UC Berkeley
SEMM Reports Series

Title
An Algorithm for Assembly of Stiffness Matrices Into a Compacted Data Structure

Permalink
btt_ps://escholarship.orq/uc/item/4mw3h2t4|

Authors
Nour-Omid, Bahram
Taylor, Robert

Publication Date
1984-05-01

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4mw3h2t4
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SESM-84/06

STRUCTURAL ENGINEERING AND
STRUCTURAL MECHANICS

AN ALGORITHM FOR ASSEMBLY OF
STIFFNESS MATRICES INTO A
COMPACTED DATA STRUCTURE

by

BAHRAM NOUR-OMID

and

ROBERT L. TAYLOR

MAY 1984

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

AN ALGORITHM FOR ASSEMBLY OF STIFFNESS
MATRICES INTO A COMPACTED DATA STRUCTURE
by

Bahram Nour-Omid !
and

Robert L. Taylor?

ABSTRACT

A data structure is described that stores only the non-zero terms of the assembled stiffness
matrix. This storage scheme results in considerable reduction it memory demand during the
assembly phase of a finite element program. Therefore, larger matrices can be formed in the main
memory of the computer. When secondary store must be used this approach reduces the I/O cost
during the assembly stage.

An algorithm is derived that starts with the element connectivity information and generates
the compacted data structure. The element matrices are then assembled to form the stiffness
matrix with this storage scheme. The assembly algorithm is described and a FORTRAN listing
of the routines are presented. The reduction in storage is demonstrated with the aid of numerical

examples.

t Center for Pure and Applied Mathematics, Univemity of California, Berkeley, CA 04563.
b 4 Civil Engineering Department, University of California, Berkeley, CA 04563.

This research was supported in part by the Office of Naval Research under contract N00014-76-C-0013 and the Naval
Civil Engineering Laboratory under purchase order N62583/83 M T285.

Introduction

The analysis of large structures, especially in three dimensions, can result in stiffness
matrices that demand an exceptionally large amount of computer storage. The storage needs of
these matrices depend to a large extent on their sparsity and the data structure that is used to
store them. The choice of the data structure in turn depends on the method that is used to solve
the associated system of equations. Presently, most solution schemes used in finite element com-
puter programs are based on direct methods, i.e. triangular factorization of the stiffness matrix,

K. Starting from a given mesh description, a finite element program performs the following steps:
1. determine the sparsity structure of K,
2. renumber the equations to reduce the storage demands of K,
3. reserve the required storage for K,
4. compute the element matrices,
5. assemble the element matrices into K,
6. compute the triangular factorization of K,
7. solve the associate system of equations.

In many applications the available primary memory is not sufficient to store the assembled
matrix, and therefore secondary storage is used. In this circumstance, steps 4 through 7 involve
data transfers between primary and secondary store, often referred to as I/O. In this case, K is
partitioned into blocks and each block is assembled and stored on secondary store. The blocks
are then brought back into the main memory to form the factors of K. For large enough prob-

lems the [/O costs can dominate the computation costs.

A great deal of effort has been expended to develop new procedures for reordering the equili-
brium equations, thus reducing the overall storage requirements in the solution steps 5, 6 and 7
{1,2,3]. This is motivated by the fact that reduction in storage translates directly into a savings
in the I/O costs. Among the many solution schemes used, the frontal method [4] and the profile

or skyline method [1] are probably the most popular. In [8] it is shown that when the same nodal

-92.

elimination ordering is used the profile method performs the same number of operations as the
frontal method; in [5] an algorithm is described that delivers a good frontal node ordering for the
profile method. The significant difference between these methods is that the frontal method often
combines steps 4, 5 and 6. In this way the I/O during the assembly step is overlapped with the
I/O in the factorization step; thus, the frontal method results in a saving that is equal to the cost
of I/O in step 4. Alternatively, the assembly of a profile stored matrix which is partitioned into
blocks requires a multiple pass through the elements to perform the assembly. The principle
differences in the I/O costs of the two methods during factorization may be traced to the above
differences in the partitioning of the matrix into a frontal or a profile form. The principle disad-
vantage of the frontal method is the added overhead to retain a small front width during the tri-
angular factorization in step 6 and subsequent resolutions in step 7. For example, in resolution of
equations this added overhead may lead to CPU costs which are several times those of a profile

stored resolution.

