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Abstract: Assuming that the In hydraulic conductivity in an aquifer is mathematically approximated 
by a spatial deterministic "surface", or trend, plus a stationary random noise, we treat the problem of 
finding what the effective hydraulic conductivity of that aquifer is. This problem is tackled by spectral 
methods applied to a type of diffusion equation of groundwater flow, together with suitable coordinate 
transformations. Analytical (exact) solutions in terms of elementary functions are presented for one- and 
three-dimensional finite and infinite domains. Stability criteria are obtained for the solutions, in terms of 
a critical parameter, that turns out to involve the product of correlation scale and trend gradient. For the 
case of finite and symmetrical domains, additional provisions to insure the stability of numerical calculations 
of effective hydraulic conductivity are provided. Effective hydraulic conductivity is an important property, 
with potential applications in the calibrations of groundwater and transport numerical models. 

Key words: Stochastic diffusion equations, effective hydraulic conductivity, correlation scale, heterogeneous 
aquifers, spectral representation 

1 In t roduc t ion  

The mathematical foundations of stochastic processes can be traced back to Bachelier (1900), who 
introduced the concept of a martingale. Langevin (1908) introduced the first formal stochastic 
differentiM equation to describe the motion of a particle subject to "Brownian" impacts, the latter 
named after Robert Brown, a botanist who first described the erratic motion of small particles 
immersed in a fluid in 1829. Einstein (1905), derived the deterministic differential equation, in fact 
a diffusion equation, describing the distribution of solute particles in a stationary fluid. Einstein's 
1905 paper briged a significant gap at the time, since it demonstrated the linkage between a random 
process, namely, Brownian motion, and the the physical distribution of solute particles in a fluid. 
The linkage was a simple diffusion (deterministic) equation. A convergence was shaping between the 
experimental and theoreticM work of A. Fick, L. Boltzmann and others in the second half of the 19th 
century in solute diffusion, and the incipient theory of stochastic processes at the turn of the 20th 
century. It would take nearly 40 years after Einstein's 1905 work for the mathematical relationship 
between Brownian motion and diffusion processes to be generalized and rigorized probabilisticatly. 

Progress continued to be made in the interim, and, for example, Ornstein and Uhlenbeck (1930) 
provided a solution to Langevin's stochastic differentiM equation based on the widely known 
Ornstein-Uhlenbeck process. Both Brownian and Markovian processes (the latter introduced by 
Markov in 1906) played a role in the theory. Wiener (1923) provided rigorous treatment to the 
Brownian motion process, that Kolmogorov (1940) expanded in a fundamental paper on the gen- 
eral Markov process. By the early 1940's a good deal of work being done on stochastic differential 
equations revolved around the following It5 (1944) stochastic difference equation: 



dXt = #(t, Xt)dt  4" ~(t, Xt)  - dBt (1) 

where Xt is a n-dimensional martingale process defined in positive continous time t, driven by the 
d-dimensional Brownian process Bt; /t and ~r are n x 1 and n x d coefficient vector and matrix, 
respectively. The vector p and matrix ~ are of particular significance in relating the solution of the 
stochastic differentiM equation in equation (1) to the diffusion process of primary interest to this 
paper, as will be. shown later. 

2 S tochas t ic  difference equa t ions ,  I t5  a n d  S t r a tonov lch  calculus 

It5 (1944) introduced a class of integrals, in fact, thereafter named after him as It5 integrals. (or more 
generally, It6 calculus), to integrate the difference equation (1) (known as It6's stochastic differential 
equation) with respect to time. Formally, 

X t -  Xto --~ f ~(s,X(s))ds ~- f ¢T(s,X(s))dB(s) (2) 
to to 

where the initial condition Xto is independent of the Brownian process dB(t). The first integral in 
the right-hand side of equation (2) can be defined as a Riemann integrM in the mean square sense 
under suitable conditions (Soon, 1973). The second integral in the right-hand side of equation (2) 
involving the Brownian process, however, is meaningless either in the mean square or the classical 
sense as a Riemann integral, but it can be handled by lt6 integration, defined as follows: 

t n-I 

f cr(s,X(s))dB(s) = lim y~. ~ r ( t k , -  Btk] (3) Xtk)[Bt~+l 
to k:O 

in which At = max(tk+l - tk), k = O, 1, 2, ..., n-l, and the limit in equation (3) denotes convergence 
in mean square (Loaieiga and Marino, 1990). 

The It6 stochastic differential differential equation (1) has been considered in groundwater hy- 
drology, written in a slightly different way as follows (Loaieiga and Marino, 1987a; 1987b): 

dXt 
dt = p(t, Xt) Jr 0"(t, X t ) ~  (4) 

in which ~ is a white noise process (that can be interpreted as special type of derivative of Brownian 
motion, i.e., ~ -= dBt/dt ,  since Brownian processes are not differentiable in the classical sense). 
With an added observation process (i.e., Yt m q2Xt -+- wt, where • is an observation matrix and w 
is white noise), equation (4) denotes the well-known state-space model of Kalman and Bucy (1961). 
This is widely used in stochastic hydrology (Loaiciga and Marino, 1987a,b; Graham and McLaughlin, 
1989), and arises after numerical discretization of the continuous equations of groundwater flow and 
mass transport. 

In applied hydrologic work, equation (4) is integrated numerically, mostly via the statespace filter- 
ing method of Kalman and Buey (1961). At a more fundamental level, stochastic It6 integration has 
been important in furthering the theory of stochastic differential equations, although applications, 
in fields such as biology, and computer simulations can be found in Arnold (1974), Wong and Zakai 
(1969), Turelli (1978), Sussman (1978), and Gard (1988). One of the most intriguing paradoxes of 
stochastic calculus concerns the existence of two different, yet mathematically consistent, approaches 
for the integration of stochastic difference equations. One approach is that by It6 (1944) whereby 
the stochastic difference equation (4) is rigorously written as in equation (1), and then integrated 
according to equations (2) and (3). The other, more recent, approach is due to Stratonovich (1964), 
wherein equation (4) is rigorously written as follows (von Weizsacker and Winkler, 1990): 

dXt = p(t,  Xt)dt  + ~r(t,Xt)dBt + 1/2 d~r(t,Xt)dBt (5) 

Notice in equation (5) that Stratonovich calculus introduces the last term in the right-hand side of 
equation (5), resembling the chain rule of classical calculus (except for the 1/2 term) applied on its 
right-hand side. Once written as in equation (5), it is obvious that the integration of this equation 
leads to a result different to that obtained from integrating the It6 stochastic differential equation 



(1). Yet, both It6's and Stratonovich's solutions are mathematically consistent. A significant body 
of literature exists on this intriguing paradox concerning the It6 and Stratonovich approaches, which 
are connected by the "switching theorem" (von Weizsacker and Winkler, 1990). 

