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a b s t r a c t 

We investigate the influence of vegetation on river morphological instabilities using an analytical framework. 

We first discuss the important role of the hydrological (flooding frequency) and biological (vegetation de- 

velopment rate) timescales. As long as the changes in riverbed morphology and vegetation over an interval 

comprising one flood and one low-flow period are small, we show that it is possible to simplify the description 

of a vegetated river with non-constant discharge. We propose physically-based and effective (neural) mod- 

els for the feedback between vegetation and morphodynamics. Physically-based approaches use equations 

of morphodynamics extended to account for the interplay between flow, sediment and vegetation dynamics. 

While their foundation is solid, a physically-based description is only feasible for simple vegetation cover 

(grass to shrubs). For complex vegetated obstacles we present as an alternative effective approaches, explic- 

itly including interactions (local and non-local) between obstacles. We focus on the role of vegetation in the 

emergence of ridge patterns observed in the presence of an ephemeral flow and correspondingly derive a set 

of conditions for patterns. 

© 2015 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Riparian vegetation and its couplings to river morphological evo-

lution have recently triggered an increased research activity: field

studies [1] , laboratory experiments [2,3] and models [4,5] have shed

a new light on the complexity of the feedback between biological and

morphological processes. There has been a change of paradigm [6,7]

in the description and modeling of riparian vegetation, going from

the view of vegetation as a static element part of a classic hydraulic

model [8,9] to a more complex viewpoint where vegetation dynamics

is fully considered [6,10–13] . The historical tendency to either neglect

the presence of biomass in rivers or disregard its dynamical charac-

ter was the expression of the difficulty to present a comprehensive

framework and account for all the ecological and geomorphological

processes occurring within the river (eco)system. 

While recent research (for a review, see [1,4] ) has partly filled

this gap, stability analysis of morphological equations [14] including

the dynamics of vegetation and the feedback between biological and

river processes (flow and sediment) has not been explored yet. Clas-

sically, linear stability analysis of morphological equations has been

a tool of choice for explaining universal river features. We shall not

attempt a comprehensive review here but one may cite for example
∗ Corresponding author. Tel.: +41 797048633. 
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orks on the instability toward ripples and (anti-) dunes [15] , alter-

ate/multiple bars [16] and meanders [17–19] . 

In this work, we use classic stability analysis in order to study the

mergence of vegetated patterns in two models for the evolution of

iparian vegetation. We begin with a physically-based approach in

he form of an extension of standard morphological equations [14]

shallow water equations + Exner) to include the evolution of vegeta-

ion and the feedback between riparian vegetation and river morpho-

ynamics. The use of a physically-based description is feasible only

or the most simple situations. We therefore propose the alternative

f using a lumped model for the evolution of the biomass, which al-

ows us to include effects such as scouring around a vegetated patch

increased local velocity and/or turbulent kinetic energy, denoted TKE

ereafter) or the presence of a sediment tail behind a permeable veg-

tated obstacle [20,21] . As case study, we focus on the role of veg-

tation in the formation of anabranching ridge patterns observed in

arious fluvial environments. 

In Fig. 1 , we present two contrasting examples for such patterns,

orresponding to the simple vegetation cover and the more complex

egetated obstacles mentioned above. Anabranching patterns ( Fig. 1 ,

pper panel) consisting of stable ridges dividing the main channel

ere described in the Marshall River [22–24] (Australia, NT) and the

ormation of those patterns was explained using classic hydraulic

rguments (optimization of the bedload transport capacity) [25,26]

r conceptual models [22,27] . In the lower panel of Fig. 1 we show

ills observed on a river bar of the Thur River (Switzerland). The

ype of vegetation cover is very different in the two rivers: in the

http://dx.doi.org/10.1016/j.advwatres.2015.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advwatres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advwatres.2015.07.011&domain=pdf
mailto:crouzy@gmail.com
mailto:benoit.crouzy@epfl.ch
mailto:benoit.crouzy@a3.epfl.ch
http://dx.doi.org/10.1016/j.advwatres.2015.07.011
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Fig. 1. Examples of anabranching patterns emerging in two contrasting fluvial environments: (A) anabranching of the entire river bed (Marshall River, Australia, NT) and (B) rills 

observed on a bar of the Thur River, Switzerland. 
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arshall river we have well-developed tall-shrubs and trees (teatrees

nd river red gums), while grass grows on the bar depicted in the

ower panel of Fig. 1 . Common to those two environments is the

resence of an ephemeral flow resulting either from the ephemeral

haracter of the river (Marshall River) or the position (elevated bar)

ithin the riverbed (Thur River). Another similitude is the presence

f low cohesive sediment causing significant biomass mortality.

he ephemeral flow allows for a feedback loop between ecological

nd morphological processes: changes in riverbed morphology are

ypically faster than the development of vegetation but are only

aking place during flow events. As suggested by [13] and empirically

nvestigated by [3,28] , the feedback loop is only observed for a

ertain window of ratios between the frequency of flooding events

nd the development rate of vegetation. For too rare flooding events

he vegetation grows out of scale compared to the uprooting capacity

f the floods. Conversely, very frequent events completely uproot all

he vegetation present in the channel. 