In this paper we take a diflerent approach. We use the following simple observation:

The assembly process is independent of the solution procedure.

In other words, one should use the most eflicient data structure for the assembly process, step 5,
and then restructure the data for ones favorite solution scheme, i.e., either frontal or profile. In
this way one can achieve the same reductions in I/O as the frontal method and at the same time
maintain high modularity of the program. Here we develop a data structure that stores only the
nonzero terms in the stiffness matrix in a compacted form, and present an algorithm for the
assembly of K for this storage method. This approach results in considerable reduction in the
storage needs during the assembly process. Therefore large matrices often may be fully assembled

in-core resulting in a considerable reduction in I/O.

This approach has the added advantage that the program is not built around a single equa-
tion solver. One can have many solution procedures by simply expanding the compacted struc-
ture of K into a form appropriate for each particular solution method. ¥urthermore, the com-

pacted structure can be used directly for iterative solution techniques such as the conjugate

gradient type methods [6,7].

Storage Scheme

We now describe the compacted structure that is used to store K. We only consider sym-
metric matrices, although the extension to the nonsymmetric case is trivial, and store only the
upper triangular part of K is stored. The diagonal terms of K will be stored separately in a sin-
gle array of length n, where n is the total number of equations. The remaining off-diagonals will
be placed in a second array of length r, where r is the total number of nonzero off-diagonal terms
in the upper triangular part of K. All the elements in the same column will be placed consecu-
tively in this array, starting from the top of the column down to the diagonal (excluding the diag-
onal term). The columns are stored consecutively from the second to the last. For each entry in
this array we store its row number in a corresponding integer array of length r. The example

below demonstrates the final storage scheme.

Ezample:

Consider the matrix

19 12 15]

2 10 11 13 14

3 16 17

4 19 21

K= 5 18 20
6 22
7 23
he 8-J

The array diag contains the diagonal terms of K as shown below.
diag = (1,2,3,4,5,6,7,8] .
A real array then stores the off-diagonal terms of K and a corresponding integer array denotes the

row number of each ofl-diagonal term as show below.

of f-disg = [9,10,11,12,16,13,17,18,14,19,20,15, 21,22, 23|
row =11, 2, 2,1,3,2,3,5 2, 4,5, 1,4,6, 7

In addition, a single integer array of length n is also required to point to the end of entries from a

given column. For the above example this array is

4.

jeol = [0,1,2,3,5,8,11, 15

The total storage requirement is r + n real words and r + n integer words. Using a 16
bit integer word, %(n + r) real words (64 bit) will be sufficient. Then the largest number of
equations that can be solved this way is 2!5 — 1 == 32000. With a 32 bit integer word, the total

storage required will be %(n + r) real words.

Derlvation of the Assembly Process

In this section we give a step by step derivation of the assembly algorithm. Each step is
demonstrated with the aid of the mesh example in Fig. 1. First we introduce some notation. A
finite element mesh is denoted by M = {E , N} where E and N represent the collection of ele-
ments and nodes in the mesh. A part of the input information provided to a finite element pro-
gram is the set of nodes belonging to an element. This we denote as N, C/N. For example ele-
ment 4 in Fig. 1 has the connectivity set N, = {5,8,9,6}. In Table 1 we give the complete list
of the connectivity sets NV, for each element in example 1. These data are usually assembled in a
single array known as the connectivity array. The complete set { N, Y e€E } is sufficient to
describe the connectivity of a given mesh. Another part of the input data is the boundary condi-
tions that determine the set of the indices of all the active degrees of freedom at node p. We
denote this set as U,. In Table 1 we give the set { U, Y pEN} for the example in Fig. 1. In this
example, we assume that there are two degree of freedom at each node. The collection of N,,
column 2, and U, column 4, given in Table 1 is sufficient to determine the sparsity structure of

the stiffness matrix associated with a given mesh.

Element Connectivity Boundary Conditions

Element Set of Nodes for Node Set of Unknowns for
No. e each Element, N, || No. p | the Active nodes, U,

1 {1,452} 2 {1}
2 {256,3) 4 {2}
3 {4,7,85)} 5 {34}
4 {58,96)} 6 {5}
5 {7,11,8)} 7 {6}
6 {10,11,7} 8 {7,8}
7 {8 11,9} 9 {9}
8 {11,12, 9} 11 {10}

Table 1. Connectivity sets and active degrees of freedom for the mesh in Fig. 1.

