√

λpG̃i +
√

λipiGi) + op(1)

as c → ∞, where G̃i = G̃i∇αi(θ
∗)⊤,Gi = Gi∇αi(θ

∗)⊤, i ∈ [m]. Note that G̃i
D
= Gi, i ∈ [m].

Hence, when c → ∞,

c
1
2 (αi(θ̂i)−αj(θ̂j)−(αi(θ

∗
i )−αj(θ

∗
j )) ⇒ −

√
λp

λp+ λipi
G̃i+

√
λp

λp+ λjpj
G̃j−

√
λipi

λp+ λipi
Gi+

√
λjpj

λp+ λjpj
Gi.
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Denote the right-hand-side above as Wij. The random variable (rv) Wij is Gaussian with
mean zero and variance

σ2
i

λp+ λipi
+

σ2
j

λp+ λjpj
− 2λp cij

(λp+ λipi)(λp+ λjpj)
,

where σ2
i = VarGi and cij = Cov(G̃i, G̃j). We further define ρij = Corr(G̃i, G̃j).

With the given framework, when comparing systems i and j, the input data collection
problem can be summarized into the following optimization problem

min
p≥0, pi≥0, pj≥0, p+pi+pj=1

σ2
i

λp+ λipi
+

σ2
j

λp+ λjpj
− 2λp cij

(λp+ λipi)(λp+ λjpj)
.

Recall that cij = ρijσiσj. An equivalent formulation is to set qi = λipi, q = λp, and minimize

σ2
i

q + qi
+

σ2
j

q + qj
− 2qρijσiσj

(q + qi)(q + qj)
(2.1)

subject to q
λ
+ qi

λi
+

qj
λj

= 1.

2.3 Optimal Resource Allocation for Input Data

Collection

The optimization problem given by (2.1) to solve the optimal resource allocation for input
data collection turns out to be non-convex. The non-convexity is exactly caused by the
correlation feature and creates difficulty in modeling how the correlation ρij presented in the
input data exactly affects the optimal resource allocation. The following theorem shows
that the optimal objective function can be obtained at the boundary of feasible region
S = {(qi, qj, q)⊤ : qi, qj, q ≥ 0, q

λ
+ qi

λi
+

qj
λj

= 1} ⊂ R3.

Theorem 2. For the optimization problem (2.1), there exists a solution (q∗i , q
∗
j , q

∗) that
achieves the optimal objective value and has at least one element as zero.

With Theorem 2 in hand, it suffices to explore the resource allocation strategies among

(qi, 0, q), (qi, qj, 0) and (0, qj, q). Denote si :=
1
λi
, sj :=

1
λj
, s := 1

λ
, v(qi, qj, q) :=

σ2
i

qi
+

σ2
j

qj
−

2qρijσiσj

(q+qi)(q+qj)
. Theorem 2 implies that

min
(qi,qj ,q)⊤∈S

v(qi, qj, q) = min
{
b∗i , b

∗
j , b̃

∗
}
,

where b∗i = min
(qi,qj , q)⊤∈S,qi=0

v(qi, qj, q), b
∗
j = min

(qi,qj , q)⊤∈S,qj=0
v(qi, qj, q), b̃

∗ = min
(qi,qj , q)⊤∈S,q=0

v(qi, qj, q).

We provide the closed-form value for b∗i , b
∗
j , b̃

∗ and the associated optimizers.

b∗i =

{ (√
(−sj + s)σ2

i +
√

sj(σ2
j − 2ρijσiσj)

)2
, if sjσ

2
i <

(
σ2
j − 2ρijσiσj

)
(s− sj) ,

s(σ2
i + σ2

j − 2ρijσiσj), if sjσ
2
i ≥

(
σ2
j − 2ρijσiσj

)
(s− sj).
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The optimal solution to achieve b∗i is

(qi, qj, q) =

(
0,

√
(σ2

j − 2ρijσiσj) (s− sj)−
√

sjσ2
i

(s− sj)
√

sjσ2
i + sj

√
(σ2

j − 2ρijσiσj)(s− sj)
,

1

s
−

sj

√(
σ2
j − 2ρijσiσj

)
(s− sj)−

√
s3jσ

2
i

s (s− sj)
√
sjσ2

i + sjs
√
(σ2

j − 2ρijσiσj)(s− sj)

)

and (qi, qj, q) = (0, 0, 1
s
) respectively under the two conditions.

b∗j =

{ (√
(−si + s)σ2

j +
√

si(σ2
i − 2ρijσiσj)

)2
, if siσ

2
j < (σ2

i − 2ρijσσj) (s− si) ,

s(σ2
i + σ2

j − 2ρijσiσj), if siσ
2
j ≥ (σ2

i − 2ρijσiσj) (s− si) .

The optimal solution to achieve b∗j is

(qi, qj, q) =

( √
(σ2

i − 2ρijσiσj) (s− si)−
√

siσ2
j

(s− si)
√

siσ2
j + si

√
(σ2

i − 2ρijσiσj) (s− si)
, 0,

1

s
−

si
√
(σ2

i − 2ρijσiσj) (s− si)−
√

s3iσ
2
j

s (s− si)
√
siσ2

j + sis
√

(σ2
i − 2ρijσiσj) (s− si)

)

and (qi, qj, q) = (0, 0, 1
s
) respectively under the two conditions.

b̃∗ = (
√
siσi +

√
sjσj)

2.

The optimal solution to achieve b̃∗ is (qi, qj, q) = ( σi√
si(

√
siσi+

√
sjσj)

,
σj√

sj(
√
siσi+

√
sjσj)

, 0).

As shown in the closed-form solution for min
(qi,qj ,q)⊤∈S

v(qi, qj, q), the optimal resource al-

location critically depends on the sign and magnitude of the correlation ρij. We discuss
how the different value of ρij affects the optimal allocation. First, consider the case when
s = si + sj. This corresponds to the case of additive input data collection costs. If ρij ≤ 0,
the optimal allocation is to independently collect data for system i and j, and the optimal
fraction q∗i , q

∗
j satisfies σi

q∗i
√
si

=
σj

q∗j
√
sj
. Specifically if ρij = 0, any allocation (q, qi, qj) that

satisfies σi√
si(qi+q)

=
σj√

sj(qj+q)
is optimal. If 0 < ρij < max

{
1

2σiσj
(σ2

j −
sjσ

2
i

si
), 1

2σiσj
(σ2

i −
siσ

2
j

sj
)
}
,

the optimal allocation assigns a fraction of budget to collecting common observations and
assigns the rest of budget to solely collecting data from system i if σ2

i /si > σ2
j/sj, or solely

system j if otherwise σ2
j/sj > σ2

i /si. When ρij ≥ max
{

1
2σiσj

(σ2
i −

siσ
2
j

sj
), 1

2σiσj
(σ2

j −
sjσ

2
i

si
)
}
,
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the optimal allocation assigns all the budget to collecting common observations of data. In
summary, when s = si+sj, there are three different regimes of optimal allocation depending
on the sign and value of ρij.

When s < si+ sj, two critical values that affect the optimal allocation are s/min {si, sj}
and ρij. Note that in practice s/min {si, sj} is always greater than 1. Theorem 2 shows that
there exists a threshold value γ > 1 such that if s/min {si, sj} > γ, the optimal allocation
strategy adopts three different regimes. When ρ12 is close to -1, the optimal allocation
assigns all the budget to independently collecting data for system i and j. As ρij increases,
the optimal allocation assigns a fraction of budget to collecting common observations of data
simultaneously and assigns the rest budget to independently collecting data from one of the
two systems (in a way analogous to the case of s = si + sj). When ρij further increases

and exceeds max
{

1
2σiσj

(σ2
j −

sjσ
2
i

s−sj
), 1

2σiσj
(σ2

i −
siσ

2
j

s−si
)
}
, the optimal allocation is to collecting

common observations of data simultaneously. The above summarizes the three regimes for
scenarios where s/min {si, sj} > γ. On the other hand, if 1 < s/min {si, sj} < γ, there are
two different forms. Specifically, there exists a threshold ρ′ < 0 such that, if −1 < ρij < ρ′,
the optimal allocation assigns the budget to collecting data independently for system i and
j; if ρij > ρ′, the optimal allocation assigns all the budget to collecting common observations
of data.

2.4 Joint Resource Allocation Formula

In this section, we consider scenarios where the simulation cost is not negligible compared
with the input data collection cost. These scenarios arise in performance evaluation for com-
plicated systems, in which high performance computing resources are needed. The simulation
may take too long time if not using designated high performance computing resources. The
simulation costs therefore may be evaluated by monetary costs for purchasing computing
resources or by the opportunity costs for long simulation time. In these scenarios, it is
unrealistic to assume that the expected performance αi(·)’s are immediately available at
negligible cost. In this section, we extend the general framework introduced in Section 3 to
include both input data collection and simulation generation.

Recall that as defined in Section 3, the expected performance of system i is given by
αi(θ

∗
i ) for i ∈ [m], where θ∗i ∈ Rdi is the true input distribution parameter. Input data is

collected and used to derive maximum likelihood estimators for θ∗i ’s, denoted by θ̂i for i ∈ [m].
Simulation needs to be run to estimate the expected performance αi(θ̂i)’s given the estimated
input distribution parameters. The simulation can be done by independently running system
i and the sequence of simulation output is (Yij(θ̂i) : j ≥ 1) for i ∈ [m]. Alternatively,
the technique of common random numbers (CRN) can be used to evaluate the m systems
simultaneously. The sequence of simulation output using CRN is ((Ỹij(θ̂) : i ∈ [m]) : j ≥ 1).
When using CRN, we assume that the cost of obtaining the j-th simulation replication of
a set of simultaneous evaluations (Ỹ1j(θ̂), Ỹ2j(θ̂), ...Ỹmj(θ̂)) is given by η̃j, and the cost of
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generating individual evaluation Yij(θ̂i) for system i is given by ηij. The simulation costs
can be random. Then, given a simulation cost budget c̃, we can either generate

M̃(c̃) = max{n ≥ 0 : η̃1 + . . .+ η̃n ≤ c̃}

simulation replications using CRN or

Mi(c̃) = max{n ≥ 0 : ηi1 + . . .+ ηin ≤ c̃}

individual simulation replications for system i. We assume that

1. Conditional on the estimated input distribution parameters θ̂ = {θ̂i : i ∈ [m]},
(η̃j, (Ỹij(θ̂) : i ∈ [m]) : j ≥ 1), (η1j, Y1j(θ̂1) : j ≥ 1), . . . , (ηmj, Ymj(θ̂m) : j ≥ 1) are
independent sequences.

2. Conditional on θ̂, (η̃j, (Ỹij(θ̂) : i ∈ [m])) is independent and identically distributed (iid)

in j, and (ηij, Yij(θ̂i)) is iid in j for each i ∈ [m].

3. E[Yi1|θ̂i] = E[Ỹi1|θ̂] = αi(θ̂i), and Var(Yi1|θ̂i) = Var(Ỹi1|θ̂) = Di(θ̂i) for i ∈ [m].
Cov(Ỹi1, Ỹj1) = Dij(θ̂) for i, j ∈ [m], where Di(·) and Dij(·) are continuous functions
with respect to θi and θ.

4. E η̃1 < ∞, E ηi1 < ∞, for i ∈ [m]. In general, E ηi1 < E η̃1 for i ∈ [m].

Since M̃(·) andMi(·)’s are renewal counting processes, we have as c̃ → ∞, 1
c̃
M̃(c̃)

a.s.→ µ ≜ 1
E η̃1

and 1
c̃
Mi(c̃)

a.s.→ µi ≜ 1
E ηi1

. Given a simulation budget c̃, suppose we allocate a fraction r to
simultaneous evaluations using CRN, and a fraction ri to independent simulation evaluation
for system i, where

r + r1 + r2 + . . .+ rm = 1,

with r ≥ 0, ri ≥ 0, i ∈ [m].
With a given simulation budget and allocation, the simulation estimators for αi(θ̂i)’s are

given by

α̂i(θ̂i) =

∑M̃(rc̃)
j=1 Ỹij(θ̂) +

∑Mi(ric̃)
j=1 Yij(θ̂i)

M̃(rc̃) +Mi(ric̃)
.

Then,

c̃1/2(α̂i(θ̂i)− αi(θ̂i)) = − 1

µr + µiri

(√
µrZ̃i(θ̂) +

√
µiriZi(θ̂i)

)
+ op(1),

where, conditional on θ̂,

• (Z̃1(θ̂), . . . , Z̃m(θ̂)) is jointly Gaussian with mean 0. Var(Z̃i(θ̂)) = Di(θ̂i) and
Cov(Z̃i(θ̂), Z̃j(θ̂)) = Dij(θ̂) for 1 ≤ i ≤ j ≤ m.
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• Z̃i(θ̂)
D
= Zi(θ̂i), and specifically Var(Z̃i(θ̂)) = Var(Zi(θ̂i)).

• The rv’s Z1(θ̂1), Z2(θ̂2), . . . , Zm(θ̂m) are independent and independent of
(Z̃1(θ̂), Z̃2(θ̂), . . . , Z̃m(θ̂)).

Hence, as c̃ → ∞,

c̃
1
2 (α̂i(θ̂i)− α̂j(θ̂j)− (αi(θ̂i)− αj(θ̂j))

⇒ −
√
µr

µr + µiri
Z̃i(θ̂) +

√
µr

µr + µjrj
Z̃j(θ̂)−

√
µiri

µr + µiri
Zi(θ̂i) +

√
µjrj

µr + µjrj
Zj(θ̂j).

Denote the limiting rv as Vij(θ̂). Conditional on θ̂, the rv Vij(θ̂) is Gaussian with mean zero
and variance

Di(θ̂i)

µr + µiri
+

Dj(θ̂j)

µr + µjrj
− 2µrDij(θ̂)

(µr + µiri)(µr + µjrj)
.

Therefore, conditional on the input distribution specified by θ̂ and given a simulation budget
c, the optimal simulation budget allocation problem in order to differentiate system i and j
is given by

min
ri≥0, rj≥0, r≥0, ri+rj+r=1

Di(θ̂i)

µr + µiri
+

Dj(θ̂j)

µr + µjrj
− 2µrDij(θ̂)

(µr + µiri)(µr + µjrj)
.

Suppose that we want to compare the system performance for system i and system j
and a total budget C is allocated to both input data collection and simulation experiments.
Suppose we allocate a fraction p to collecting common observations, a fraction pi (or pj) to
collecting independent observations from system i (or j), a fraction r to running simulation
replications to evaluate m systems simultaneously using CRN, and a fraction ri (or rj) to
running individual simulation replications for system i (or j) , where

p+ pi + pj + r + ri + rj = 1

with p ≥ 0, pi ≥ 0, r ≥ 0, ri ≥ 0, i ∈ [m]. The resulted system performance estimations
are α̂i(θ̂i) and α̂j(θ̂j). The following central limit theorem is a direct result by noticing that
the uncertainty presented in the input data collection and the uncertainty emerged from
simulation replications are independent.

Theorem 3. When C → ∞,

C
1
2 [(α̂i(θ̂i)− α̂j(θ̂j))− (αi(θ

∗
i )− αj(θ

∗
j ))]

= C
1
2 [(α̂i(θ̂i)− αi(θ̂i))− (α̂j(θ̂j)− αj(θ̂j))] + C

1
2 [(αi(θ̂i)− αi(θ

∗
i ))− (αj(θ̂j)− αj(θ

∗
j ))]

⇒ Uij(θ
∗),
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where Uij(θ
∗) is a Gaussian rv with mean zero and variance Varij(θ

∗) given by

σ2
i

λp+ λipi
+

σ2
j

λp+ λjpj
− 2λp cij

(λp+ λipi)(λp+ λjpj)
+

Di(θ
∗
i )

µr + µiri
+

Dj(θ
∗
j )

µr + µjrj
− 2µrDij(θ

∗)

(µr + µiri)(µr + µjrj)
.

When comparing two systems i and j and selecting the better, maximizing the asymptotic
probability of correct selection is equivalent to minimizing the limiting variance Varij(θ

∗).
The associated joint optimal budget allocation problem is given by

min
pi,pj ,p,ri,rj ,r

Varij(θ
∗)

s.t. pi + pj + p+ ri + rj + r = 1 (2.2)

pi, pj, p, ri, rj, r ≥ 0.

To solve (2.2), we define L1(pi, pj, p) :=
σ2
i

λp+λipi
+

σ2
j

λp+λjpj
− 2λp cij

(λp+λipi)(λp+λjpj)
, L2(ri, rj, r) :=

Di(θ
∗
i )

µr+µiri
+

Dj(θ
∗
j )

µr+µjrj
− 2µrDij(θ

∗)
(µr+µiri)(µr+µjrj)

, and set w1 = pi + pj + p, w2 = ri + rj + r, p̃i =
pi
w1
, p̃j =

pj
w1
, p̃ = p

w1
, r̃i = ri

w2
, r̃j =

rj
w2
, r̃ = r

w2
. The weight w1 represents the fraction of the total

budget allocated to input data collection, while the weight w2 represents the fraction of
the total budget allocated to generating simulation replications. Note that Varij(θ

∗) =
L1(p̃i,p̃j ,p̃)

w1
+

L2(r̃i,r̃j ,r̃)

w2
. Note that the minimization of L1(p̃i, p̃j, p̃) is an independent problem

that does not depend on w1, w2 and other parameters. A similar argument holds for the
minimization of L2(r̃i, r̃j, r̃). Based on this observation, we first solve two sub-problems:

min
p̃i,p̃j ,p̃

L1(p̃i, p̃j, p̃) min
r̃i,r̃j ,r̃

L2(r̃i, r̃j, r̃)

(P1) s.t. p̃i + p̃j + p̃ = 1 (P2) s.t. r̃i + r̃j + r̃ = 1

p̃i, p̃j, p̃ ≥ 0 r̃i, r̃j, r̃ ≥ 0.

For (P1), note that the problem is equivalent to (2.1) (by setting q̃i = λip̃i, q̃j = λj p̃j and
q̃ = λp̃). Therefore, as we have discussed in Theorem 2, (P1) has closed-form optimizer,
denoted as p̃∗i , p̃

∗
j , p̃

∗ and optimal value L1(p̃
∗
i , p̃

∗
j , p̃

∗). Analogously, the problem (P2) also
adopts the same structure and has closed-form optimal solution r̃∗i , r̃

∗
j , r̃

∗ and optimal value
L2(r̃

∗
i , r̃

∗
j , r̃

∗). We then consider the optimization problem

min
w1,w2

L1(p̃
∗
i , p̃

∗
j , p̃

∗)

w1

+
L2(r̃

∗
i , r̃

∗
j , r̃

∗)

w2

s.t. w1 + w2 = 1 (2.3)

w1, w2 ≥ 0.
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The optimal solution of (2.3) is w∗
1 =

√
L1(p̃∗i ,p̃

∗
j ,p̃

∗)√
L1(p̃∗i ,p̃

∗
j ,p̃

∗)+
√

L2(r̃∗i ,r̃
∗
j ,r̃

∗)
, w∗

2 =

√
L2(r̃∗i ,r̃

∗
j ,r̃

∗)√
L1(p̃∗i ,p̃

∗
j ,p̃

∗)+
√

L2(r̃∗i ,r̃
∗
j ,r̃

∗)
.

Therefore, the optimal solution for (2.2) is p∗i = w∗
1p̃

∗
i , p

∗
j = w∗

1p̃
∗
j , p

∗ = w∗
1p̃

∗, r∗i = w∗
2 r̃

∗
i , r

∗
j =

w∗
2 r̃

∗
j , r

∗ = w∗
2 r̃

∗, and the optimal value for Varij(θ
∗) is

L1(p̃∗i ,p̃
∗
j ,p̃

∗)

w∗
1

+
L2(r̃∗i ,r̃

∗
j ,r̃

∗)

w∗
2

.

We conclude by noting that joint resource allocation problem in presence of correlation
in both input data and simulation can be decoupled into three sub-problems, each admitting
a closed-form solution.

2.5 Conclusion

In this chapter, we consider the target of selecting the system with better expected perfor-
mance between two stochastic systems, given fixed resource budget. The resource can be
used to collect more input data to reduce input uncertainty, and to implement more simu-
lation replications to eliminate simulation error. We model the resource allocation problem
as an optimization problem. The objective is appropriately allocating resource to maximize
the probability of correctly selecting the best system. We exploit correlation structure of
input data and common random numbers in simulation to save costs, and prove closed-form
optimal resource allocation solutions. Future work may include extensions to comparison
of a larger number of different systems, and numerical experiments based on real data and
examples.
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Appendices

2.A Omitted Proof of Section 2.2

Proof of Theorem 1. Since all third-order partial derivatives of the log-likelihood functions
are uniformly bounded, we have

Ñ(pc)∑
j=1

∇L̃ij(θ̂i) +

Ni(pic)∑
j=1

∇Lij(θ̂i) = 0.

The mean value theorem implies that

√
c(θ̂i − θ∗i )

(Ñ(pc)

c
Hi +

Ni(pic)

c
Hi + op(1)

)
= −

∑Ñ(pc)
j=1 ∇L̃ij(θ

∗
i )√

c
−
∑Ni(pic)

j=1 ∇Lij(θ
∗
i )√

c
,

where the notion oP (1) indicates a small random quantity that weakly converges to zero as
c → ∞, and Hessian matrix Hi is given by

Hi =
(
E

∂2

∂θk∂θl
Li1(θ

∗) : 1 ≤ k ≤ l ≤ di
)
.

Since Ñ(·) and Ni(·) are renewal processes, we have

Ñ(pc)

c
+

Ni(pic)

c

a.s.→ λp+ λipi,

hence

c
1
2 (θ̂i − θ∗i ) = − 1

λp+ λipi

( Ñ(pc)∑
j=1

∇L̃ij(θ
∗)H−1

i√
c

+

Ni(pic)∑
j=1

∇Lij(θ
∗)H−1

i√
c

)
+ op(1).

With respect to j, each ∇L̃ij(θ
∗)H−1

i and ∇Lij(θ
∗)H−1

i are i.i.d. and we apply central limit
theorem. Therefore, when c → ∞, we have

c
1
2 ((θ̂i − θ∗i ) : i ∈ [m]) ⇒

(
− 1

λp+ λipi

(√
λp G̃i +

√
λipi Gi

)
: i ∈ [m]

)
.
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2.B Omitted Proof of Section 2.3

Proof of Theorem 2. For problem (2.1), let P ⊂ S be the set of globally optimal solutions.

Denote si :=
1
λi

= E τi1, sj :=
1
λj

= E τj1, s :=
1
λ
= E τ̃1 and v(qi, qj, q) :=

σ2
i

qi
+

σ2
j

qj
− 2qρijσiσj

(q+qi)(q+qj)
.

Because all the constraints of problem (2.1) are linear in qi, qj, q, if (qi, qj, q)
⊤ ∈ P , it satisfies

the following Karush–Kuhn–Tucker (KKT) conditions (see, for example, Lemma 5.1.4 from
[6]):

siqi + sjqj + sq = 1,
∂v
∂qi

− µi + siu = 0,
∂v
∂qj

− µj + sju = 0,
∂v
∂q

− µ+ su = 0,

µiqi = µjqj = µq = 0,
µi, µj, µ ≥ 0,

(2.4)

where µi, µj, µ, u are KKT multipliers. The KKT condition describes a necessary condition
for the optimality of a feasible point, for which the gradient of the objective function at
the feasible point should be orthogonal to the feasible set S. Suppose that (q∗i , q

∗
j , q

∗)⊤ ∈ P
satisfies q∗i , q

∗
j , q

∗ > 0. Then, according to (2.4), KKT multipliers µi, µj and µ are equal to
0. Thus, we have( ∂

∂qi
v(q∗i , q

∗
j , q

∗),
∂

∂qj
v(q∗i , q

∗
j , q

∗),
∂

∂q
v(q∗i , q

∗
j , q

∗)− ∂

∂qi
v(q∗i , q

∗
j , q

∗)− ∂

∂qj
v(q∗i , q

∗
j , q

∗)
)

=(−siu,−sju, (−s+ si + sj)u). (2.5)

By multiplying both sides of (2.5) by (q∗1+q∗)2(q∗2+q∗)2, calculating the gradient of v(qi, qj, q)
and eliminating KKT multiplier u, we have a system of linear equations about q∗i , q

∗
j , q

∗:

siq
∗
i + siq

∗
i + sq∗ = 1,

2ρijσiσjsi(q
∗
i + q∗) + (si + sj − s)

(
σ2
i

(
q∗j + q∗

)
− 2ρijσiσjq

∗) = 0,

2ρijσiσjsj(q
∗
j + q∗) + (si + sj − s)

(
σ2
j (q

∗
i + q∗)− 2ρijσiσjq

∗) = 0.