The paper is organized as follows: in the next Section we

how how it is possible under certain assumptions to reduce the
escription of the vegetation dynamics in the presence of a vari-

ble discharge to an equivalent situation with constant flow; in

ection 3 we present the stability analysis of a physically-based

comorphodynamic model for the emergence of vegetated river

atterns, focusing on the asymmetry of the patterns; in Section 4 we

resent an effective model that allows us to describe the interactions

mong complex vegetated obstacles in a river; we then perform the

tability analysis of this model; in Section 5 we discuss our results

nd the domain of validity for the two approaches we propose;

nally, Section 6 concludes the work. 

. Hydrological and biological timescales 

Before turning to the modeling framework for the feedback be-

ween the evolution of the biomass and the morphodynamics (flow

nd sediment dynamics), we discuss here the important role of

he characteristic timescales for the biological and hydrological pro-

esses. In typical field situations, one observes that the dynamics of

egetation development is much slower than the morphodynamics.
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Fig. 2. Idealized river hydrograph Q ( t ) (blue curve) with t f the flood duration and t v 
the inter-event time between flooding events, together with the schematic evolution of 

the biomass density φ( t ) (green curve) accounting for mortality during flooding events. 

(For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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In turn, morphological changes occur over a much longer timescale

than changes of local flow conditions. This hierarchy of timescales has

led people to try capturing the effect of riparian vegetation without

considering its dynamics, for example by a change in channel rough-

ness [9,29] . Motivated by experimental findings [3,28,30] , we show

here that a complete feedback loop can however be observed due to

the non-constant flow characterizing typical river hydrographs. The

flow-induced mortality is indeed only active during flooding events

while vegetation can in principle develop over a longer period (al-

beit very slowly). It is correspondingly possible to define an opti-

mal window of inter-event times between flooding events character-

ized by a strongly coupled co-evolution of vegetation and riverbed

morphology. 

Mathematically, the situation described above can be modeled by

writing an equation for the evolution of the biomass over a period go-

ing from the end of one flooding event to the end of the subsequent

flooding event. To fix ideas, let us begin with a simplified periodic

hydrograph ( Fig. 2 ) consisting of periods t v with no flow-associated

mortality where the biomass can evolve unhindered, followed by

flooding events of short duration t f and constant flow. We introduce

in addition φi = φ(t i ) the local biomass density at the end of a given

flooding event i . Assuming that the biomass density does not vary too

fast, we can write a finite-difference equation for the evolution of the

biomass 

�φi = φi +1 − φi = t v (αg φi (φm 

− φi ) + D ∇ 

2 φi ) − t f F (φi , U i , Y i ). 

(1)

Throughout Eq. (1) the index i refers to quantities taken at a time

t i . The first term in the right-hand side describes growth (logistic) and

spreading (diffusion coefficient D ) of the biomass. We assume growth

to follow a logistic dependence [31] , which is characterized by an ex-

ponential growth (rate αg ) in the initial stage, followed by a slower

growth until the maximal carrying capacity φm 

is obtained. The sec-

ond term describes mortality through the function F depending on

local flow velocity U i and flow depth Y i . For the sake of keeping the

discussion as general as possible, we will leave F unspecified through-

out this Section and fix it only in the following Sections. We want to

stress on the fact that Eq. (1) is valid in the limit of slow-changing

biomass, which can be formulated mathematically as 

�φi 

φi 

� 1 . (2)

Dividing both sides of Eq. (1) by the duration of one cycle t v + t f , one

obtains a partial differential equation for the evolution of the biomass

∂φ

∂t 
= r g 

(
αg φ(φm 

− φ) + ∇ 

2 φ
)

− r d F (φ, U , Y ), (3)

where we have introduced the ratios r g = 

t v 
t v + t f ∼ 1 and r d = 

t f 
t v + t f �

1 . We have thus reduced the equation for the evolution of the biomass

density under non-constant flow to an effective equation where low-

flow periods have been suppressed. Those long periods with no flow-

induced mortality result however in an increased growth rate of veg-
tation, which may become comparable to the mortality term. For the

ight ratio between the timescales one can observe an interplay be-

ween the evolution of the vegetation and the morphodynamics due

o the factors r g and r d that compensate for the fact that usually the

volution of the vegetation is much slower than the river morphody-

amics. However, if the ratio r d / r g is too small, then vegetation can

row out of scale compared to the erosive capacity of the floods. In

he opposite limit of r g ∼ r d the flooding events completely wipe out

he vegetation cover over each flooding event. 

As long as condition (2) is satisfied, we can generalize our method

o the situation with a non-periodic hydrograph. However, in this

ase, the ratios between the timescales r g and r d become time de-

endent. Formally, this is expressed by the need of introducing r i 
g,d 

in

q. (3) to account for the variable duration of the flooding events and

f the inter-event time between two floods. 

In Sections 3 and 4 we shall use a constant flow description valid

nder the premise that the assumption (2) on the magnitude of the

iomass changes over a cycle is satisfied. 

