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Modeling category learning using a dual-system approach: A simulation of
Shepard, Hovland and Jenkins (1961) by COVIS

C. E. R. Edmunds (ceredmunds@gmail.com)
School of Psychology, Plymouth University, UK

Andy J. Wills (andy.wills@plymouth.ac.uk)
School of Psychology, Plymouth University, UK

Abstract

This paper examines the ability of a dual-system, formal model
of categorization COVIS (Ashby, Paul & Maddox, 2011) to
predict the learning performance of participants on the six cat-
egory structures described in Shepard, Hovland and Jenkin’s
(1961) seminal study. COVIS assumes that category learning
is mediated by two dissociable neural systems that compete to
control responding. The verbal system explicitly tests verbal-
izable rules, whereas the implicit system gradually associates
each stimulus with the appropriate response. Although COVIS
is highly influential, there are no published evaluations of the
formal model against classic category learning data (COVIS is
most typically applied heuristically to the design of new exper-
iments). In the current paper, we begin to address this gap in
the literature. Specifically, we demonstrate that COVIS is able
to accommodate the ordinal pattern found by Shepard et al.,
provided that adjustments consistent with the model’s theoret-
ical framework are made.
Keywords: category learning; computational modelling; dual-
system; implicit; explicit;

The field of category learning is currently inundated with
formal models competing to explain categorization behavior
(Wills & Pothos, 2012). These theoretical models vary on
features such as how stimuli are initially represented, how
category membership is determined and how they explain ob-
served phenomena. One approach, the COVIS model of cate-
gory learning (COmpetition between Verbal and Implicit Sys-
tems; Ashby, Alfonso-Reese, Turken, U, & Waldron, 1998;
Ashby, Paul, & Maddox, 2011), hypothesizes that category
learning is mediated by two competing systems: one explicit,
one implicit. The explicit, verbal system learns using work-
ing memory to test hypotheses about category membership.
In contrast, the procedural, implicit system learns by gradu-
ally associating areas of stimulus space with a response. At
the beginning of learning, COVIS predicts that responding is
controlled by the verbal system. People only switch to the
implicit system if the verbal system cannot learn the category
structure.

One of the strengths of COVIS is that it is capable of
making predictions that affect three strands of the category
learning literature: behavioral studies, cognitive neuroscience
and cognitive modeling (Lewandowsky, Palmeri, & Wald-
mann, 2012). This is because the model contains, as well
as the broad theoretical conceptualization above, both neu-
rological and computational implementations. However, re-
search with the COVIS model has not taken full advantage
of these strengths. Instead, researchers have mainly focused
on the behavioral predictions of COVIS. Crucially, these pre-
dictions are stated heuristically without any supporting for-

mal modeling (Ashby & Maddox, 2005, 2010). The few pa-
pers that have presented formal modeling of COVIS have fo-
cused on its ability to account for specific novel behavioral re-
sults, such as impaired learning in Parkinson’s patients, rather
than a range of already-established seminal experiments in
the category learning literature (Hélie, Paul, & Ashby, 2012a,
2012b). This neglect of standard results stands in contrast to
the approach taken by proponents of other well-known mod-
els of category learning (e.g. Love, Medin, & Gureckis, 2004;
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994).

We note that at least some of COVIS’s predictions do
not seem to hold under under closer empirical scrutiny (e.g.
Dunn, Newell, & Kalish, 2012; Edmunds, Milton, & Wills,
2015; Newell, Moore, Wills, & Milton, 2013; Stanton &
Nosofsky, 2007, 2013). However, a different–arguably more
fundamental–question is whether the COVIS model is capa-
ble of accommodating results already well-known in the cate-
gory learning literature. As a first step to beginning to answer
this question, we describe an investigation of COVIS’s ability
to account for the ordinal performance of participants learn-
ing the six category structures described in (Shepard, Hov-
land, & Jenkins, 1961). It is important to establish whether
COVIS can accommodate these results for two reasons. First,
not only have Shepard et al.’s results been found to be ro-
bust, they are also known to be problematic for some category
learning models (Nosofsky et al., 1994). Second, Shepard
et al.’s results have become a standard dataset against which
most other formal models have been compared (e.g. Love et
al., 2004; Nosofsky et al., 1994). Therefore, testing COVIS
against this data set would enable detailed comparisons be-
tween COVIS and other leading models of category learning
in respect of these particular data.