Our objective here is to find the set of indices of the unknowns that are coupled with a
given degree of freedom. This is precisely the row number of each nonzero term in a given

column of the stiffness matrix, irow, that is required for the storage scheme described in the pre-
vious section.

First, we must establish the set of elements that are connected to each node. This can be
done by inspecting the element connectivity sets. Looking at the second column of Table 1, for
example node 4 appears twice, in rows 1 and 3. We then conclude that node 4 is connected to
elements 1 and 3. This process must be repeated for each node. The difficulty here is that we do
not know apriors the number of storage locations needed to identify the set of elements for each
node. For this reason the above process is carried out in two steps. The number of elements con-
nected to each node is determined and stored first. We refer to this as the E-degree (element
degree) of each node. In the example the E-degree of node 4 is 2. The E-degree also determines
the length of the array that is required to keep the set of elements connected to each node. For
each node p we denote this set by E, C E. Then the above process is simply to evaluate

E,={¢|peN} (1)
for each node p. This equation may be thought of as finding the pseudo-inverse of the connec-

tivity array. The E-degree of node p is the number of terms in E, (the cardinality of E,}. See

-6-

columns two and three of Table 2 for the E-degree and the complete set of E, for the nodes in
example 1.

Next, we find for the set of nodes that are adjacent to each node p. We denote this by
A,CN. This is the set of all nodes that belong to an element with p as one of its nodes. Having
established the set of elements connected to node p, the adjacent nodes are all the other nodes
belonging to these elements. In example 1 node 4 is connected to elements 1 and 3 (see column 2
of Table 2). The set of nodes belonging to elements 1 and 3 are obtained by inspecting column 2
of Table 1; these are { 1, 4,5, 2} and { 4, 7, 8, 5 } respectively. Then the set of nodes adjacent
to4is A,={1,5 2,7, 8}. The N-degree (nodal degree) of a node is the number of nodes adja-
cent to it and is the cardinality of A,. In columns 4 and 5 of Table 2 we give the N-degree and
the adjacency set of each node in the nodal graph of example 1 (Fig. 2). This step is simply to

evaluate the equation

A=N -n (2)
!EE,

Note that both A, and N-degree can be obtained in the same loop.

Node E N S
4 degree E, degree A, degree S,
1 1 1} 3 {4,5 2} 0 ¢
2 2 {12} 5 {1,4,56,63} 1 {1}
3 1 {2} 3 {256} 1 {2}
4 2 {1,3} 5 {1,257,8} 2 {1,2}
5 4 {1,342} 8 {1,478,9,6,3 2} 4 {1,432}
6 2 {24} 5 {25,893} 3 {253}
7 3 {3,561} 5 {10,11,8,5,4} 2 {45
8 4 {3517, 4} 6 {11,9,6,5 4,7} 4 {6,547}
9 3 {4,7,8} 5 {11,12,6,5,8 } 3 {6,5 8}
10 1 {6} 2 {7,11} 1 {7}
11 4 {6,5 17,8} 5 {10,12,9,8,7 } 4 {10,9,8,7}
12 1 {8} 2 {11,9} 2 {11,9}
Table 2. The result of algorithm for establishing the row index of the nonzero terms in K

for example 1.

-7-

Since we want to store only the upper triangular part of K we need to store only a subset of
A,. This will be the set of nodes in A, with an index less than p; that is
S, =1{i | i€A,andi < p}. We refer to the number of terms in S, as the S-degree (semi-
degree) of a node. The set S, is only useful when the numbering of the unknowns are such that
when ¢ < j all the unknowns at node 7 have a smaller index than the unknowns at node j.
Wherever this is not true it is necessary to use the complete set of adjacent nodes A, together
with the numbers of the unknowns for each node {e.g., see listing in Appendix A.).