3 Stochast ic  differential  equat ions  and diffusion problems 

Much of the discussion thus far presented would seem rather esoteric if it were not for a truly 
remarkable connection between deterministic diffusion equations, quite important in groundwater 
hydrology, and stochastic difference equations of the It5 type. A less conclusive and general con- 
nection has been hinted at already in citing of Einstein's (1905) work. The following result due to 
It6 (1944; 1951) establishes the fundamental link between deterministic diffusion problems and the 
stochastic differential equation (1). Consider the deterministic diffusion equation: 

L[¢(t,x)] = + 1/2 _ _  al,j(t,x) , = 0 (6) 
i=1 i~=1 

where L represents a diffusion operator;, Pi and ai,j are components of a deterministic coefficient 
(drift) vector, p, and deterministic positive definite (diffusion) matrix, a, respectively. It6's (1944; 
1951) fundamental result states (see, e.g., yon Weizsacker and Winkler, 1990) that, under suitable 
conditions, solutions Xt to the stochastic differential equation (1) are diffusion processes, i.e., there 
is an L and a ¢(t, x) such that L(¢(t, i t )  satisfies equation (6). (The necessary and sufficient 
condition is that the driving noise in equation (1) have independent and stationary increments, as 
Brownian noise does). Furthermore, the diffusive matrix a in equation (6) is such that its square root 
is the coefficient matrix in the It5 stochastic differential equation (1), specificallly, a = a a T, where 
T denotes the transpose. Therefore, the fundamental It6 theorem just stated reveals the remarkable 
fact that for every deterministic diffusion process of the form in equation (6), there is a related 
It5 stochastic differential equation whose solution (which is unique for a given initial condition of 
the driving noise and positive definite matrix ~ in equation (1)) satisfies the diffusion process in 
question. We call this result the stochastic-deterministic duality of diffusion processes. (See Nelson 
(1967) and Prugovecki (1984) for important applications.) 

4 A s tochast ic  diffusion equat ion  wi th  r andom paramete rs  

Consider the following steady-state groundwater flow equation with random hydraulic conductivity 
K(x) (tensorial index notation is used): 

[ 0~(x)] 0 K(x) -- 0 (V) 
0Xi 0Xi J 

where x denotes a three-dimensional coordinate vector; and ¢(x) is the hydraulic head. In the 
approach of Loaiciga et al (1993), adopted herein, K(x) is a stochastic parameter whose distribution 
is conveniently expressed in terms .of the log-hydraulic conductivity, Y = lnK.  (Equation (7) is a 
stochastic differential diffusion equation with random parameters.) It is assumed, furthermore, that 
the log-conductivity is composed of a deterministic, although spatially variable, trend T plus a zero- 
mean random noise f with spatial statistical structure. Specifically, Y(x) = T(x) + f(x). The field 
variable ~(x), is modeled as the sum of a deterministic mean H(x) and a zero-mean random noise 
h, i.e., ¢(x) = H(x) + h(x). Substitution of these decompositions of log-conductivity and hydraulic 
head in terms of a deterministic structural and a random component into equation (7), plus further 
manipulation of the resulting expression can be shown to lead to the following deterministic partial 
differential equation governing the mean hydraulic head H (equation (8)) and to a stochastic partial 
differential equation for the hydraulic head perturbation h (equation (9)) (note that the stochastic 
structure of the perturbation f is specified extraneously): 

02H OH { O f  Oh} 
~xi0x----T + bi~x~ + E ~x~ ~ = 0 (8) 

where bi = OT/0xi; and E denotes expectation; 

Ox~0x--U + b i ~ + 0 x ~ 0 x - 7  + ~ O x ,  r ~ = 0  (9) 



From equations (8) and (9) it can be seen that they are coupled (H and h appear in both equations). 
Given that the probabilistic nature of f is specified, equations (8) and (9) form a system of linear 
simultaneous equations. Therefore, equations (8) and (9) require a simultaneous solution. One 
possible approach to solve the coupled mean and perturbation equations, is: (i) assume the products 
of perturbation gradients are zero in equations (8) and (9); (2) proceed to solve the mean equation 
(8); (iii) use that  solution in equation (9) and solve the latter (i.e., find the covariance of h ); (iv) 
having the covariance of h derive the expected value of the product of perturbation gradients in 
equation (8); (v) re-solve the mean equation (8) with the term involving the product of perturbation 
gradients obtained in (iv) included; (vi) with the revised solution to the mean equation proceed to 
re-solve the perturbation equation (9) with the terms in brackets involving products of perturbation 
gradients included. These series of steps can be iterated until an adequate convergence criterion is 
met. Regrettably, there is no theoretical proof at this time that such an iterative scheme will converge 
to a solution nor that  a solution to equations (8) and (9) exists. Loaiciga et al (1993) followed the 
solution approach just outlined successfully to obtain an approximate analytical solution to the mean 
and perturbation equations in a one-dimensional flow domain. 

By and large, however, it is customarily assumed that the terms in brackets in equations (8) and (9) 
are negligible, of "order ~ " ,  O(a~), where a~ is the variance off, and ~r~ < <  1 by assumption. The 
latter assumptions are synonymou~ to the widely used "first-order" or "small-perturbations" analysis 
of stochastic groundwater. Loaiciga and Marine (1990), have shown that the order of magnitude (as 
measured by the standard deviation) of the nonlinear product of perturbation gradients in equations 
(8) and (9) is-not always proportional to a~ as is generally assumed. Their (approximate) expression 
for the standard deviation of the term in brackets in equation (9) is: 

~2 = {a~(O) 2 + a~(0)~ 'h(0)}  1/~ (10) 

in which ~ ( 0 )  denotes the second derivative of the cross-covariance of the perturbation of lnK, f, 
and hydraulic head, h, evaluated at r = 0, where v is a separation vector; analogous definitions 
hold for the second derivatives of the eovariances of f (aft) and hydraulic head (ahh). Empirical 
evidence (see, e.g., Gelhar et al, 1993) on the field variability of f is not at all conclusive either that 
the assumption ~ < <  1 is valid in many highly heterogenous conditions. Therefore, there is at 
present a significant theoretical gap on the understanding of the solutions to equations (8) and (9) 
in heterogenous 2- and 3-dimensional aquifers. 