(2.6)

We discuss 3 different cases:
Case I: If ρij ̸= 0, and one of the following equations holds: 1○ si+sj = s, 2○ (si + sj − s)σ2

i =
2sjρijσiσj, 3○ (si + sj − s)σ2

j = 2siρijσiσj, then (2.6) has no solutions. Therefore, there does
not exist a KKT point that has three positive elements.

Case II: If ρij ̸= 0 and none of 1○, 2○, 3○ hold, then (2.6) has a unique solution. We show
that this solution is not optimal for (2.1), which contradicts the optimality of (q∗i , q

∗
j , q

∗)⊤.
Let d = (di, dj, dij)

⊤ be a feasible direction such that sidi + sjdj + sdij = 0, and there exists
ϵ0 > 0 enough small such that (q∗i , q

∗
j , q

∗)⊤ + ϵ0d is still feasible. Denote the value, gradient
and Hessian matrix of v at (q∗i , q

∗
j , q

∗)⊤ to be respectively v∗, g∗ and Q∗. We have

v
(
q∗i + ϵdi, q

∗
j + ϵdj, q

∗ + ϵdij
)
= v∗ + ϵd⊤g∗ +

1

2
ϵ2d⊤Q∗d+ o

(
||ϵd||2

)
.
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The fact that (q∗i , q
∗
j , q

∗)⊤ is a KKT point ensures that d⊤g∗ = 0. We have the following
subcases:

(i) si+sj > s, ρij < 0 or si+sj < s, ρij > 0. In this case, we choose d = (−s,−s, si+sj)
⊤,

and find that

d⊤Q∗d =
(si + sj − s)

(
σ2
j (si + sj − s)− 2ρijσiσjsi

)2
(σ2

i (si + sj − s)− 2ρijσiσjsj)
2

4(ρijσiσj)3
.

Since
si+sj−s

ρ3ij
< 0, d⊤Q∗d < 0, there exists 0 < ϵ1 < ϵ0 such that v(q∗i + ϵ1di, q

∗
j + ϵ1dj, q

∗ +

ϵ1dij) < v∗. Therefore (q∗i , q
∗
j , q

∗)⊤ is not a minimal point.
(ii) si + sj < s, ρij < 0 or si + sj > s, ρij > 0. We choose d = (−s, 0, si)

⊤, and calculate
that

d⊤Q∗d =
si(si − s)

(
σ2
j (si + sj − s)− 2ρijσiσjsi

)2
(σ2

i (si + sj − s)− 2ρijσiσjsj)
2

4(si + sj − s)(ρijσiσj)3
.

Since we have assumed that si < s, d⊤Q∗d < 0. Similarly to case (i), (q∗i , q
∗
j , q

∗)⊤ is not a
minimal point.

Case III: When ρij = 0, we discuss about three subcases: si + sj > s, si + sj < s
and si + sj = s. If si + sj > s, for any point (qi, qj, q)

⊤ ∈ S satisfying qi, qj, q > 0,

d = (−s,−s, si + sj)
⊤ is a descent direction for both

σ2
i

qi+q
and

σ2
j

qj+q
as a function of (qi, qj, q).

Therefore, there exists no optimal solution that has three positive elements. If si + sj < s,
let d = (s, s,−si − sj)

⊤, we reach the same conclusion as when si + sj > s. If si + sj = s,
define wi := qi + q and wj := qj + q. The problem (2.1) is then converted to

min
wi,wj≥0

σ2
i

wi

+
σ2
j

wj

s.t. siwi + sjwj = 1.

The optimal w∗
i and w∗

j satisfies σi

w∗
i

√
si

=
σj

w∗
j
√
sj
. So in this case, (qi, qj, q)

⊤ ∈ P if and only

if σi√
si(qi+q)

=
σj√

sj(qj+q)
.

Summarizing the conclusions of case I, II and III, whenever si + sj ̸= s or ρij ̸= 0, the
optimal solution can only be achieved on the boundary of the feasible region. That is, the
optimal solution(s) must have at least one element as zero. When si + sj = s and ρij = 0,
there exists an optimal solution that has at least one zero element and also an optimal
solution that has all positive elements.

2.C Omitted Proof of Section 2.4

Proof of Theorem 3. We decompose the deviation into two parts and consider characteristic
function. Denote

Y1,C = C
1
2 ((α̂i(θ̂i)− αi(θ̂i))− (α̂j(θ̂j)− αj(θ̂j)))
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and
Y2,C = C

1
2 ((αi(θ̂i)− αi(θ

∗
i ))− (αj(θ̂j)− αj(θ

∗
j )))

For any t ∈ R, we have

E
[
eit(Y1,C+Y2,C)

]
= E

{
E
[
eit(Y1,C+Y2,C)

∣∣∣θ̂i, θ̂j∣∣∣} = E
{
eitY2,CE

[
eitY1,C |θ̂i, θ̂j

]}
. (2.7)

Under our allocation rule, according to Theorem 1,

Y2,C ⇒ Wi,j as C → ∞. (2.8)

Here Wi,j is Gaussian with mean zero and variance

σ2
i

λp+ λipi
+

σ2
j

λp+ λjpj
− 2λp cij

(λp+ λipi)(λp+ λjpj)
.

On the other hand, conditioned on θ̂i and θ̂j, as C → ∞,

Y1,C ⇒ Vij(θ̂). (2.9)

Conditioned on θ̂, the rv Vij(θ̂) is Gaussian with mean zero and variance

Di(θ̂i)

µr + µiri
+

Dj(θ̂j)

µr + µjrj
− 2µrDij(θ̂)

(µr + µiri)(µr + µjrj)
.

Therefore,

E
[
eitY1,C |θ̂i, θ̂j

]
= exp(−t2

2
(

Di(θ̂i)

µr + µiri
+

Dj(θ̂j)

µr + µjrj
− 2µrDij(θ̂)

(µr + µiri)(µr + µjrj)
))+op(1). (2.10)

Di(·), Dj(·), Dij(·) are continuous functions, so we have

E
[
eitY1,C |θ̂i, θ̂j

]
⇒ exp(−t2

2
(

Di(θ
∗
i )

µr + µiri
+

Dj(θ
∗
j )

µr + µjrj
− 2µrDij(θ

∗)

(µr + µiri)(µr + µjrj)
)) (2.11)

as C → ∞. Finally, we induce that

E
[
eit(Y1,C+Y2,C)

]
⇒ exp(−t2

2
Varij(θ

∗))

as C → ∞, which implies the conclusion in Theorem 3.
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Chapter 3

Simulation Optimization via
Multi-Resolution System
Approximations

In this chapter, we focus on the specific class of simulation-optimization problems with
continuous multi-dimensional decision variable and convex feasible region, for complicated
stochastic systems. For complicated stochastic systems, the exact simulation of system
performance can be expensive or even take infinite computation time in expectation. For
example, the simulation of a service system operation can be time-consuming when the
demand volume is huge, the time horizon is long, or the operations logic is complex. As
another example, the solution of a general multi-dimensional stochastic differential equation
(SDE) may arise as a stochastic object in applications of financial systems and queueing
systems, the exact simulation of which may not get executed in finite computation time in
expectation. Therefore, given the complicated system logic and stochastic objects, the exact
simulation of the objective function at a certain value of decision variable is computationally
expensive or impossible. The associated optimization problems are even more challenging,
since the difficult or impossible exact simulations to evaluate the objective function need to
be done on multiple values of the decision variable to find a good solution.

For the complicated stochastic system in consideration, referred to as the original system,
at some times a sequence of approximations can be constructed, with finer and finer approx-
imation resolution. We presume in mind that the expected simulation time to evaluate the
performance for the original system is infinite. The expected simulation time to evaluate the
approximations, on the other hand, is finite, though it can be arbitrarily large depending
on the approximation resolution. The approximation of the original system can either be
applied to the simulation logic or the random object, or both. We refer to an approxima-
tion of the original system as an approximating system. For example, for stochastic systems
involving complicated continuous-time stochastic uncertainties in operations, a popular way
to construct approximating systems is through time discretization at different resolutions.
We assume that the constructed approximating systems present finite simulation time to
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evaluate, as an advantage compared to the original system. However, the approximation
often inevitably incurs a bias compared to the original system. In general, the sequence of
approximations can be constructed in a way that they eventually converge to the original
system and the bias vanishes in the limit. As a result, such sequence of approximating sys-
tems incurs smaller and smaller bias, while incurring larger and larger simulation cost. Our
work focuses on strategically using the sequence of approximating systems to design and
analyze gradient-based simulation-optimization algorithms that solve optimization problems
associated with the original system.

Gradient-based algorithms have proved to be effective for a large number of simulation
optimization problems, especially when the decision variable is high-dimensional. However,
when the original stochastic system is too complicated or impossible to exactly simulate
in finite time, the computation of gradient estimator associated with the original system
shares the same challenge, if not more. Our focus, therefore, is to utilize the sequence of
approximating systems, each of which can be simulated in finite time at finite cost, to con-
struct gradient-based simulation-optimization algorithms. As the approximation resolution
increases, an approximating system becomes closer to the original system (i.e. higher reso-
lution), but this higher resolution comes at a price with an increasing simulation cost. We
leverage the idea that lower-resolution approximating systems can be used to evaluate gradi-
ent estimators at earlier stages in a gradient-based optimization algorithm. The intuition is
that at early stages, the algorithm may start with a choice of decision variable that is likely
far away from the optimal solution, and there is no need to use a high-resolution system
to construct the gradient estimator that comes with a high simulation cost. The algorithm
updates the value of decision variable by iterations. As the algorithm proceeds, the value
of decision variable is presumed to be closer to the optimum. Approximating systems with
higher and higher resolution are used to construct gradient estimators, which are then used
to update the decision variable.

The computation of gradient estimators for approximating systems has its own chal-
lenges. The challenges often comes from discontinuity. Such discontinuity may come from
time discretization or piecewise constant approximations, which are often used to construct
approximating systems. When there is no continuity on the objective function associated
with an approximating system, standard gradient estimators such as Infinitesimal Pertur-
bation Analysis (IPA)/Automatic Differentiation (AD)/Backpropagation (BP) gradient es-
timators may incur an uncontrollable bias or even take an opposite sign compared to the
true gradient. In this case, the gradient-based algorithm with IPA/AD/BP gradient estima-
tors can fail badly and diverge. See [24] for an example. To circumvent the discontinuity
challenge and to avoid the potentially difficult likelihood evaluation for complicated systems,
we use the finite difference (FD) method with a stochastic direction to construct gradient
estimators for an approximating system. The construction of gradient estimators via finite
difference method is based on observations of only stochastic realizations of the objective
function at given values of decision variables. In the scenarios of discontinuity, the use of
finite difference gradient estimators, despite its sometimes unpleasant dependence on the
dimension d, can at least guarantee the control of bias and therefore the optimization algo-
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rithm’s convergence. Under the assumption that the expected performance of the original
system is strongly convex and smooth, we prove that the associated gradient-based algo-
rithm converges to the optimum without any assumption on convexity or continuity with
the approximating systems. The required computation cost to achieve a given precision level
is proved to have a moderate polynomial order of dependence on the dimension of decision
variable.

Further, we develop and analyze gradient-based simulation-optimization algorithms, for
which the gradient estimator used in any single step is constructed by coupling multiple ap-
proximating systems at different resolutions, instead of just using one approximating system.
An effective framework is the multilevel regime introduced by [48] and [36]. The core idea of
multilevel regime is to intelligently integrate simulations at different resolutions to improve
computational efficiency, when the approximating systems at different resolutions can nat-
urally be coupled. Under the classical multilevel regime ([36]), we construct multilevel FD
gradient estimators (with stochastic directions) to support gradient-based optimization algo-
rithms. At each step, a multilevel gradient estimator utilizes multiple coupled approximating
systems at different resolutions. We prove that the use of multilevel gradient estimators can
improve the computational efficiency of the associated simulation-optimization algorithms,
by reducing the order of computation cost required to achieve an arbitrary level of precision,
compared with algorithms that use single-level gradient estimators. In particular, when the
multilevel FD gradient estimator is used, we investigate the algorithm performance in terms
of its dependence on the decision space dimension, and prove a moderate order polynomial
dependence as an upper bound.

Our contributions to the literature are summarized as follows.

• We present a framework to optimize a stochastic system that is too complicated to ex-
actly simulate, with the aid of approximating systems. The sequence of approximations
has finer and finer approximation resolution but higher and higher cost to simulate.
We propose a new gradient-based simulation-optimization algorithm that sequentially
utilizes approximating systems of higher and higher resolutions to construct gradient
estimators and do gradient search.

• Under the assumption that the objective function of the original system is strongly
convex and smooth, while allowing objective functions associated with approximating
systems to be nonconvex and discontinuous, we prove algorithm convergence, conver-
gence rates, and optimal algorithm design for the simulation-optimization algorithms
with finite difference estimators. When the finite difference gradient estimators are
used, we demonstrate the dependence on the dimension for the algorithm performance
and optimal parameters choices.

• When the sequence of approximating systems can be coupled, we propose new mul-
tilevel gradient-based simulation-optimization algorithms. We prove that the use of
multilevel gradient estimators can improve the computational efficiency of the asso-
ciated simulation-optimization algorithms, by reducing the order of computation cost
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required to achieve an arbitrary level of precision, compared with algorithms that use
single-level gradient estimators.

Built on contents described above on algorithm design and theoretical guarantees, we
describe in the following a more summarized message from this work. This work considers
situations where one wants to use simulation to optimize a complicated stochastic system
where the system is difficult to simulate but instead has a sequence of simulatable approx-
imating systems. Instead of the baseline method by simply using a single approximating
system, this work more carefully integrates approximating systems of different resolutions
to design optimization algorithms. If we count the expected simulation cost to achieve the
same level of optimization accuracy, say a small ϵ > 0, the algorithm proposed in this work
can enjoy a lower cost relative to the baseline, by a factor as polynomials of 1/ϵ.

3.1 Related Work

Our work is related to the literature of gradient-based simulation optimization. We categorize
the related literature in Table 3.1 for reference.

In the scenarios where the stochastic objective functions contain discontinuity, there may
be alternative gradient estimators other than FD gradient estimator that have controllable
bias or no bias. The use of these alternative gradient estimators can have their own chal-
lenges. Smoothed perturbation analysis (SPA) can circumvent the bias issue by using a
conditioning technique ([40]), but a good choice of conditioning is problem-dependent. An-
other gradient estimation technique, likelihood ratio or the score function method ([39, 85]),
does not directly apply for structural parameters, which may limit its applicability in general.
Measure-valued differentiation ([46, 47]) requires structural information of the dynamics of
the simulation systems. In Peng et al. [83], a generalized likelihood ratio (GLR) method was
proposed, the use of which in our context would require each random input for the approx-
imating systems to admit a density, which sometimes can be violated. Therefore, in this
work, in presence of discontinuity, we choose the use of finite difference gradient estimator,
to accommodate relatively more general structures for the approximating systems. More-
over, the use of finite difference gradient estimators can provide theoretical guarantee for the
convergence of gradient-based algorithms even when the objective functions associated with
the approximating systems are not convex or smooth.

Before our work, the use of multilevel regime appeared in stochastic approximation,
by [27], [21] and [20]. Their works do not consider constructions of gradient estimators
in presence of discontinuity or the algorithm performance’s dependence on the dimension
from a computational aspect, which is an important aspect in many simulation-optimization
problems with high-dimensional decision space. Blanchet, Glynn, and Pei [8] propose mul-
tilevel sample-average approximation algorithms for stochastic convex optimization. Their
work applies the multilevel technique to strategically use the n independent and identically
distributed samples for the original system to improve convergence rates and/or derive unbi-
ased estimators for the optimal value. Their use of multilevel technique utilizes an increasing
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Gradient-based simulation optimization
Exact simulation for the original system or its gradient oracle is available

First-order
gradient
estimator

Zeroth-order gradient estimator

Simultaneous perturbation
gradient estimator

Random direction
gradient estimator

[70],[35],
[28],[96],
[24]

[50],[93], [28] [35], [22], [78]

Exact simulation for the original system or its gradient oracle is unavailable
[110], [44], [71], [56],[105], [27], [20]

Table 3.1: A table for summarizing existing gradient-based simulation optimization algo-
rithms. We categorize the related literature of gradient-based simulation optimization by
whether they adopt the assumption that exact simulation for the original system or its
gradient oracle is available, or not.

number of samples for the system but our use of multilevel technique alternatively utilizes
increasing approximating resolution for the system. These two perspectives are orthogonal
and can potentially be integrated.

The idea of using different resolutions of approximations to study complicated stochas-
tic systems has also been considered by a line of work on multi-fidelity simulation, but
with different objectives from ours. Xu et al. [105] discuss budget allocation strategies for
the problem of ranking and selection using a high-fidelity approximation and a low fidelity
approximation. Song et al. [92] extends the framework of [105] and proposes an optimal sam-
pling policy that uses a low-fidelity model to improve the computational efficiency of ranking
and selection. Balabanov and Venter [3] considers the use of one-dimensional gradient-based
optimization in a high-fidelity model while using the low-fidelity model to do finite difference
gradient calculations. Huang et al. [56] discusses the effective use of low-fidelity model to
enhance surrogate models such as kriging.

In the literature, there has been an increasing attention on using biased gradient esti-
mators to solve stochastic optimization problems, for which the bias is rather intrinsic but
not caused by approximations to optimize systems that are impossible to exactly simulate.
Some most recent work includes [24, 54, 1, 98, 113, 112]. In our work, we overcome the
issues of bias by dynamically using approximating systems at higher and higher resolutions.
Some relevant pioneering work include [110], [44] and [71].
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3.2 Problem Setting

Consider a complex stochastic system in which a decision needs to be made to optimize an
objective function that involves an expected system performance. We denote θ ∈ Θ ⊂ Rd

as the decision variable, in which Θ is a closed and convex subset of Rd. Fix a probabil-
ity space (Ω,F , P ) that supports the stochastic system. We summarize all the stochastic
uncertainties involved in the stochastic system as a random object Y that takes value in
a Polish space Y . This random object Y , for example, may include non-stationary doubly
stochastic Poisson processes or solutions of stochastic differential equations, depending on
the system in consideration. The system performance is described as a product-measurable
function G : Rd × Y → R that maps the decision variable θ ∈ Rd and the realization of
the random object Y into a real-valued scalar. The function G may involve various system
operations logic, system performance and operational costs. For complex stochastic sys-
tems in consideration, this performance function G does not have closed-form representation
and can only be evaluated by simulation. To obtain the optimal decision, the following
simulation-optimization problem needs to be solved.

min
θ∈Θ

g(θ) := E[G(θ, Y )]. (3.1)

We assume that EG(θ, Y )2 < ∞ throughout this chapter. The random object Y and the
performance function G are the key components of a simulation task, which are respectively
referred to as random input and logic. For a complicated stochastic system, both compo-
nents can incur significant simulation cost in the evaluation of the expected performance
E[G(θ, Y )]. For example, the function G may involve the logic and operational rule of a
complicated stochastic system. There are other scenarios where G is simple but the ran-
dom object Y is difficult or even impossible to exactly simulate. For example, the random
object Y can be a stochastic process Y = (Y (t) : t ≥ 0) as a solution of a general multi-
dimensional stochastic differential equation (SDE). For a general SDE, Y is viewed as an
infinite dimensional object that cannot be exactly simulated in finite computing time.

In complicated stochastic systems where G(θ, Y ) is difficult or impossible to simulate, we
presume the simulation cost for G(θ, Y ) to be infinity and assume that we have the ability to
construct a sequence of approximations. In general, we assume that there exists a sequence
of systems (Gk(θ, Yk) : k ≥ 0) that approximates G(θ, Y ) with finer and finer resolution. The
expectation of Gk(θ, Yk) is denoted as gk(θ). The sequence (Gk(θ, Yk) : k ≥ 0) approximates
G(θ, Y ) in the sense that for any decision variable θ, the asymptotic approximation bias
diminishes,

lim
k→∞

E(Gk(θ, Yk)−G(θ, Y )) = 0. (3.2)

Or, sometimes the approximation can be constructed to adopt a stronger convergence, given
by

lim
k→∞

E(Gk(θ, Yk)−G(θ, Y ))2 = 0. (3.3)

We will specify case by case which approximation is needed in the theoretical results to be
provided. For any given k, the cost to simulate a copy Gk(θ, Yk) is finite and increasing with
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k. The approximation Gk(θ, Yk) may involve an approximation on the system operations
logic G, noted as Gk, or an approximation on the random object Y , noted as Yk, or both.
If approximations are done for the complicated random object Y , then the approximating
sequence {Yk : k ≥ 1} usually involve time or space discretizations of Y . Our goal is to
design and analyze simulation-optimization algorithms that solves the original optimization
problem (3.1) up to any given precision level, through an effective use of the approximating
systems.

For the original stochastic system, if G(θ, Y ) were easy to simulate, then with an initial
guess θ0, a gradient-based algorithm could be derived, generally taking the form of

θt = θt−1 − γt∇̂θg(θt−1), (3.4)

in which ∇̂θg(θt−1) denotes estimated value of gradient of g(·) at point θt−1, constructed from
the simulation of G(θ, Y ), and γt ∈ R+ is a carefully chosen step size. However, when the
original system G(θ, Y ) is too complicated and impossible to exactly simulate, the associated
gradient estimators are often not available at finite cost. Our focus, therefore, is to utilize
the sequence of approximating systems, each of which can be simulated at finite cost, to
construct gradient-based simulation-optimization algorithms. When k becomes larger, the
k-th approximating system becomes closer to the original system, but this higher resolu-
tion comes at a price with an increasing computation cost. Our work leverages the thought
that lower-resolution approximating systems can be used to compute gradient estimators at
earlier stages in a gradient-based algorithm. As the algorithm proceeds, higher-resolution
approximating systems are used to derive gradient estimators, so that eventually the algo-
rithm can achieve any given level of precision. The details will be discussed in the following
sections.

3.3 Simulation-Optimization Algorithms with Finite

Difference Gradient Estimators

In this section, we propose gradient-based simulation-optimization algorithms that sequen-
tially utilize gradients from approximating systems with increasing resolution. To facilitate
the theoretical analysis for the proposed algorithms, we presume the original objective func-
tion g to be strongly convex and contains a unique local optimal solution θ∗, which is also a
global optimal solution. When the objective function g is not strongly convex, the algorithms
and analysis can be extended to find strongly convex local optimums. Formal assumptions
will be stated later in this section. Despite the convexity assumption on g, we make no
convexity or continuity assumptions on the approximating systems gk’s. One specific rea-
son is that many approximations of a complicated infinite-dimensional stochastic system are
done through discretization in sample paths and/or objective functions, naturally leading to
discontinuity and non-convexity in gk.

When there is no regularity conditions such as continuity on the approximating function
Gk(θ, Yk) or gk(θ), standard gradient estimators to evaluate ∂gk(θ)/∂θ such as Infinitesimal
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Perturbation Analysis (IPA)/Automatic Differentiation (AD) gradient estimators may incur
an uncontrollable bias or even take an opposite sign compared to the true gradient; see [24].
Such uncontrollable biases may lead gradient-based algorithms to diverge; see [24] and [1]
for example. In the scenarios of discontinuity, the use of finite difference gradient estimators,
despite its sometimes unpleasant dependence on the dimension d, can at least guarantee
the control of bias and therefore the optimization algorithm’s convergence. In presence
of discontinuity, we propose simulation optimization algorithms based on finite difference
gradient estimators and provide theoretical guarantee for the convergence of the algorithms.

Construction of FD Gradient Estimator using Approximating
Systems

To construct a FD gradient estimator, instead of computing the function value perturbation
in each of the d dimension, we consider the FD gradient estimator with a randomly drawn
direction; see [68] and [23] for discussions on this type of gradient estimator. Consider a non-
increasing sequence of positive parameters {hk}∞k=1, a distribution ν on Rd, and a random
vector Z sampled from ν. The distribution ν satisfies Eν [ZZ

⊤] = I. For the approximating
system Gk(θ, Yk) with index k, the FD gradient estimator is given by

Gk(θ + hkZk, Yk)−Gk(θ, Yk)

hk

Zk. (3.5)

The estimator (3.5) is motivated by the following fact: If ∇θgk(θ) exists and ∥∇θgk(θ)∥ is
bounded by a constant for every θ ∈ Θ,

lim
h→0

Eν

[Gk(θ + hZ, Yk)−Gk(θ, Yk)

h
Z
]

= lim
h→0

Eν

[gk(θ + hZ)− gk(θ)

h
Z
]

=Eν [< ∇θgk(θ), Z > Z] = ∇θgk(θ).

(3.6)

Consequently, if hk is sufficiently small, (3.5) should be a nearly unbiased estimator of the
gradient ∇θgk(θ). The property (3.6) stands even if the stochastic performance function
Gk(·, Yk) is not continuous. Therefore, Gk(·, Yk) does not need to be continuous in θ to
ensure asymptotic unbiasedness when h goes to zero.