. Physically-based equations 

As a first step, it is natural to try approaching the interplay be-

ween ecological and morphodynamical processes using a physically-

ased description. For the time being, we consider a simplified

eneric problem, involving model vegetation and disregarding com-

lications like the sorting of sediment according to the grain size. We

hall consider here the situation with a shallow flow in a straight rect-

ngular channel, which allows us to simplify the Navier–Stokes equa-

ions by integrating out the dependence of the flow velocity along

he vertical direction. The equations we introduce below are sim-

lar to the ones proposed by [32] for a converging narrow channel

one-dimensional description of the flow). We describe vegetation by

he presence of rigid emerging cylindrical obstacles (diameter d and

rag coefficient c D ) whose density (evolving according to the time t )

s given by a field φ( s, n, t ). Hereafter, the variables s and n denote the

treamline and transverse coordinates respectively. The channel bed

s mobile, and its elevation is given by the field η( s, n, t ). We begin by

riting the equations for momentum conservation 

∂U 

∂t 
= −U 

∂U 

∂s 
− V 

∂U 

∂n 

− g 

[
∂Y 

∂s 
+ 

∂η

∂s 

]
− g 

Y 

[
1 

χ2 
b 

+ 

c D dY φ

2 g 

]
U|| U || 

(4a)

∂V 

∂t 
= −U 

∂V 

∂s 
− V 

∂V 

∂n 

− g 

[
∂Y 

∂n 

+ 

∂η

∂n 

]
− g 

Y 

[
1 

χ2 
b 

+ 

c D dY φ

2 g 

]
V || U || .

(4b)

Here the flow is given by the vector U = (U, V ) with U ( s, n, t )

he component of the flow in the streamline direction e s and V ( s, n,

 ) the component transverse to the flow (coordinate axis e n ). Flow

epth is given by the variable Y ( s, n, t ). We use the Chezy formula as

losure relation for the momentum equation, as modified by [29] to

nclude the roughness induced by rigid vegetation in addition to the

ed roughness (friction coefficient without vegetation χb , related

o the Strickler coefficient k st ). Next, we write the equation for mass

onservation 

∂Y 

∂t 
= −∇ · (Y U ). (5)

ote that we disregard here for simplicity the volume of the biomass,

ssuming that the cross-section of the biomass is much smaller than

he river cross-section. In order to describe sediment transport in the

orm of bed load we use the Exner equation 

∂η

∂t 
= − ∇ · Q s 

(1 − p)
, (6)
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ith Q s the sediment flux and p the porosity of the riverbed. In

ddition, for the sake of obtaining analytical results, we shall use

following [33] ) a simplified closure relation for sediment transport 

 s = a || U || m e . (7) 

ith e a unit vector giving the direction of the sediment flux from

ow velocity and a correction accounting for the transverse slope

radient 

 = 

(
U/ || U || , V/ || U || − r √ 

τ∗

∂η

∂n 

)
. (8) 

n addition, we have introduced 0.5 � r � 0.6 an empirical parameter

ollowing [17] and the dimensionless Shields stress τ ∗ (for more

etails see [34] ). The use of the simplified description (7) is justified

hen working in the limit of well-developed sediment transport,

lways above the critical bed shear stress for the onset of sediment

ransport. In the following, we shall use the well-known formula by

35] , which leads, after taking the limit of well-developed sediment

ransport, to m = 3 . Finally, in order to express the fact that the char-

cteristic timescale for morphological processes is much slower than

he timescale for the flow dynamics [14] , we express the parameter a

ndirectly via the dimensionless parameter γ = 

3 Q s 0 
(1 −p)Y 0 U 0 

� 1 ,

here the subscripts 0 indicate quantities taken under normal flow

onditions. The equation for the evolution of the biomass needs to

e discussed in greater details. We assume the biomass to evolve

ollowing: 

∂φ

∂t 
= αg φ(φm 

− φ) + D ∇ 

2 φ − αd Y U 

2 φ, (9) 

here the field φ( s, n, t ) gives the time-dependent density of plants

er unit area. As in the previous Section, we assume the evolution of

he biomass to follow a logistic dependence with carrying capacity

m 

. The second term in the right-hand side of Eq. (9) describes the

preading of the biomass by a diffusion term [36,37] . For a detailed

iscussion on how diffusion can be seen as the generic form of

ositive local feedback on biomass growth, see Section 4 . Here again,

e choose to restrict ourselves to a simple situation in order to

btain an analytically tractable model: we do not consider effects

uch as the dependence of the growth rate on the position in the

hannel (water availability) or the competition between different

iparian species [38] . We introduce, however, the influence of local

ow conditions on the evolution of the biomass in the form of a

ortality term proportional to the rate of momentum transfer from

ow to vegetation (third term in the right-hand side of Eq. (9) ). 

Before turning to the analysis of our ecomorphodynamic equa-

ions (4) –(9) , we want to stress on the fact that, while we have intro-

uced simplifications in the model formulation, the methodology we
ig. 3. Evolution of the floodplain of the Awash River, Ethiopia, Afar Region (11 °27 ′ 0.56 ′′ N
igitalglobe. 
se can readily be generalized. One exception in this regard is includ-

ng explicitely a critical threshold for the onset of sediment transport

resent in several closure relations [35,39] , which would preclude us-

ng our analytical framework (discontinuity in the derivative). 

