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ABSTRACT OF THE DISSERTATION 

 

Algorithms for Rapid Characterization and Optimization of Aperture and Reflector Antennas 
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Doctor of Philosophy in Electrical Engineering 

 

University of California, Los Angeles, 2014 

 

Professor Yahya Rahmat-Samii, Chair 

 

Aperture and reflector antennas play a key role in the communication industry, and methods of 

enhancing the speed of their analysis and measurement can benefit industry as well as promote 

better understanding of software modeling through faster visualization.  This dissertation 

addresses such methods.  Use of the three-parameter aperture distribution, unified for both sum 

and difference patterns, provides fast calculation of the aperture radiation characteristics through 

the use of closed form equations.  All reflector antenna systems require a feed to illuminate the 

reflector, and the feed aperture field integration and spherical wave expansion methods serve as 

means to trade accuracy for compute speed.  The mode matching method of cylindrical 

corrugated feedhorn analysis is shown to be accelerated by nearly two orders of magnitude with 

the use of optimized computer math libraries.  The Gaussian beam method is shown to improve 

computational speed by up to two orders of magnitude compared to brute force physical optics 

integration, and the Levin method up to three orders of magnitude acceleration.  The use of 

graphics processors accelerates the physical optics compute speed by two orders of magnitude or 

more.  The use of the sun as a source of radio flux provides a quick means of measuring receive 

G/T, for which the results of a Ka-band solar flux study are reported. 
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CHAPTER 1 INTRODUCTION 

This dissertation contributes to the field of rapid algorithms for the characterization and 

optimization of aperture and reflector antennas.  The characterization of aperture and reflector 

antennas must be accomplished rapid enough to satisfy the needs of communication system 

designers and planners.  Those needs include the antenna designer’s ability to process a range of 

configurations to find a balance of possibly competing performance requirements before 

incorporating such a design into a proposal or passing the antenna design on to manufacturing or 

into a system design cycle.  The faster a candidate antenna design characterization is completed 

the more rapidly an optimization process utilizing it can converge to a satisfactory solution and 

the larger the number of specialized features that can be considered in the optimization.  

Specialized algorithms can help to accelerate this overall process by exploiting unique features 

of, and relationships between, antenna characterization methods.  Those features have evolved 

along with the development of the reflector antenna.   

1.1 APERTURE ANTENNAS 

An aperture antenna is a planar model of antenna field distributions over a given aperture area.  

The aperture field distributions determine the radiation pattern and characteristics for the given 

aperture antenna by utilizing the Schelkunoff field equivalence principle [1]–[4], which in 

general represents the fields from sources within a closed surface — such as a metallic feed with 
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a radiating aperture — by electromagnetic currents that equivalently represent the aperture fields 

and are tangent to the closed surface.  Reflectors, and even phased arrays, are example topologies 

than an aperture antenna design may represent.  With a realistic model of aperture fields 

associated with a given topology, a particular aperture distribution may be designed to suit the 

needs of a given system design, leaving the implementation of the resulting aperture field 

distribution to be designed subsequently, using a topology to be chosen during that subsequent 

design.  Staging the overall antenna design in this manner allows the system-level design to 

proceed quicker by postponing some of the physical implementation details. 

1.2 HISTORY OF REFLECTOR ANTENNAS 

Reflector antennas are commonly constructed as a surface of revolution defined by a curve 

consisting of a conic section, including the parabola, ellipse and hyperbola.  A very common 

example of a reflector antenna is found in a flashlight.  The reflector antenna has seen a wide 

range of applications throughout history mainly because as newer antenna typologies have been 

developed the reflector continues to provide the highest gain, widest bandwidth, best angular 

resolution, and lowest costs among available topologies.   

After the close of the Renaissance the parabolic reflector greatly enhanced science discoveries 

with its application to astronomy.  In 1663 a Scottish mathematician, James Gregory, at the age 

of 24, published a treatise entitled Optica Promota.  In this he gave a description of a compound 

reflecting telescope, the Gregorian, employing two concave specula (metal mirrors) [5].  Sieur 

Cassegrain, a Frenchman, in 1672 designed a distinct compound reflector, differing from 

Gregory's in that it employed a convex hyperbolic secondary, placed inside the focus of the 
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parabolic primary reflector.  While the Gregorian can provide higher magnification the 

Cassegrain is more compact.  In the same year, 1672, Newton designed and constructed his 

telescope with two reflectors, a parabolic primary and a flat secondary, which became popular 

with amateur astronomers. 

In 1888 Hertz used a dipole-fed cylindrical parabolic antenna along with a spark-gap generator 

and similar detector to verify the existence of electromagnetic waves predicted by Maxwell’s 

theory.  Nobel laureate Marconi also started his experiments using a cylindrical parabola, as 

described in his first patent in 1896. 

The strong push for the development of RADAR in WWII led to a unified treatment of reflector 

antennas, documented in Silver’s twelfth volume of the MIT Radiation Laboratory Series [6].  