Algorithm and Assumptions

We propose an algorithm to solve for the optimal solution that is based on the Stochastic Gra-
dient Descent routine and uses FD gradient estimators constructed from the approximating
systems. Consider an increasing positive integer sequence {mt : t ≥ 1} and a non-increasing
sequence of positive smoothing parameters {ht : t ≥ 1}. At the t-th step, the algorithm
updates θt from the previous step by using a finite difference gradient estimator constructed
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from the mt-th approximating system. Specifically, the algorithm generates Nt independent
copies of Ymt , noted as {Ymt,l}Nt

l=1 and sample independent vectors {Zt,l}Nt
l=1 from ν. Also,

the algorithm runs 2Nt independent simulation copies of the simulation logic of the mt-th
system and obtains the gradient estimator

Ht(θ) =
1

Nt

Nt∑
l=1

Gmt(θ + htZt,l, Ymt,l)−Gmt(θ, Ymt,l)

ht

Zt,l. (3.7)

The algorithm then updates θt as

θt+1 = prΘ(θt − γtHt(θt)), (3.8)

where prΘ is the orthogonal projection on Θ under Euclidean distance. γt is a positive
scalar to be specified, which is also known as step size. The fact that mt increases with t
illustrates that the algorithm uses an approximating system with higher and higher resolution
as it proceeds. In the beginning, the algorithm updates the optimizer relying on gradient
estimators constructed from approximating systems with low resolution. When the algorithm
proceeds as t increases, the algorithm uses higher-resolution simulation systems to construct
the gradient estimator. Eventually, the algorithm is expected to ensure the convergence of
θt to θ∗.

We will provide answers to the following questions:

• When does the algorithm ensure convergence of θt to θ∗?

• What is the convergence rate of θt and the limiting distribution of θt?

• How does the cumulative computation cost depend on the dimension d?

• How can we set algorithm parameters γt, ht and Nt to save cumulative computation
cost?

Before proceeding into the algorithm analysis, we make some assumptions and specifica-
tions on the original system, the sequence of approximating systems, and the computation
cost of simulating a copy of the approximating system at different resolution. To focus our
attention on discussing how the sequence of approximating systems are strategically used
to optimize the original system, we assume that the expected performance of the original
system is nicely behaved, as follows.

Assumption 1. The expected performance g(θ) as a function of θ is L-smooth and µ-strongly
convex. That is, there exists L > 0 such that ∥∇θg(θ1)−∇θg(θ2)∥ ≤ L∥θ1− θ2∥ ∀θ1, θ2 ∈ Θ.
There exists µ > 0 such that (∇θg(θ1)−∇θg(θ2))

⊤(θ1 − θ2) ≥ µ∥θ1 − θ2∥2 ∀θ1, θ2 ∈ Θ.

Note that this assumption is only imposed on the expected performance of the original
system g(·) = EG(·, Y ). The stochastic performance function G(θ, Y ) can be discontinuous
and non-convex in θ for some given realizations of the random object Y . In addition, for
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the approximating systems, the expected performance function gk(·) = EGk(·, Yk) and the
stochastic performance function Gk(·, Yk) are not required to be continuous or convex.

We impose the following assumption to quantify the difference of expected performance
function between the k-th approximating system and the original system:

Assumption 2. There exists a constant C > 0 such that for all k ∈ N and θ ∈ Θ,
|E[Gk(θ, Yk)−G(θ, Y )]| = |gk(θ)− g(θ)| ≤ Ck−1.

Assumption 2 gauges the resolution of the k-th approximating system. A larger k indi-
cates a higher resolution and closer approximation.

When the smoothing parameter h > 0, the FD gradient estimator naturally introduces
a bias. This bias depends on both h and the dimension d. For different systems and
different function properties on Gk(θ, Yk), the dependence on h may be different. A realistic
assumption that allows different dependence on h is given as below.

Assumption 3. There exist constants C̃ > 0, h0 > 0 and q ≥ 0, such that for all k ∈ N and
0 < h ≤ h0, E[∥(Gk(θ + hZ, Yk)−Gk(θ, Yk))Z∥2] ≤ C̃d2hq.

The value of q represents the dependence on h for E[∥(Gk(θ + hZ, Yk)−Gk(θ, Yk))Z∥2].
In general, the smoother the stochastic performance function is, the larger the q is. If
the stochastic performance function Gk(·, Yk) is Ψk(Yk)-Lipschitz continuous and
supk≥1 E[|Ψk(Yk)|2] < ∞, we have q = 2 with details to be given shortly. When the continuity
fails, the value of q can be as small as 0, see [2]. [71] propose additional conditions on the
discontinuous performance function such that q = 1. In general, we allow q to be a flexible
parameter, but aim to be able to deal with the most general stochastic performance function
(without continuity requirement) that leads to q = 0.

Specifically, when Gk(·, Yk) is Ψk(Yk)-Lipschitz continuous and supk≥1 E[|Ψk(Yk)|2] < ∞,
we have

E[∥(Gk(θ + hZ, Yk)−Gk(θ, Yk))Z∥2]
=E[E[∥Gk(θ + hZ, Yk)−Gk(θ, Yk)∥2|Z]∥Z∥2]
≤E[E[h2|Ψk(Yk)|2∥Z∥2|Z]∥Z∥2]
≤h2 sup

k≥1
E[|Ψk(Yk)|2]E[∥Z∥4] = O(d2h2),

(3.9)

showing the notion that q = 2 under continuity.
In addition to the condition on the random direction E[ZZ⊤] = I, we require the following

properties on the distribution ν:

Assumption 4. For a random vector Z sampled from ν and any k ∈ N, there is a constant
ck (dependent only on k) such that E

[
∥Z∥k

]
≤ ckd

k
2 .

Assumption 4 gives a bound on the moments of vector Z. For example, Assumption 4 is
satisfied if Z is distributed as N(0, Id×d), or uniformly on the l2-sphere of radius

√
d.
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Convergence, Optimality, Cost, and Central Limit Theorem

In this subsection we state the main convergence result that provides a theoretical guar-
antee that the algorithm utilizing FD gradient estimators will eventually find θ∗. For this
simulation-optimization algorithm, in each step there are four algorithm parameters mt (la-
bel of system of use in the t-th iteration), Nt (number of independent copies of simulation to
run in the t-th iteration), smoothing parameter ht, and step size γt (i.e., step size in the t-th
iteration) to be specified. For a set of parameters γ0, N0,m0 > 0, β, r, ρ ≥ 0, we consider
algorithm parameters given by

mt = ⌈m0d
2 t2ρ⌉, Nt =

⌈
N0d

5− 3
2
qtr+ρ(2−q)

⌉
, ht =

1

d
3
2 tρ

, γt = γ0
1

tβ
. (3.10)

Given the algorithm parameters, note that the estimator of θ∗ after the t-th iteration is
denoted as θt, specified by (3.7) and (3.8). We present a theorem on the properties of θt.

Theorem 4. Suppose that β ∈ (1
2
, 1], r ≥ 0, ρ, γ0, N0,m0 ∈ (0,∞). If β = 1, suppose

additionally that γ0 ∈ (max{2ρ
µ
, 1+r

µ
},∞). Under Assumption 1, 2, 3 and 4, there exists a

κ ∈ (0,∞) such that for all t ∈ N,

E [g(θt)− g(θ∗)] ≤ 1

2
Lκ t−(2ρ)∧(β+r), (3.11)

and
E
[
∥θt − θ∗∥2

]
≤ κ t−(2ρ)∧(β+r), (3.12)

where κ only depends on β, r, ρ, γ0,m0, N0, L and q.

Remark 5. We remark that the dimension d only exists in the algorithm parameter mt, Nt

and ht, while does not appear in the upper bound of the convergence rate nor in the constant
κ.

Remark 6. The parameter ρ and r reflect the conditional bias and variance of the gradi-
ent estimator Ht(θt) at time step t respectively. Specifically, the conditional bias of Ht(θt),
denoted by Bt = E[Ht(θt) − ∇g(θt)], has the scale of O(t−ρ). The parameter ρ controls the
decreasing rate of the bias by controlling algorithm parameter mt and ht. As in (3.10), if we
set a larger ρ, then in each time step, we use an approximating system with a finer resolution
as well as a smaller smoothing parameter ht. Therefore, with a larger parameter ρ, the bias
of the FD gradient estimator from ∇g(θt) is lower. The parameter r controls the conditional
variance of Ht(θt) by controlling algorithm parameter Nt. The conditional variance of Ht(θt)
given θt, has the scale of O(t−r). The details of the scale of conditional bias and variance of
Ht(θt) are given in the proof of Theorem 4 in the appendices.

Remark 7. When the objective function g is L-smooth but not strongly convex on Θ, the
algorithm and analysis can be extended to find strongly convex local optimums. Suppose
that g(·) is strongly convex on Θ′ ⊂ Θ. By changing the iteration rule (3.8) to θt+1 =
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prΘ′(θt − γtHt(θt)), the algorithm will ensure the convergence of θt to the minimal point in
Θ′ with the same convergence rate of Theorem 4.

Note that this convergence rate result appears to not depend on the dimension d, because
the computational cost spent at each iteration has not yet been taken into consideration.
We next discuss a result on the expected computation cost associated with the algorithm
for different choices of the algorithm parameters ρ, r and β, which will support the selection
of the best choice of algorithm parameters to minimize the order of computation cost to
achieve a given precision level. Define Ck as the computation cost for generating a single
simulation run of Gk(θ, Yk). To reflect the notion that the original system is impossible to
exactly simulate, the cost increases to infinity as k → ∞. This computation cost Ck can
be a random variable itself and we make the following assumptions that characterize the
growth rate of the expected cost when k → ∞. The growth rate can either be polynomial or
exponential at different rates.

Assumption 5. As k → ∞, the sequence of costs {Ck : k ≥ 1} satisfies either of the
following two conditions.

(i) k−p E[Ck] → κ1 for some p > 0 and κ1 > 0.

(ii) α−k E[Ck] → κ2 for some α > 1 and κ2 > 0.

Before proceeding into the theorem, for an algorithm with algorithm parameters specified
by (3.10), we define

τ(ϵ) := inf{t ∈ N : (E
[
∥θt − θ∗∥2

]
)
1
2 ≤ ϵ} (3.13)

as the number of iterations it takes for θt to satisfy a precision level ϵ. We can then compute
the cumulative computation cost for the algorithm by the τ(ϵ)-th iteration, denoted as

Tτ(ϵ) = 2

τ(ϵ)∑
j=1

NjCmj
. (3.14)

Theorem 8. Under Assumption 5 (i), for the finite-difference based algorithm specified by
(3.10),

ETτ(ϵ) = O(d2p+5− 3
2
qϵ−

2(r+2ρp+ρ(2−q)+1)
(2ρ)∧(β+r) ).

Under Assumption 5 (ii), for the finite-difference based algorithm specified by (3.10),

ETτ(ϵ) = O(d5−
3
2
qϵ−

2(r+ρ(2−q)+1)
(2ρ)∧(β+r) exp((m0d

2 + 1)κ
2ρ

(2ρ)∧(β+r) ϵ−
4ρ

(2ρ)∧(β+r) logα)).
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We are now in a position to identify an optimal set of algorithm parameters such that
the order of expected computation cost is minimized. According to Theorem 8, under As-
sumption 5 (i), this problem is equivalent to the following minimization problem:

min
r,ρ,β

r + ρ(2p+ 2− q) + 1

(2ρ) ∧ (β + r)

s.t. r ≥ 0, ρ > 0,
1

2
< β ≤ 1.

(3.15)

Proposition 9. The optimal objective value of the problem (3.15) is p− q
2
+2, and is achieved

when the parameters r, ρ, β satisfy

β = 1, 2ρ = r + 1. (3.16)

We formally present the algorithm in Algorithm 1 with the optimal choices of parameters.

Algorithm 1 Simulation-optimization algorithm with finite difference gradient estimator

Input: Number of iterationsN , initial point θ0, parametersm0, N0 ∈ (0,∞), r ≥ 0, ρ = 1+r
2
,

γ0 ∈ (1+r
µ
,∞)

Output: θN
1: for t = 1 to N − 1 do

2: Set mt = ⌈m0d
2 t2ρ⌉, and Nt =

⌈
N0d

5− 3
2
qtr+ρ(2−q)

⌉
3: Generate a sequence {Ymt,l}Nt

l=1 of independent copies of Ymt and sample independent
vectors {Zt,l}Nt

l=1 from ν.
4: Update θt by θt+1 = prΘ(θt − γtHt (θt)), where

Ht(θ) =
1

Nt

Nt∑
l=1

Gmt(θ + htZt,l, Ymt,l)−Gmt(θ, Ymt,l)

ht

Zt,l

5: end for
6: return θN

Now we introduce the asymptotic distribution of θt for Algorithm 1. First we study the
asymptotic distribution of θt as t goes to infinity. Then we derive a central limit theorem for
the best estimator available with the given budget C going to infinity.

Theorem 10. Suppose that all conditions of Theorem 4 hold. Denote H∗ as the Hessian
matrix for g(θ) at θ∗ and H̃ := H∗− 1+r

2γ0
I. Denote C ′ := limn→∞ n1/2 (∇θgn(θ

∗)−∇θg(θ
∗)).

Under suitable regularity assumptions, for the finite difference regime in Theorem 4 with
β = 1 and 2ρ = r + 1,

n(1+r)/2(θn − θ∗)
d−→ N(−H̃−1(

1

2
E[ZZ⊤H∗Z] +m

− 1
2

0 d−1C ′),Σ) (3.17)
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where

Σ =
γ0
N0

∫ ∞

0

exp(−H̃u)Ω exp
(
−H̃⊤u

)
du

and
Ω = E[(Z⊤∇θG(θ∗, Y ))2ZZ⊤].

Especially, if Z ∼ N(0, Id×d), we have

n(1+r)/2(θn − θ∗)
d−→ N(−m

− 1
2

0 d−1H̃−1C ′,Σ)

and

Ωij =

{
3E( ∂

∂θi
G(θ∗, Y ))2 +

∑
k ̸=i E(

∂
∂θk

G(θ∗, Y ))2, if i = j

2E ∂
∂θi

G(θ∗, Y ) ∂
∂θj

G(θ∗, Y ), if i ̸= j.

We now change our lens to the available computation budget C and derive a central limit
theorem for the best estimator available with the given budget.

Theorem 11. Suppose that all conditions of Theorem 10 are satisfied. Let C be the com-
putation budget and n(C) := sup{n ≥ 1 : 2

∑n
j=1NjCmj

≤ C}. If n−p E[Cn] → κ1 for some
p > 0 and κ1 > 0, then( C

2κ1N0d2(p+1)mp
0(p+ 1)

)1/2(p+1)
(θn(C) − θ∗)

d−→ N(−H̃−1(
1

2
E[ZZ⊤H∗Z] +m

− 1
2

0 d−1C ′),Σ)

where

Σ =
γ0
N0

∫ ∞

0

exp(−H̃u)Ω exp
(
−H̃⊤u

)
du

and
Ω = E[(Z⊤∇θG(θ∗, Y ))2ZZ⊤].

See appendices for the detailed assumptions and proofs of Theorem 10 and 11.

3.4 Simulation-Optimization Algorithms with

Multilevel Gradient Estimators

In Section 3.3, in the gradient-based algorithms, the gradient estimator used in each step
is constructed by a single approximating system. In this section, we construct multilevel
finite difference gradient estimators for which each gradient estimator utilizes multiple ap-
proximating systems at different resolutions. We then propose a simulation-optimization
algorithm using multilevel gradient estimators. We show that the use of multilevel gradient
estimators can improve the performance of the simulation-optimization algorithms compared
with the results in Section 3.3. The improved performance is demonstrated by a faster order
of convergence rate.
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In our basic framework, G(θ, Y ) is approximated by the sequence (Gk(θ, Yk) : k ≥ 0).
The approximation can either be applied to the simulation logic G or the random object Y ,
or both. In this section, for the convenience of notation in constructing multilevel gradient
estimators, we drop the dependence of Yk on k and summarize all the dependence of the
k-th approximating system on k into the function Gk. That is, we rewrite G̃k(θ, Y ) :=
Gk(θ, Yk), in which Y is a (possibly infinite-dimensional) random object that is shared by
all approximating systems. In this new notation, we note that the k-th system does not
necessarily need to use all the information in Y .

Construction of Multilevel FD Gradient Estimator, Assumptions
and Example

We propose an algorithm that uses multilevel FD gradient estimators. Consider an increasing
positive integer sequence (mt : t ≥ 1) and a non-increasing sequence of positive smoothing
parameters (ht : t ≥ 1). At the t-th step, the algorithm updates the θt−1 from the previous
step by using the information of function values from the approximating systems 1, . . . ,mt.
Specifically, the algorithm generates Nt,k independent copies of Y for k = 1, ...mt, denoted

as {{Yt,k,l}
Nt,k

l=1 }
mt
k=1 and sample independent vectors {{Zt,k,l}

Nt,k

l=1 }
mt
k=1 from ν. As introduced

in Section 3.3, this distribution ν represents the distribution of the random direction drawn
to construct FD gradient estimators. We obtain the gradient estimator

Ht(θ) =
mt∑
k=1

1

Nt,k

Nt,k∑
l=1

(F sm
k (θ;ht, Zt,k,l, Yt,k,l)− F sm

k−1(θ;ht, Zt,k,l, Yt,k,l))

where

F sm
k (θ;ht, Zt,k,l, Yt,k,l) =

Gk(θ + htZt,k,l, Yt,k,l)−Gk(θ, Yt,k,l)

ht

Zt,k,l

and updates θt as
θt+1 = prΘ(θt − γtHt(θt)).

The gradient estimator Ht(θ) is the multilevel gradient estimator used in the t-th step.
Intuitively, the multilevel construction couples the adjacent systems Gk and Gk−1 to achieve
a better bias-variance trade-off for the gradient estimator.

We hope to provide answers to the following questions for the gradient-based algorithm
utilizing multilevel FD gradient estimators:

• What are the optimal choices of parameter mt, Nt,k and γt at the t-th step?

• What is the convergence rate of θt to θ∗?

• Compared with simulation-optimization algorithm we discussed in Section 3.3, does
multilevel method based on FD estimator expect to save cumulative computation cost
that is needed to achieve a given precision level?
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• How does the cumulative computation cost depend on the dimension d?

Before proceeding into the algorithm analysis, we make the following assumption on the
approximation Gk(·, Y ), which quantifies not only the bias of Gk(θ, Y ), but also L2-distance
between expected performance function between Gk(θ, Y ) and G(θ, Y ):

Assumption 6. There exist constants M > 1 and α ≥ η > 0 such that for all k ∈ N and
θ ∈ Θ

(i) |E [Gk(θ, Y )−G(θ, Y )]| ≤ M−kα

(ii) E [|Gk(θ, Y )−G(θ, Y )− E[Gk(θ, Y )−G(θ, Y )] |2]1/2 ≤ M−kη.

We illustrate this assumption by considering a simulation-optimization problem in which
the original objective function g depends on the sample path of the solution of a general
Stochastic Differential Equation (SDE). The solution of an SDE is an infinite-dimensional
random object that in general cannot be exactly simulated in finite time. (Exact and practi-
cally implementable simulation algorithms are available, but only for a subset of SDE mod-
els.) A standard practice in Monte Carlo simulation is to discretize the SDE, which serves as
an approximation for the original SDE. In this example, we consider the approximating sys-
tems to use different resolutions of discretizations of SDE. We consider the Euler-Maruyama
discretization scheme of a diffusion process X = (Xt : t ≥ 0), which is the solution of an
SDE. We first introduce some notation, namely for x ∈ Rq,

f(x) =


b1(x) σ11(x) · · · σ1q′(x)
b2(x) σ21(x) · · · σ2q′(x)
...

... · · · ...
bq(x) σq1(x) · · · σqq′(x)


and dYt =

(
dt, dW 1

t , . . . , dW
q′

t

)T
where b : Rq → Rq, σ : Rq → Rq × Rq′ . The dynamic of X

will be written in the compact form

∀t ∈ [0, T ], Xt = x+

∫ t

0

f (Xs) dYs.

The Euler-Maruyama scheme with time step ∆n = T/Mn, ti = i∆n, i = 0, . . . .Mn, ϕn(s) =
sup{ti : ti ≤ s} is given by

Xn
t = x+

∫ t

0

f
(
Xn

ϕn(s)(s)
)
dYs

Under some smoothness assumptions on the coefficients b(x) and σ(x), according to [58],
there exists c ∈ (0,∞) such that for every k ∈ N,

E[∥Xk
T −XT∥2]

1
2 ≤ c

M
k
2

.
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The system performance V : Rd × Rq → R maps the decision variable θ ∈ Rd and the
realization of the random vector XT into a real-valued performance. Since XT does not have
a closed-form representation, we use Xk

T to evaluate XT and use Gk(θ,XT ) := V (θ,Xk
T ) to

approximate G(θ,XT ). We assume that there exists a constant L > 0, such that for every
θ ∈ Θ and every x, y ∈ Rq, |V (θ, x)− V (θ, y)| ≤ L∥x− y∥. Therefore, we have

|EV (θ,XT )− EV (θ,Xk
T )| ≤ LE ∥XT −Xk

T∥ ≤ LcM− k
2 ,

and
E[|V (θ,XT )− V (θ,Xk

T )|2]
1
2 ≤ LE[∥XT −Xk

T∥2]
1
2 ≤ LcM− k

2 .

Therefore, the above analysis suggests that Assumption 6 stands with α = 1
2
and η = 1

2
.

Algorithm Convergence and Cost

We now state a convergence rate result on the algorithm with multilevel FD gradient estima-
tor and show that the algorithm will eventually recover θ∗ with properly chosen algorithm
parameters. The convergence rate of θt relies on the choices of mt, ht, γt and Nt,k at each
step. For a set of parameters γ0, N0 > 0, β, r, ρ ≥ 0, we consider algorithm parameters given
by

mt = ⌈ 2
α
logM(dtρ)⌉, ht = d−

3
2 t−ρ, γt = γ0

1

tβ
, Nt,k = ⌈κtM

−k(η+1/2)⌉, (3.18)

where

κt =

{
d4tr+2ρMmt( 1

2
−η)+, if η ̸= 1

2

d4tr+2ρmt, if η = 1
2
.

In (3.18), Nt,k increases as time step t increases, fixing the level k. The reason why Nt,k

increases as t increases is that we want to control the variance of our gradient estimator at
each time step in the optimization algorithm based on multilevel FD estimator. On the other
hand, Nt,k will decrease as k, the level of approximation, increases. Given the parameters,
we formally present the multilevel FD algorithm.

Theorem 12. Suppose that β ∈ (1
2
, 1], r ≥ 0, ρ, γ0, N0 ∈ (0,∞). If β = 1, suppose

additionally that γ0 ∈ (max{2ρ
µ
, 1+r

µ
},∞). Under Assumption 1, 4 and 6, there exists a

κ ∈ (0,∞) independent of d such that for all t ∈ N,

E [g(θt)− g(θ∗)] ≤ 1

2
Lκ t−(2ρ)∧(β+r),

and
E
[
∥θt − θ∗∥2

]
≤ κt−(2ρ)∧(β+r).
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Algorithm 2 Simulation optimization with multilevel finite difference estimator

Input:Number of iterations N , initial point θ0, parameters N0 ∈ (0,∞), r ≥ 0, ρ = 1+r
2
,

γ0 ∈ (1+r
µ
,∞)

Output: θN

1: for t = 1 to N − 1 do
2: Set mt = ⌈ 2

α
logM(dtρ)⌉, ht = d−

3
2 t−ρ and Nt,k = κtM

−k(η+1/2), where

κt =

{
d4tr+2ρMmt( 1

2
−η)+, if η ̸= 1

2

d4tr+2ρmt, if η = 1
2

3: generates Nt,k independent copies of Y for k = 1, ...mt, denoted by {(Yt,k,l)
Nt,k

l=1 }
mt
k=1

4: Update θt+1 = prΘ(θt − γ0
t
Ht(θt)), where

Ht(θ) =

mt∑
k=1

1

Nt,k

Nt,k∑
ℓ=1

(F sm
k (θ;ht, Zt,k,l, Yt,k,l)− F sm

k−1(θ;ht, Zt,k,l, Yt,k,l))

5: end for
6: return θN

According to Theorem 4 and Theorem 12, the algorithm with standard FD estimator in
Section 3.3 and the algorithm with multilevel FD estimator in Section 3.4 have the same
order of MSE convergence rate t−(2ρ)∧(β+r) with respect to the time step t. However, the
MSE convergence rate with respect to computational budget C for the two algorithms are
different. Equivalently speaking, given the same precision level ϵ, the number of iteration
steps for two algorithms are the same, but the computational cost required are different. In
what follows, we present the results on the expected computational cost required to achieve a
certain precision level for the algorithm with the use of multilevel FD estimator. We compare
the expected computational cost for the two algorithms.