5 Effective hydrau l ic  conduc t iv i ty  in  one-d imens iona l  domains  

Assuming an exponential model for the covarimlce of the disturbance oflnK (aft(v) = ~ exp(-[r[/A), 
where r is the separation vector, and A is the correlation scale of lnK), and using a spectral method 
of solution for the perturbation equation (9), Loaiciga et al (1993) have shown that the effective 
hydraulic conductivity, Ke, which relates mean specific discharge to minus the mean hydraulic 
gradient, is given by the following expression in one-dimensional domains: 

Ke = e w i b,~ + 1" 

where b = dT/dx denotes the one-dimensional trend gradient. 
It is seen from equation (11) that the condition for nonnegative effective hydraulic conductivity 

is a~ < b,~ + I, and that  a singular point exists at b~ = -1. Notice then how in the presence of 
a trend in InK, the restriction on the variance of InK perturbation involves the critical product of 
parameters bA. (The parameter bA plays an important role in 2- and 3-dimensional analysis also.) 
The expression in equation (11) also shows that, since the trend T is in general spatially variable, 
so is the effective hydraulic conductivity. If the trend of lnK can be adequately identified from data, 
it is possible to construct a spatially dependent effective hydraulic conductivity field directly from 
equation (1t). In 2- and 3-dimensional domains this is potentially useful in calibrating numerical 
models of groundwater flow and mass transport. Most of the hydraulic head and aquifer properties 
data collected in the field represent averages or "effective" values over extended spatial domains. 
Numerical simulation models are also coarse and discrete spatial approximations to continuous pro- 
cesses. It seems reasonable, therefore, that  in seeking calibrating parameters for such numerical 
simulation models, to focus on the theoretical effective conductivity relating the mean or average 
groundwater flow discharge to the mean hydraulic gradients. Average effective hydraulic conductiv- 
ities over finite-difference ceils and finite elements can be calculated (e.g., by integration) from the 
continous-space function Ke. 



6 Effect ive hydrau l i c  conduc t iv i t y  in  3-d lmens iona l  d o m a i n s  

Novel results in stochastic groundwater hydrology for the effective hydraulic conductivity in finite 
and infinite 3-dimensional domains are developed in this and following sections. (Results for 2- 
dimensional domains are being derived, but, somewhat counterintuitively, involve more advanced 
functions than those which appear in three dimensions.) The spectral method used by Loaieiga et 
al (1993) to derive solutions such as that  given in equation (11) can be extended to the solution of 
stochastic diffusion groundwater equations in three-,dimensions. Loaiciga et al (1993) showed that 
the mean specific discharge eli in the i-th coordinate axis (i = 1, 2, 3) is given by the following ex- 
pression (where J is the mean hydraulic gradient vector whose components are Ji = aH/0xi,  i = 1, 2, 
3; ki is the ith component of the wave-number vector k; is the ith component of the log-conductivity 
trend gradient vector b; R is the complete three-dimensional space; j2 = -1; k 2 = k.k; k-b; k.J  are 
inner vectorial products): 

~li : --eT i + ~ [(k~) ~ + (k.b)~](1 + A2k2) 2 dsk (12) 
R 

The remainder of this paper presents a method for the analytical exact evaluation of the integral in 
equation (12). 

5.1 The integral class It,n,p,¢ and the evaluation method 

Let us define the following generic integral: 

kip F(k 2, k .  b) (k .  a)n 
II,n,p,q (b, J,  A, S) = [(k2) 2 + (k '  b)2](1 + A2k2)q/~ dsk (13) 

s 

where F is a suitably defined function; S is a spherical region in k-space with center at the origin 
and of radius p; 1, n, p, q are index integers suitably chosen for any given function F. The functions 
F that  appear in the integral of equation (13) are typically quite simple. For example, if F(k2,k.b) 
= k-b + j k 2, 1 = 1, n = 1, p = i (i = 1, 2, 3), and q = 4, then II,n,p,q so defined is the integral in 
equation (12). The integration method presented herein does not strongly depend on the nature of 
F, given that  F depends only on k 2 and k.b. The integration method to be developed does apply 
to more general integrals than those represented by equation (13), such as those that  might arise in 
anisotropic porous media. 

The basic strategy in the development of the integradon method is to find geometric transfor- 
mations of the vectors b,  k, and J to reduce the triple integrals of interest to single integrals with 
elementary functions as integrands. Conical and spherical trigonometry will play a central role in 
carrying out these geometric transformations. The single integrals that emerge are slowly convergent, 
or divergent but renormalizable by subtraction and domain truncation. They were introduced by 
Euler (1748) under the name of "dilogarithms', further developed by Spence (1809), and perfected 
by Kummer (1840), who reduced them to trigonometric series studied by Clausen (1832) in relation 
to diffusion problems. In the period 1880 to 1950 these integrals were much neglected, but were 
revived as a systematic matter by Lewin (1981), presumably because of their occasional appearance 
in electrical, electromagnetic, and thermodynamic problems, as well as in quantum electrodynamics, 
a prolific source of physically important but exceptionally puzzling integradon problems (Feynman, 
1948; Kallen, 1950). 

The devices required to carry out the integrals of this paper (see equation (12)) - integration by 
parts, partial fractions, trigonometric and rational substitution, and differentiation with respect to 
a parameter-, are all very familiar but the number of times that these must be employed to get 
through a typical II,n,p,q problem is distressing. Finally, even the answers have many disparate 
terms, more than usual in classical or quantum electrodynamics. The relative sizes of these terms 
depend on the relations between three or four parameters, leading to a large number of potentially 
different "regimes". All these features militate against a straightforward three-dimensional numerical 
integration strategy- numerical analysis enters rather at the later stage of evaluation of the slowly 
convergent Clausen series. 