Finally, for a given unknown at node p with index €U, we find the set of the indices of all
other unknowns that are coupled with u,. This will be the set of row indices 1?1 for nonzeros in

j-th column of K. Then

R,=yu (3)
(€4,)

For example 1 171 is the adjacency set of 5 in the graph of the unknowns in IFig. 3. Since we only
store the upper triangular part of K we scan through l?, and use the subset defined by:

R, ={i|i€R;andi <} (4)
R, is the row index of all the nonzero terms in the j-th column of the upper triangular part of K.

The complete set of R, for the example problem is presented in Table 3.

D.OF. | Node
j P Rj
1 2 {0}
2 4 {1}
3 5 {1,2}
4 5 {321}
5 6 {431}
6 7 {3,42)
7 8 {6,245 3}
8 8 |{23456,7)})
9 9 {7,4,5,3,8}
10 11 {9,6,7,8}

Table 3. The row indices of the nonzero terms in the upper triangular part of K.

-8-

The listing of a FORTR AN program that performs all the steps that is described in this
section is given in Appendix A. In this Appendix we also provide the subroutine that uses the

row indices to perform the assembly of K.

Numerical Result

We use the algorithm described in the previous section to assemble the stiffness matrices of
the problems described in Table 6. The total storage required during the assembly step is
evaluated. We compare these results to similar results obtained when the assembly is performed
directly into a profile data structure. The storage requirement of the compacted assembly is not
eflected by the node ordering. For the assembly into a profile form, we numbered the nodes
across the width of the mesh to reduce the bandwidth of the stiffness matrix. Although, the
bandwidth could have been reduced further using a renumbering scheme such as [2,3], we omitted

this step for simplicity. The results for examples 2 to 6, given in Table 6, are presented in Table

4 below.
Description No. of No. of No. of Stores for Stores for
of Problem nodes | elements | equations profile Compacted K
Cantilever type structure 225 184 428 10204 5340
Small Cylinder structure 231 200 440 10492 5679
Large Cylinder structure 496 450 960 32542 12715
4X 4Xx 4 solid structure 125 64 300 21945 11634
8X 8X 8 solid structure 729 512 1944 470043 94272

Comparison of the storage demands of profile and compacted assembly for K in
examples 2 to 6.

Table 4.

The results in Table 4 is obtained based on the assumption that a real word is twice as long as an
integer word. We observe a reduction from 40% for two dimensional (2-D) problems to 80% for
3-D problems for these examples. The reductions will be more if short irteger words are used. It
is interesting to note that the required storage for compacted structure varies linearly with the

number of equations. Therefore, the saving will be more for larger problems. In Table 5 we give

-G

the storage counts for the two methods considered here on square mesh in 2-D and cubes in 3-D as
a function of the number of equations. To obtain these estimates we assumed that there is only

one degree of freedom per node.

Dimension Half Profile | Compacted
of Problem | bandwidth | storage storage

1 2 5/2 n 3n
2 nf? n3? 15/2 n
3 n?? n®/* 21n

Table 5. Estimated storage needs for each scheme on regular mesh. n is the number of equations.
Conclusion

The essential steps in a finite element program can be modified to make use of the com-
pacted assembly described here. Accordingly, we perform the following steps:

1. Obtain the row indices of the ronzero terms in K.

2. Assemble the matrix in compact form.

3. Choose a solution procedure and renumber the equations to reduce the storage

demands of the factors of K.
4. expand the compacted K into a data structure suitable for the solution method.
5. solve the associated system of equations.

When there is insufficient primary storage, the assembly of the matrix in compacted form
opens a number of possible avenues that one can take to reduce the I/O cost. The expansion of
the compacted form need not be done immediately after it's assembly. The matrix can be kept in
compact form and put on secondary store and expanded into a full profile form only when a fac-
torization must be performed. This way the number of data entries that is read (in the Input
phase of I/O) can be reduced considerably, which in turn results in a reduction in the solution

time.

- 10 -

6

®
5

®
A

Figure 1.

Finite element mesh of example 1.

Figure 2.

Nodal graph for the mesh of example 1.

-12-

Example 2: Cantilever Struc-
ture, left end fixed, plane stress
elements with 2 degrees of free-
dom per node.

Example 3: Small Cylinder,
both ends fixed in tangential
direction, plane strain elements
with 2 degrees of freedom per
node.