Recall that Ck is defined as the computational cost for generating a single simulation run
of Gk(θ, Y ). This computational cost Ck is allowed to be a random variable itself and we
make the following assumptions that characterize the growth rate of the expected cost when
k → ∞. As an illustration, this assumption holds for the SDE discretization setting.

Assumption 7. As k → ∞, the sequence of cost {Ck : k ≥ 1} satisfies M−k E[Ck] → κ1 for
some M > 1 and κ1 > 0.

In Section 3.3, we assume that the difference between k-th system and the original system
has a scale of Ck−1 as shown in Assumption 2, and the computational cost for simulating a
single copy of the k-th system Ck satisfies k−p E[Ck] → κ1 > 0 as shown in Assumption 5 (i).
In this section, we assume that |E [Gk(θ, Y )−G(θ, Y )]| ≤ M−kα and M−k E[Ck] → κ1 > 0.
To compare the expected computational cost of two algorithms, we need to rescale the
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approximating systems and let p = 1
α
. The purpose is to make sure ECk increases at the

same speed with respect to the bias of Gk(θ, Y ) for the problem setting in Section 3.3 and
in Section 3.4.

Similar to the definition in (3.13), the notion τ(ϵ) is the number of iterations the algorithm
takes for θt to satisfy a precision level ϵ. The notion Tτ(ϵ) is the cumulative computation cost
for the algorithm by the τ(ϵ)-th iteration.

Using the lens of computation cost, we provide the following result to quantify Tτ(ϵ).

Theorem 13. Set β = 1 and 2ρ = r + 1 in Theorem 12,

ETτ(ϵ) =

 O
(
d

2
α ϵ−

2
α
− 1

ρ + d4+
2(1−2η)+

α ϵ−4− 2(1−2η)+
α

)
, if η ̸= 1/2

O
(
d

2
α ϵ−

2
α
− 1

ρ + d4ϵ−4 logM(ϵ−1)2
)
, if η = 1/2.

If additionally α > 1
2
and ρ > α

4α+2(1−2η)+−2
,

ETτ(ϵ) =


O(d4ϵ−4), if η > 1

2
,

O(d4ϵ−4(ln(ϵ−1))2), if η = 1
2
,

O(d4+
2(1−2η)+

α ϵ−(4+
2−4η

α )), if η < 1
2
.

Remark 14. Under Assumption 7, and assuming that ρ is fixed, r = 2ρ − 1 and β = 1 is
the optimal choice of algorithm parameters to minimize cumulative computational cost. We
give the justification for this claim in the appendices.

If the multilevel approach is not employed, under the exact same problem setting, the
optimal algorithm in Section 3.3 has the cumulative computational cost at the order of
O(d

2
α
+5− 3

2
qϵ−

2
α
+q−4). The key insight of Theorem 13 is that the use of multilevel FD gradient

estimators, compared to the use of standard FD gradient estimators under the discontinuity
case (q = 0), improves the computation cost by a factor of dϵ−

2
α if η ≥ 1

2
, or a factor of dϵ−

4η
α

better if η < 1
2
.

3.5 Numerical Experiments

In this section, we implement the two algorithms constructed in Section 3.3 (with FD gra-
dient estimators) and Section 3.4 (with multilevel FD gradient estimators) on a numerical
experiment. We find that the experiment results support our theoretical findings. We study a
stylized simulation-optimization problem on portfolio selection, where the underlying prices
of assets are driven by stochastic differential equations. We implement the two algorithms
and numerically demonstrate the convergence rates. The experiment also shows that the
additional use of multilevel gradient estimators can reduce the order of computation cost
required to achieve a certain level of precision. The details of implementation of simulation-
optimization algorithms and the experiment are posted to [107].
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We consider a setting that has an exact closed-form solution so that we can accurately
compute the error of the algorithm. Specifically, we consider a portfolio of d ∈ N assets whose
price process S(t) = (S1(t), S2(t), . . . , Sd(t)) follows a d-dimensional geometric Brownian
motion:

dS(t) = diag(S(t))µ dt+ diag(S(t))V dW (t) (3.19)

where µ is a d-dimensional vector, V is a d × d matrix, W (t) is a d-dimensional stan-
dard Brownian motion and diag(S(t)) denotes the diagonal matrix in Rd×d with entries
S1(t), S2(t), . . . , Sd(t). Besides, we denote Sf (t) as the value of risk-free asset with initial
value Sf (0) and risk-free return rate rf . That is, Sf (t) = Sf (0) exp(rf t) for all t ≥ 0.

The portfolio optimization problem is to minimize

E
( d∑

i=1

wiSi(T ) + (1−
d∑

i=1

wi)Sf (T )− γ
)2

(3.20)

such that
d∑

i=1

wi ≤ 1, (3.21)

and
wi ≥ 0, i = 1, 2, . . . , d. (3.22)

In (3.20), γ represents a given target value of the portfolio at time t = T and wi is the weight
for asset i respectively for the portfolio. In this optimization problem, the decision variable
is to select the portfolio weights for the assets at the beginning t = 0. The goal is to have
the portfolio value achieve a target value γ at time T , while minimizing the variability or
risk, represented by the variance of the portfolio value at time T . We require that it is not
possible to do a short sale for the assets, so the weight wi, i = 1, 2, . . . , d must be in the
interval [0, 1], as illustrated by (3.21) and (3.22).

We note that this example setting may represent a wide class of simulation-optimization
problems that involve stochastic differential equations as infinite-dimensional random ob-
jects. In general, such problems do not adopt closed-form solutions, and discretization
simulation schemes are often employed to evaluate and approximate the objective function.
However, the example in consideration is simple enough, so that exact solutions are available,
which facilitate the demonstration of algorithm performance.

We describe how our proposed simulation-optimization algorithms are implemented. We
set w = (w1, w2, . . . , wd)

⊤, G(w, S(T )) := (
∑d

i=1wiSi(T ) + (1 −
∑d

i=1wi)Sf (T ) − γ)2 and
g(w) := EG(w, S(T )). The random objective function G(w, S(T )) is approximated by the
Euler-Maruyama discretization scheme at different resolutions. Based on (3.19), the Euler-
Maruyama scheme with time step ∆k = T/Mk, tj = j∆k, j = 0, . . . .Mk, ϕk(s) = sup{tj :
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tj ≤ s} is given by

Sk
i (t) =Si(0) + µi

∫ t

0

Sk
i (ϕk(s))ds

+
d∑

l=1

Vi,l

∫ t

0

Sk
l (ϕk(s))dWj(s)

for i = 1, 2, . . . , d. We define

Gk(w, S(T )) := (
d∑

i=1

wiS
k
i (T ) + (1−

d∑
i=1

wi)Sf (T )− γ)2

as the k-approximating system.
For this simulation optimization problem, g(·) satisfies Assumption 1. Besides, since S(t)

follows geometric Brownian motion, according to our analysis in Section 3.4, G(·, S(T )) and
{Gk(·, S(T ))}k∈N satisfy Assumption 6 and 7 with α = η = 1

2
. By rescaling the approximating

systems, this example satisfies Assumption 2, Assumption 3 with q = 0 and Assumption 5
(i) with p = 1

α
= 2. Therefore, simulation optimization algorithm based on regular FD

estimator (Algorithm 1) and based on multilevel FD estimator (Algorithm 2) can be applied
to this problem with a theoretical guarantee of convergence rate.

Numerical Results with Dimension d = 2

First we consider the case when d = 2 and implement the simulation-optimization algorithm
based on FD gradient estimator, provided by Algorithm 1. We set the initial parameters of
this algorithm to be

N0 = 5, r = 0, ρ =
1

2
, γ0 = 10.

The random direction Z is chosen to be uniformly distributed on the l2-sphere of radius
√
d.

Besides we set the initial solution θ0 = (0, 0) and denote θt = (w1,t, w2,t) as the solution after
t iterations by Algorithm 1. According to Theorem 4, for θt, we are expected to see that

E
[
∥θt − w∗∥2

]
≤ κt−1, (3.23)

where w∗ represents the optimal solution of the optimization problem (3.20)-(3.22). Figure
3.1 shows the log-log plot of the empirical trajectory of E ∥θt−w∗∥2 for t = 1, . . . , 200 steps.
To approximate E ∥θt − w∗∥2, we use N = 200 independent simulation replications, i.e., we
implement N = 200 independent solving processes. A red straight line with slope −1 is also
plotted in Figure 3.1, to demonstrate the convergence rate of θt. From Figure 3.1, when t is
small, the decreasing rate of the mean square error of θt is slower than t−1. When t becomes
larger, the mean square error of θt demonstrates a decreasing rate at an order that becomes
closer to 1/t, which tends to match the theoretical result in Theorem 4.
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Figure 3.1: The log-log plot of the empirical trajectory of E ∥θt−w∗∥2 for t = 1, . . . , 200 steps
by Algorithm 1 when d = 2. E ∥θt − w∗∥2 is approximated by 200 independent simulation
replications. The y-value of the scatters represent the estimated value of E ∥θt−w∗∥2 at the
iteration step t. The red straight line has slope −1. The empirical trajectory demonstrates
that the decreasing rate of E ∥θt − w∗∥2 as t increases is closer and closer to 1/t.

In order to show that the central limit theorem in Theorem 10 actually stands, we plot
in Figure 3.2 the histogram of t

1
2 (w1t−w∗

1) and t
1
2 (w2t−w∗

2). For the purpose of comparison,
we plot in Figure 3.2 using red dashed curve for a normal distribution density with mean and
variance matching that of the plotted histogram of t

1
2 (w1t − w∗

1) and t
1
2 (w2t − w∗

2). We also

plot the smoothed version of the estimated density function for t
1
2 (w1t−w∗

1) and t
1
2 (w2t−w∗

2)

using blue curve for illustration. Figure 3.2 suggests that the distribution of t
1
2 (w1t − w∗

1)

and t
1
2 (w2t−w∗

2) are close to normal distribution, which tends to support our proved central
limit theorem results.

Numerical Results with Dimension d = 20

We consider the case when d = 20 and present numerical results. The numerical results
include three parts. In the first part, we compare the convergence rate with respect to time
step t for Algorithm 1 and Algorithm 2 when d = 20. Second, we compare the performance
of Algorithm 1 and Algorithm 2 when the same computational budget C is provided to each
algorithm. In the third part, we compare the convergence rate with respect to computational
budget C for Algorithm 2 for d = 5 and d = 20 case and show the influence of dimension of
decision variable on Algorithm 2’s performance.

We implement Algorithm 1 under the case d = 20. The initial parameters of this algo-
rithm is set to be the same as when we implement d = 2 case. Figure 3.3a shows the log-log
plot of the empirical trajectory of E ∥θt − w∗∥2 for t = 1, . . . , 200 steps when d = 20 for
Algorithm 1. A red line of slope -1 is plotted for comparison. From Figure 3.3a, as t → ∞,
E ∥θt−w∗∥2 demonstrates a decreasing rate at the order of roughly 1/t, matching our theory
results.
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Figure 3.2: Rescaled histogram of t
1
2 (w1t − w∗

1) on the left and t
1
2 (w2t − w∗

2) on the right,
with t = 200, constructed by N = 200 independent solving processes. Red curves (that are
symmetric) represent for the normal distribution density function with mean and variance

estimated from data. Blue curves represent for the estimated density function of t
1
2 (w1t−w∗

1)

and t
1
2 (w2t − w∗

2) by using kernel density estimation.

Next we turn our attention to the simulation-optimization algorithm based on multi-
level finite difference (FD) gradient estimator, provided by Algorithm 2. We set the initial
parameters of this algorithm to be

N0 = 2, r = 0, ρ =
1

2
, γ0 = 10.

We keep the same r, ρ and γ0 as in the experiment for regular FD estimator but N0 has
changed. Same with the numerical experiments based on Algorithm 1 with d = 20, we set
the initial point θ0 = (0, 0, ...0)⊤. In Figure 3.3b, we draw the log-log plot of the empirical
trajectory of E ∥θt − w∗∥2 for t = 1, . . . , 200 steps when d = 20 for Algorithm 2. A red line
of slope -1 is plotted for comparison. Figure 3.3b illustrates that as t → ∞, E ∥θt−w∗∥2 has
a decreasing rate at the order of roughly 1/t, matching our theory results.

Next, we compare the performance of the optimization algorithm based on multilevel
FD gradient estimator (Algorithm 2) and the optimization algorithm based on regular FD
gradient estimator (Algorithm 1) with the same dimension, when the same computational
budget is provided to each algorithm.

Define nml(C) as the number of iteration steps achieved by Algorithm 2 when C com-
putational budget is used. Then denote θml

nml(C) as the estimator provided by Algorithm 2

when C computational budget is used. Meanwhile, define n(C) as the number of iteration
steps achieved by Algorithm 1 when C computational budget is used. Denote θn(C) as the
estimator provided by Algorithm 1 when C computational budget is used. In Figure 3.4, we
draw a scatter plot to demonstrate the mean square error of θml

nml(C) and θn(C) respectively
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(a) FD estimator (Algorithm 1)
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(b) Multilevel FD estimator (Algorithm 2)

Figure 3.3: The log-log plot of the empirical trajectory of E ∥θt − w∗∥2 for t = 1, . . . , 200
steps by Algorithm 1 and 2 respectively. The dimension d is set to be 20. E ∥θt − w∗∥2
is approximated by 200 independent simulation replications. The y-value of the scatters
represent the estimated value of E ∥θt−w∗∥2 at the iteration step t. The red straight line has
slope −1. Figure 3.3a is log-log plot of the empirical trajectory of E ∥θt−w∗∥2 by Algorithm
1 when d = 20. Figure 3.3b is log-log plot of the empirical trajectory of E ∥θt − w∗∥2 by
Algorithm 2 when d = 20. The empirical trajectories demonstrate that the decreasing rate
of E ∥θt−w∗∥2 as t increases is closer and closer to 1/t, for both Algorithm 1 and Algorithm
2.

as a function of C. The scatter plot is done at a log-log scale. The mean square errors are
computed from 200 independent solving processes. Shown by Figure 3.4, as the computa-
tional budget C increases, the decreasing slope of the mean square error of θml

nml(C) is close

to −1/3, while the decreasing slope of the mean square error of θn(C) is close to −1/4. The
results match the theory provided in Theorem 8 and Theorem 13, showing that the use of
multilevel gradient estimator improves the order of computational efficiency.

For simulation-optimization algorithm based on multilevel FD estimator (Algorithm 2),
the computation cost to achieve a given precision level is proved to have a polynomial order
of dependence on the dimension of decision variable d. To show the influence of dimension
of decision variable on Algorithm 2’s performance, we implement Algorithm 2 for d = 5 and
d = 20. The initial parameters N0, r, ρ, γ0 are set to be the same for d = 5 and d = 20 case.
In Figure 3.5, we draw the scatter plot for the mean square error of θml

nml(C) as a function
of computational budget C for d = 5 and d = 20 case respectively. Shown by Figure 3.5,
for both d = 5 and d = 20 case, as the computational budget C increases, the decreasing
slope of the mean square error is close to −1/3. This matches the theory in Theorem 13.
Given the same computational budget C, for d = 5 case, the mean square error of θml

nml(C) is

approximately 57.08% less than the mean square error in d = 20 case.
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Figure 3.4: Mean square error of θn(C) and θml
nml(C) given computational budget C. θml

nml(C)

and θn(C) are the estimators of w∗ achieved by Algorithm 2 and 1 respectively, when C
computational budget is used. The dimension d is set to be 20. The mean square errors are
computed from 200 independent solving processes. The lower line represents the decreasing
slope of the mean square error of θml

nml(C). The upper line represents the decreasing slope of
the mean square error of θn(C).

3.6 Conclusion

In this chapter, we present a framework to use a sequence of approximating systems to opti-
mize a stochastic system that has complicated stochastic structure and cannot be simulated
exactly with finite computational cost. With this framework, we propose new gradient-based
simulation-optimization algorithms that utilize the approximations with increasing resolu-
tion and higher simulation cost to construct stochastic gradients and perform gradient search.
To circumvent the challenge that the objective functions associated with the approximating
systems are discontinuous, we use the finite difference method to construct gradient estima-
tors for approximating systems. Under the assumption that the objective function of the
original system is strongly convex and smooth, we prove algorithm convergence, convergence
rate, and optimality of algorithm design, without any assumption on convexity or continuity
with the approximating systems. We demonstrate the dependence on the dimension of the
decision variable for the algorithm performance and optimal parameters choices. We then
present a multilevel version of the proposed algorithms to further improve convergence rates,
when in addition the sequence of approximations can be naturally coupled. We prove theo-
retically and then show empirically that the additional use of multilevel structure can further
improve the computational efficiency of the proposed simulation-optimization algorithms.
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Figure 3.5: Mean square error of the estimator provided by Algorithm 2 given computational
budget C. The dimension is set to be 5 and 20 respectively. The mean square errors are
computed from 200 independent solving processes. The lower line represents the decreasing
slope of the mean square error when d = 5. The upper line represents the decreasing slope
of the mean square error when d = 20.



48

Appendices

3.A Auxiliary Lemma

Lemma 1. Suppose that Assumption 1 holds for Θ = Rd. Consider a sequence {θt}t∈N
iteratively defined by

θt+1 = θt − γt(∇θg(θt) +Bt + Vt). (3.24)

Define Ft := F(θ0, θ1, ...θt−1, θt). Assume that Bt is Ft measurable and E[Vt|Ft] = 0. Fur-
thermore, assume that there exist constants β ∈ (1

2
, 1], r ∈ R, ρ, γ0, K1, K2 ∈ (0,∞) such

that
γt = γ0t

−β,

∥Bt∥ ≤ K1t
−ρ,

E[∥Vt∥2|Ft] ≤ K2t
−r.

(3.25)

We require that β + r > 0. If β = 1, require additionally that γ0 ∈ (max{2ρ
µ
, 1+r

µ
},∞). Then

there exists a κ ∈ (0,∞) such that for all t ∈ N,

E
[
∥θt − θ∗∥2

]
≤ κt−(2ρ)∧(β+r), (3.26)

and

E [g(θt)− g(θ∗)] ≤ 1

2
Lκ t−(2ρ)∧(β+r). (3.27)

Proof of Lemma 1.

E[∥θt+1 − θ∗∥2|θt]− ∥θt − θ∗∥2

=2(θt − θ∗)⊤ E[θt+1 − θt|θt] + E[∥θt+1 − θt∥2|θt]
=− 2γt(θt − θ∗)⊤ E[∇θg(θt) +Bt|θt] + γ2

t E[∥∇θg(θt) +Bt + Vt∥2|θt]
≤− 2µγt∥θt − θ∗∥2 − 2γt(θt − θ∗)⊤Bt + 3γ2

t (∥∇θg(θt)∥2 + ∥Bt∥2 + E[|Vt∥2|θt])
≤− 2µγt∥θt − θ∗∥2 − 2γt(θt − θ∗)⊤Bt + 3L2γ2

t ∥θt − θ∗∥2 + 3γ2
t (∥Bt∥2 + E[∥Vt∥2|θt]),

(3.28)
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where we use the fact that (θ− θ∗)⊤∇θg(θ) ≥ µ∥θ− θ∗∥2 and ∥∇θg(θ)∥ ≤ L∥θ− θ∗∥. Using
the inequality that 2a⊤b ≤ (∥a∥2 + ∥b∥2) with a =

√
µ
2
(θt − θ∗) and b =

√
2
µ
Bt, we arrive at

−2(θt − θ∗)⊤Bt ≤
µ

2
∥θt − θ∗∥2 + 2

µ
∥Bt∥2.

Combining it with (3.28), we have

E[∥θt+1 − θ∗∥2|θt]− ∥θt − θ∗∥2

≤− 2µγt∥θt − θ∗∥2 + µ

2
γt∥θt − θ∗∥2 + 2γt

µ
∥Bt∥2 + 3L2γ2

t ∥θt − θ∗∥2 + 3γ2
t (∥Bt∥2 + E[∥Vt∥2|θt])

=− 3

2
µγt∥θt − θ∗∥2 + 2γt

µ
∥Bt∥2 + 3L2γ2

t ∥θt − θ∗∥2 + 3γ2
t (∥Bt∥2 + E[∥Vt∥2|θt]).

Now consider our assumption that γt = γ0t
−β, ∥Bt∥ ≤ K1t

−ρ and E[∥Vt∥2|θt] ≤ K2t
−r. Since

β > 0, we can find t0 such that 3L2γ0t
−β
0 ≤ 1

2
µ, and 3γ0t

−β
0 ≤ 1

µ
. Therefore, for t ≥ t0,

E[∥θt+1 − θ∗∥2|θt]− ∥θt − θ∗∥2

≤− µγt∥θt − θ∗∥2 + 3γt
µ

∥Bt∥2 + 3γ2
t E[∥Vt∥2|θt]

≤− µγ0t
−β∥θt − θ∗∥2 + 3γ0K

2
1

µ
t−2ρ−β + 3K2γ

2
0t

−2β−r.

By taking expectation on both sides and moving E ∥θt − θ∗∥2 to the right side, we get the
recursion equation

E[∥θt+1 − θ∗∥2] ≤ (1− µγ0t
−β)E[∥θt − θ∗∥2] + 3γ0K

2
1

µ
t−2ρ−β + 3K2γ

2
0t

−2β−r, (3.29)

which holds for t ≥ t0.
By unrolling the recursion, we have

E[∥θt+1 − θ∗∥2] ≤ At,t0−1 E[∥θt0 − θ∗∥2] + 3γ0K
2
1

µ

t∑
i=t0

i−2ρ−βAn,i + 3K2γ
2
0

t∑
i=t0

i−2β−rAn,i,

(3.30)
where

Atj =

{ ∏t
k=j+1

(
1− µγ0k

−β
)
, j < t,

1, j = t.
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First we discuss the case when 1
2
< β < 1. Without loss of generality we assume that t0 also

satisfies 2ρtβ−1
0 < µγ0

2
. Notice that when 1

2
< β < 1,

|Atj| ≤ exp

(
−µγ0

t∑
k=j+1

k−β

)

≤ exp

(
µγ0j

−β − µγ0

∫ t

j

x−βdx

)
= exp

(
µγ0j

−β −
µγ0

(
t1−β − j1−β

)
1− β

)
.

So the first term on the R.H.S. of (3.30) is O(exp(−µγ0
t1−β

1−β
)). Besides, for the second term

on the R.H.S. of (3.30), we have that

t∑
i=t0

i−β−2ρAti = t−2ρ

t∑
i=t0

i−βAti +
t−1∑
i=t0

(
1

i2ρ
− 1

(i+ 1)2ρ

) i∑
j=t0

j−βAtj. (3.31)

For t0 ≤ i ≤ t,

i∑
j=t0

j−βAtj =
1

µγ0

i∑
j=t0

(Atj − At,j−1) =
1

µγ0
(At,i − At,t0−1) . (3.32)

Notice that

1

i2ρ
− 1

(i+ 1)2ρ
= i−2ρ

(
2ρi−1 +O

(
i−2
))

= 2ρi−2ρ−1 +O
(
i−2ρ−2

)
, (3.33)

So we have
t−1∑
i=t0

(
1

i2ρ
− 1

(i+ 1)2ρ

)
Ati =

t−1∑
i=t0

(
2ρi−2ρ−1 +O

(
i−2ρ−2

))
Ati

≤ µγ0
2

t∑
i=t0

i−2ρ−βAti +O
(
t−2ρ−1

)
.

(3.34)

The last inequality comes from the choice of t0 such that 2ρtβ−1
0 < µγ0

2
. Combining (3.32)

and (3.34) with (3.31), we have

t∑
i=t0

i−β−2ρAti ≤
1

µγ0
(At,t − At,t0−1) t

−2ρ + (
µγ0
2

t∑
i=t0

i−2ρ−βAti)(
1

µγ0
(At,t − At,t0−1))

+O
(
t−2ρ−1

)
≤ 1

µγ0
t−2ρ +

1

2

t∑
i=t0

i−2ρ−βAti +O
(
t−2ρ−1

) (3.35)
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Therefore,
t∑

i=t0

i−β−2ρAti ≤
2

µγ0
t−2ρ +O

(
t−2ρ−1

)
. (3.36)

Repeating the argument above, we have

t∑
i=t0

i−r−2βAti ≤
1

µγ0
(At,t − At,t0−1) t

−r−β + (
µγ0
2

t∑
i=t0

i−r−2βAti)(
1

µγ0
(At,t − At,t0−1))

+O
(
t−r−β−1

)
≤ 1

µγ0
t−r−β +

1

2

t∑
i=t0

i−2β−rAti +O
(
t−r−β−1

)
≤ 2

µγ0
t−r−β +O

(
t−r−β−1

)
(3.37)

Combining (3.36), (3.37) with (3.30), we conclude that E[∥θt+1 − θ∗∥2] = O(t−(2ρ)∧(β+r)) for
t ≥ t0.