In order to discuss the appearance of vegetated anabranching

atterns, we perform a stability analysis of the ecomorphodynamic

odel (4) –(9) . We shall not describe here in details the procedure

f stability analysis: the method and the Ansatz by [33] can readily

e applied to our model. The idea is to start from the homogeneous

olution of Eqs. (4) –(9) , which we denote X 0 = (U 0 , V 0 , Y 0 , η0 , φ0 ).

erturbing a state with a strictly positive biomass density (well-

eveloped vegetation cover) is essential: a perturbation around φ0 =
 would result in (non-physical) negative vegetation densities. For the

ake of self-consistency we give here the functions which are used to

erturbate the homogeneous state: 

[ (U 1 , V 1 tan (k n n + ψ), Y 1 , η1 , φ1 ) cos (k n n + ψ)

× exp (ik s s + ωt) + cc. ] , (10) 

here cc . denotes the complex conjugate. We have introduced ω,

he growth rate of a perturbation with given transverse and longi-

udinal wavenumbers k n and k s respectively (wavelengths are given

y λs,n = 

2 π
k s,n 

). In the transverse direction the wavenumber k n is re-

tricted to the values πm 

W 

, with W the channel width, in order to

atisfy the zero-flow condition at the river boundary V (±W/ 2 = 0 ).

or odd values of m we have ψ = 

π
2 , while for even values of m the

ephasing ψ is zero. The variable m gives the order of the bars in

he transverse direction: m = 1 corresponds to alternate bars and m

 1 to multiple bars. In the longitudinal direction the wavenumber

an take arbitrary real values, which amounts to assuming an infinite

hannel. In Fig. 3 we present an example where the river dynamics

esult in the formation of vegetated multiple bars. Applying the per-

urbation Ansatz (10) to Eqs. (4) –(9) and keeping only the first order

erm of the perturbation expansion allows us to reduce the ecomor-

hodynamic problem to the following problem: 

∂X 1 

∂t 
= A X 1 , (11) 

ith X 1 = (U 1 , V 1 , Y 1 , η1 , φ1 ), and A a 5 × 5 matrix depending on the

odel parameters (see Eqs. (4) –(9) ) and on the wavenumbers k n and

 s . We search for eigenvectors in the form 

 X 1 = ωX 1 . (12)

The mode which is the most unstable (i.e. with the largest ω) is

oing to dominate. However, if no mode satisfies the condition ω >

, the homogeneous solution X 0 is stable and the channel does not

volve towards patterns. In principle it is possible to have a system

omogeneous in the transverse direction ( m = 0 ) presenting patterns
 40 °58 ′ 0.29 ′′ E) from 2006 (upper panel) to 2012 (lower panel). Map data: Google, 
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Fig. 4. Instability towards multiple bars varying the Froude number and the carrying capacity of the biomass. Darker blue colors correspond to increasing the order of the bars in the 

transverse direction ( m = 2 – 7). The domain in green indicates instability towards alternate bars ( m = 1 ). The red color indicates no instability towards patterns. Fixed parameters: 

vegetation stem diameter d = 0 . 01 m, sediment grain diameter d s = 0 . 001 m, channel aspect ratio β = 80 , normal water depth Y 0 = 1 m, biomass growth rate αg = 0 . 25 m 

2 s −1 , 

biomass mortality rate αd = 0 . 25 m 

−3 s −1 , Stokes drag coefficient c D = 1 . 5 , transverse slope parameter r = 0 . 5 , vegetation diffusion coefficient D = 100 m 

2 s −1 , dimensionless 

parameter γ = 10 −3 and Strickler coefficient k st = 33 . 33 m 

1 / 3 s −1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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[  

i  

a  

t  
in the longitudinal direction ( k s > 0). Although we are mainly inter-

ested in two-dimensional effects in this work, we refer here to [16]

for a study on the one-dimensional problem (without vegetation).

Note finally that we shall not discuss here effects related to the non-

normality of the operator A . As shown by [40] , while the morphody-

namical equations evolve asymptotically toward the most unstable

mode of our perturbation Ansatz (10) , a non-monotonic evolution of

the disturbances can be observed at finite times. 

We focus here on the asymmetry between the longitudinal and

the transverse length scale of the patterns: the anabranching patterns

we investigate in this work are typically characterized by the coalesc-

ing of island into ridges presenting a large length-to-width ratio. For

example, considering the situation in the Marshall River (upper panel

of Fig. 1 ), one obtains a ratio larger than 10 [22,23] . The systematic

stability analysis of the ecomorphodynamic model goes beyond the

scope of this work and will be presented elsewhere [41] . In Fig. 4 , we

present domains of instability with non-zero biomass density, col-

ored according to the order of the bars corresponding to the most

unstable mode, varying the Froude number F 0 = 

U 0 √ 

gY 0 
and the vege-

tation carrying capacity φm 

. The set of fixed parameters in Fig. 4 has

been chosen in order to observe an instability domain representative

of all the possible features (alternate/multiple bars, low/high asym-

metry and instability driven by vegetation dynamics and/or sediment

dynamics). The role of the different parameters needs to be discussed

individually. Regarding the diffusion coefficient D , the stronger the

diffusion, the longer the pattern wavelength (and the smaller the or-

der of the bars). The role of the growth coefficient αg is qualitatively

similar to the role of the carrying capacity. Finally, a small β would

preclude the appearance of (multiple) bars and a too strong uproot-

ing coefficient αd would reduce the dynamics to its flow and sedi-

ment components. Note that we work in the limit of a large aspect

ratio β = W/(2 Y 0 ) in order to observe two dimensional structures.