COVIS
There are slight variations in the model description between
papers. The version described here was reported in Hélie et
al. (2012a, 2012b).

The verbal system
The verbal system generates categorization responses to stim-
uli by selecting explicit, verbalizable rules from the set R =
{R1,R2, . . . ,Rm}, where each Ri represents a different rule.
In previous implementations of COVIS, the set R has exclu-
sively included all relevant one-dimensional rules, although
it is also hypothesized to include some conjunction or dis-
junction rules. Each rule Ri is described mathematically in
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terms of a discriminant function hV (x), whose form depends
on the type of rule being implemented. For a stimulus x that
varies on r dimensions, denoted x = (x1,x2, . . . ,xr), a one-
dimensional rule based on dimension i calculates the value of
the discriminant function as follows

hV (x) = xi−Ci (1)

where Ci is a constant that defines the decision boundary.
The value of the discriminant function then determines the
response given on that trial as follows

If on trial n if hV (x)< εV respond A
whereas if hV (x)> εV respond B

(2)

where εV is a normally distributed random variable with a
mean of 0 and standard deviation σV .

The rule used on a particular trial depends on the success
of the rule used on the previous trial. If the categorization
response was correct on the previous trial, the same rule will
always be used on the next trial. However, if the response is
incorrect the next rule is randomly selected from the set R,
weighted by each rule’s current weight, Yi(n). The weight of
each rule is dependent on the participant’s past experience of
the rule, the reward history of the rule and the participant’s
tendency to perseverate with incorrect rules. Yi(n) is calcu-
lated from the salience of the rule on the current trial, denoted
by Zi(n). Initial saliences are pre-defined and in typical appli-
cations of COVIS one-dimensional rules are assigned equal,
relatively high, saliences.

The salience of rule Ri used on trial n is adjusted after every
trial depending on whether it resulted in a correct response or
not. If the response was correct on trial n then the salience of
the rule is adjusted by

Zi(n+1) = Zi(n)+∆C (3)

where ∆C is a positive constant that represents the perceived
reward associated with the correct answer. However, if rule
Ri resulted in an incorrect response on trial n then the salience
of that rule decreases by the rule

Zi(n+1) = Zi(n)−∆E (4)

where ∆E is a positive constant that represents the perceived
cost of an error on any trial. All the remaining rules in R keep
their saliences from the previous trial.

The salience of each rule is then transformed to produce
the weight, Yk(n), according to the following

1. For the rule Ri used on trial n

Yi(n) = Zi(n)+ γ (5)

where γ is a constant that represents a participant’s ten-
dency to perseverate with a rule in light of receiving dis-
confirming feedback; as γ increases the participant is less
likely to switch rules.

2. For a rule chosen randomly from R, R j, its weight is ad-
justed by

Yj(n) = Z j(n)+X (6)

where X is a randomly distributed variable that has a Pois-
son distribution with mean λ. X represents the participant’s
tendency to select novel rules on each trial; the larger λ is,
the more likely they are to switch rules. COVIS assumes
that rule selection is mediated by the frontal cortex and that
λ is related to dopamine levels in the cortex.

3. For the remaining rules

Yk(n) = Zk(n) (7)

Finally, the rule to be used on the next trial is selected with
probability

Pn+1(Rk) =
Y a

k (n)
∑

m
s=1 Y a

s (n)
(8)

where a determines the decision stochasticity. If a = 1 then
the rule to be used on the next trial is chosen probabilisti-
cally, with rules with higher weights being more likely to be
picked. As a becomes larger than one, the rule with the largest
weight becomes more and more likely to be chosen on each
trial, so rule choice behaves more deterministically. Whereas
the closer a is to 0, the smaller the differences between prob-
abilities for each rule and so the decisions are more noisy and
much less deterministic. Hélie et al. (2012a, 2012b) inter-
pret a as a gain parameter and state a increases with cortical
dopamine levels.

The implicit system
The implicit system of COVIS is based on a procedural learn-
ing mechanism that associates a response with each stimulus,
whose two or more stimulus dimensions are integrated pre-
decisionally. Broadly, this system consists of a representation
of sensory information that leads to a hidden layer represent-
ing the striatum, which in turn leads to a decision making pro-
cess in the prefrontal cortex. The sensory cortex is modeled
by COVIS as an ordered array of up to 10,000 units. Each unit
responds maximally to one particular stimulus and responds
to a lesser extent to stimuli resembling it. The activation of
each unit is calculated mathematically by a Gaussian function
of the distance between the unit’s preferred stimulus and the
stimulus currently displayed, d(K,stimulus). So, the activa-
tion in sensory cortical unit K on trial n is given by

IK(n) = e−
d(K,stimulus)2

α (9)

where α is a positive constant that scales the unit of measure-
ment in stimulus space. The larger α is, the more similar the
stimuli are to each other.