Now we consider the case when β = 1. For t0 − 1 ≤ j ≤ t,

Atj ≤ exp

(
µγ0/j − µγ0

∫ t

j

x−1dx

)
=exp (µγ0/j − µγ0 ln(t/j))

= exp (µγ0/j) (j/t)
µγ0

(3.38)

For the second and the third term on the R.H.S. of (3.30), we have

t∑
i=t0

i−2ρ−1 |Ati| ≤ exp (µγ0/t0) (
t−1∑
i=t0

i−2ρ−1(i/t)µγ0 + t−2ρ−1)

≤ exp (µγ0/t0) t
−µγ0

∫ t

t0

xµγ0−2ρ−1dx+O(t−2ρ−1)

≤ exp (µγ0/t0) (µγ0 − 2ρ)−1 t−2ρ +O(t−2ρ−1),
t−1∑
i=t0

i−2−r |Ati| ≤ exp (µγ0/t0)
t−1∑
i=t0

i−2−r(i/t)µγ0 +O(t−2−r)

≤ exp (µγ0/t0) (µγ0 − r − 1)−1 t−r−1 +O(t−2−r).

(3.39)

Therefore, by combining (3.39) with (3.30), we have E[∥θt+1 − θ∗∥2] = O(t−(2ρ)∧(β+r)) for
t ≥ t0. (3.27) holds because g(·) is L-smooth.

If Θ is a closed and convex set of Rd, and the iteration (3.24) changes to θt+1 = prΘ(θt −
γt(∇θg(θt) + Bt + Vt)), the conclusion of Lemma 1 still holds and the discussions are the
same as before.
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3.B Omitted Proofs of Section 3.3

Proof of Theorem 4

Proof of Theorem 4. Define Bt = E[Gmt (θt+htZ,Ymt )−Gmt (θt,Ymt )

ht
Z]−∇g(θt) and

Vt =
1

Nt

Nt∑
l=1

Gmt(θt + htZt,l, Ymt,l)−Gmt(θt, Ymt,l)

ht

Zt,l−E[
Gmt(θt + htZ, Ymt)−Gmt(θt, Ymt)

ht

Z].

We want to show that Bt and Vt satisfy conditions of Lemma 1.
Under Assumption 1, 2, and 4, for k ≥ 1, we have

∥E[Gk(θ + hZ, Yk)−Gk(θ, Yk)

h
Z]−∇g(θ)∥

≤∥E[Gk(θ + hZ, Yk)−Gk(θ, Yk)

h
Z]− E[

g(θ + hZ)− g(θ)

h
Z]∥

+ ∥E[g(θ + hZ)− g(θ)

h
Z]−∇g(θ)∥.

Since

∥E[Gk(θ + hZ, Yk)−Gk(θ, Yk)

h
Z]− E[

g(θ + hZ)− g(θ)

h
Z]∥

=∥E[E[Gk(θ + hZ, Yk)−Gk(θ, Yk)

h
Z − g(θ + hZ)− g(θ)

h
Z|Z]]∥

=∥E[gk(θ + hZ)− gk(θ)

h
Z − g(θ + hZ)− g(θ)

h
Z]∥

≤E[(|gk(θ + hZ)− g(θ + hZ)

h
|+ |gk(θ)− g(θ)

h
|)∥Z∥]

≤ 2

kh
E[∥Z∥] ≤ 2c1d

1
2

kh
,

and

∥E[g(θ + hZ)− g(θ)

h
Z]−∇g(θ)∥

=∥E[ZZ⊤∇g(θ + h̄Z)− ZZ⊤∇g(θ)∥
≤E[∥ZZ⊤∥∥∇g(θ + h̄Z)−∇g(θ)∥]
≤LE[∥ZZ⊤∥∥h̄Z∥]
≤LhE[∥Z∥3] ≤ c3Lhd

3
2 ,

where h̄ satisfies 0 ≤ h̄ ≤ h according to mean value theorem.
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Therefore, by setting mt = ⌈m0d
2 t2ρ⌉ and ht = d−

3
2 t−ρ, we have

∥E[Gmt(θt + htZ, Ymt)−Gmt(θt, Ymt)

ht

Z|θt]−∇g(θt)∥

≤2c1d
1
2

mtht

+ c3Lhtd
3
2 = O(t−ρ).

On the other hand, by Assumption 3,

E[∥Vt∥2|θt] =
1

Nt

E[∥Gmt(θt + htZ, Ymt)−Gmt(θt, Ymt)

ht

Z

− E[
Gmt(θt + htZ, Ymt)−Gmt(θt, Ymt)

ht

Z]∥2|θt]

≤ 1

Nt

E[∥Gmt(θt + htZ, Ymt)−Gmt(θt, Ymt)

ht

Z∥2|θt] = O(t−r).

According to Lemma 1, the conclusion of Theorem 4 holds.

Proof of Theorem 8

Proof of Theorem 8. First, suppose that Assumption 5 (i) holds, so d−2pk−2ρp E[Cmk
] →

mp
0κ1 as k → ∞. The expected cumulative computation cost by the t-th iteration is

ETt = 2E
t∑

j=1

NjCmj

= 2
t∑

j=1

Nj ECmj

= 2N0

t∑
j=1

d5−
3
2
qjr+ρ(2−q) ECmj

= O(d2p+5− 3
2
qtr+2ρp+ρ(2−q)+1).

According to Theorem 4, τ(ϵ) = O(ϵ−
2

(2ρ)∧(β+r) ). Therefore,

ETτ(ϵ) = O(d2p+5− 3
2
qϵ−

2(r+2ρp+ρ(2−q)+1)
(2ρ)∧(β+r) ).

Suppose that Assumption 5 (ii) holds. The expected cumulative computation cost by the
t-th iteration is

ETt = O(d5−
3
2
qtr+ρ(2−q)+1 exp((m0d

2 + 1) log(α)t2ρ)).

According to Theorem 4, τ(ϵ) ≤ κ
1

(2ρ)∧(β+r) ϵ−
2

(2ρ)∧(β+r) . Therefore,

ETτ(ϵ) = O(d5−
3
2
qϵ−

2(r+ρ(2−q)+1)
(2ρ)∧(β+r) exp((m0d

2 + 1)κ
2ρ

(2ρ)∧(β+r) ϵ−
4ρ

(2ρ)∧(β+r) logα)).
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Proof of Proposition 9

Proof of Proposition 9. For β ∈ (1
2
, 1], we have that

r+ρ(2p+2−q)+1
(2ρ)∧(β+r)

≥ r+ρ(2p+2−q)+β
(2ρ)∧(β+r)

=

{
p+ 1− q

2
+ r+β

2ρ
, if 2ρ < β + r

1 + ρ(2p+2−q)
r+β

, if 2ρ ≥ β + r

Given fixed β, the optimal value of r+ρ(2p+2−q)+β
(2ρ)∧(β+r)

is obtained when 2ρ = β+r and is p+2− q
2
.

Note that the equation r+ρ(2p+2−q)+1
(2ρ)∧(β+r)

= r+ρ(2p+2−q)+β
(2ρ)∧(β+r)

holds only if β = 1. Therefore, β = 1,
2ρ = r + 1 represents the set of optimal parameters that minimize the computational cost
needed for the algorithm to achieve a given precision level.

3.C Omitted Proofs of Section 3.4

Proof of Theorem 12

Proof of Theorem 12. According to the proof of Theorem 4,

∥E[Gmt(θt + htZ, Y )−Gmt(θt, Y )

ht

Z|θt]−∇g(θt)∥

≤2c1d
1
2

ht

M−mtα + c3Lhtd
3
2 = O(t−ρ).

Therefore,

∥Bt∥ = ∥E[
mt∑
k=1

1

Nt,k

Nt,k∑
ℓ=1

(F sm
k (θt;ht, Zt,k,l, Yt,k,l)− F sm

k−1(θt;ht, Zt,k,l, Yt,k,l))|θt]−∇g(θt)∥

= ∥E Gmt(θt + htZ, Y )−Gmt(θt, Y )

ht

Z|θt]−∇g(θt)∥ = O(t−ρ).
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On the other hand,

E[∥F sm
k (θ;h, Z, Y )− F sm

k−1(θ;h, Z, Y )− EF sm
k (θ;h, Z, Y ) + EF sm

k−1(θ;h, Z, Y )∥2]1/2

≤E[∥F sm
k (θ;h, Z, Y )− F sm

k−1(θ;h, Z, Y )− E[F sm
k (θ;h, Z, Y )|Z] + E[F sm

k−1(θ;h, Z, Y )|Z]∥2]1/2

+ E[∥E[F sm
k (θ;h, Z, Y )|Z]− E[F sm

k−1(θ;h, Z, Y )|Z]
− EF sm

k (θ;h, Z, Y ) + EF sm
k−1(θ;h, Z, Y )∥2]1/2

=E[E[∥F sm
k (θ;h, Z, Y )− F sm

k−1(θ;h, Z, Y )

− gk(θ + hZ)− gk(θ)

h
Z − gk−1(θ + hZ)− gk−1(θ)

h
Z∥2|Z]]1/2

+ E[∥gk(θ + hZ)− gk(θ)

h
Z − gk−1(θ + hZ)− gk−1(θ)

h
Z

− EF sm
k (θ;h, Z, Y ) + EF sm

k−1(θ;h, Z, Y )∥2]1/2

≤E[∥Z∥2 E[∥Gk(θ + hZ, Y )−Gk−1(θ + hZ, Y )− gk(θ + hZ) + gk−1(θ + hZ)

h
∥2|Z]]1/2

+ E[∥Z∥2 E[∥Gk(θ, Y )−Gk−1(θ, Y )− gk(θ) + gk−1(θ)

h
∥2|Z]]1/2

+ E[∥gk(θ + hZ)− gk(θ)

h
Z − gk−1(θ + hZ)− gk−1(θ)

h
Z

− EF sm
k (θ;h, Z, Y ) + EF sm

k−1(θ;h, Z, Y )∥2]1/2

≤E[∥Z∥2 E[∥Gk(θ + hZ, Y )−Gk−1(θ + hZ, Y )− gk(θ + hZ) + gk−1(θ + hZ)

h
∥2|Z]]1/2

+ E[∥Z∥2 E[∥Gk(θ, Y )−Gk−1(θ, Y )− gk(θ) + gk−1(θ)

h
∥2|Z]]1/2

+ E[∥gk(θ + hZ)− gk(θ)

h
Z − gk−1(θ + hZ)− gk−1(θ)

h
Z∥2]1/2

≤E[
∥Z∥2

h2
M−2kη]1/2 + E[

4M∥Z∥2

h2
M−2kα]1/2

≤C̃ ′
√
dM−kη

h
,

where the last inequality comes from the assumption that α ≥ η.
Under given parameters ht, Nt,k and mt, we calculate that

E[∥Vt∥2|θt] =
mt∑
k=1

1

N2
t,k

Nt,k∑
ℓ=1

E[∥F sm
k (θt;ht, Zt,k,l, Yt,k,l)− F sm

k−1(θt;ht, Zt,k,l, Yt,k,l)

− E[F sm
k (θt;ht, Zt,k,l, Yt,k,l)|θt] + E[F sm

k−1(θt;ht, Zt,k,l, Yt,k,l)|θt]∥2|θt]

≤
mt∑
k=1

C ′d

N0κth2
t

Mk(1/2−η) ≤ C ′

N0(M − 1)
t−r.

According to Lemma 1, the conclusion of Theorem 12 is proved.
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Proof of Theorem 13

Proof of Theorem 13. The expected cumulative computation cost by the t-th iteration is

ETt = 2E
t∑

j=1

mj∑
k=1

Nj,kCk.

The expected cost for the j-th iteration is

2E
mj∑
k=1

Nj,kCk ≤2

mj∑
k=1

(
1 +N0κjM

−k(η+1/2)
)
Mk

≤2

mj∑
k=1

Mk + 2

mj∑
k=1

N0κjM
k(1/2−η).

If η ̸= 1
2
,

E
mj∑
k=1

Nj,kCk ≤
Mmj

1−M−1
+N0κj

Mmj(1/2−η)+

1−M−|1/2−η|

≤c(Mmj + d4jr+2ρMmj(1−2η)+).

According to definition of mj, M
mj ≤ d

2
α j

2ρ
α , so

E
mj∑
k=1

Nj,kCk ≤ c(d
2
α j

2ρ
α + d4+

2(1−2η)+
α jr+2ρ+

2ρ(1−2η)+
α ).

If η = 1
2
,

E
mj∑
k=1

Nj,kCk ≤
Mmj

1−M−1
+N0κjmj

≤c(Mmj + d4jr2ρm2
j)

≤c(d
2
α j

2ρ
α + d4jr+2ρ logM(j)2).

Using the fact that r = 2ρ− 1, we have

ETt ≤ c2


∑t

j=1

(
d

2
α j

2ρ
α + d4+

2(1−2η)+
α j4ρ+

2ρ(1−2η)+
α

−1
)
, if η ̸= 1/2∑t

j=1

(
d

2
α j

2ρ
α + d4j4ρ−1 logM(j)2

)
, if η = 1/2.

Hence there exists c′ ∈ (0,∞) such that

ETt ≤ c′


(
d

2
α t

2ρ
α
+1 + d4+

2(1−2η)+
α t4ρ+

2ρ(1−2η)+
α

)
, if η ̸= 1/2(

d
2
α t

2ρ
α
+1 + d4t4ρ logM(t)2

)
, if η = 1/2.
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According to Theorem 12, τ(ϵ) = O(ϵ−
1
ρ ). Therefore,

ETτ(ϵ) =

 O
(
d

2
α ϵ−

2
α
− 1

ρ + d4+
2(1−2η)+

α ϵ−4− 2(1−2η)+
α

)
, if η ̸= 1/2

O
(
d

2
α ϵ−

2
α
− 1

ρ + d4ϵ−4 logM(ϵ−1)2
)
, if η = 1/2.

If additionally α > 1
2
and ρ > α

4α+2(1−2η)+−2
, then 2

α
+ 1

ρ
≤ 4 + 2(1−2η)+

α
. In this case,

ETτ(ϵ) =


O(d4ϵ−4), if η > 1

2
,

O(d4ϵ−4(ln(ϵ−1))2), if η = 1
2
,

O(d4+
2(1−2η)+

α ϵ−(4+
2−4η

α )), if η < 1
2
.

3.D Additional Results

In this section, we provide some additional results which are not covered in the main text.
The additional results are outlined as follows.

In the first subsection, we consider the scenario when the stochastic performance function
associated with an approximating system happens to be Lipschitz continuous, and Infinites-
imal Perturbation Analysis (IPA)/ Automatic Differentiation (AD) gradient estimators are
guaranteed to be unbiased regarding the approximating system (not the original system) and
can be constructed at a computation cost that does not increase linearly with the dimension.
The associated gradient-based algorithms, based on unbiased IPA estimators, are proved to
converge. The algorithms, convergence rates, optimal choices of algorithm parameters and
central limit theorems are established.

In the second subsection, we consider the gradient-based algorithm with FD gradient
estimator (Algorithm 1). We provide detailed assumptions and proofs of the central limit
theorems, given in the main text by Theorem 10 and Theorem 11.

In the third part, we justify that the parameters given in Theorem 13 are indeed the
optimal choices to minimize cumulative computational cost.

Simulation Algorithms with IPA/AD/BP Gradient Estimators

In this section, we propose gradient-based simulation-optimization algorithms that take ad-
vantage of the infinitesimal perturbation analysis (IPA) gradient estimators, the automatic
differentiation (AD) gradient estimators, or the backpropagation (BP) gradient estimators of
the approximating systems. All three classes of gradient estimators can enjoy computational
efficiency for gradient evaluation at high-dimensional decision variables. For simplicity, we
use IPA gradient estimators in this section to represent all three classes. For the approxi-
mating system Gk(θ, Yk) with index k, the IPA gradient estimator is given by

∇θGk(θ, Yk). (3.40)
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The main advantages of IPA gradient estimators are twofold. First, when the system perfor-
mance function Gk(θ, Yk) is differentiable and is Lipschitz continuous in θ, the IPA gradient
estimator is unbiased, in the sense that

E[∇θGk(θ, Yk)] = ∇θ E[Gk(θ, Yk)]. (3.41)

Second, when the dominant computation cost is from running the simulation logic (i.e.,
evaluating Gk(θ, Yk) given θ and Yk), the IPA gradient estimator with respect to a high
dimensional variable θ ∈ Rd, can be simultaneously obtained from a single simulation run of
Gk(θ, Yk). That is, when the computation cost of a single simulation run of Gk(θ, Yk) is Ck,
the computation cost of obtaining the gradient vector ∇θGk(θ, Yk) is given by R ·Ck, where
R > 1 is a constant multiplier that does not increase linearly with dimension d; see [43] and
[29].

Consider an increasing positive integer sequence (mt : t ≥ 1). At the t-th step, the
algorithm updates the θt−1 from the previous step by using a gradient estimator constructed
from the mt-th approximating system. Specifically, the algorithm generates Nt independent
copies of the random input Ymt , noted as {Ymt,l}Nt

l=1. Correspondingly, the algorithm runs
Nt independent simulation copies of the simulation logic of the mt-th system and obtains Nt

copies of the IPA gradient estimator

∇θGmt(θt−1, Ymt,1),∇θGmt(θt−1, Ymt,2), . . . ,∇θGmt(θt−1, Ymt,Nt). (3.42)

The algorithm then averages the Nt independent IPA gradient estimator as

Ht(θt−1) :=
1

Nt

Nt∑
l=1

∇θGmt (θt−1, Ymt,l) (3.43)

and then updates θt−1 as
θt = prΘ(θt−1 − γtHt(θt−1)). (3.44)

For a set of initialization parameters γ0, N0,m0 > 0, β, r, ρ ≥ 0, we consider algorithm
parameters given by

mt = ⌈m0 t
2ρ⌉, Nt = ⌈N0t

r⌉ , γt = γ0
1

tβ
(3.45)

for t ≥ 1. We impose the following assumption on the sequence of approximating systems.

Assumption 8. There exists a positive constant M0 such that for all k ∈ N and θ ∈ Rd,
(i) The expected performance gk is Lk-smooth, and L∗ := supk≥1 Lk < ∞;
(ii) Gk(·, Yk) is Ψk(Yk)-Lipschitz continuous and E[|Ψk(Yk)|2] < ∞;
(iii) E[∥∇θGk(θ, Yk)− E∇θGk(θ, Yk)∥2] ≤ M0.
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Theorem 15. Suppose that β ∈ (1
2
, 1], r ≥ 0, ρ, γ0, N0,m0 ∈ (0,∞). If β = 1, suppose

additionally that γ0 ∈ (max{2ρ
µ
, 1+r

µ
},∞). Under Assumption 1, 2, and 8, with θt defined in

the scheme (3.43) and (3.44), there exists a κ ∈ (0,∞) such that for all t ∈ N,

E
[
∥θt − θ∗∥2

]
≤ κt−(2ρ)∧(β+r), (3.46)

and

E [g(θt)− g(θ∗)] ≤ 1

2
Lκ t−(2ρ)∧(β+r), (3.47)

where κ only depends on β, r, ρ, γ0,m0, N0, L
∗, L, µ and M0.

Proof of Theorem 15. First, we show that under conditions of Theorem 15,

∥E [∇θGmt(θ, Ymt)−∇θg(θ)]∥ ≤ (L∗ + L+ 2)m
− 1

2
t ≤ L∗ + L+ 2

√
m0

t−ρ.

Denote un := 1
∥∇θgn(θ)−∇θg(θ)∥

(∇θgn(θ) − ∇θg(θ)). That is, un is the unit vector in Rd

that shares the same direction with ∇θgn(θ)−∇θg(θ). For any hn > 0 and θ ∈ Θ, we have

|gn(θ + hnun)− gn(θ)

hn

−∇θgn(θ)
⊤un|

≤|(∇θgn(θ + ξn(θ)hnun)−∇θgn(θ))
⊤un|

≤∥∇θgn(θ + ξn(θ)hnun)−∇θgn(θ)∥,

where ξn(θ) ∈ (0, 1) and its value depends on n and θ. Using the fact that gn(·) is Ln-
smooth, we have

|gn(θ + hnun)− gn(θ)

hn

−∇θgn(θ)
⊤un| ≤ Lnhn ≤ L∗hn.

So

∥E [∇θGn(θ, Yn)−∇θg(θ)] ∥
=|(∇θgn(θ))−∇θg(θ))

⊤un|

≤|∇θgn(θ)
⊤un − gn(θ + hnun)− gn(θ)

hn
|+ |gn(θ + hnun)− g(θ + hnun)

hn
|

+ |gn(θ)− g(θ)

hn
|+ |g(θ + hnun)− g(θ)

hn
−∇θg(θ)

⊤un|

≤L∗hn +
2

nhn
+ Lhn.

If we set hn = n− 1
2 , ∥E [∇θGn(θ, Yn)−∇θg(θ)]∥ is bounded by (L∗ +L+2)n− 1

2 . Therefore,

we have that ∥E [∇θGmt(θ, Ymt)−∇θg(θ)]∥ ≤ (L∗ + L+ 2)m
− 1

2
t ≤ L∗+L+2√

m0
t−ρ.



CHAPTER 3. SIMULATION OPTIMIZATION VIA MULTI-RESOLUTION SYSTEM
APPROXIMATIONS 60

On the other hand, under Assumption 8 (iii),

E[∥ 1

Nt

Nt∑
l=1

∇θGmt (θt, Ymt,l)−∇gmt(θt)∥2|θt] =
1

Nt

E[∥∇θGmt (θt, Ymt)−∇gmt(θt)∥2|θt] ≤
M0

N0

t−r.

Let Bt = E [∇θGmt(θ, Ymt)−∇θg(θ)] and Vt =
1
Nt

∑Nt

l=1∇θGmt (θt, Ymt,l)−∇gmt(θt). The
iteration scheme (3.43) and (3.44) can be written as

θt+1 = θt − γt(∇g(θt) +Bt + Vt),

and Bt and Vt satisfy all conditions of Lemma 1, according to the analysis above. Therefore,
according to Lemma 1, the conclusion of Theorem 15 holds.

The cumulative computation cost for the algorithm by the τ(ϵ)-th iteration, is denoted
as

Tτ(ϵ) = R

τ(ϵ)∑
j=1

NjCmj
. (3.48)

Theorem 16. Under Assumption 5 (i),

ETτ(ϵ) = O(ϵ−
2(r+2ρp+1)
(2ρ)∧(β+r) ).

Under Assumption 5 (ii),

ETτ(ϵ) = O(ϵ−
2(r+1)

(2ρ)∧(β+r) exp(ϵ−
4ρ

(2ρ)∧(β+r)κ
2ρ

(2ρ)∧(β+r) (m0 + 1) logα)),

in which O(g(ϵ)) denotes a function of ϵ that is bounded by a constant multiplied by g(ϵ).

Proof of Theorem 16. First, suppose that Assumption 5 (i) holds, so k−2ρp E[Cmk
] → mp

0κ1

as k → ∞. The expected cumulative computation cost by the t-th iteration is

ETt = ER
t∑

j=1

NjCmj

= R

t∑
j=1

Nj ECmj

= RN0

t∑
j=1

tr ECmj

= O(tr+2ρp+1).

According to Theorem 15, τ(ϵ) = O(ϵ−
2

(2ρ)∧(β+r) ). Therefore,

ETτ(ϵ) = O(ϵ−
2(r+2ρp+1)
(2ρ)∧(β+r) ).
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Suppose that Assumption 5 (i) holds. The expected cumulative computation cost by the
t-th iteration is

ETt = R
t∑

j=1

Nj ECmj

= RN0

t∑
j=1

tr ECmj

= O(tr+1 exp((m0 + 1) log(α)t2ρ)).

According to Theorem 15, τ(ϵ) ≤ κ
1

(2ρ)∧(β+r) ϵ−
2

(2ρ)∧(β+r) . Therefore,

ETτ(ϵ) = O(ϵ−
2(r+1)

(2ρ)∧(β+r) exp(ϵ−
4ρ

(2ρ)∧(β+r)κ
2ρ

(2ρ)∧(β+r) (m0 + 1) logα)).

We next devote our attention to studying the asymptotic distribution of θt when t tends
to infinity and obtain a central limit theorem (CLT). We then change our lens to the available
computation budget C and derive a central limit theorem for the best estimator available
with the given budget. Both two results of CLT are under suitable regularity assumptions:

Assumption 9. H(θ) := ∇2g(θ) exists for every θ ∈ Θ and is continuous with respect to θ.
Denote H∗ := H(θ∗). All eigenvalues of H∗ − 1+r

2γ0
I have positive real parts.