One readily notices that for a large carrying capacity the presence

of vegetation favors configurations with m ≤ 1 (in some regions an
ncrease in the carrying capacity can however lead to an increasing

ar order). Interestingly, this stabilization towards a single-threaded

hannel (homogeneous solution or alternate bars) is observed with-

ut introducing any bank stabilization by vegetation in the model. A

imilar result is obtained when plotting the instability domains as a

unction of the vegetation growth rate αg (not reproduced here). This

s consistent with the findings by [42] on the association between the

xpansion of vegetation during the Carboniferous and the evolution

f anabranching channels towards single-threaded channels (recall

hat the instability toward alternate bars is the first step toward me-

ndering instability [18] ). In Fig. 5 , we color the instability domains

f Fig. 4 according to the asymmetry ( k n / k s ) of the patterns. Remark-

bly, we can hardly identify domains with instability towards multi-

le bars and an asymmetry k n / k s > 5. Fig 5 corresponds to the choice

f realistic model parameters amounting for the strongest asymme-

ry. As a consequence, we conclude that, while the physically-based

pproach allows us to capture the channel stabilizing effect by veg-

tation, it is not sufficient to describe the formation of stable ridges

ividing the main channel as observed in [22,23] and represented in

he upper panel of Fig. 1 . Note however that we cannot exclude a cor-

ection in the pattern wavelength and asymmetry if the perturbation

rows up to the point where nonlinear effects become important. 

In the next Section, we show that by introducing more complex

on-local interactions between vegetated obstacles located at differ-

nt points in the channel we are able to reproduce the organization

f the vegetation cover in stable ridges. 

. Kernel-based approach 

The idea of the Kernel approach (also denoted “neural model”

36] ) is to write a lumped equation for the evolution of the biomass

ncluding the interactions between vegetated obstacles. Those inter-

ctions originate from flow disturbances by the biomass (resulting in

urn in characteristic sediment patterns around obstacles). Note also
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Fig. 5. Asymmetry k n /k s = λs /λn between the longitudinal wavelength λs and the transverse wavelength λn of the most unstable mode. Negative values indicate no instability 

towards patterns. Fixed parameters: vegetation stem diameter d = 0 . 01 m , sediment grain diameter d s = 0 . 001 m , channel width-to-depth ratio β = 80 , normal water depth 

Y 0 = 1 m , biomass growth rate αg = 0 . 25 m 

2 s −1 , biomass mortality rate αd = 0 . 25 m 

−3 s −1 , Stokes drag coefficient c D = 1 . 5 , transverse slope parameter r = 0 . 5 , vegetation diffusion 

coefficient D = 100 m 

2 s −1 , dimensionless parameter γ = 10 −3 and Strickler coefficient k st = 33 . 33 m 

1 / 3 s −1 . 
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hat although we try to present a comprehensive review here, more

etails on the Kernel model can be found in [43] . In its generic form,

 Kernel model for the dynamics of the biomass density φ( s, n, t ) can

e written as a convolution 

∂φ

∂t 
= αg φ(φm 

− φ) + 

∫ ∫ 
φ(s ′ , n 

′ , t)W(s ′ − s, n 

′ − n)d s ′ d n 

′ . (13) 

s in Eq. (9) from the previous Section, we recover the standard logis-

ic growth of biomass, where αg denotes the growth rate and φm 

the

arrying capacity. The difference with the physically-based approach

ies in the interaction Kernel W, which does not contain explicitly any

nformation on the local flow conditions. This contrasts with the ap-

roach of the previous Section, where biomass mortality was related

o the rate of momentum transfer from the flow to the vegetation.

owever, although the loss of the explicit coupling with the dynamics

f the flow and sediment may appear as a drawback of the approach,

ts simplicity allows us to include in the interaction Kernel both long

ange (non-local) and short range interactions. Regarding the differ-

nt feedback mechanisms, we can for example cite the presence of re-

ions with increased scouring around a vegetated obstacle (non-local

nd negative), the sediment stabilization by roots inducing a larger

ritical shear stress for sediment transport (local and positive) or the

ecreased flow velocity due to increased roughness (local and pos-

tive). Seeding and resprouting can also be included in the positive

art of the interaction Kernel as a local positive contribution to the

iomass density. 

When studying the stability of the neural model, we shall con-

ider a straight-channel geometry with periodic boundary conditions

n the transverse direction e n . Thus, alternate bars cannot be captured

y the Kernel model as formulated here (the boundary introduces an

symmetry). In the longitudinal direction e s , we assume the chan-

el to be infinite. For causality reasons (flow and sediment trans-

ort are mainly modified downstream of a vegetated obstacle) the

ernel functions need to satisfy the following additional condition

(s ′ − s, n ′ − n) = 0 for s ′ − s > 0 . 
As in Section 3 , we perform a stability analysis by perturbing a

omogeneous reference state. It is therefore useful to carefully dis-

uss homogeneous solutions of Eq. (13) . Neglecting the spatial depen-

ence of the biomass density φ one readily obtains the two solutions

0 = 0 and φh = φm 

+ 

1 

αg 

ˆ ˆ W(k s = 0 , k n = 0 ), (14)

ith 

ˆ ˆ W(k s , k n ) the Fourier transform of the Kernel function 

ˆ ˆ (k s , k n ) = 

∫ ∫ 
W(s, n)e ik s s e ik n n d sd n . (15)

he stability of the trivial solution φ0 depends on the integral of the

ernel. If the negative couplings are very strong one may obtain a

on-physical negative value φh < 0 and accordingly φ0 becomes sta-

le. In other situations, the trivial solution is unstable and φh can be

nterpreted as a modified carrying capacity, increased or decreased

epending on whether positive or negative couplings dominate. 