6.2 A differential relation for the integral class/z,n,p,q 

If the function F(k 2, k,b) in the integral of equation (13) is an even function of k.b, assign F the 
parity v = 0, and if it is an odd function of k.b, assign it the parity v = 1. Consider the effect of 
the transformation k -* -k on the integral of equation (13). If the integration region S is invaxiant 
under this transformation, it is seen from equation (13) that if l + n + v is odd, then II,n,p,q = 0, 
and if l + n q- v is even, then II,n,p,q is likely to be nonzero. The dependence of equation (13) on l 
and p can be clarified by differentiation of a two-index family of integrals, Ga,q, 1 times with respect 
to Jp, the pth component of the mean vector gradient J .  Let 

f F(k ~, k .  b)  (k .  j)r~ 
Gn,q = [(k2) 2 + (k-b)2](1 + A2k2) q/2 dak (14) 

s 

Clearly~ Gn,q = I0,n,p,q (which is independent of p). Differentiation of Gn,q in equation (14) 1 times 
with respect to Jp' establishes that  

01Gn,q n! 
cqJlp -- ~ II,n-l,p,q (15) 

SO, that by letting n ~ = n - ~, then: 

(n')! OlGn,+~,q (16) 
II,n',p,q = (n' -1- 1)! 0J[  

Thus, if Gn,q is known as a function of J for some specific F, formal differentiation as indicated 
above yields II,n-l,p,q. 

Further progress is difficult unless the integral II,n,p,q is particularized. Let us focus on the example 

kp(k.b + jk2)(k .J) 
Ii,1,p,4 = [(k2) ~ + (k.b)2](1 + A2k2) 2 dsk (17) 

s 

which enters the integral in equation (12). Obviously, 11,1,p,4 is a sum of two integrals of the ll,n,p,q 
type for different choices of F. The first integral has l = I, n = 1, q = 4, FI = k-b, u = I (i.e., FI 
is and odd function of k-b, thus the parity I assigned to it), and, therefore, I + n + u = 3; so, if 
the region of integration S is a sphere with center at the origin, then the first integral is zero. The 
second integral has l = I, n = i, q = 4, F2 = j k 2, with parity v = 0, and, therefore, I + n ÷ v = 
2; so, the second integral probably does not vanish. 

With the choice of F as in equation (17), the following relation exists between the two-index 
integral G2,4 and Ii,1,p,4, according to the result of equation (16): 

1 0G2,4 
II'l'P'4 = 2 OJp 

1 0 / j k~ (k . J )  2 
= 2 ~ j [(k2) 2 + (k.b)2](1 + A2k2) ~ d3k (18) 

s 

Note that  II,l,p,4 is the integral that appears in equation (12). Therefore, if G2,4 is known, its 
derivative with respect to Jp gives the integral of equation (12). In the next section the triple integral 
of equation (18) is reduced to a single integral written in terms of elementary functions, which is 
then evaluated exactly in terms of dilogarithms and Clausen functions. The reduction method from 
triple to single integrals is quite general for treating integrals of the type defined by equation (13), 
and is easily modified to two dimensions. The triple integrals of this paper appear quite often in the 
solution of stochastic groundwater differential equations (see Loaiciga et al (1993)). It will be shown 
later on that numerical integration is not advisable even for the reduced single integral. Instead, 
analytical evaluation expressible in terms of Clausen series is the best method to ultimately integrate 
equation (13) in general, and equation (12) in particular, the subject matter of this paper. 



7 B i p l a n a r  a n d  b i eon ica l  c o o r d i n a t e  t r a n s f o r m a t i o n s  

7.1 Biplanar radial coordinates 

The integrand of equation (18) is the quotient of a quartic in kl, ks, k3 by an octic in ki, k2, 
ka. Straightforward algebraic methods are impractical in such cases. Define the biplanar radial 
coordinates r = v ' ~ ,  u = k.b,  v = k .J ,  that  appears attractive based on the structure of the 
integrand in equation (18). Integration of G2,4 in the r, u, v coordinates requires the Jacobian, 
Jr, u,u, of  the transformation from k space to r, u, v space. It is assumed that  the vectors b and J are 
neither parallel nor antiparallel for calculations to be non-degenerate in biplanar radial coordinates. 
After careful analysis of the geometry of the r, u, v space, it follows that  the absolute value of the 
Jacobian of the transformation is (with c = b × J the vector product o f b  and J;  and w 2 = llwll ~ 
= w.w for any vector w~ w ---- b ,  c, J):  

[J . . . . .  I = r 
~/r ~c  2 + 2 u v b - J  - v~b 2 - u~J 2 (19) 

The integral G~,4 of equation (18) in r, u, v coordinates becomes: 

r2v 2 r dr du du 
G:L4 = J vt(r 4 + u2)(1 +A2rU) 2 v/rUc 2 + 2uv b . j  - b~v 2 - J2u~ 

12 
(2o) 

where f~ is the set of triples (r, u, v) such that  r~c 2 > b2v 2 + J~u 2 - 2b-J  uv and r _< p, where p 
has been defined as the radius of the region of integration S. 

7.g Biconical radial coordinates 

The goal is to integrate equation (20) for p finite as well as in infinite domain, p --~ oo. Evidently, 
G2,4 depends on c 2, b 2, j2, A, p, and b . J .  But c 2 = ]lb×JII 2 = b2J 2 - (b .J )  2, so either c 2 or (b-J)  2 
can be dropped, and G2,4 is determined, for example, by b, J, b . J ,  A, and p. These five parameters 
can be somewhat reduced as seen later. 

For fixed r, b2r, 2 - 2b.J uv + J2u2 < r2c 2 is the interior of an elliptical region in (u, v) space. 
As r varies with 0 to p, the regions are geometrically similar, with the same principal axes. Thus 
the region ~ is a solid elliptical cone. This geometry suggests replacement of the biplanar radial 
coordinate system with a biconical radial system, wherein (u, v) is replaced by angular variables, A, 
B, leading to a three-dimensional system (r, A, B). Specifically, u = k .b  = br cosB, u = k . J  = Jr  
cos A, supplemented by a third angular quantity 0 defined by b-3 = bJ cos0, which remains fixed 
in later calculations. 