Assumption 10. ∥θn∥ < ∞ a.s. ∀n.

Assumption 11. θ∗ is an asymptotically stable solution of the following ordinary differential
equation

dx(t)

dt
= −∇g(x).

Define D(θ∗) = {x0 : limt→∞ x(t|x0) = θ∗}, where x(t|x0) denotes the solution to the ordinary
differential equation based on initial condition x0. There exists a compact S ⊂ D(θ∗) such
that θn ∈ S infinitely often for almost all sample points.

Assumption 12. There exists δ > 0 such that supn∈N,θ∈Θ E[∥∇θGn(θ, Yn)∥2+δ] < ∞.

Assumption 13. There exists a continuous function E(·) such that n1/2 (∇θgn(θ)−∇θg(θ))
converges to E(θ) uniformly for every θ ∈ Θ. Especially, denote C ′ := E(θ∗).

Assumption 14. E[supn∈N,θ∈Θ ∥∇θGn(θ, Yn)∥2] < ∞.

Assumption 15. There exists a constant b > 0 such that

lim
n→∞

Var(Cn)

np(1−b)
= 0.
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Theorem 17. Denote H∗ as the Hessian matrix for g(θ) at θ∗ and H̃ := H∗ − 1+r
2γ0

I.

Denote C ′ := limn→∞ n1/2 (∇θgn(θ
∗)−∇θg(θ

∗)). Under suitable regularity assumptions, for
the optimal algorithm,

n(1+r)/2(θn − θ∗)
d−→ N(−m

− 1
2

0 H̃−1C ′,Σ) as n → ∞

where

Σ =
γ0
N0

∫ ∞

0

exp(−H̃u)E[∇θG(θ∗, Y )∇θG(θ∗, Y )⊤] exp(−H̃⊤u)du. (3.49)

Theorem 18. Suppose that all conditions of Theorem 17 are satisfied. Let C be the com-
putation budget and n(C) := sup{n ≥ 1 :

∑n
j=1NjRCmj

≤ C}. If n−p E[Cn] → κ1 for some
p > 0 and κ1 > 0, then

(
C

κ1N0Rmp
0(p+ 1)

)1/2(1+p)(θn(C) − θ∗)
d−→ N(−m

− 1
2

0 H̃−1C ′,Σ) as C → ∞

with Σ defined the same as in Theorem 17.

Proof of Theorem 17. Suppose that Assumption 1, 2, 8, 9, 10, 11, 12, 13 and 14 hold.
Under Assumption 1, 2, 8, 9, 10, and 11, according to [69] Theorem 2.3.1, (see also

Theorem 1 of [75] and Proposition 1 of [94]), θt → θ∗ w.p.1 as t → ∞.
We show that conditions (2.2.1), (2.2.2), and (2.2.3) in [25] hold. First, we observe that

∇θg(θt) = ∇θg(θ
∗) +H(θ̄t)(θt − θ∗) = H(θ̄t)(θt − θ∗),

where θ̄t lies on the line segment between θt and θ∗. Then we have

θt+1 − θ∗ =θt − θ∗ − γt(∇θg(θt) +Bt + Vt)

=(I − γ0t
−1H(θ̄t))(θt − θ∗)− γ0t

−1Bt + γ0t
−1ΦtVt

=(I − γ0t
−1H(θ̄t))(θt − θ∗)− γ0t

−1−ρ(tρBt) + γ0t
−1−ρ+ 1

2 (tρ−
1
2ΦtVt),

where Bt = ∇θgmt(θt)−∇θg(θt), Φt = −I and Vt =
1
Nt

∑Nt

l=1 ∇θGmt(θt, Ymt,l)−∇θgmt(θt).

Since θt → θ∗ w.p.1 as t → ∞ and by the continuity of H(·), we have H(θ̄t) → H(θ∗)

w.p.1. According to Assumption 13, tρBt = tρ(∇θg⌈m0 t2ρ⌉(θt) −∇θg(θt)) → m
− 1

2
0 C ′ w.p. 1,

so condition (2.2.1) of [25] holds.
Under Assumption 14, by dominated convergence theorem and the fact that θt → θ∗

w.p.1 as t → ∞,

tr E[VtV
⊤
t |θt] =

tr

Nt

E[(∇θGmt(θt, Ymt)−∇θgmt(θt))(∇θGmt(θt, Ymt)−∇θgmt(θt))
⊤|θt]

p−→ 1

N0

E[(∇θG(θ∗, Y )−∇g(θ∗))(∇θG(θ∗, Y )⊤ −∇g(θ∗))⊤]

=
1

N0

E[∇θG(θ∗, Y )∇θG(θ∗, Y )⊤]
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as t → ∞. So condition (2.2.2) of [25] holds.
For 0 < δ′ < δ/2, and any λ > 0, we have

lim
k→∞

E

[
1{

∥k r
2 Vk∥2

≥λk

} ∥∥k r
2Vk

∥∥2] ≤ lim
k→∞

sup

(
E
∥∥k r

2Vk

∥∥2
λk

)δ′/(1+δ′) (
E
∥∥k r

2Vk

∥∥2(1+δ′)
)1/(1+δ′)

By Burkholder-Davis-Gundy inequality and the triangle inequality on the L
1

2(1+δ′) space,
there exists a constant cδ′ which only depends on δ′, such that

(
E
∥∥k r

2Vk

∥∥2(1+δ′)
)1/(1+δ′)

=

E

∥∥∥∥∥ 1

N0k
r
2

Nk∑
l=1

(∇θGmk
(θk, Ymk,l)−∇θgmk

(θk))

∥∥∥∥∥
2(1+δ′)

1/(1+δ′)

≤ cδ′

(
E[(

1

N2
0k

r

Nk∑
l=1

∥∇θGmk
(θk, Ymk,l)−∇θgmk

(θk)∥2)(1+δ′)]

)1/(1+δ′)

≤ cδ′
1

N2
0k

r

Nk∑
l=1

(
E(∥∇θGmk

(θk, Ymk,l)−∇θgmk
(θk)∥2(1+δ′)

)1/(1+δ′)

≤ cδ′

N0

( sup
k∈N,θ∈Θ

E[∥∇θGk(θ, Yk)∥2+δ])1/(1+δ′) < ∞.

So limk→∞ E

[
1{

∥k r
2 Vk∥2

≥λk

} ∥∥k r
2Vk

∥∥2] → 0 for every λ > 0. Therefore, (2.2.3) of [25]

holds and CLT is proved.

Proof of Theorem 18. Suppose that all conditions of Theroem 17 hold and additionally As-
sumption 15 holds. Since n−p ECn → κ1, we have

N−1
0 R−1j−rm−p

j E[NjRCmj
] = N−1

0 R−1m−p
0 j−r−2ρp E[NjRCmj

] → κ1.

For the cumulative computation cost by iteration n, denoted as Tn, we have

ETn

κ1N0Rmp
0(p+ 1)nr+1+2ρp

p−→ 1 (3.50)

as n → ∞. Under Assumption 15, Var(NnRCmn )
ETn

= o(n−1−2ρpb), so

∞∑
j=1

Var(NjRCmj
)

ETj

< ∞.

According to Kronecker’s Law of Large Numbers,

Tn − ETn

ETn

p−→ 0.
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Therefore,
Tn

κ1N0Rmp
0(p+ 1)nr+1+2ρp

p−→ 1. (3.51)

Combining (3.51) with the conclusion of Theorem 17, we have

(
Tn

κ1N0Rmp
0(p+ 1)

)
r+1

2(r+1+2ρp) (θn − θ∗)
d−→ N(−H̃−1C ′,Σ) as n → ∞

Changing Tn to C and n to n(C), and using the fact that r + 1 = 2ρ, the conclusion in
Theorem 18 is derived.

CLT for Finite Difference Gradient Estimator

Assumption 16. There exists δ > 0 such that supt∈N,θ∈Θ E[∥Gmt (θ+htZ,Y )−Gmt (θ,Y )

ht
Z∥2+δ] <

+∞.

Assumption 17. Denote Hn(·) as the Hessian matrix of gn(·). There exists a constant
L̃ > 0 such that supn∈N,θ∈Θ ∥Hn(θ)∥ < L̃.

Proof of Theorem 10. Suppose that Assumption 1, 2, 9, 10, 11, 12, 13, 14, 16 and 17 hold.
For any k ∈ N, Gk(·, Y ) is Lipschitz continuous. Because of Assumption 12, we set q = 2

in the parameter setting.
We show that conditions (2.2.1), (2.2.2), and (2.2.3) in [25] hold. For simplicity, denote

Et(·) := E[·|θt], Hmc
t (θ) =

Gmt (θ+htZ,Y )−Gmt (θ,Y )

ht
Z, and F (θ, Y ) = ∇θG(θ, Y ). We want

to show that tρ(Et[H
mc
t (θt)] − ∇θg(θt))

p−→ 1
2
E[ZZ⊤HZ] + m

− 1
2

0 d−1C ′ and Et[(Ht(θt) −
Et[H

mc
t (θt)])(Ht(θt)− Et[H

mc
t (θt)])

⊤]
p−→ Ω. First, by Taylor expansion we have

Et[H
mc
t (θt)]−∇g(θt)

=Et[
gmt(θt + htZ)− gmt(θt)

ht

Z]−∇g(θt)

=Et[∇gmt(θt)ZZ
⊤ +

1

2
htZZ

⊤Hmt(θt + ξ(mt, ht, Z)htZ)Z]−∇g(θt)

=∇gmt(θt)−∇g(θt) +
1

2
ht Et[ZZ

⊤Hmt(θt + ξ(mt, ht, Z)htZ)Z],

where ξ(mt, ht, Z) ∈ (0, 1) and Hmt(·) is the Hessian matrix of gmt(·).
Since θt → θ∗ w.p.1 and ht → 0 as t → ∞, Hmt(θt + ξ(mt, ht, Z)htZ) → H w.p.1

as t → ∞. According to Assumption 17, for any t ∈ N and any θ ∈ Rd, ∥Hmt(θ)∥ ≤ L̃.
Therefore, ∥ZZ⊤Hmt(θt+ξ(mt, ht, Z)htZ)Z∥ ≤ L∥Z∥3. By dominated convergence theorem,

Et[ZZ
⊤Hmt(θt + ξ(mt, ht, Z)htZ)Z]

p−→ E[ZZ⊤HZ] as t → ∞.

On the other hand, tρ(∇θg⌈m0d2 t2ρ⌉(θt)−∇θg(θt)) → m
− 1

2
0 d−1C ′ w.p.1. So we have

tρ(Et[H
mc
t (θt)]−∇θg(θt))

p−→ 1

2
E[ZZ⊤HZ] +m

− 1
2

0 d−1C ′. (3.52)
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By Taylor expansion
Gmt (θt+htZ,Y )−Gmt (θt,Y )

ht
Z = ZZ⊤Fmt(θt + λ(Y, Z, ht, θt)htZ, Y ) with 0 <

λ(Y, Z, ht, θt) < 1. Therefore,

Et[(H
mc
t (θt)− Et[H

mc
t (θt)])(H

mc
t (θt)− Et[H

mc
t (θt)])

⊤]

=Et[(Z
⊤Fmt(θt + λ(Y, Z, ht, θt)htZ, Y ))2ZZ⊤]− Et[H

mc
t (θt)]Et[H

mc
t (θt)]

⊤

=Et[(Z
⊤Fmt(θt + λ(Y, Z, ht, θt)htZ, Y ))2ZZ⊤]− Et[H

mc
t (θt)]Et[H

mc
t (θt)]

⊤.

Since Et[H
mc
t (θt)] = ∇g(θt) + op(1) and ∇g(θt)

p−→ ∇g(θ∗) = 0, we have

Et[H
mc
t (θt)]Et[H

mc
t (θt)]

⊤ p−→ 0.

By the fact that θt → θ∗ w.p.1, we have Fmt(θt + λ(Y, Z, ht.θt)htZ, Y ) = F (θ∗, Y ) + op(1).
We can bound ∥(Z⊤Fmt(θt + λ(Y, Z, ht, θt)htZ, Y ))2ZZ⊤∥ by

(Z⊤Fmt(θt + λ(Y, Z, ht, θt)htZ, Y ))2ZZ⊤ ≤ ∥Z∥4 sup
n∈N,θ∈Θ

∥∇θGn(θ, Yn)∥2.

so by Assumption 14 and dominated convergence theorem,

Et[(Z
⊤F (θt + λ(Y, Z, ht, θt)htZ, Y ))2ZZ⊤] = E[(Z⊤F (θ∗, Y ))2ZZ⊤] + op(1).

Therefore,

Et[(H
mc
t (θt)− Et[H

mc
t (θt)])(H

mc
t (θt)− Et[H

mc
t (θt)])

⊤]

=E[(Z⊤F (θ∗, Y ))2ZZ⊤] + op(1).

Under Assumption 16, (2.2.3) of [25] can be checked to stand using the same technique as
in the proof of Theorem 17.

Therefore, according to [25], the central limit theorem in Theorem 10 is proved.

Proof of Theorem 11. Suppose that Assumption 15 holds. Since n−p ECn → κ1, we have
N−1

0 R−1d−2j−rm−p
j E[NjCmj

] = N−1
0 d−2−2pm−p

0 j−r−2ρp E[NjCmj
] → κ1. Then, for the cumu-

lative computation cost by iteration n, denoted as Tn, similarly to the proof of Theorem 18,
we have

Tn

2κ1N0d2(p+1)mp
0(p+ 1)nr+1+2ρp

p−→ 1 (3.53)

as n → ∞. Combining (3.53) with the conclusion of Theorem 17, we have

(
Tn

2κ1N0d2(p+1)mp
0(p+ 1)

)
r+1

2(r+1+2ρp) (θn − θ∗)
d−→ N(−H̃−1(

1

2
E[ZZ⊤H∗Z] +m

− 1
2

0 d−1C ′),Σ).

Changing Tn to C and n to n(C), and using the fact that r + 1 = 2ρ, the conclusion in
Theorem 11 is derived.
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Optimal Set of Algorithm Parameters for Multilevel FD Estimator

Given parameter r, ρ and β, according to the proof of Theorem 13,

ETt ≤ c

{
(d

2
α t

2ρ
α
+1 + d4+

2(1−2η)+
α tr+1+2ρ+

2ρ(1−2η)+
α ), if η ̸= 1/2

(d
2
α t

2ρ
α
+1 + d4tr+1+2ρ logM(t)2), if η = 1/2

where c is a constant independent with r, ρ and β.

According to Theorem 12, τ(ϵ) = O(ϵ−
2

(2ρ)∧(β+r) ). Therefore,

ETτ(ϵ) =


O

(
d

2
α ϵ−( 2ρ

α
+1) 2

(2ρ)∧(β+r) + d4+
2(1−2η)+

α ϵ−
2(r+1+2ρ+

2ρ(1−2η)+
α )

(2ρ)∧(β+r)

)
, if η ̸= 1/2

O
(
d

2
α ϵ−( 2ρ

α
+1) 2

(2ρ)∧(β+r) + d4 4
((2ρ)∧(β+r))2

ϵ−
2(r+1+2ρ)
(2ρ)∧(β+r) logM(ϵ−1)2

)
, if η = 1/2.

Now we suppose that ρ is fixed. When η ̸= 1/2, (2ρ
α

+ 1) 2
(2ρ)∧(β+r)

is minimized when

β + r ≥ 2ρ. Consider the minimization of
2(r+1+2ρ+

2ρ(1−2η)+
α

)

(2ρ)∧(β+r)
. For β ∈ (1

2
, 1], we have that

r+1+ρ(2+
2(1−2η)+

α
)

(2ρ)∧(β+r)
≥ r+β+ρ(2+

2(1−2η)+
α

)

(2ρ)∧(β+r)
=

{
1 + (1−2η)+

α
+ r+β

2ρ
, if 2ρ < β + r

1 +
ρ(2+

2(1−2η)+
α

)

r+β
, if 2ρ ≥ β + r

The minimal value of
r+β+ρ(2+

2(1−2η)+
α

)

(2ρ)∧(β+r)
is obtained when 2ρ = β + r. Note that the equation

r+1+ρ(2+
2(1−2η)+

α
)

(2ρ)∧(β+r)
=

r+β+ρ(2+
2(1−2η)+

α
)

(2ρ)∧(β+r)
holds only if β = 1. Therefore, given fixed ρ and for the

case when η ̸= 1/2, β = 1, r+1 = 2ρ represents the set of optimal parameters that minimize
the computational cost needed for the algorithm to achieve a given precision level.

If η = 1/2, 4
((2ρ)∧(β+r))2

is minimized when β + r ≥ 2ρ. Given fixed ρ,
2(r+1+2ρ+

2ρ(1−2η)+
α

)

(2ρ)∧(β+r)

and (2ρ
α
+ 1) 2

(2ρ)∧(β+r)
are minimized when β = 1 and r + 1 = 2ρ. Therefore, when η = 1/2,

the order of expected computation cost is minimized when r + 1 = 2ρ and β = 1.
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Chapter 4

Time-Parallel Simulation

In this chapter, we consider the scenarios when simulation informs real-time decisions that are
time-sensitive. For example, in the field of transportation, autonomous vehicles must execute
maneuver decisions in real-time based on nearby objects, leaving limited time to conduct
a simulation study. Dictated by this specific context, simulation may require completion
within a short time slot. However, some simulations are inherently complex and would take
too long to run on a single processor or computer within the given time slot. As one feasible
solution, parallel simulation breaks down the complex processes or systems into smaller parts
that can be processed simultaneously, making it possible to handle them within the time
constraints.

In simulation, the time progression is described by the so-called “time advancement func-
tion”, the treatment of which signifies two classes of simulation methods: event-driven and
time-driven. In an event-driven (or discrete-event) simulation, time leaps through distinct
points in time, which represents the happening of significant events. See [4, 89, 34]. In a
time-driven simulation, time is measured at fixed intervals giving the impression that the
system evolves continuously over time, and the system state is updated at equally spaced
time-steps. Some examples include [108, 49, 72, 7].

Based on the two classes of simulation methods, there have been developments on two
corresponding directions of parallelization techniques. One direction is parallel discrete-event
simulation (PDES), which handles the execution of discrete-event simulation programs on
parallel processors or threads. See [31, 32, 84, 26, 74] for some of them. Compared with
PDES, time-parallel simulation takes a different approach by partitioning the time axis
of an intended simulation execution and performing the simulation of the resulting time
intervals in parallel. Every logical process manages all state variables, but only for the
assigned limited time interval. Afterwards, the results of all intervals are aggregated to
create the overall simulation result. See [9, 45, 97, 103]. This has the potential for massive
parallelism, as the maximum number of logical processes is determined by the number of
possible time intervals, which is only restricted by the granularity of the time representation
in the simulation implementation.

In this chapter, we assume that the simulation model itself is time-driven, and focus
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on algorithm design for time-parallel simulation of stochastic models that can be formulated
into a non-homogeneous Markov chain. The basic target we consider is to efficiently estimate
the expected performance of this Markov chain over a relative long time period. We presume
that the execution time slot for simulation is limited, making it impossible to generate the
whole path on a single processor, thus necessitates parallelism. We adopt the framework
that the whole time axis of this Markov chain is partitioned into separate time intervals of
equal length. Each processor is pre-assigned an initial state and a time interval. During
the given execution time slot, it conducts a logical process that simulates the Markov chain
on the specific time interval with the assigned initial state. Afterwards, the results of all
processors are aggregated to give the estimator for expected performance of the Markov
chain. More specifically, to achieve aggregation, we use the simulation results to estimate
the transition matrices of the Markov chain at each separate time interval and combine the
estimated transition matrices, rather than generate independent paths of entire time period.
In our framework of time-parallelism, the efficiency of estimation relies on the assignment
policy, which determines the initial state and the time interval for each processor. We
provide closed-form optimal processor assignment solutions that minimize the asymptotic
mean square error of the estimator, when the resource budget for simulation is large.

In some realistic scenarios, due to the lack of prior knowledge of the Markov chain, the
optimal assignment policy is unknown and difficult to pre-determine before we start the
simulation. A standard assignment policy, such as assigning equal number of processors for
each time interval, can perform poorly when the stochastic system itself is large-scaled. To
handle this problem, we develop a two-stage parallel simulation procedure that can efficiently
learn and adopt the optimal assignment rule within the execution time slot. The key idea is
to divide the time slot into two stages with equally time length: in the first stage, a simple
uniform assignment rule is adopted for conducting parallel simulation to gather information
of the intrinsic Markov chain; in the second stage, we estimate a near-optimal assignment
rule by using the information gathered before, and adopt this improved assignment rule to
conduct parallel simulation. We prove that the proposed two-stage procedure can improve
the efficiency of the associated parallel simulation algorithm, by reducing the mean square
error of the estimator given fixed computational resource.

Further, we develop and analyze a near-optimal assignment policy for time-parallel simu-
lation of a special class of non-homogeneous Markov chains, where the performance metrics
depend a lot more on the most recent random variables driving the system than on the initial
ones. The motivation is derived from the critical observation that in queueing systems, key
performance indicators, such as queue length, are heavily dependent on the last busy cycle
[60]. By quantifying this dependency, we further enhance the policy for allocating com-
putational resources in parallel simulations, especially when the simulation model is large
scaled.

The rest of this chapter is organized as follows. In Section 4.2, we propose the problem
of estimating the performance of a non-homogeneous Markov chain and formulate the basic
framework for time-parallel simulation when the execution time slot is limited. In Section
4.3, we prove the influence of assignment policy on both asymptotic and finite-sample perfor-
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mance of our algorithm, and provide closed-form optimal assignment policy. In Section 4.4,
we develop a two-stage parallel simulation procedure which learns and applies the optimal
assignment policy adaptively. In Section 4.5, we discuss the assignment policy for a special
class of Markov chains where the performance metrics are heavily dependent on most recent
states. In Section 4.6, we conduct numerical experiments to illustrate theoretical findings.

4.1 Related Work

There have been studies using the time-parallel simulation approach for a variety of applica-
tions. For example, it has been used for trace-driven simulations of cache memory systems
[45], ATM multiplexers [33], stochastic automata networks [18], air traffic networks [67]
and multi-grid partial differential equation (PDE) models [41]. Time-parallel simulation of
queues using parallel prefix computation algorithms is described by [42].

In time-parallel simulation, a notable challenge on synchronization is that the final and
initial states of adjacent time intervals do not necessarily coincide at the interval boundaries,
leading to incorrect state changes. To reduce the cost of achieving state consistency between
time intervals, Lin and Lazowska [73] assumes the existence of regeneration points, which are
states that keep reoccuring throughout a simulation execution. They designs a parallel sim-
ulation algorithm that starts from a regeneration point and continues until the regeneration
point is reached again. Afterwards, the traces of the parallel simulations are concatenated
to get a correct trace of the simulation over the whole time period. Heidelberger and Stone
[45] uses fix-up computations to correct the simulations of those time intervals that are
known to have started from incorrect states. Kiesling and Pohl [64] proposes approximate
state matching and allows the initial and final states of adjacent time intervals to deviate by
an acceptable amount. Nevertheless, the idle time of processors is still unavoidable, which
reduces the efficiency of parallel simulation.

In the literature, there has been an increasing attention on analysing and improving
parallel simulation algorithms for large-scale stochastic systems. Greenberg, Lubachevsky,
and Mitrani [42] converts the problem of simulation of certain kinds of queuing networks to
recurrence relations that can be solved parallelly. Thulasidasan and Eidenbenz [95] estab-
lishes event-driven queue-based model for traffic network and applies scalable parallelization
to simulate the behavior of vehicles. Wang and Hong [99] targets at simulating large-scale
inventory systems and proposes a recurrent neural networks (RNN) based approach. Wang,
Song, and Hong [100] proposes a fast approximation algorithm for the parallel simulation
of large-scale queueing networks. Based on their algorithm, they prove the convergence of
the estimator when the queueing network scales up. Hong, Song, and Wang [52] provides a
vectorized Euler approximation for simulating queueing networks, and enables simultaneous
processing of multiple node tasks.

Parallel computing has greatly extended the reach of ranking & selection (R&S) for
simulation optimization; see [26, 79, 76, 81, 82, 51] among others. Luo et al. [76] adapts fully
sequential procedures into parallel computing environments. To tackle the synchronization
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problem, Luo et al. [76] proposes APS procedure that does not require active management
of output sequence of simulation results. Pei, Nelson, and Hunter [82] evaluates bisection
Parallel Adaptive Survivor Selection (bi-PASS) algorithm for R & S procedure. Zhong et al.
[114] proposes modifications to original Paulson’s procedure to speed up the selection process
in parallel computing environments.