The activation of striatal unit J on trial n is determined by
the weighted sum of the activations of all sensory units that
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project to it, which is formalized as

SJ (n) = ∑
K

wK,J (n)IK(n)+ εI (10)

where wK,J (n) is the strength of the synapse between cortical
unit K and striatal cell J on trial n, IK(n) is the activation of
sensory unit K on trial n and εI is normally distributed noise
(with mean 0 and variance σ2

I ).
Then, the decision rule is

Respond A on trial n if SA(n)> SB(n); otherwise respond B

The synapse strengths, wK,J (n), are adjusted on each trial via
reinforcement learning. The initial value, however, must be
predetermined. In Ashby et al. (2011), wK,J (0) was given by

wK,J (0) = 0.001+0.0025 U (11)

where U is a constant sampled randomly from a uniform [0,1]
distribution. This means that all initial synaptic strengths will
be between 0.001 and 0.0035 and will be randomly assigned.
More recent applications of COVIS to experimental data have
not defined this parameter.

Then, wK,J (n) is adjusted on each trial as follows

wK,J (n+1) = wK,J (n)

+αwIK(n)[SJ (n)−θNMDA]
+[D(n)−Dbase]

+[1−wK,J (n)]

−βwIK(n)[SJ (n)−θNMDA]
+[Dbase−D(n)]+wK,J (n)

− γwIK(n)[θNMDA−SJ (n)]+[SJ (n)−θAMPA]
+wK,J (n)

(12)

where if g(n)> 0, [g(n)]+ = g(n), otherwise [g(n)]+ = 0.
As Equation 12 is somewhat complex, further explanation

is merited. Broadly, the first line describes the conditions un-
der which synapses would be strengthened whereas lines two
and three describe the conditions under which the connec-
tions would be weakened.

αw, βw, γw, θNMDA and θAMPA are constants. The first
three are learning rates whereas the constants θNMDA and
θAMPA represent the activation thresholds for post-synaptic
NMDA and AMPA glutamate receptors respectively, where
θNMDA > θAMPA because NMDA receptors have a higher
threshold for activation than AMPA receptors.

Equation 12 requires that we specify the amount of
dopamine, D(n), released on every trial in response to feed-
back. The amount of dopamine released is in turn dependent
on the reward prediction error (RPE), which is determined by
the following

RPE = Obtained Reward−Predicted Reward (13)

The reward obtained on each trial is dependent on the feed-
back given. For example, for applications where all stimuli
are rewarded or punished equally, the obtained reward Rn on
trial n is defined as +1 if correct feedback is given, 0 if no
feedback is given or −1 if incorrect feedback is given.

The predicted reward on each trial is calculated using a
simplified version of the Rescorla-Wagner model (Rescorla
& Wagner, 1972). Assuming that the participant has just re-
sponded for the nth time to some stimulus then the reward
they should expect to receive is given by COVIS as

Pn = Pn−1 +0.025(Rn−1−Pn−1) (14)

Then, the dopamine release on each trial, D(n), is calcu-
lated from the RPE using the following model

D(n) =


Dmax if RPE > Dmax−Dbase

Dslope

DslopeRPE+Dbase if − Dbase
Dslope

≤ RPE≤ Dmax−Dbase
Dslope

0 if RPE ≤− Dbase
Dslope

(15)

where Dmax, Ds and Db are constants.

Competition mechanism
COVIS uses a combination of the “confidence” each system
has in its response, and the level of “trust” the competition
system has for each system, to decide which system will
guide responding. The confidence that each system has in its
response is related to the degree of activation of each stimulus
representation. The confidence in the verbal system equals
the absolute value of the discriminant function, i.e. |hV (n)|.
If |hV (n)| is large then the stimulus is a long way from the de-
cision bound and so the verbal system is more confident in its
response, whereas if |hV (n)| is 0 then the stimulus is exactly
on the boundary between two categories and the verbal sys-
tem has no confidence on its categorisation. The confidence
in the implicit system, |hI(n)|, is equal to

|hI(n)|= |SA(n)−SB(n)| (16)

and follows a similar logic. If |hI(n)| is large then the im-
plicit system favours one response much more than the other.
However, if |hI(n)| is close to zero then both striatal units are
activated equally and so the system has little confidence in its
decision.