Clearly, A, B, 0 are the angles between the edges b ,  k, J of a trihedron, where k is variable 
and b,  J are fixed. (The angles A, B, 0 can be chosen to vary in the interval [0, ~r].) Since r = 
v ~  y,  it is evident that  the coordinates r, A, B constitute a type of spherical coordinate system. 
Further simplifications arise in passing from (r, u, v) space to (r, A, B) in equation (20). The 
absolute value of the Jacobian of the transformation r, u, v -~ r, A, B is given by IJr,A,nl = 
bJr2]sinAIIsinB]. Substitution of the biconical radial coordinates and their absolute Jacobian in 
equation (20) transforms the integral to: 

r4cos2 A IsinAI]sinB] 
Gu,4 = j2 J A(A, B, 8)(r 2 + b~eos2n)(1 + A~r2) 2 dr dA dB (21) 

f~ 

where A(A, B, 8) = x/sin28 -4" 2cosScosA cosB - cos2A - cos2B. 
The formula for A(A, B, 0) can be much simplified by the use of the co-angle a to A, which goes 

back to Ptolemy (Braunmuhl, 1900). The co-angles (a, fl, 7) to (A, B, 8) are the angles betwen the 
three planes determined by the pairs of vectors (k, J) ,  (k, b), and (b, J) .  Ptolemy's formula (2rid 
Century AD) cosA = cosBcos8 + cosa sinB sin8 and its analogs are useful in determining (a, 8, 7) 
from (A, B, 8). One key result is that  A(A, B, 8) = Isin011sinBIIsin~l, showing that  ,~(A, B, 8) is 
separable in (r, a ,  B) coordinates. 



7.3 Biconical mized coordinates 

The last in the series of geometric transformations aimed at simplifying the original triple integrals 
in Cartesian space, is to derive the Jacobian Jr,~,B of the transformation from biconical radial 
coordinates (r, A, B) to the mixed biconical coordinates (r, a, B). The absolute value of this Jacobian 
can be shown to be IJr,a,Bl = Isinall sinBllsin01/lsinAI, which upon substitution in equation (21) 
along with the results for A(A, B, 0) and Ptolemy's formula for cosA, yields: 

r4]sinB[ cos2A 
G2,4 = j2 j (r 2 + b~cos2B)(l+ X2r2)~ dr da dB (22) 

¢l 

where 9 / = ( 0  ~ a  ~ 2z¢;0 < B  < ~ r ; 0 < r  < p) is the integration region; and cos2A =cos2B 
cos20 + 1/2 cos~ sin2B sin20 + cos2a sin2B sin20. 

Equation (22) is integrated with respect to a from 0 to 2~r to reduce it to a double integral on r, 
B: 

i ]  r4sinBe°s2 B 
G2,4 - 2 j ~rJ2cos20 (r 2 + b2cos2B)(1 + A2r2)2 dB dr 

0 0 
p ~r 

f [ r%in3B + J 7rJ2sin20 dB dr 
J J (r 2 ÷ b~cos2B)(1 + )~2r:)e 
0 0 

= j ~rj2(2cos20 G~ + sin20 G~) (23) 

in which G¢ and Gs are defined as the appropriate double integrals in equation (23). The final step 
in reducing the triple integrals to single integrals is to integrate equation (23) with respect to B. In 
doing so, the substitution of variable t = cosB proves convenient, to yield the single integral: 

P / G2,4 = 2 j 7rJ2cos20 (1+ A2r2)2b 2 1 - ~ tan -a dr 
0 

P / .. '( . 
+ J rJ2sin~0 b(1 + A2r2) 2 tan-1 - ~ 1 -  ~ tan -1 dr (24) 

0 

The first and second integrals in the right-hand side of equation (24) represent the G~ and Gs 
integrals, respectively, of equation (23) integrated over B. The G~ integral when separated into 

p P 
(2/b 2) f [r4/(1 + A2r2) 2] dr, which is easily integrated, and (-2/b s) f [r5/(1 + A2r2) 2] tan-l(b/r)  

0 O 
dr, which is not at all easy, and not found in any of the usual tables of integrals, is seen to have two 
parts which diverge as p -~ ~ ,  but their "divergent parts" cancel. The part of the Gs integral that 
does not involve Go, also not found in the usual tables, converges (although slowly) as p --* c~. 
Notice that equation (24) is a single integral written in terms of elementary functions. Because of 
the presence of divergent parts in equation (24) (that mutually cancel out, fortunately) and the slow 
convergence of some of the parts of equation (24), further analytical evaluation is called for rather 
than numerical integration. In the next section the single integrals in equation (24) are evaluated 
exactly. 

8 Evaluation of  single, radial, integrals of stochastic analysis 

8.1 Dilogarithms, Spence functions, and Clausen series 

Let us introduce Euler's ditogarithm (Euler, 1748): 

Li2(z) = - f l n ( 1 - z l )  dzl (25) 
J Z1 
0 



< I, Li~(z) = ~ z " / ,  2 converges, and so Li~(I) = ~ i l n  ~ = ~ 1 6 .  The first 
1 

with z ¢ 1. For Izl 
1 

Spence function (Spence, 1809) is defined by: 

Ti2(z) = } t an- lu  du (26) 
J n 
0 

The second Spence function is given by: 

Ti2(z,k) = i 
t an - lu  
, - - 7 - 7  du (27) 

0 

Finally, there is the Clausen function (Clausen, 1832): 

Cl~(O) = ~ [~in(n0)/n ~] (28) 

Obviously, Li:(e is) = ~ ein°/n2 = ~ (cos(nO)/n 2) + j C12(0). A bizarre web of idendties relates 
1 1 

these functions to themselves, to each other, and to suitable logarithms. Lewin's (1981) book cites 
many hundreds of such idendties. Clausen's function (1832) enters several diffusion problems, when 
they are solved using Fourier series. The final single integrals of section 3 involve inverse tangents, as 
do the Spence functions. To bring those integrals within convenient range of the Spence functions, 
let us introduce three new dimensionless quantities s = b/r, m -- bX, and ~ = b / p ,  where e < s for 
r <: R. Define: 

Kp,q(c,m) = [ sq(s 2 + m2) -p ds (29) 
¢ 

and 

Kp,q = / sq(s 2 + m2) -p ds (30) 

as the corresponding indefinite integral, so that Kp,q (e, m) = Kp,ql ~.  Define also: 

sq tan- is  
Hq(e,m) ---. (s 2 4- m2) 2 as (31) 

¢ 

whose indefinite integral is Hq. It follows from these definitions and equation (24) that the latter 

tan_is ] 
ds 4- s3(s 2 -I- m2) 2 ds 

(32) 

(33) 

equation can be written as follows: 

[ y  tan- is  J ds 
G~,4 = 2j~rJ~b~sin29 s(s2 + m2)2 ds - s2(s 2 + m2)2 

¢ 

[/ 7 ] ds tan-  I s 
+ 4j~rJ2bacos20 s~(s 2 + m2)2 s3(s 2 + m~)2 ds 

= 2j~rJ~basin~0 G~s + 4jTrJ2b3cos20 G~ 

where 

G~ = K2,-2(e,m) - H_3(c,m) 

and 



l 0  

GIs = I I_ l (c ,m)  - Ks_2(e ,m)  + I I - 3 ( e , m )  (34) 

s ~ r 1 O(s -3)  for large s, the above Since t a n - i s  = s - ~- + O (s s) for small s, and t a n - i s  = y - ~- + 
integrals converge, though slowly. For p ---* oo, e --* 0, finite limits exist, and tha t  suffices in many 
applications. This is the case of infinite aquifer domain. HHowever, in laboratory simulations or other 
finite-domain instances, results for finite p would be important .  Also, the integration technique 
developed herein involves separation of integrals in equation (32) into terms that  diverge as p ---* oo 
(although they cancel out when considered simultaneously), so one must  avoid taking p --* oo 
prematurely. 