4.2 Problem Formulation

Suppose that the dynamics of a stochastic model are formulated into a possibly non homoge-
neous discrete-time Markov chain (Xt : t ≥ 0). The state space of the Markov chain is finite
and denoted as S. S has |S| distinct elements, denoted as x1, x2, . . . , x|S|. The transition
matrix at time t is Pt. So for arbitrary xi, xj ∈ S,

Pt(i, j) = P (Xt = xj|Xt−1 = xi).

The target is that given initial distribution µ0 ∈ R|S|, we want to estimate hT =
E[f(XT )|X0 ∼ µ0], where f : S → R is an arbitrary function and XT is the state of
the Markov chain at time T .

Suppose that the time for a single machine to simulate the whole path from t = 0 to
t = T is proportional to the time length T . Consider the scenario that the time window for
doing simulation is limited, and only allows us to simulate a path of at most time length
τ on a single machine, τ < T . But we are allowed to simultaneously do simulation on N
identical machines. We denote κ := T

τ
, and assume that N > κ|S|.

We want to design strategy for parallel simulation on N machines. After the end of time
slot τ , we collect simulation results of N machines and use simulation results to construct
an estimator of hT , denoted as ĥN,κ

T . We hope that the estimator ĥN,κ
T we construct can

minimize the mean square error E[∥ĥN,κ
T − hT∥2] as much as possible.

4.3 Baseline Parallel Algorithm and Analysis

In this section, we introduce a baseline algorithm for solving the problem raised in Section
4.2. Denote the τ -step transition matrix as P

(τ)
1 , P

(τ)
2 , . . . , P

(τ)
κ , where

P
(τ)
i =

(i+1)τ−1∏
t=iτ

Pt

for i = 0, 1, 2, . . . , κ − 1. The target of the algorithm is to give independent estimation
of each P

(τ)
i , by assigning different machines to simulate for different time intervals. We

analyse the limiting behavior as well as finit sample behavior of estimator ĥN,κ
T proposed by

this algorithm.
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Algorithm design and central limit theorem

In the baseline parallel simulation algorithm, the N machines are divided into different
groups. The groups are denoted as Gi,j, i = 0, 1, . . . , κ − 1, j = 1, 2, . . . , |S|. Therefore
there are totally κ|S| groups. We assign Ni,j = pi,jN machines to group Gi,j (Ni,j ≥ 0), and
order them to simulate a certain path with specific starting state. The formal algorithm for
parallel simulation is provided in Algorithm 3.

Algorithm 3 Parallel Simulation Algorithm

for i = 0, 1, . . . , κ− 1, j = 1, 2, . . . , |S| do
Assign machines in group Gi,j to simulate path from t = iτ to t = (i+1)τ with starting

state xj. The results are X̂i+1,j,l for l = 1, 2, . . . , Ni,j.
end for
Calculate P̂

(τ)
i , for i = 0, 1, . . . , κ− 1. The (j,m) entry of P̂

(τ)
i is

P̂
(τ)
i (j,m) =

∑Ni,j

l=1 1{X̂i+1,j,l=xm}

Ni,j

.

Calculate ĥN,κ
T = µ0

∏κ−1
i=0 P̂

(τ)
i f.

We hope to provide answers to the following questions for the baseline algorithm for
parallel simulation:

• What is the limiting behavior and mean square error of the estimator ĥN,κ
T ?

• What are the optimal choices of pi,j for 0 ≤ i ≤ κ− 1 and 1 ≤ j ≤ |S|?

• How does the scale of κ and |S| influence the algorithm performance?

In what follows we present central limit theorem for ĥN,κ
T , which also helps clarify the optimal

choices of pi,j:

Theorem 19.

√
N(ĥN,κ

T − E f(XT ))
d−→ N (0,

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)Ai,j

pi,j
)

as N → ∞, where
µiτ (xj) = P (Xiτ = xj|X0 ∼ µ0), (4.1)

A(τ)
i,j = −(c

(τ)
i,j )

2 + (u
(τ)
i,j )

⊺u
(τ)
i,j , (4.2)
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c
(τ)
i,j = (P

(τ)
i (j, x1), P

(τ)
i (j, x2), . . . , P

(τ)
i (j, x|S|))

κ−1∏
k=i+1

P
(τ)
k f,

u
(τ)
i,j = diag{

√
P

(τ)
i (j, x1),

√
P

(τ)
i (j, x2), . . . ,

√
P

(τ)
i (j, x|S|)}

κ−1∏
k=i+1

P
(τ)
k f.

Since P̂
(τ)
i is unbiased estimator of P

(τ)
i for each i, E ĥN,κ

T = E f(XT ). Theorem 19 implies
that

lim
N→∞

N E[∥ĥN,κ
T − E f(XT )∥2] = lim

N→∞
N Var(ĥN,κ

T ) =
∑

i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j

pi,j
.

Therefore, the allocation rule will be determined by an optimization problem:

min
pi,j

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j

pi,j

s.t.
∑|S|

j=1

∑κ−1
i=0 pi,j = 1, pi,j ≥ 0.

(4.3)

Since P̂
(τ)
i is unbiased estimator of P

(τ)
i for each i, E ĥN,κ

T = E f(XT ). Theorem 19 implies
that

lim
N→∞

N E[∥ĥN,κ
T − E f(XT )∥2] = lim

N→∞
N Var(ĥN,κ

T ) =
∑

i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j

pi,j
.

For the asymptotic variance of ĥN,κ
T in the baseline algorithm, we investigate its depen-

dence on κ and |S|. For simplicity, we assume that the allocation rule is uniform allocation
(i.e. pi,j =

1
κ|S| for every i and j). The dependence upper bound of asymptotic variance on

κ and |S| is given by the following proposition.

Proposition 20. Assume that f(·) is a bounded function, and pi,j =
1

κ|S| for every i and j.
Then as N → ∞,

Var(ĥN,κ
T ) = O(

|S|κ
N

).

Finite Sample Performance

Suppose that the allocation rule is to assign the machines uniformly. That is, pi,j = 1
κ|S|

for i = 0, 1, 2, . . . , κ − 1 and j = 1, 2, . . . , |S|. In this subsection, we present a finite sample
concentration result for the estimator ĥN,κ

T .
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Theorem 21. For all t > 0, we have that

P (|ĥN,κ
T − E f(XT )| > t) ≤ (|S| ∨ e) exp(− t2N

2e∥f∥κ2|S|2
).

The proof of Theorem 21 is given in the appendices.

4.4 Two-stage Adaptive Algorithm

In the previous sections, we discuss the scenario when the time window for simulation is
limited and only allows us to simulate a path of at most time length τ on a single machine.
The baseline method is that we assign each machine to simulate a path of length τ inde-
pendently, and combine simulation results. Hence how to allocate N machines to simulate
with different time periods and different starting states becomes an issue. In the baseline
algorithm, the allocation rule is determined before the simulation processes start and cannot
be adjusted over time. Given that we do not have prior knowledge with τ -step transition
matrices P

(τ)
0 , P

(τ)
1 , . . . , P

(τ)
κ−1, one way is to allocate the machines uniformly.

Noticing the limitation of the baseline algorithm, we hope to develop an adaptive al-
gorithm that can adjust the allocation rule dynamically, according to current simulation
results. Given the time window τ , we can do parallel simulation in a two-stage setting. In
the first stage, we assign each machine to simulate a path of length τ

2
. The allocation rule in

the first stage is uniform allocation. In the second stage, we assign each machine to simulate
a path of length τ

2
. The critical insight is that the allocation rule in the second stage is

adaptive, and is determined by the gathered simulation results in the first stage. In what
follows, we state the two-stage parallel simulation algorithm in more detail. We analyse the
limiting behavior of the estimator proposed by the two-stage algorithm, and compare its
asymptotic performance with the baseline algorithm.

Formally, we present the two-stage adaptive algorithm in Algorithm 4. The target of the

algorithm is to give estimation of each P
( τ
2
)

i for 0 ≤ i ≤ 2κ−1 by using the simulation results
collected in two stages. More specifically, the simulation results in the first stage serves as the

data source for an estimation of µi τ
2
(xj) and A( τ

2
)

i,j . Given the preliminary estimation in the
first stage, in the second stage we can adopt a better allocation rule for parallel simulation
and aggregate all simulation results.

For the two-stage estimator ĥAdapt
T , we present a central limit theorem to analyse the

asymptotic performance of the estimator:

Theorem 22. √
N(ĥAdapt

T − E f(XT ))
d−→ N (0, V op

τ
2
) (4.5)

as N → ∞.
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Algorithm 4 Two Stage Adaptive Parallel Simulation Algorithm

for i = 0, 1, . . . , 2κ− 1, j = 1, 2, . . . , |S| do
Assign Ñ1,i,j = q̃1,i,jN machines to simulate a path from t = iτ/2 to t = (i + 1)τ/2

with starting state xj, i = 0, 1, 2, . . . , 2κ − 1, j = 1, 2, . . . , |S|. The simulation results are
X̃i+1,j,l for l = 1, 2, . . . , Ñ1,i,j. Here q̃1,i,j =

1
2κ|S| for each i and j.

end for
Calculate P̂

( τ
2
)

i , for i = 0, 1, . . . , 2κ− 1. The (j,m) entry of P̂
( τ
2
)

i is

P̂
( τ
2
)

i (j,m) =

∑Ñ1,i,j

l=1 1{X̃i+1,j,l=xm}

Ñ1,i,j

.

For each i = 0, 1, . . . , 2κ− 1 and j = 1, 2, . . . , |S|, calculate

µ̂i τ
2
= µ0

i−1∏
k=0

P̂
( τ
2
)

k

and
Â( τ

2
)

i,j = −(ĉ
( τ
2
)

i,j )
2 + (û

( τ
2
)

i,j )
⊺û

( τ
2
)

i,j

where

ĉ
( τ
2
)

i,j = (P̂
( τ
2
)

i (j, x1), P̂
( τ
2
)

i (j, x2), . . . , P̂
( τ
2
)

i (j, x|S|))
2κ−1∏
k=i+1

P̂
( τ
2
)

k f

and

û
( τ
2
)

i,j = diag{
√

P̂
( τ
2
)

i (j, x1),

√
P̂

( τ
2
)

i (j, x2), . . . ,

√
P̂

( τ
2
)

i (j, x|S|)}
2κ−1∏
k=i+1

P̂
( τ
2
)

k f

Solve the optimization problem

min
q′i,j

∑
i=0,1,2,...,2κ−1,j=1,2,...,|S|

µ̂2
i τ
2
(xj)Â

( τ
2
)

i,j

qi,j + q′i,j

s.t.
∑|S|

j=1

∑2κ−1
i=0 q′i,j = 1, q′i,j ≥ 0.

(4.4)

Calculate Ñ2,i,j = q̃′i,jN for each i = 0, 1, . . . , 2κ− 1 and j = 1, 2, . . . , |S|, where q̃′i,j is the
optimal solution of (4.4).
for i = 0, 1, . . . , 2κ− 1, j = 1, 2, . . . , |S| do

Assign Ñ2,i,j machines to simulate a path from t = iτ/2 to t = (i+1)τ/2 with starting
state xj, i = 0, 1, 2, . . . , 2κ − 1, j = 1, 2, . . . , |S|. The simulation results are X̃ ′

i+1,j,l for

l = 1, 2, . . . , Ñ2,i,j.
end for
Calculate Q̂

( τ
2
)

i , for i = 0, 1, . . . , 2κ− 1. The (j,m) entry of Q̂
( τ
2
)

i is

Q̂
( τ
2
)

i (j,m) =

∑Ñ1,i,j

l=1 1{X̃i+1,j,l=xm} +
∑Ñ2,i,j

l=1 1{X̃′
i+1,j,l=xm}

Ñ1,i,j + Ñ2,i,j

.

Calculate ĥAdapt
T = µ0

∏2κ−1
i=0 Q̂

( τ
2
)

i f.



CHAPTER 4. TIME-PARALLEL SIMULATION 75

where V op
τ
2

is the optimal value of the following optimization problem:

min
q′i,j

∑
i=0,1,2,...,2κ−1,j=1,2,...,|S|

µ2
i τ
2
(xj)A

( τ
2
)

i,j

(2κ|S|)−1 + q′i,j

s.t.
∑|S|

j=1

∑2κ−1
i=0 q′i,j = 1, qi,j ≥ 0.

(4.6)

Here
A( τ

2
)

i,j = −(c
( τ
2
)

i,j )
2 + (u

( τ
2
)

i,j )
⊺u

( τ
2
)

i,j ,

c
( τ
2
)

i,j = (P
( τ
2
)

i (j, x1), P
( τ
2
)

i (j, x2), . . . , P
( τ
2
)

i (j, x|S|))
2κ−1∏
k=i+1

P
( τ
2
)

k f

and

u
( τ
2
)

i,j = diag{
√

P
( τ
2
)

i (j, x1),

√
P

( τ
2
)

i (j, x2), . . . ,

√
P

( τ
2
)

i (j, x|S|)}
2κ−1∏
k=i+1

P
( τ
2
)

k f.

Furthermore, if the optimal solution of (4.6), denoted as {q∗i,j}, satisfy q∗i,j > 0 for each
i = 0, 1, . . . , 2κ− 1 and j = 1, 2, . . . , |S|, then

V op
τ
2

=
1

2

 ∑
i=0,1,2,...,2κ−1,j=1,2,...,|S|

µi τ
2
(xj)

√
A( τ

2
)

i,j

2

. (4.7)

In the two-stage algorithm, we use the simulation results of the first stage to give esti-

mators of µi τ
2
(xj) and A( τ

2
)

i,j . Then in the second stage, we can adjust the machine allocation

rule to lower the empirical variance of ĥN,κ
T . Compared with one-stage algorithm, two-stage

adaptive algorithm optimizes allocation rule. However, the two-stage adaptive algorithm
doubles the transition matrices needed to estimate. The reason is that the time window
for each stage is now τ

2
, so we need to estimate each τ

2
-step matrices P

( τ
2
)

0 , P
( τ
2
)

1 , . . . , P
( τ
2
)

2κ−1,

instead of P
(τ)
0 , P

(τ)
1 , . . . , P

(τ)
κ−1. Therefore, whether the two-stage algorithm has better per-

formance or not needs to be investigated. The next theorem illustrates that the two-stage
adaptive algorithm can definitely reduce the asymptotic variance of ĥN,κ

T , compared with
one-stage algorithm under uniform allocation rule.

Theorem 23. Assume that V op
τ
2

has the form as in (4.7), and V uni
τ is the asymptotic variance

scaled by
√
N under uniform allocation rule. More specifically,

V uni
τ = κ|S|(

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)Ai,j).

Then
V op

τ
2

≤ V uni
τ .
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The proof of Theorem 23 relies on the following lemma:

Lemma 2. Assume that V op
τ
2

has the form as in (4.7), and assume that κ = 1, then V op
τ
2

≤
V uni
τ .

The proof of Lemma 2 and Theorem 23 are given in the appendices.

4.5 Allocation Rule for A Specific Class of Markov

Chains

In this section we focus on the parallel simulation for a special class of non-homogeneous
Markov chains. The motivation arises from the domain of queueing systems. In queueing
systems, the performance metrics (e.g. queue length) at a specific time instant are heavily
dependent on the last busy cycle, i.e., the events that occurred after the queue was empty for
the last time. Thus, the performance metrics depend a lot more on the most recent random
variables driving the system than on the initial ones. If we can quantify such dependency, it
may enable the improvement of the rule of machine allocation in parallel simulation, resulting
in a reduction in variance when compared with uniform allocation rules.

For a Markov chain {Xt} and time instant T , we define C(i) = Var(E(f(XT |XT−i))).
C(i) provides one measure of the dependency of XT on XT−i. One extreme case is that XT

is independent with XT−i, then C(i) = 0. Roughly speaking, C(i) is small if XT−i and XT

are “almost” independent. we make the following assumption that characterizes the decay
rate of C(i) as i increases. The decay rate can be either polynomial or exponential.

Assumption 18. Denote C(i) = Var(E(f(XT )|XT−i))). There exists constants c′ > 0 and
γ < −1 independent of T and |S| such that C(i) ≤ c′(i+ 1)γ for 0 ≤ i ≤ T − 1.

The analysis in [2] Section IV indicates that C(i) decreases exponentially for a variety of
Markov chains, thus satisfying Assumption 18 with arbitrary value of γ. Moreover, we illus-
trate Assumption 18 by considering a Gt/D/1/K queue. In this queueing system, customers
arrive at time step i, 0 ≤ i ≤ T . Customers are served by a single server in order of arrival.
Service times are all equal to 1. Assume that Ai customers arrive at time step i, where Ai’s
are independent square-integrable random variables. The capacity of the queue is K. Let
Xi be the number of customers waiting in the queue at time-step i for i = 0, 1, . . . , T . Then
Xi satisfies the recursive equation

Xi = max(min(Xi−1 + Ai − 1, 0), K) (4.8)

for i = 1, 2, . . . , T . Furthermore, we assume that the queue is empty at t = 0, that is,
X0 = 0. We show that in this example, C(i) decreases exponentially with i under certain
conditions on the service times.
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In more detail, if there exist constant α > 0 and β < 1 independent of T such that

E eα(Ai−1) ≤ β

for 1 ≤ i ≤ T , then C(i) ≤ c′βi with some constant c′. The reason is that

XT −Xi,0 ≤ max
i+1≤j≤T

S+
j ,

where Xi,0 is the number of customers in the queue at time-step T if there are no costumers

in the queue at time-step T − i, and S+
j = max(

∑T−1
k=T−j(Ai−1), 0) for 1 ≤ j ≤ T . Therefore,

C(i) ≤ ∥XT −Xi,0∥2

≤
T∑

j=i+1

∥∥S+
j

∥∥2 .
On the other hand, since the A′

i ’s are independent, E
(
eγSj

)
≤ κj for 1 ≤ j ≤ T . Fur-

thermore, as (x+)
2 ≤ 2ex for x ∈ R, γ2

(
S+
j

)2 ≤ 2eγSj . Taking expectations implies that

γ2
∥∥S+

j

∥∥2 ≤ 2κj, and so C(i) ≤ γ′κi, where γ′ = 2γ−2/(1− κ).
Under Assumption 18, we present a parallel simulation algorithm as follows, which is a

modification of baseline parallel algorithm (Algorithm 3).

• Assign Ni,j = pi,jN machines to simulate path from t = iτ to t = (i+1)τ with starting
state xj, where

pi,j =
(κ− i)

γ−1
2

|S|
∑κ

k=1 k
γ−1
2

.

The results are X̂i+1,j,l for l = 1, 2, . . . , Ni,j.

• Calculate P̂
(τ)
i , for i = 0, 1, . . . , κ− 1. The (j,m) entry of P̂

(τ)
i is

P̂
(τ)
i (j,m) =

∑Ni,j

l=1 1{X̂i+1,j,l=xm}

Ni,j

.

• Calculate ĥN,κ
T = µ0

∏κ−1
i=0 P̂

(τ)
i f.

In this algorithm, we adjust the allocation rule so that the number of machines targeting to
simulate path from iτ to (i + 1)τ is proportional to (κ − i)

γ−1
2 . Therefore, more machines

are allocated to simulate paths closer to T . Proposition 24 below shows that this algorithm
eliminates the dependence on κ for asymptotic variance of ĥN,κ

T .
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Proposition 24. Under Assumption 18, as N → ∞,

Var(ĥN,κ
T ) = O(

|S|
N

).

The proof of Proposition 24 is provided in the appendices. Recall that in Proposition
20, the asymptotic variance has the order O(κ|S|

N
). Therefore, the modification on allocation

rule does reduce the order of asymptotic variance when the time horizon T is long and thus
improves estimation efficiency.

4.6 Numerical Experiments

In this section, we implement the two algorithms: Algorithm 3 (with a uniform allocation
rule) and Algorithm 4 (with two-stage adaptive allocation rules) on numerical experiments.
We find that the experiment results support our theoretical findings.

We consider simulating a Gt/D/1/K queue. Specifically, in the queueing system, cus-
tomers arrive at discrete time step i, 0 ≤ i ≤ T . Customers are served by a single server
in order of arrival. Service times are all equal to 1. Ai customers arrive at time step i,
where Ai’s are independent random variables and follow Poisson distribution with parame-
ter λi = 1.5 + 0.5 sin(iπ/T ). The capacity of the queue is K = 20. Let Xi be the number
of customers waiting in the queue at time-step i for i = 0, 1, . . . , T . Then Xi satisfies the
recursive equation

Xi = max(min(Xi−1 + Ai − 1, 0), K) (4.9)

for i = 1, 2, . . . , T . Furthermore, we assume that the queue is empty at t = 0, and simply
set f(x) = x. Figure 4.1 shows the mean square error of the two simulation algorithms given
different number of machines. It also shows that the two-stage adaptive algorithm reduces the
mean square error of the estimator, thus having better finite-sample performance compared
with using a single uniform allocation rule.
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Figure 4.1: Mean square error of ĥN,τ
T and ĥAdapt

T for Gt/D/1/K queueing model with T = 20
and K = 20
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Appendices

4.A Omitted Proofs of Section 4.3

Proof of Theorem 19

Proof of Theorem 19. We write P̂
(τ)
i as

P̂
(τ)
i = P

(τ)
i + Ei.

Ei satisfies E Ei = 0. Furthermore, Ei1 and Ei2 are independent for any i1 ̸= i2.
The estimator of E f(XT ) is

ĥN,κ
T = µ0

κ−1∏
i=0

P̂
(τ)
i f = µ0

κ−1∏
i=0

(P
(τ)
i + Ei)f,

For each i, we have

E ∥Ei∥2 ≤ E ∥Ei∥F

= E(
|S|∑
j=1

|S|∑
m=1

(P̂
(τ)
i (j,m)− P

(τ)
i (j,m))2)

1
2

≤ (
|S|
Ni,j

)
1
2 = (

|S|
Npi,j

)
1
2 .

(4.10)

Therefore, as N → ∞,

ĥN,κ
T = µ0

κ−1∏
i=0

P
(τ)
i f +

κ−1∑
i=0

µ0

i−1∏
k=0

P
(τ)
k Ei

κ−1∏
k=i+1

P
(τ)
k f +Op(

1

N
) (4.11)

Since for Ei, we can calculate that

E Ei(j1,m1)Ei(j2,m2) = 0 for j1 ̸= j2,

E Ei(j,m1)Ei(j,m2) = −P
(τ)
i (j,m1)P

(τ)
i (j,m2)

Ni,j

for m1 ̸= m2,

E Ei(j,m1)Ei(j,m2) =
P

(τ)
i (j,m)(1− P

(τ)
i (j,m))

Ni,j

for m1 = m2 = m,
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then

E(E⊺
i µ

⊺
iµiEi) =

|S|∑
j=1

µ2
i (xj)(diag{P τ

i (j, x1), P
τ
i (j, x2), . . . , P

τ
i (j, x|S|)} − vijv

⊺
ij).

Here vij = (P τ
i (j, x1), P

τ
i (j, x2), . . . , P

τ
i (j, x|S|))

⊺. By central limit theorem,

√
Nµ0

i−1∏
k=0

P
(τ)
k Ei

κ−1∏
k=i+1

P
(τ)
k f = N (0,

∑
j=1,2,...,|S|

µ2
i (xj)Ai,j

pi,j
) + op(1).

Because Ei1 and Ei2 are independent for any i1 ̸= i2, Theorem 19 is proved.

Proof of Proposition 20

Proof of Proposition 20. To analyse the asymptotic variance’s dependence on κ and |S|, we
introduce a different parallel simulation algorithm as below. This algorithm is similar to
sample avearge approximation (SAA) method, and aims to generate independent paths. We
compare the asymptotic variance of this algorithm with the baseline algorithm above, and
show they are the same order of κ and |S|.

Algorithm (Independent paths generation):

• Divide the N machines into N
κ|S| groups, denoted as Lk for k = 1, 2, . . . , N

κ|S| . Therefore

each group has κ|S| machines.

• For each group Lk, the machines are marked as Mi,j,k, i = 0, 1, . . . , κ, j = 1, 2, . . . , |S|.
The machine Mi,j,k simulates a path from t = iτ to t = (i + 1)τ , with starting date

xj. The simulation result of Mi,j,k is denoted as X̂i+1,j,k. Denote a map Mi,k : S → S

such that Mi,k(xj) = X̂i+1,j,k for each j.

• Generate N
κ|S| independent samples from the distribution µ0, denoted as {x0,k}

N
κ|S|
k=1 .

• For each k = 1, 2, . . . , N
κ|S| calculate

X̂T,k = Mκ−1,k ◦ . . . ◦M2,k ◦M1,k ◦M0,k(x0,k)

The estimator for hT is given by a sample average: ĥIND
N,κ = κ|S|

N

∑ N
κ|S|
k=1 f(X̂T,k).