Example 4: Large Cylinder,
both ends fixed in tangential
direction, plane strain elements
with 2 degrees of freedom per
code.

wan
Se%e! “““I“l
eSfessaitty
RIS
< ‘:“

yd L L]
Example 5: 4X 4X 4 Solid cube, ¥
fixed base, solid elements with 3
degrees of freedom per node.
e
LT
b/ L f/‘7
e E
. Lz varghg
Example 6: 8X8X 8 Solid cube, ¥
fixed base, solid elements with 3)
degrees of freedom per node. /: f
// /j
/:j/j
0%

Table 6. Description of test examples.

-13 -

References

(1]

(2]

3

(4]

[s]

[6]

7l

i8]

(9]

[10]

A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, 1981.

E. Cuthill and J. McKee, “‘Reducing the Bandwidth of Sparse Symmetric Matrices,” Proc.
ACM Nat. Conf., New-York, 1969.

N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer, “An Algorithm for Reducing the
Bandwidth and Profile of A Sparse Matrix,”” SIAM J. Num. Anal., Vol. 13, pp. 236-250,
1976.

B. Irons, ‘A Frontal Solution Program for Finite Element Analysis,”” Int. J. Num. Meth.
Engng., Vol. 2, pp. 5-32, 1970.

M. Hoit and E. L.. Wilson, ““An Equation Numbering Algorithm Based on a Minimum Front
Criteria,” Computers and Structures, Vol. 16, No. 1-4, pp. 225-239, 1983.

B. Nour-Omid, B. N. Parlett and R. L. Taylor, ‘‘A Newton-Lanczos Method for Solution of
Nonlinear Finite Element Equations,”” Computers and Structures, Vol. 16, No. 1-4, pp. 241-
252, 1983.

R. L. Taylor and B. Nour-Omid, ‘“Solution of Finite Element Problems by Preconditioned
Conjugate Gradient and Lanczos Methods,” Rep. No. UCB{SESM-84/05, Department of
Civil Engineering, University of California, Berkeley, Mzay 1984.

R. L. Taylor, E. L. Wilson and S. Sackett, ‘“‘Direct Solution of Equations by Frontal and
Variable Band, Active Column Methods,”” in Nonlinear Finite Element Analysis in Structural
Mechanics, Proc. Europe-US Workshop, July 1976.

R. L. Taylor, “Computer Procedure for Finite Element Analysis,” Ch. 24, The Finite Ele-
ment Method, 3-rd Ed., by O. C. Zienkiwicz, McGraw-Hill, London, 1977.

E. L. Wilson, ““‘Solution of Sparse Stiffness Matrices for Structural Systems,” Proc. of Sparse
Matrices, Ed. 1. S. Dufl, SIAM, Philadelphia, 1979.

[eXeNeNoNoNoNeNeNoNoNoNeNoNe o)

100
110

aaQaQ

Q

aaa

150

- 14 -

Appendix A: Program Listing

SUBROUTINE ELCNT(NUMNP ,NUMEL ,NEN,NEN1, IX, [C)
DIMENSION IX(NEN1,1),1C(1)

INPUT
NUMNP
NUMEL
NEN
NEN1

IX

ouTPUT
IC

TOTAL NO. OF NODES IN THE MESH
TOTAL NO. OF ELEMENTS IN THE MESH
MAX. NO. OF NODES PER ELEMENT
DIMENSION OF IX ARRAY

ELEMENT CONNECTIVITY ARRAY

ARRAY OF LENGTH NUMNP. IT FIRST HOLDS THE ELEMENT DEGREE
OF EACH NODE, THEN BECOMES A POINTER FOR AN ARRAY THAT
CONTAINS THE SET OF ELEMENTS CONNECTED TO EACH NODE.

COUNT THE NUMBER OF ELEMENTS EACH NODE BELONGS TO

CALL I1ZERO(I1C,NUMNP)

DO 110 N
DO 100

= 1,NUMEL
J = 1,NEN

I = IX(J,N)

IF(

1.GT.0) IC(1) = IC(1) + 1

CONTINUE

CONT INUE

SET UP POINTERS

DO 120 I
ic(1)
CONT INUE

RETURN
END

= 2, NUMNP
= IC(1) + IC(1-1)

SUBROUTINE CASSEM(D,A,B,S,P, JCOLE, IROW,LD, ID,NST,NEL , AFL , BFL)