8.2 The Kp,q and Hq integrals 

1 (1 
I I - s  = - ~ m  4 t a n - i s  ~ + 

1(1 ) 
2m 4 + t a n - i s  

1 
mS (Nrn - No) 

Integration of equation (30) for p = 2 and q = -2 gives the following result: 

1 3 3 s 
K~,-2 = 2sm2(s 2 + m2 ) 2m4s 2[ml 5 tan-1 T ~  -t- const (35) 

in which "const" denotes constant  of integration in the indefinite case. The definite integral 
K2,-2(e,m) = K2,-2[~. Evidently, K~,-2 has a singularity at  s = 0, but  k will be shown below 
that  the singularity is canceled out  when K2,-2 and If-3 are considered together (see equations (33 
and (34)). This is impor tant  since the case s = 0 corresponds to an infinite flow domain, a classical 
case in stochastic groundwater analysis. 

The second integral needed is H_I ,  vchich from equations (29) and (30) is seen to be given by tI_ 1 
= f t an - l s / [ s ( s  s + m2)2]ds = f t a n - i s  dK2-1 .  Carrying out the integration yields: 

In( 
2m 2 ~ t a n - i s  _ ~-~ tan -1 

1 
+~-~m 4 (Nm - No) + const (36) 

where 

Nm = f ln(ssss + + ms)l ds (37) 

is expressible in terms of the Clausen (C12) functions introduced previously. It  is clear from equation 
(37) tha t  t t _ l  has no singularity at s = 0, since ( tan-Is)In(s)  --+ s In(s) ~ 0 as s --* 0. 

Following the same integration routine, one obtains the third integral II_a = f t a n - t s  dKs,-3 
intervening in the key single integral of equation (32): 

1 ) 1 In (s2  + m2"~ 
s 2 -1- m 2 + ~-g t a n - i s  \ ~ / /  

1 [ 1 I-~] 
+ 2m4(m 2 -  1) t a n - i s  - ~- ]  tan-1  

(3s) 

There is a non-removable singularity at  s = 0 in H-a  due to the term (-1/2m 4) [ ( t an - l s ) / s  2 + 
I/s]. Clearly, ( t an -1 ) / s  2 = 1/s + f(s) where f(s) is analytic near s = 0. Therefore, the singularity 
at  s = 0 is tha t  o f -1 /m4s .  From equation (42) K~,-2 has the same singularity at  s = 0 as does 
1/[2sm2(s s + mS)]-  3/(2m4s) = (-1/m4s)[1 + s2/2(s ~ + mS)], or equivalently, as -1/m4s. Hence, 
the singularity of G~¢ at s = 0 is removable via the decomposition of equations (33) and (34), from 
which it is evident tha t  the singular terms of K~,-2 and I I - s  cancel each other. This was the only 
troublesome theoretical point concerning singularities in the evaluations of G*c and GJs in equation 
(32). 
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The remaining practical point in the evaluation of G~, and G~ is the integral N m of equation (37). 
For future reference, note that the integral 

(1 + s2)(s s + m s) = ~ tan- ls  - V~ tan-I  + const (39) 

appears in H-1 add H-s. The integral itself is continuous at m s = 1, yielding f ds/(1 + sS) s = 
(1/2) [tan-is + s/(s ~ + 1)] + const. Its evaluation is singular at m 2 = 1, but this singularity is 
removable by L'Hospital's rule, yielding 

lim 1 [ 5 ( I - ~ )  s ).] 1/2[tan_is + . l_~s2]  (40) m~l ~m tan-1 " + m(m s + s 2 = 

as expected. The integrals so far considered have a removable singularity at m = 5=1, quite in 
contrast to the one-dimensional flow problem that had a nonremovable singularity at m = bA = -1. 
The stochastic integrals have been reduced entirely to elementary functions, except for the integral 
Nm appearing in It_l and H-z. This difficult integral is evaluated next, establishing the existence 
of the stochastic integral G2,4 for all values of the parameter m except for m = 0, for which K~,_s, 
I-I_1 and tt_z are not defined. 

8.3 The Nm integral 

For the purpose of evaluation of the integral G2,4 in equation (32), Nm and No are needed. For the 
analysis of singularities the case m = 5=1, i.e., N±I is relevant (recall that singularities existed at 
.m = 5=1 in the one-dimensional case). These integrals have been derived in terms of dilogarithms, 
Clansen functions and Spence functions. Although they are inconvenient for computation (they are 
very slowly convergent), avoiding them is expensive and hazardous. From Grobner and Hofreiter 
(1957, Erster Tail, p. 112): 

N0(s) = 21nlsltan-ls - 2Ti~(s) + const (41) 

N±t(s) = 1/21n[4(1 + s2)] t an- i s  + ~ Li~ - Li~ + const (42) 

Lewin (1981) presents tables for the Spence functions and dilogarithms appearing in equations (41) 
and (42), which are numerically slowly convergent. (The expression for No, N±I, and Nm in terms 
of Clausen functions requires an identity of Kummer, 1840.) The formula for Nm is due to Newman 
(1847; Lewin (1981), pp. 243-252, which we have simplified): 

[ ,m,, ] 
Nm(s)-- 2tan-ls ln(1 + Im[) - tan -1 '(1 + ImD(1 + ' s S ) + - ~ - I m l l ( 1 - s  s) ' 

, t + t m H  [ ( 2 s l l -  Imll ) ]  
In ll [mt-------- ~ + 1/2C12 2tan -1 ( i  + Iml)(1 + ss) + 11- Iml1(1 sS) 

2sll - Imt l  
+1/2C1: [4tan-is - 2 t a n - l ( ( 1  + Im,)(1 + s2) + , l _ , m l l ( l _ s 2  ) ) ]  