For this algorithm, it generates N
κ|S| independent and unbiased realizations of xT , thus the

variance of ĥIND
N,κ is V IND = κ|S|Var(f(XT ))

N
. Now we compare V IND with the asymptotic variance

of the baseline algorithm. We hope to prove that the asymptotic variance of ĥIND
N,κ is always
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larger than the asymptotic variance of ĥN,κ
T , given uniform allocation rule. More specifically,

we want to prove

κ|S|Var(f(XT )) ≥ κ|S|(
∑

i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)Ai,j), (4.12)

since the right side of (4.12) is the asymptotic variance scaled by
√
N given by uniform

allocation rule. To prove this, we use mathematical induction. When κ = 1, we have

Var(f(XT )) =
∑

j=1,2,...,|S|

(f(xj)− µ0P
τ
1 f)

2P (XT = xj|X0 ∼ µ0) ≥
∑

j=1,2,...,|S|

µ2
0(xj)A0,j.

Suppose that (4.12) holds when κ = K. When κ = K + 1, we have

Var(f(XT )) = E[Var(f(XT |XT−τ ))] + Var(E[f(XT |XT−τ )]).

By replacing f by P
(τ)
K f , we have

Var(E[f(XT |XT−τ )]) ≥
∑

i=0,1,2,...,K−1,j=1,2,...,|S|

µ2
i (xj)Ai,j

Some computation yields that

E[Var(f(XT |XT−τ ))] ≥
∑

j=1,2,...,|S|

µ2
K(xj)AK,j.

Therefore, (4.12) holds when κ = K. By induction (4.12) holds for every κ > 0.

Because V IND = κ|S|Var(f(XT ))
N

, and Var(f(XT )) ≤ ∥f∥2∞ < ∞, we conclude that Var(ĥN,κ
T ) =

O( |S|κ
N

).

Proof of Theorem 21

Proof of Theorem 21. For a m× n matrix A, its Schatten p−norm is defined as

∥A∥p = (

min{m,n}∑
i=1

σp
i (A))

1
p ,

where {σi(A)}min{m,n}
i=1 are singular values of A. When p = 2, the Schatten 2-norm of matrix

yields the Frobenius norm. For a random matrix X and parameters p, q ≥ 1, its Lq(Sp)
norm is defined as

|||X|||p,q := ∥X∥Lq(Sp) :=
(
E∥X∥qp

)1/q
.

By the monotonicity of Schatten norm, for any p ≥ 2, we have |||X|||p,2 ≤ |||X|||2,2 =

(E ∥X∥2F )
1
2 . To make use of the conclusion in [55] Remark 5.7, we only need to bound

E ∥P̂ (τ)
i − P

(τ)
i ∥2F for i = 0, 1, . . . , κ− 1.
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We have

E ∥P̂ (τ)
i − P

(τ)
i ∥2F = E(

|S|∑
j=1

|S|∑
m=1

(P̂
(τ)
i (j,m)− P

(τ)
i (j,m))2)

=

|S|∑
j=1

|S|∑
m=1

E(P̂ (τ)
i (j,m)− P

(τ)
i (j,m))2

=

|S|∑
j=1

|S|∑
m=1

P
(τ)
i (j,m)(1− P

(τ)
i (j,m))

Npi,j

≤ |S|2κ
N

.

(4.13)

We define v :=
∑κ−1

i=0
|S|2κ
N

= |S|2κ2

N
. Also note that P̂

(τ)
0 , P̂

(τ)
1 , . . . , P̂

(τ)
κ−1 are an independent

sequence and ∥P̂ (τ)
i ∥ ≤ 1 almost surely for each i. We can use [55] Remark 5.7 to conclude

that

P (∥
κ−1∏
i=0

P̂
(τ)
i −

κ−1∏
i=0

P
(τ)
i ∥ ≥ t) ≤ (|S| ∨ e) exp(− t2

2ev
)

for all t ≥ 0. Therefore,

P (|ĥN,κ
T − E f(XT )| ≥ t) = P (|µ0

κ−1∏
i=0

P̂
(τ)
i f − µ0

κ−1∏
i=0

P
(τ)
i f | ≥ t)

≤ P (∥µ0∥∥
κ−1∏
i=0

P̂
(τ)
i −

κ−1∏
i=0

P
(τ)
i ∥∥f∥ ≥ t)

= P (∥
κ−1∏
i=0

P̂
(τ)
i −

κ−1∏
i=0

P
(τ)
i ∥ ≥ t

∥f∥
)

≤ (|S| ∨ e) exp(− t2N

2e∥f∥κ2|S|2
).

(4.14)

4.B Omitted Proofs of Section 4.4

Proof of Theorem 22

Proof of Theorem 22. First we prove that

q̃′i,j = q∗i,j + op(1).

Then we write each Q̂
( τ
2
)

i as

Q̂
( τ
2
)

i = P
( τ
2
)

i + Ei,1 + Ei,2,
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where

Ei,1(j,m) =

∑Ñ1,i,j

l=1 (1{X̃i+1,j,l=xm} − P
τ
2
i (j,m))

Ñ1,i,j + Ñ2,i,j

=

∑Ñ1,i,j

l=1 (1{X̃i+1,j,l=xm} − P
τ
2
i (j,m))

Ñ1,i,j

(2κ|S|)−1

(2κ|S|)−1 + q∗i,j
(1 +

q∗i,j − q̃′i,j
(2κ|S|)−1 + q̃′i,j

)

and

Ei,2(j,m) =

∑Ñ2,i,j

l=1 (1{X̃′
i+1,j,l=xm} − P

τ
2
i (j,m))

Ñ1,i,j + Ñ2,i,j

=

∑Ñ2,i,j

l=1 (1{X̃′
i+1,j,l=xm} − P

τ
2
i (j,m))

Ñ2,i,j

q̃′i,j
(2κ|S|)−1 + q̃′i,j

.

We prove that ∥Ei,1∥2 = O( 1√
N
) and ∥Ei,2∥2 = O( 1√

N
) for each i, thus we have

ĥN,κ
T = µ0

κ−1∏
i=0

P
(τ)
i f +

κ−1∑
i=0

µ0

i−1∏
k=0

P
(τ)
k Ei,1

κ−1∏
k=i+1

P
(τ)
k f +

κ−1∑
i=0

µ0

i−1∏
k=0

P
(τ)
k Ei,2

κ−1∏
k=i+1

P
(τ)
k f + op(

1√
N
)

(4.15)
as N → ∞. Conditioned on {{X̃i+1,j,l}l=1,2,...,Ñ1,i,j

}i=0,1,...,κ−1,j=1,2,...,|S|, each

µ0

∏i−1
k=0 P

(τ)
k Ei,2

∏κ−1
k=i+1 P

(τ)
k f is independent and

√
Nµ0

i−1∏
k=0

P
(τ)
k Ei,2

κ−1∏
k=i+1

P
(τ)
k f

d−→ N (0,
∑

j=1,2,...,|S|

q∗i,jµ
2
i τ
2
(xj)A

( τ
2
)

i,j

((2κ|S|)−1 + q∗i,j)
2
)

as N → ∞. On the other hand,

√
Nµ0

i−1∏
k=0

P
(τ)
k Ei,1

κ−1∏
k=i+1

P
(τ)
k f

d−→ N (0,
∑

j=1,2,...,|S|

(2κ|S|)−1µ2
i τ
2
(xj)A

( τ
2
)

i,j

((2κ|S|)−1 + q∗i,j)
2

).

Therefore, (4.5) can be proved by a use of dominated convergence theorem.
If q∗i,j > 0 for each i = 0, 1, . . . , 2κ−1 and j = 1, 2, . . . , |S|, then we can write the explicit

form for each q∗i,j:

q∗i,j =
2
√
µ2
i τ
2
(xj)A

( τ
2
)

i,j∑
i=0,1,...,2κ−1,j=1,2...,|S|

√
µ2
i τ
2
(xj)A

( τ
2
)

i,j

− (2κ|S|)−1.

Then the optimal value of minimization problem (4.6) is (4.7).
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Proof of Lemma 2

Proof of Lemma 2. Under the case κ = 1, we simplify some notations. We use P0 to denote

P
( τ
2
)

0 and P1 to denote P
( τ
2
)

1 . Therefore, the τ -step transition matrix P
(τ)
0 satisfies P

(τ)
0 =

P0P1. For the purpose of simplification we use R to denote P
(τ)
0 .

If κ = 1, V uni
τ has the form

V uni
τ =|S|

∑
j=1,2,...,|S|

µ2
0(xj)

−(

|S|∑
m=1

R(j,m)f(xm))
2 +

|S|∑
m=1

R(j,m)f 2(xm)


=|S|

∑
j=1,2,...,|S|

µ2
0(xj)(

|S|∑
m=1

R(j,m)(1−R(j,m))f 2(xm)

− 2

|S|∑
m=1

|S|∑
l=m+1

R(j,m)R(j, l)f(xm)f(xl))

=|S|
∑

j=1,2,...,|S|

µ2
0(xj)(

|S|∑
m=1

R(j,m)(
∑

l∈S,l ̸=m

R(j, l))f 2(xm)

− 2

|S|∑
m=1

|S|∑
l=m+1

R(j,m)R(j, l)f(xm)f(xl))

=|S|
∑

j=1,2,...,|S|

µ2
0(xj)

( ∑
m∈S,l∈S,m<l

R(j,m)R(j, l)(f(xm)− f(xl))
2

)
.

(4.16)

For each A( τ
2
)

0,j , we can simplify it to be

A( τ
2
)

0,j =− (

|S|∑
k=1

P1(j, k)(

|S|∑
m=1

P2(k,m)f(xm)))
2 +

|S|∑
k=1

P1(j, k)(

|S|∑
m=1

P2(k,m)f(xm))
2

=
∑

k∈S,q∈S,k<q

P1(j, k)P1(j, q)(

|S|∑
m=1

P2(k,m)f(xm)−
|S|∑

m=1

P2(q,m)f(xm))
2

=
∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))
2.

(4.17)

In the last equation of (4.17) we use notation B(k, q,m, l) := P1(j, k)P1(j, q)(P2(k,m) −
P2(q,m))(P2(q, l)− P2(k, l)).



CHAPTER 4. TIME-PARALLEL SIMULATION 86

For each A( τ
2
)

1,j , we can simplify it to be

A( τ
2
)

1,j =− (

|S|∑
m=1

P2(j,m)f(xm))
2 +

|S|∑
m=1

P2(j,m)f 2(xm)

=
∑

m∈S,l∈S,m<l

P2(j,m)P2(j, l)(f(xm)− f(xl))
2.

(4.18)

Combining (4.17) and (4.18), V op
τ
2

has the form

V op
τ
2

=
1

2

 ∑
j=1,2,...,|S|

µ0(xj)

√
A( τ

2
)

0,j +
∑

k=1,2,...,|S|

µ τ
2
(xk)

√
A( τ

2
)

1,k

2

=
1

2

( ∑
j=1,2,...,|S|

µ0(xj)

√ ∑
k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+

|S|∑
k=1

(

|S|∑
j=1

µ0(xj)P1(j, k))

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2

)2

=
1

2

( |S|∑
j=1

µ0(xj)
(√ ∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+
∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
))2

(4.19)

According to Cauchy’s Inequality,

V op
τ
2

≤|S|
2

|S|∑
j=1

µ2
0(xj)

(√ ∑
k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+
∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2
.

(4.20)

Comparing (4.16) and (4.20), V op
τ
2

≤ V uni
τ stands if for every j ∈ S,(√ ∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+
∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

≤2
∑

m∈S,l∈S,m<l

R(j,m)R(j, l)(f(xm)− f(xl))
2.

(4.21)
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Therefore, in the remainder of this proof we prove (4.21) stands for arbitrary j.
Using Cauchy’s Inequality,(√ ∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+
∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

≤2
∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))
2

+ 2
(∑

k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

(4.22)

Using the definition of B(k, q,m, l), we have∑
k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))
2

=
∑

k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(k,m)P2(q, l)(f(xl)− f(xm))
2

+
∑

k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(q,m)P2(k, l)(f(xl)− f(xm))
2

−
∑

k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(k,m)P2(k, l)(f(xl)− f(xm))
2

−
∑

k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(q,m)P2(q, l)(f(xl)− f(xm))
2

(4.23)

We expand
(∑

k∈S P1(j, k)
√∑

m,l∈S,m<l P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

by

(∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

=
∑
k∈S

P 2
1 (j, k)

∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))
2 + 2

∑
k,q∈S,k<q

P1(j, k)P1(j, q)√
(
∑

m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2)(
∑

m,l∈S,m<l

P2(q,m)P2(q, l)(f(xm)− f(xl))2)

.
(4.24)
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We apply (4.23) and (4.24) to (4.22), and use the fact that∑
k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(k,m)P2(q, l)(f(xl)− f(xm))
2

+
∑

k,q,m,l∈S,k<q,m<l

P1(j, k)P1(j, q)P2(q,m)P2(k, l)(f(xl)− f(xm))
2

+
∑
k∈S

P 2
1 (j, k)

∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))
2

=
∑

m∈S,l∈S,m<l

(
∑
k∈S

P1(j, k)P2(k,m))(
∑
q∈S

P1(j, q)P2(q, l))(f(xm)− f(xl))
2

=
∑

m∈S,l∈S,m<l

R(j,m)R(j, l)(f(xm)− f(xl))
2.

(4.25)

So the Inequality (4.22) is now(√ ∑
k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))2

+
∑
k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

≤2
∑

k,q,m,l∈S,k<q,m<l

B(k, q,m, l)(f(xl)− f(xm))
2

+ 2
(∑

k∈S

P1(j, k)

√ ∑
m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2
)2

=2
∑

m∈S,l∈S,m<l

R(j,m)R(j, l)(f(xm)− f(xl))
2

− 2
∑

k,q∈S,k<q

P1(j, k)P1(j, q)
( ∑

m,l∈S,m<l

P2(k,m)P2(k, l)(f(xl)− f(xm))
2

+
∑

m,l∈S,m<l

P2(q,m)P2(q, l)(f(xl)− f(xm))
2

− 2

√
(
∑

m,l∈S,m<l

P2(k,m)P2(k, l)(f(xm)− f(xl))2)(
∑

m,l∈S,m<l

P2(q,m)P2(q, l)(f(xm)− f(xl))2)
)

≤2
∑

m∈S,l∈S,m<l

R(j,m)R(j, l)(f(xm)− f(xl))
2,

(4.26)
where the last inequality is an application of AM-GM inequality.

Since (4.21) stands for every j, V op
τ
2

≤ V uni
τ when κ = 1.
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Proof of Theorem 23

Proof of Theorem 23. We use mathematical induction to prove V op
τ
2

≤ V uni
τ for arbitrary

positive integer κ. When κ = 1, V op
τ
2

≤ V uni
τ has been already proved in Lemma 2.

Suppose that when κ = K, V op
τ
2

≤ V uni
τ . That is, the following inequality holds:

1

2

 ∑
i=0,1,...,2K−1,j=1,2,...,|S|

µi τ
2
(xj)

√
A( τ

2
)

i,j

2

≤K|S|(
∑

i=0,1,2,...,K−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j ).

(4.27)

When κ = K + 1, we define

BK :=
∑

i=0,1,...,2K−1,j=1,2,...,|S|

µi τ
2
(xj)

√
A( τ

2
)

i,j

and

CK :=
∑

j=1,2,...,|S|

µKτ (xj)

√
A( τ

2
)

2K,j +
∑

j=1,2,...,|S|

µ(2K+1) τ
2
(xj)

√
A( τ

2
)

2K+1,j

and have

V op
τ
2

=
1

2

 ∑
i=0,1,...,2K+1,j=1,2,...,|S|

µi τ
2
(xj)

√
A( τ

2
)

i,j

2

=
1

2
(BK + CK)

2

≤1

2
(
1

K
B2

K + C2
K)(K + 1),

(4.28)

where the last inequality is an application of Cauchy–Schwarz inequality.
By letting f̃ := P

(τ)
K f and applying (4.27) with f̃ , we have

B2
K ≤ 2K|S|(

∑
i=0,1,2,...,K−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j ). (4.29)

By applying Lemma 2 with µ̃0 := µ0

∏K−1
k=0 P

(τ)
k , we have

C2
K ≤ 2|S|(

∑
j=1,2,...,|S|

µ2
Kτ (xj)A(τ)

K,j). (4.30)

Therefore,

V op
τ
2

≤ (K + 1)|S|(
∑

i=0,1,2,...,K−1,j=1,2,...,|S|

µ2
iτ (xj)A(τ)

i,j +
∑

j=1,2,...,|S|

µ2
Kτ (xj)A(τ)

K,j)

= V uni
τ .

(4.31)
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4.C Omitted Proofs of Section 4.5

Proof of Proposition 24. We divide the proof of Proposition 24 into two parts. In the first
part, we prove that

|S|∑
j=1

µiτ (xj)A(τ)
i,j = C(T − (i+ 1)τ)− C(T − iτ), (4.32)

where the definition of µiτ (xj) and A(τ)
i,j are given in (4.1) and (4.2). In the second part, we

combine (4.32) with Theorem 19 to obtain the scale of asymptotic variance for ĥN,κ
T .

Denote bi := (1{Xiτ=x1},1{Xiτ=x2}, . . . ,1{Xiτ=x|S|})
⊺ ∈ R|S|, then

E(f(XT )|Xiτ ) = bi

κ−1∏
k=i+1

P
(τ)
k f,

and

Var(E(f(XT )|Xiτ )) = f⊺(
κ−1∏
k=i

P
(τ)
k )⊺Cov(bi)

κ−1∏
k=i

P
(τ)
k f.

For k,m ∈ S, the (k,m) entry of Cov(bi) is −µiτ (xk)µiτ (xm) if k ̸= m, and is µiτ (xk)(1 −
µiτ (xk)) if k = m.

Similarly we have

Var(E(f(XT )|X(i+1)τ )) = f⊺(
κ−1∏

k=i+1

P
(τ)
k )⊺Cov(bi+1)

κ−1∏
k=i+1

P
(τ)
k f.

Here we set
∏κ−1

k=i+1 P
(τ)
k to equal the identity matrix I if i = κ− 1. So

C(T − (i+ 1)τ)− C(T − iτ) = f⊺(
κ−1∏

k=i+1

P
(τ)
k )⊺(Cov(bi+1)− (P

(τ)
i )⊺Cov(bi)P

(τ)
i )

κ−1∏
k=i+1

P
(τ)
k f.

(4.33)
On the other hand,

|S|∑
j=1

µiτ (xj)A(τ)
i,j

=f⊺(
κ−1∏

k=i+1

P
(τ)
k )⊺

|S|∑
j=1

µiτ (xj)(diag{P τ
i (j, x1), P

τ
i (j, x2), . . . , P

τ
i (j, x|S|)} − vijv

⊺
ij)

κ−1∏
k=i+1

P
(τ)
k f.

Here vij = (P τ
i (j, x1), P

τ
i (j, x2), . . . , P

τ
i (j, x|S|))

⊺.
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DenoteMi :=
∑|S|

j=1 µiτ (xj)(diag{P τ
i (j, x1), P

τ
i (j, x2), . . . , P

τ
i (j, x|S|)}−vijv

⊺
ij). For k,m ∈

S, the (k,m) entry of Mi is

−
|S|∑
j=1

µiτ (xj)P
τ
i (j, xk)P

τ
i (j, xm)

if k ̸= m, and
|S|∑
j=1

µiτ (xj)P
τ
i (j, xk)(1− P τ

i (j, xk))

if k = m. It can be verified that Mi = Cov(bi+1) − (P
(τ)
i )⊺Cov(bi)P

(τ)
i . Therefore, (4.32) is

proved.
According to Theorem 19,

√
N(ĥN,κ

T − E f(XT ))
d−→ N (0,

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)A(τ)

i,j

pi,j
).

So the asymptotic variance is 1
N

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)A

(τ)
i,j

pi,j
. Define C ′ :=

∑∞
k=1 k

γ−1
2 .

We have
1

N

∑
i=0,1,2,...,κ−1,j=1,2,...,|S|

µ2
i (xj)A(τ)

i,j

pi,j

≤ 1

N

∑
i=0,1,2,...,κ−1

(
∑|S|

j=1 µiτ (xj))(
∑|S|

j=1 µiτ (xj)A(τ)
i,j )

pi,j

=
1

N

∑
i=0,1,2,...,κ−1

C(T − (i+ 1)τ)− C(T − iτ)

pi,j

≤C ′|S|
N

∑
i=0,1,2,...,κ−1

C(T − (i+ 1)τ)− C(T − iτ)

(κ− i)
γ−1
2

=
C ′|S|
N

∑
i=0,1,2,...,κ−1

C(iτ)− C((i+ 1)τ)

(i+ 1)
γ−1
2

(4.34)

For C(iτ) − C((i + 1)τ) we apply the inequality x − y ≤ 2
√
x(
√
x − √

y), which holds for
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x ≥ 0 and y ≥ 0. We have

C ′|S|
N

∑
i=0,1,2,...,κ−1

C(iτ)− C((i+ 1)τ)

(i+ 1)
γ−1
2

≤C ′|S|
N

∑
i=0,1,2,...,κ−1

2
√

C(iτ)(
√
C(iτ)−

√
C((i+ 1)τ))

(i+ 1)
γ−1
2

≤2|S|
√
c′C ′τ

γ
2

N

∑
i=0,1,2,...,κ−1

√
i+ 1(

√
C(iτ)−

√
C((i+ 1)τ))

≤2|S|
√
c′C ′τ

γ
2

N

∑
i=0,1,2,...,κ−1

(
√
i+ 1−

√
i)
√

C(iτ)

As
√
i+ 1−

√
i ≤ (i+ 1)−

1
2 for i ≥ 0, we have

2|S|
√
c′C ′τ

γ
2

N

∑
i=0,1,2,...,κ−1

(
√
i+ 1−

√
i)
√

C(iτ)

≤2|S|c′C ′τ
γ
2

N

∑
i=0,1,2,...,κ−1

(i+ 1)
γ−1
2

≤2|S|c′C ′τ
γ
2

N

∞∑
i=0

(i+ 1)
γ−1
2

≤2|S|c′(C ′)2τ
γ
2

N
.

Therefore Proposition 24 is proved.
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Chapter 5

Conclusions

This thesis discusses several challenges occurring in the process of simulation-based deci-
sion making. In our study, we take into consideration the management of computational
resources, and investigate on the trade-off between the accuracy of decision making and
resource saving. We explore on several directions to achieve efficient simulation algorithm
design: exploiting the correlation structure of different stochastic systems and balancing in-
put uncertainty and simulation error; making use of approximating systems; improving the
simulation techniques and adapting better parallel simulation policies. We briefly list our
contributions and future directions as follows.

In Chapter 2, we consider the target of selecting the system with better expected per-
formance between two stochastic systems, given fixed resource budget. The resource can be
used to collect more input data to reduce input uncertainty, and to implement more simula-
tion replications to eliminate simulation error. We model the resource allocation problem as
an optimization problem. The objective is appropriately allocating resource to maximize the
probability of correctly selecting the better system. We exploit correlation structure of in-
put data and common random numbers in simulation to save costs, and provide closed-form
optimal resource allocation solutions. Future work may include extensions to comparison
of a larger number of different systems, and numerical experiments based on real data and
examples.

In Chapter 3, we present a framework to use a sequence of approximating systems to opti-
mize a stochastic system that has complicated stochastic structure and cannot be simulated
exactly with finite computational cost. With this framework, we propose new gradient-based
simulation-optimization algorithms that utilize the approximations with increasing resolu-
tion and higher simulation cost to construct stochastic gradients and perform gradient search.
To circumvent the challenge that the objective functions associated with the approximating
systems are discontinuous, we use the finite difference method to construct gradient estima-
tors for approximating systems. Under the assumption that the objective function of the
original system is strongly convex and smooth, we prove algorithm convergence, convergence
rate, and optimality of algorithm design, without any assumption on convexity or continuity
with the approximating systems. We demonstrate the dependence on the dimension of the
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decision variable for the algorithm performance and optimal parameters choices. We then
present a multilevel version of the proposed algorithms to further improve convergence rates,
when in addition the sequence of approximations can be naturally coupled. We prove theo-
retically and then show empirically that the additional use of multilevel structure can further
improve the computational efficiency of the proposed simulation-optimization algorithms.

In Chapter 4, we consider simulation problem in presence of limited time slot, and propose
a framework for time-parallel simulation for a time-varying Markov chain with finite state
space. We provide a close-form optimal processor assignment policy through a central limit
theorem. Further, we propose a two-stage simulation procedure that learns the near optimal
policy adaptively and show this procedure can reduce the mean square error theoretically
and empirically. Future work may include extensions to Markov chain models with infinite
state space.
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