Following [43] we separate the positive (regions with reduced

hear stress) and the negative (regions with increased flow velocity

nd/or TKE) part of the Kernel W = W + + W − and assume that protec-

ive effects of vegetation (e.g. reduction of the local shear stress and

ediment stabilization by roots) have a much shorter range than the

haracteristic size of the region around the obstacle with perturbed

ow (for a simple estimation of the size of the obstacle scour, see

44] ). Performing an expansion valid for short-ranged positive feed-

ack, we can rewrite Eq. (13) in the following form: 

∂φ

∂t 
= αg φ

(
φm 

+ 

A 

αg 
− φ

)
+ B∂ s φ + D n ∂ 

2 
n φ + D s ∂ 

2 
s φ + φ ∗ W −. 

(16) 

n the last term we have introduced the star product as a shorthand

otation for the convolution product. The expansion of the positive

art of the Kernel yields 

 = 

∫ ∫ 
W + (s ′ , n 

′ )ds ′ dn 

′ (17a) 
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Fig. 6. Example simulation of the evolution of the biomass density (carrying capacity 

φm = 1 ) using the Kernel model for a 280 by 140 grid. From an initial random vegeta- 

tion cover (upper panel) the vegetation organizes itself into a regular periodic pattern 

(lower panel). The variables l i , w i and d i denote the length of a vegetation cluster, its 

width and the average distance to the neighboring clusters respectively. 
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B = 

∫ ∫ 
s ′ W + (s ′ , n 

′ )ds ′ dn 

′ (17b)

D { s,n } = 

∫ ∫ 
{ s ′ , n 

′ } 2 W + (s ′ , n 

′ )ds ′ dn 

′ . (17c)

The term (17a) can be included within an effective carrying ca-

pacity φm 

+ 

A 
αg 

. Due to the symmetry of the flow around obstacles

we do not have a first order derivative regarding the transverse direc-

tion e n . In the longitudinal direction however, the asymmetry in the

flow direction results in a non-zero first order term. This term can de-

scribe the sheltering effect behind a (permeable) vegetated obstacle.

We stop the expansion with the second order term of the Kernel ex-

pansion, which takes the form of a diffusion term. In principle, one

can expect different values for the longitudinal and transverse diffu-

sion coefficients D { s, n } due to the asymmetry introduced by the flow.

The fact that any short-ranged positive coupling takes the form of a

diffusion justifies a posteriori the introduction of biomass diffusion

in Eqs. (3) and (9) . 

In order to study the stability of the homogeneous solution (14) ,

we apply the method developed by [45] . We use the following per-

turbation from the homogeneous solution φh : 

ε e ωt+ ik s s + ik n n + cc. (18)

We introduced cc . a shorthand notation for the complex conjugate

and ε a small perturbation parameter (linear stability analysis cor-

responds to a first order expansion in ε). Similar to the procedure

from the previous Section, ω gives the growth rate of the pertur-

bation and the mode (characterized by the longitudinal and trans-

verse wavenumbers k s and k n respectively) with the largest positive

growth rate is the most unstable (asymptotically dominates the other

modes). In case no mode satisfies max( k s, n ) > 0 and ω > 0 then the

homogeneous solution is stable, which corresponds either to a homo-

geneous vegetation cover or to the situation with no vegetation pop-

ulating the riverbed. Note that only one of the wavenumbers needs to

be strictly positive in order to have patterns. As a result, one obtains

[43] the general condition for the onset of patterns 

−k 2 n −
D s 

D n 
k 2 s −

2 

A + αφm 

[ 
ˆ ˆ W −(0 , 0 ) − Re ( ˆ ˆ W −(k s , k n ))

] 
> 1 . (19)

This condition can be generalized to any functional dependence of

the negative part of the Kernel W −. 

For a field study on sediment deposition and scouring around veg-

etated obstacles of the type found in the Marshall River (river red

gums, see Fig. 1 , upper panel and [22,23] ), we refer to [20] . In order

to model the region with increased scouring around vegetated obsta-

cles observed by [20] , we fix now the negative part of the Kernel by

assuming the following form: 

 −(s, n) = −αd θ(s)e −(
s 

L s )
2 + ( n 

L n )
2 

(20)

with θ ( s ) the Heaviside function [46] and αd a rate of biomass mor-

tality. The lengths L s and L n give the characteristic size of the region

with an increased scouring in the longitudinal and transverse direc-

tion respectively. From the general condition (19) , we can now derive

specific conditions for the emergence of anabranching patterns. Be-

fore turning to the stability analysis of Eq. (13) , we show in Fig. 6 the

results of a simulation of the dynamics resulting from Eq. (13) . One

readily notices that the model is able to reproduce the emergence of

well-defined ridge patterns starting from a random vegetation cover.