- Cl~(2tan-ls) (43) 

Using L'Itospitat's rule in equation (43) it can verified that Nm(s) has a removable discontinuity 
at m = 5=1. This establishes then that the three-dimensional stochastic groundwater results do not 
exhibit discontinuous singularides at the point m = 5=1, quite in contrast to the one-dimensional 
case. From equation (43) it can be established that 

Nml~ = r ln(1 + Iml) (44) 

a useful result in evaluating the integral (32) for the case of an infinite flow domain (i.e., p ---* o0). 
At this point all the pieces needed to evaluate the fundamental radial integral (32) have been 

derived. Summary of results is given in the next section. 
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9 S u m m a r y  o f  r e s u l t s  

The effective conductivity depends directly on equation (32) as seen in equation (12). In turn~ the 
radial integral (32) was expressed in terms of K~,_2 (see equation 35)), H-1 (see equation (36)), 
and H-3 (see equation (38)). The latter two integrals involve the term Nm - No, and a expression 
for Nm in terms of ( tabulated) Clausen functions was given in equation (43). The only singularity 
in the groundwater integrals occurs for the value of the parameter  m = bA = 0, a case of little 
interest herein since it corresponds to the presence of no trend in the log-conductivity field. All the 
previous work is summarized next, giving the expression for effective hydraulic conductivity in the 
presence of trends, This is done for the case of finite and infinite flow domains. Recall the following 
notat ion defining impor tan t  parameters  in the analysis: b = Ilbll; J = IIJH; m = bA; e = b/p; and 
0 = cos - l [ (b . J ) /b J ] ;  p is the radius of the flow domain. The variable s = br. 

9.1 Effective hydraulic conductivity in f in i te  domains, e ~ 0 

Equation (18) indicates tha t  the mean specific discharge qi is related to the derivative of the radial 
integral G2,4, which in turn is shown in equation (32) in terms of integrals involving K2,-2, / t :1 ,  
and H-a  all of which were developed in section 8. Substi tut ion of G2,4 into equation (18) plus 
differentiation of the resulting expression with respect to the mean gradient Ji permits factoring of 
the gradient Ji out  of the brackets in equation 12. The resulting term within brackets in tha t  equation 
multiplied by e T is the equivalent hydraulic conductivity, K¢, that  relates the mean specific discharge 
to minus the mean hydraulic gradient in the ith direction. The effective hydraulic conductivity 
is independent of direction as seen next, i.e., is isotropic, but it is space-dependent and hence 
heterogeneous. After proper rearrangement of the individual integrals in G~,4, the effective hydraulic 
conductivity is: 

Ke -- e T {1 - Y  [(4cos20 - 2sin20)(K2_217 - I t -n iT  ) + 2sin20 H-1[~°]} (45) 

where Y = a~)~ab3/Tr. 
Notice tha t  in equation (45) has been expressed in terms of the difference K2,-21W - H - a I ~  since 

individual singularities cancel each other through such difference as established in section 8. Naive 
evaluation of K2,-2 and H-3 separately would fail for the case of infinite flow domain, p --* 0, due 
to the singularity at  s = 0 already established. It is seen in equation (45) tha t  the effective hydraulic 
conductivity equals the geometric mean e T times a factor ( the term in brackets in equation (45)) 
introduced by the trend in In conductivity. 

The effective hydraulic conductivity in equation (45) is isotropic and heterogeneous. The angle 
O in equation (45) varies simply as a result of the possible spatial variation of the t rend gradient 
vector b and /o r  the mean hydraulic gradient vector J .  8 is the angle between the trend gradient 
and the mean hydraulic gradient. Evidently, for each three-dimensional location x there will be 
corresponding values T(x),  b(x) and, thus, K(x). Obvious simplifications occur when the trend T 
is linear on x, in which case b becomes a constant. If, in addition, the mean hydraulic gradient is 
constant,  then the spatial  dependence of effective hydraulic conductivity is due exclusively to the 
spatial variations in the trend T. 

Because of the slow convergence of the (tabulated, Ashour and Sabri, 1956)) Clansen functions 
and the special numerical precautions needed to prevent singularities when p ---, co, the evaluation 
of Ke for given trend T is nontrivial.  

9.2 Effective hydraulic conductivity in infinite domains, p ~ c~, e --* 0 

The case of an infinite domain, perhaps the one tha t  has received greatest a t tent ion in stochastic 
groundwater analysis, follows from the results for finite domain by taking the limit as • --* 0 in 
equation (45). This leads to significant simplifications for the resulting effective hydraulic conduc- 
tivity, tha t  is now expressible in terms of simple elementary functions of 0 and m. The  resulting 
limiting value of Ke for • -+ 0 is: 

Ke 7r [ln(1 + Iml) + Iml (m~ - 21ml - 4)] ~ -  = 1 - Y (4cos20 - 2sin20) ~ . 4 1--~ ~-I "J 

[~m4 ln(1 x ] (46) - 2Y sin28 7r + [ml) - 41m13( 1 + [m[) 
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where Y was defined after equation (45). It is evident from equation (46) that  K~ does not present 
discontinuous singularities for nonzero values of m = b . However, detailed analysis shows that  the 
derivatives with respect to m are discontinuous at m = 4-1. Note also that in equation (46) b and 
.~ appear together as the parameter m = b$. Loaiciga et al (1993) showed that  the condition c,~ < 
b)t + 1 was necesary for the feasibility of stochastic analysis in one-dimensional flow domains (see 
equation (11)). Clearly, the product of trend gradient magnitude and correlation scale is central to 
stochastic analysis in the presence of trends. 

10 Example  calculations of  effective hydraulic  conductlvit ies  

Figure 1 shows the three-dimensional plot of vertically averaged hydraulic conductivity in a semi- 
consolidated, fractured, claystone aquifer of the Casmalia Hills, Santa Barbara County, California, 
extensively studied by Hudak (1991). The heterogeneous nature of this random realization (plotted 
from thousands of granulometfic field-measurements) is clear, with values ranging over three orders 
of magnitude In three-dimensions, the log-conductivity field was fitted by a second order polynomial 
(quadrie surface) to yield a trend T(x, y, z) = -50.6 + 0.0556y + 0.252z + 0.0O0003x 2 - 0.000019y 2 
- 9.000065xz - 0.000132yz, where x ~ = (X, y, z), with all spatial dimensions in meters. The compo- 
nents of the trend gradient vector b are linear functions of at least one of the spatial coordinates 
in each case. The other two parameters needed in fitting the effective hydraulic conductivity are 
~ (estimable by several alternative methods), and ,X, the correlation scale. This last parameter is 
estimable by several methods (Hudak et al, 1993). For the present example, the estimates for the 
log-conductivity variance and the correlation scale are 14.24 (an unusually large value) and i6.25 m, 
respectively, completing the data needs required in equation (46) for developing a three-dimensional 
field of effective hydraulic conductivity. Because of the large variability of InK, evident from an 
estimated tr~ in excess of 10 (recall that  in first order analysis it is assumed that  ~r~ < <  1!!), the 
Casmalia data is particularly difficult to model. Evidently, better behaved data sets are advisable 
to implement and test the results of this work. In this regard, our data can be considered borderline 
for this purpose. 