IMPLICIT

DOUBLE PRECISION (A-H, 0-%)

LOGICAL AFL ,BFL
D IMENS [ON D(l%,?(l),B(l).S(NST,l),P(l),JCOLE(l),IROW(I),LD(I)
D(1

COMPACT ASSEMBLY OF PROFILE MATRIX

DO 200 J = 1 ,NEL
N = LD(J)
IF { AFL _AND. N .GT. 1) THEN

DO 150 I = 1,NEL
K = LD(1I)
IF (K .GT. 0 .AND. K .LT. N) THEN
INZ = INZA{JCOLE(N-1)+1, JCOLE(N) , IROW, K)
A(INZ) = A(INZ) + S(I,J)
END IF
CONTINUE
END IF
ASSEMBLE THE DIAGONAL

IF (N .GE. 1) THEN

IF
ASS
IF
END IF
CONT INUE
RETURN
END

(AFL) D(N) = D(N) + S(J,J)
EMBLE THE LOAD IF NECESSARY
{ BFL) B{(N) = B(N) + P(J)

[oNoNoNoNoNoNoRoRoNo RO No!

200

220
230

aaQaQ

310
320
330

340

350

1

- 15 -

SUBROUTINE COMPRO(NUMNP ,NUMEL ,NEN,NEN1 ,NDF,I1X,ID, IC, IROW, IELC,

JCOLE ,KP)

DIMENS ION IX(NEN1,1),ID(NDF,1),IC(1),IROW(1),6IELC(1),JCOLE(1)

FOR (NUMNP, NUMEL ,NEN,NEN1,IX,IC) SEE SUBROUTINE ELCNT

INPUT

NDF NUMBER OF UNKNOWNS AT EACH NODE

ID ACTIVE UNKNOWNS AT EACH NODE

OUTPUT

IELC HOLDS THE SET OF ELEMENTS CONNECTED TO EACH NODE
IROW ROW NUMBER OF EACH NONZERO IN THE STIFFNESS MATRIX
JCOLE END OF ENTRIES IN IROW FORM A GIVEN COLUMN

FIND ELEMENTS CONNECTED TO NODES

CALL 1ZERO (IELC, IC(NUMNP))
DO 230 N = 1,NUMEL
DO 220 J = 1,NEN
I = IX(J,N)
IF (1 .GT. 0) THEN
KP = IC(1)
IF (IELC(KP) .EQ. 0) GO TO 210
KP = KP - 1
GO TO 200
IELC(KP) = N
END IF
CONTINUE
CONT I NUE

SET UpP COMPRESSED PROFILE POINTERS

KP =0
NEP = 1
DO 350 I = 1 ,NUMNP
NE = IC(1I)
DO 340 Il = 1! NDF
NEQ = ID(I1,1)
IF (NEQ .GT. 0) THEN
JCOLE(NEQ) = KP
KPO = KP + 1
IF (NEP .LE. NE) THEN
DO 330 N = NEP,NE
NN = JELC(N)
DO 320 J = 1 ,NEN
K = IX(J,NN)
DO 310 JJ = 1 ,NDF
NEQJ = ID(JJ K)
IF (NEQJ .GE. NEQ .OR. NEQJ .LT. ¢) GO TO 310
CHECK TO SEE IF NODE ALREADY IN LIST
IF (KPO .LE. KP) THEN
DO 300 KK = KPO,KP
IF(IROW(KK) .EQ. NEQJ) GO TO 310
CONTINUE
END IF
KP =KP + 1
IROW(KP) = NEQJ
CONT INUE
CONT INUE
CONTINUE
JCOLE(NEQ) = KP
END IF
END IF
CONTINUE
NEP = NE + 1
CONT INUE
RETURN

END

aaaqQ

100

100

- 16 -

INTEGER FUNCTION INZA(N1,N2,IROW K)

DIMENSION IROW(1)
FIND THE TERM FOR THE ASSEMBLY

DO 100 N = N1,N2
IF (IROW(N) .EQ. K) THEN
INZA = N
RETURN
END IF
CONT INUE
ERROR IF LOOP EXITS
STOP
END

SUBROUTINE [ZERO(1A ,NN)

DIMENSION [A(NN)

DO 100 N = 1,NN
IA(N) = 0

CONT INUE

RETURN

END