The degree of trust in each system is based on the past suc-
cesses and failures of the system. The amount of trust in the
verbal system is given by

θV (n+1) = θV (n)+∆OC[1−θV (n)] (17)

if the verbal system suggests a correct response on trial n.
However, if the verbal system results in an incorrect response,
the amount of trust in the verbal system on the next trial is
given by

θV (n+1) = θV (n)−∆OE θV (n) (18)

where ∆OE is a parameter. The trust in the implicit system is
given by

θI(n+1) = 1−θV (n+1) (19)

.
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Figure 1: The six category types (I-VI) in Shepard, Hovland
& Jenkins (1961). Each number represents a stimulus created
from combining the three binary dimensions, which are rep-
resented by the sides of the cube. The colour of the circles
indicate category membership.

Then, COVIS emits the response suggested by the verbal
system if

θV (n) |hV (n)|> θI(n) |hI(n)| (20)

else it emits the response suggested by the implicit system.

Simulation
The experiment
The category types in Shepard et al. (1961) represent the
six qualitatively different ways that eight stimuli, generated
from varying three binary dimensions, can be sorted into
two, equally sized, categories. These six category structures
used are detailed in Figure 1. These category types have
been found to systematically vary in difficulty (Shepard et
al., 1961; Nosofsky et al., 1994; Smith, Minda, & Washburn,
2004).

Category Type I is a one-dimensional rule and is learned
the most easily. Category Type II is an XOR rule and is the
next easiest (although see Kurtz, Levering, Stanton, Romero,
& Morris, 2013, for a discussion on the relative differences
between Types II and IV). Category Types III, IV and V re-
quire participants to attend to all three stimulus dimensions
and are the next most difficult. Finally, the Type VI category
structure has no simplifying rule, is the hardest to learn, and it
is generally assumed that the participants learn the stimulus-
category assignments separately for each stimulus.

Summary
COVIS is able to predict the pattern of category learning dif-
ficulty found in Shepard et al. (1961). However, in order
to capture this pattern of data, several adaptations had to be
made to the model.

Verbal system adaptations Two changes were made to the
verbal system. Although these modifications to the formal
model are unique to the current paper, they seem broadly con-
sistent with previously published heuristic descriptions of the
COVIS verbal system.

As mentioned above, previous simulations of experimental
results using COVIS have limited possible rule selection to
only the relevant one-dimensional rules (Ashby et al., 2011;
Hélie et al., 2012a, 2012b). However, when using only the
6 available one-dimensional rules (3 dimensions x 2 category
mappings) COVIS was unable to capture the ordinal results
of Shepard et al. (1961). Specifically, under these conditions
COVIS misplaces the difficulty of the Type II problem, plac-
ing it as difficult as the Type VI problem.

To rectify this, the model was extended to also include con-
junction and disjunction of conjunction rule types, with vary-
ing initial saliences. The one-dimensional rules were the most
salient, followed by the conjunctions and finally by the dis-
junction of conjunction rules. We do not include disjunctions
as they are behaviorally identical to conjunction models.

The inclusion of rules with different initial saliences im-
plied a knock-on change to part of the rule selection mecha-
nism. It seemed inconsistent with the general operation of
the model that rules with different initial saliences would
be equally likely to receive the boost produced by Equation
6. Therefore, in this implementation, random selection was
weighted by current rule salience.

Implicit system adaptations Two modifications were
made to the implicit system. The first was that this simula-
tion included the radial basis function (as stated in Equation
9). This has always been stated as part of the implicit sys-
tem of COVIS and we state our use explicitly here only be-
cause none of the previously simulations have actually used
it! (Ashby et al., 2011; Hélie et al., 2012a, 2012b). These
previous studies assumed that the stimuli were not confus-
able and therefore that each sensory unit would respond only
to its preferred stimulus. A similar argument could be made
here. However, as this simulation aimed to test whether CO-
VIS was capable of learning categories, it seemed important
to include the generalizing function as generalization is key
to the definition of what it is to have learned a category.

Our second adaptation was to provide separate feedback
was given to the implicit system, i.e. feedback as to whether
or not the implicit system was correct, not whether the overall
response, as determined by the competition system, was cor-
rect or not. Providing separate feedback has been included in
previous implementations of COVIS, with little explanation
as to why (Hélie et al., 2012a, 2012b).