Interestingly, we see that first (transition from panel A to panel B) the

width w i and the length l i of the vegetated clusters increase together

with the distance d i between them. In a second stage (transition from

panel B to panel C), we see a coalescing and streamlining of the clus-

ters leading to an increase of l i with almost unchanged w i and d i . 

Let us begin with the condition for pattern stability in the longi-

tudinal direction e s . From the Hessian of ω( k s , k n ) we obtain a very
imple condition on the diffusion times t s,n = L 2 s,n / D s,n necessary in

rder for k s = 0 to dominate (maximal ω): 

 n > t s . (21)

q. (21) can be interpreted as transverse patterns remaining stable

n the longitudinal direction for a faster spreading of vegetation in

he region sheltered from the flow than in the transverse direction.

n other words, Eq. (21) is a prerequisite for the emergence of stable

idges such as the ones observed in the Marshall River ( Fig. 1 , up-

er panel). From now on we assume that (21) is satisfied, as it is for

xample the case if D s is large enough. Two conditions emerge then

or transverse patterns: the first one is related to the existence of a

aximum for ω(0, k n ) at a finite wavenumber k max 
n 

αd (A + αg φm 

)

D 

2 
n 

L 3 n L s π > 8 . (22)

he second one requires that the maximum yields a strictly positive

alue of the instability growth rate ω(k max 
n ) > 0 

αd L s L n π

2 D n 
− 4 D n 

(A + αg φm 

)L 2 n 

[
1 − log 

(
8 D 

2 
n 

αd (A + αg φm 

)L 3 n L s π

)]
> 1 . 

(23)

inally, the selected maximal growth rate occurs for 

 

max 
n = 

2 

L n 

√ 

D n 

(A + αg φm 

)
Log 

(
αd (A + αg φm 

)L 3 n L s π

8 D 

2 
n 

)
. (24)

As long as the three conditions (21) –(23) are satisfied, the homo-

eneous solution is unstable and evolves towards stable ridge pat-

erns. Interestingly, the Kernel parameter B introduced in (16) is not

resent in any of the three conditions for the emergence of patterns.

n the same direction, B does not modify the selected wavenumber
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Fig. 7. Wavenumber k max 
n = 

2 π
λ

quantifying the pattern wavelength λ, varying the 

range of the interaction Kernel L s, n for fixed A + αg φm = 2 day −1 , D n = 4 m 

2 day −1 and 

αd = 1 day −1 . 

Fig. 8. Wavenumber k max 
n = 

2 π
λ

quantifying the pattern wavelength λ, varying the 

diffusion coefficient of vegetation D n and the vegetation mortality rate αd for fixed 

A + αg φm = 2 day −1 and L s = 3 L n = 3 m . 

k  

p  

s  

m  

e  

w  

c  

e

 

i  

n  

t  

fl  

l  

2  

d  

o  

b  

f  

o

 

v  

t  

c  

w  

e  

p

5

 

b  

(  

a  

t  

c  

s  

t  

a  

c  

a  

p  

t  

t  

c  

i  

o

 

r  

c  

v  

y  

b  

o  

m  

e  

w

 

m  

v  

t  

i  

t  

E  

r

w  

I  

(  

t  

i  

i  

s  

a

 

v  

t  

t  

e  

f  

t  

fl  

h

6

 

e  

t  

b  

t  

a  

t  

t  

s  

a  

i  

p  

o

 

i  
 

max 
n (purely imaginary contribution). Note also that while our ap-

roach is able to predict the emergence of the instability in the linear

tage and the initial pattern wavelength, the wavenumber k max 
n (24)

ay change if the perturbation reaches the point where non-linear

ffects cannot be neglected anymore. Keeping this limitation in mind,

e use in the following our effective model to discuss the effect of

hanges in the range and intensity of the interactions present in the

comorphodynamic model (13) . 

In Fig 7 , we plot the transverse wavenumber with the maximal

nstability k max 
n varying the transverse and longitudinal range of the

egative part of the Kernel ( L n and L s respectively). No instability

akes place for small range of W − along ( L s ) or transverse ( L n ) to the

ow. Increasing the range of the negative part of the Kernel in the

ongitudinal direction increases k max 
n (or decreases the wavelength

 π/k max 
n ). The dependence of k max 

n on the range in the transverse

irection is however non-monotonic: one observes first an increase

f k max 
n and then a decrease (larger wavelength and larger distance

etween the obstacles). The initial increase of the wavenumber as a

unction of the range in the transverse direction may be seen as a way

f averaging out the long-range negative part of the Kernel. 

In Fig. 8 , we vary the transverse diffusion coefficient D n and the

egetation mortality rate αd while keeping the other model parame-

ers constant. The transverse wavenumber k max 
n increases monotoni-

ally with αd . And, as it was the case for L s, n , patterns are only present

hen αd is above a certain threshold. For the transverse diffusion co-

fficient D n however the dependence of k max 
n is non-monotonic and

atterns are present as soon as D n > 0 (no threshold). 