A computer program was written for equation (46) to generate field of effective hydraulic conduc- 
tivity assuming a constant direction of the mean hydraulic gradient. Recall that  when either one or 
both of the vectors b and J are space-dependent the angle 0 between them needs to be calculated for 
any location x considered in the calculations. Figures 2 and 3 show the plots of effective hydraulic 
conductivity for fixed depths z- = 60 m and z = 90 m. It is clear some sort of an east-west "ridge", 
that seems to be accentuated with depth. Because of the extremely large variance of InK, we suspect 
that  calculations based on equation (46) unduly reduced the calculated K¢, and the relative uniform 
distribution of effective hydraulic conductivity over extensive areas of Figures 2 and 3 is suspect. 
Note that in equation (46), the term Y is directly proportional to a~. Therefore, the larger ~r~ the 
smaller Ke is, provided that all other terms multiplied by Y are positive. 

At this point the authors are seeking additional data sets to conduct further analysis of  the 
theory developed herein. The Borden data set on InK (Woo;Ibury and Sudieky (1991)) is quite 
extensive and is not hindered by the extreme variability observed in the Casmalia InK data set. 
Unfortunately, the Borden da ta  was collected along vertical cross-sections, and they are, therefore, 
two-dimensional. The 3-dimensional results of this paper cannot be directly specialized to two 
dimensions. Two-dimensionai effective hydraulic conductivities are, in fact, more difficult to derive 
than the 3-dimensionai counterparts. This is an unfortunate situation, traceable to the the integer q 
talcing the value q = 3 in equation (14) in two-dimensional analysis, which introduces a non-rational 
function in the denominator of equation (14), and with it additional complications not encountered 
in the three-dimensional case. Nevertheless, the decompositions used in this paper are suitable 
for two-dimensional analysis, taking account of geometry and the resulting elliptic functions. T h e  
authors are developing the 2-dimensional results for effective hydraulic conductivity at present. 

11 S u m m a r y  a n d  conclusions 

A detailed analysis was made of the use of biconicat integration in developing analytical and exact 
values of effective hydraulic conductivity. The results of our study apply to groundwater flow regimes 
where the conductivity field is nonstationary, in this case arising from spatial trends. Several key 
conclusions of our study are: 



14 

View Angle = 300 View Angle = 60 ° 
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I 

Figure 1. Two three-dimensional views of vertically averaged hydraulic conductivity for the semiconsoli- 
dated claystone of the Casmalia till aquifer, Santa Barbara County, California 

Figure 2. Effective hydraulic conductivity at depth z = 60 m at the Casmali~ aquife~ 
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Figure 3. Effective hydraulic conductivity at depth z = 90 m at the Casmalia aquifer 

1. Singularities in the results of one-dimensional groundwater analysis are removed when passing 
to three-dimensions. Specifically, effective conductivity and head vanances are defined for m = 
b$ = +1 in the three dimensional case. The parameter m has been shown to play a key role in 
one-dimensional and three-dimensional stochastic, nonstationary, groundwater flow analysis. 

2. The integrals that appear in three-dimensional stochastic groundwater flow analysis are not 
very suitable for straightforward numerical integration in full three-dimensional space, instead, 
numerical calculation should enter at a later stage, after the triple integrals have been reduced 
to single radial integrals and they have been arranged so that individual singularities cancel 
each other. Even then, in the finite flow domain case the resulting expressions (Clausen and 
Spence functions) are slowly convergent. In the case of an infinite flow domain the equation 
for effective hydraulic conductivity simplifies greatly, and is expressible in terms of elementary 
trigonometric and logarithmic functions. 

3. The three-dimensional effective hydraulic conductivity is isotropic and heterogeneous. Its 
numerical value depends on the angle 0 formed between the trend gradient vector b and the 
mean hydraulic gradient J; other intervening hydrogeologic parameters are the variance of 
log-conductivity, its correlation scale, log-conductivity trend and gradient of the trend. For 
the case of a finite domain of radius p the formula for effective hydraulic conductivity depends 
on a number of slowly convergent series involving the trend gradient and the conductivity 
correlation scale. The classical case of infinite flow domain was developed exactly with no 
need for numerical approximations• 

4. Calculations of effective hydraulic conductivity for the Casmalia data indicate that for large 
tr~ the effective hydraulic conductivity can be underestimated relative to intuitive results. In 
spite of this difficulty, rather exotic three-dimensional plots of Ke were developed that suggest 
differences of over one order of magnitude in K¢ for fixed depth. 
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5. The types of exact results for nonstationary stochastic groundwater flow analysis presented 
herein are novel in the field. The method of integration and reduction to single radial integrals 
developed herein was illustrated with the calculation of Ke. tlowever, this method is generic 
for this kind of nonstationary groundwater analysis, and, for example, the triple integrals asso- 
ciated with the variance of hydraulic head can be treated by the same method used to reduce 
the triple effective conductivity integrals. This method involves biplanar radial, biconical ra- 
dial, and mixed biconical radial coordinate transformations. Differences in the various triple 
integrals that emerge in the nonstationary groundwater flow analysis come at. a later stage, 
after they have been reduced to single radial integrals, and even then the differences in the 
integrands appear minor, though numerically they are not so minor. 

The tools of applied mathematics, apart from the stochastic equations, used to solve the problems 
of this paper have existed since the second half of the 19th century; however, their application to 
solve the difficult triple integrals of nonstationary groundwater analysis, and specifically, the intro- 
duction of biplanar and biconical coordinates constitutes a new contribution. It has been shown 
that exact results are obtainable for the kind of hard problems treated herein, and that in many 
respects these analytical solutions are preferable to numerical methods of approximation. 
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