Simulation
1000 simulations were run for each category type using the
model and adaptations described above. As in previous re-
ports of the empirical data Nosofsky et al. (1994), blocks 1
and 2 contained 8 trials whilst the remainder contained 16
trials. The stimuli were presented to the verbal system as
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Figure 2: COVIS’s predictions of learning the six structures
in Shepard, Hovland and Jenkins (1961).

vectors that varied on three binary dimensions as per previ-
ous simulations of COVIS (Ashby et al., 2011; Hélie et al.,
2012a, 2012b). However, unlike previous simulations and as
discussed above, stimuli were presented to the implicit sys-
tem as vectors that varied on 8 dimensions, corresponding to
the eight possible stimuli, with values determined according
to Equation 9. This was so that the verbal system received
a feature based representation of the stimulus and the im-
plicit system received an object-based representation which
included some generalisation across stimuli. The parameters
used are displayed in Table 1. No optimisation procedures
were used, rather parameters estimates were taken from pre-
vious COVIS simulations and adjusted until the predictions
shown in Figure 2 were generated.

The results indicate that COVIS can capture the ordinal

Table 1: Parameter values for all learning task simulations.

Parameter Value Parameter Value
Verbal System Implicit System

σV 0 α 0.14
δC 0.1 σI 0.0125
δE 0.2 αw 0.65
γ 1 βw 0.1
λ 5 γw 0.02
a 10 θNMDA 0.0022

θAMPA 0.01
Competition System Dbase 0.2
∆OC 0.2 Dslope 0.8
∆OE 0.9 Dmax 1

pattern of difficulty of the six category structures found in
Shepard et al. (1961).

Discussion
This simulation demonstrates that COVIS is capable of cap-
turing the ordinal pattern of difficulty found by participants
in learning the six distinct category structures described by
Shepard, Hovland and Jenkins (1961). However, it is interest-
ing to note that although COVIS captured the ordinal pattern,
there were still some quantitative discrepancies between this
simulation and behavioral replications of the original study.
For example, Nosofsky et al. (1994) demonstrated that well
before the end of the experiment category types II to V had
reached maximal accuracy, whereas COVIS predicts that ac-
curacy does not exceed approximately 85 and 95%. One
might argue that this is due to slower learning on the part of
COVIS relative to the participants. However, as learning ap-
pears to have reached a plateau, this seems unlikely. Another
possibility is that there are other parameters values that could
allow COVIS to more precisely capture learning of these cat-
egories. This seems more likely due to the lack of formal op-
timization in the current demonstration; an exhaustive search
of the parameter space could conceivably discover improved
parameter estimates that would enable COVIS to predict the
quantitative aspects of Nosofsky et al. (1994) more closely.
However, we would also argue that capturing the ordinal as-
pects of a data set are more important than the precise level
of quantitative fit, at least in the early stages of model testing
and comparison (Wills & Pothos, 2012).

It should also be emphasised that this and the simulations
conducted by Ashby and colleagues (Ashby et al., 2011;
Hélie et al., 2012a, 2012b) are first steps in determining
whether the formal aspects of COVIS provide the best de-
scription of the mechanisms of category learning. Reasons to
be cautious come from both simulations and behavioral work
conducted to test the COVIS theoretical framework. First, it
is possible that the predictions from this simulation and the
others mentioned above are parameter dependent. Although
COVIS has been shown to be sufficient to capture the ordi-
nal predictions of several experiments, this only determines
the model’s behaviour at one point in parameter space for
each experiment (Pitt, Kim, Navarro, & Myung, 2006). A
harder, and more important, question is whether there is a set
of parameters that would permit COVIS to capture the ordi-
nal patterns of several experiments simultaneously (as rec-
ommended by Wills and Pothos, 2012). One way future work
could address this issue would be to employing analysis tech-
niques that look at the model’s behaviour across all parameter
values, such as parameter space partitioning (Pitt et al., 2006)
or landscaping (Navarro, Pitt, & Myung, 2004).

Conclusion
In conclusion, this simulation demonstrates that COVIS is
able to capture the order of difficulty of the six category types
found by Shepard et al. (1961). Although encouraging, fur-
ther research is needed to establish whether COVIS can ac-
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commodate the broad range of well-established phenomena
already present in the category learning literature. Establish-
ing this seems likely to be of similar importance to testing
novel predictions of the model.
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