. Discussion 

The two approaches we proposed in Sections 3 and 4 should

e seen in their complementarity. The physically-based approach

 Section 3 ) is in principle preferable since it allows for a direct mech-

nistic interpretation and parameterization. We expect this approach
o work best when considering the perturbation of a homogeneous

over of grass or shrubs, as for example to model the situation repre-

ented in the lower panel of Fig. 1 . The complexity of the feedback be-

ween riparian vegetation and morphodynamics (sediment transport

nd flow) makes a complete detailed description of the involved pro-

esses hopeless in the presence of more complex vegetated obstacles,

s it is for example the case in the situation represented in the upper

anel of Fig. 1 . Due to the use of a lumped model, the discussion on

he role of the different components of the Kernel model should be

aken with caution. We however believe that this type of model can

ontribute to the qualitative understanding of the processes involved

n the organization of complex vegetated obstacles and the formation

f anabranching patterns. 

An explanation for the inability of our physically-based model to

eproduce ridges with a length-to-width asymmetry larger than 10

ould reside in the limitations of the model used to describe flow-

egetation interactions and possibly in the use of linear stability anal-

sis. While it is reasonable to expect the simple description involving

ed-roughness changes and flow-induced mortality to reproduce the

nset of the instability, at some point the amplitude of the patterns

ay result either in a more complex disturbance of the flow (to be

ventually captured by an effective model) or to a shift of the pattern

avelength due to the non-linearity of Eqs. (4) –(9) . 

For the physical model we focused on a particular vegetation

odel and included simple couplings between morphodynamics and

egetation. This model can be extended to include effects relevant for

he precise situation one wants to model. In particular, we can read-

ly take into account in Eq. (5) the volume of the plants present in

he section 

d 2 Y πφ
4 . Similarly, while we considered rigid vegetation in

qs. (4) and (9) , accounting for the streamlining of the plants would

esult in a shear stress induced by the biomass proportional to || U || p 

ith 1 ≤ p ≤ 2 ( p = 1 corresponds to perfectly flexible vegetation).

ncluding a more realistic description of the sediment transport law

7) (valid also for lower shear stress) is in principle possible. Stabiliza-

ion of sediment by roots could for example be expressed by a change

n the critical bed stress for incipient sediment motion [47] . Work-

ng with thresholds would however preclude an analytical treatment

uch as the one performed in Section 3 . In this regard, a numerical

pproach [48] could then be used to investigate threshold effects. 

For both the physically-based approach and the effective model,

egetated patterns are the product of the interplay between posi-

ive and negative feedbacks: locally the biomass mortality can be ei-

her increased or reduced due to the presence of neighboring veg-

tation. In the physically-based approach the positive and negative

eedbacks are a combination of the changes in roughness induced by

he biomass (local velocity can be reduced or increased locally due to

ow deflection) and the flow-induced mortality. In the Kernel model

owever, we explicitly separated positive and negative feedbacks. 

. Summary and conclusion 

We presented an analytical modeling framework for the co-

volution of vegetation and riverbed morphology. We first discussed

he importance of flow intermittency in allowing for strong feedback

etween biomass and morphodynamics. Flow intermittency can ei-

her characterize the whole channel (ephemeral river, see for ex-

mple Fig. 1 , upper panel) or be the result of the location within

he riverbed (river bar, see Fig. 1 , lower panel). We then showed

hat the dynamics of a slowly evolving vegetated channel can be de-

cribed using constant-flow equations. Important in order to observe

 strong feedback between ecological processes and morphodynam-

cs is a riverbed consisting of low-cohesive sediment: sediment de-

osition and scouring play a significant part in determining the fate

f riverbed vegetation (survival or uprooting, see [13] ). 

We proposed a physically-based model as a prototype for the

nterplay between vegetation and morphodynamics. By performing
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a linear stability analysis we studied the longitudinal vs. transverse

asymmetry of vegetation-associated patterns. We showed that al-

though an instability towards multiple bars is possible in the pres-

ence of vegetation, single-threaded configuration (alternate bars or

uniform conditions) are favored. 

In order to model situations with complex vegetated obstacles we

proposed to use a lumped approach for the evolution of riparian vege-

tation. The presence of obstacles can locally increase the flow velocity

and/or the TKE resulting in obstacle-induced scouring. Conversely, on

the lee-side of permeable obstacles (for example a bush with signifi-

cant bleed flow) deposition of sediment and seeds can be increased.

By performing a stability analysis of the Kernel model, we showed

that this type of model is able to reproduce a stable ridge pattern.

We discussed the domain where the pattern can be observed and its

wavelength as function of the characteristics (range and intensity) of

the interactions between vegetated obstacles located at different po-

sitions in a channel. Remarkably, we obtained a non-monotonic de-

pendence of the pattern wavelength on the range of the feedback in

the transverse direction. For certain parameters, we identified win-

dows in the parameter space where patterns can be observed, sup-

porting our working hypothesis that a non-trivial interplay between

vegetation and morphodynamics can be observed only in a certain

parameter and timescale window ( Section 2 ). Central to our results

is the necessity of having both positive and negative interactions in

order to be able to reproduce patterns. 

The insight from controlled flume experiments, together with

field surveys would be particularly helpful at this point. While the

quantification of the effects induced by the presence of riparian vege-

tation in rivers has attracted much attention recently, we believe that

experimental and field works in the perspective of a lumped descrip-

tion of the positive and negative interactions involving complex vege-

tated obstacles [1,12,20] could also help advancing the understanding

of river geomorphological trajectories. 
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