Silver’s twelfth volume documents many antenna characterization algorithms and has timelessly 

continued to serve as a standard reference for antenna methods.  Subsequently Ruze studied the 

effects of the random surface roughness on reflector antenna gain and showed that there is a 

smallest wavelength at which the gain of any particular antenna reaches a maximum.   

Many astronomical objects are not only observable in visible light but also emit significant 

radiation at radio frequencies.  Jansky was the first to detect radio emission from the Milky Way 

Galaxy.  In 1937 the first radio telescope was used for astronomical research.  The 64 meter 

diameter radio astronomy antenna at Parkes in Australia was completed in 1961, and its success 

lent support to NASA’s case to the US Congress for funding of a Deep Space Network of 

antennas, now including JPL’s 70 m in Goldstone, California [7]. 
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The largest fully steerable reflector antenna is currently the 110 m Green Bank Telescope (GBT) 

at the National Radio Astronomy Observatory in Green Bank, West Virginia (Fig. 1-1).  The 

GBT is an offset (asymmetrical) reflector antenna in order that its feed and support arm do not 

block the projected main aperture.  The largest reflector antenna in the world is the Arecibo 300 

m [8] (Fig. 1-2), located in Puerto Rico.  It includes specialized feeds that compensate for the 

reflector’s spherical shape and use it to steer the antenna beam.  

 
Fig. 1-1.  The Green Banks 110 m radio telescope is the largest fully steerable antenna. (Photo from www.gb.nrao.edu.) 

 
Fig. 1-2.  The Arecibo 300 m radio telescope is the largest single-aperture telescope in the world.  (Photo  from Love [8].) 

On May 20, 1996, the crew of the Space Shuttle Endeavor released a Spartan Free-Flyer 

Spacecraft into orbit carrying a container about half the size of an office desk.  It was comprised 

http://www.gb.nrao.edu/
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of a 14 m inflatable reflector, supported by a 15 m diameter torus and connected to the Spartan 

via three 30 m long struts.   

Inertially stabilized reflector antennas in operation on cars, trains, airplanes and boats support 

commercial and private use for reception of a range of services via geostationary satellites, 

including Dish ™ and DirecTV™, which use circularly polarized signals.  A two-axis inertial 

sensor can be mounted on the mobile reflector, with its third axis aligned with the view to the 

satellite, in order to keep the reflector pointed at the satellite as the mobile vehicle moves 

underneath the stabilized (tracking) antenna (Fig. 1-3 and Fig. 1-4).  Incorporating an additional 

third axis inertial sensor allows the tracking of linearly polarized signals while the antenna 

remains pointed at the satellite signal source. 

 
Fig. 1-3.  30 cm diameter Ku-band maritime-mobile satcom tracking reflector antenna system.  (Photo from 

www.kvh.com) 

 
Fig. 1-4.  45 & 30 cm diameter Ka-band aeronautical mobile satcom tracking reflector antenna systems.  (Photo from 

www.L-3com.com Datron division) 

http://www.kvh.com/
http://www.l-3com.com/
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An offset reflector antenna configuration displaces the feed outside the projected main aperture, 

which provides the advantages of low sidelobes and high efficiency — due to the lack of 

blockage of the projected aperture (as viewed from the direction of the satellite for the roof-

mounted reflectors shown in Fig. 1-5).  With an offset reflector linear polarized cross-

polarization is higher in the plane perpendicular to the direction of feed offset and circular 

polarization (CP) exhibits a beam squint [9] in that same plane.  Computerized algorithms that 

can characterize sidelobe and cross-polarization levels and beam squint rapidly help meet the 

needs of antenna and system designers. 

 
Fig. 1-5.  Residential offset reflector Satcom antennas.  (Photo from www.reformation.org.) 

Some of the material in this section is reproduced from a portion of one of the author’s previous 

publications [10]. 

1.3 LITERATURE REVIEW 

The literature provides a history of techniques and algorithms provided to increase the speed at 

which an antenna’s radiation pattern may be computed.  A common choice for diffraction 

analysis (characterizing the radiation pattern) of a reflector antenna is the physical optics (PO), 

and PO is the method utilized in this dissertation.  With PO the reflector surface supports a 

http://www.reformation.org/
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current determined by the magnetic field incident on the reflector surface, ˆ2J n H  , which 

according to Maxwell’s equations represents the discontinuity from the incident field outside the 

reflector to the absence of field inside the reflector material (assumed perfectly electrically 

conducting: PEC).  The PO method assumes an abrupt transition from the said surface current 

covering the portion of the reflector that is illuminated, by the fields from the feed, to an absence 

of surface current in any portion of the reflector surface that is not directly illuminated by the 

feed (by line-of-sight).  Other methods of diffraction analysis include geometric optics (GO), the 

geometrical theory of diffraction (GTD), and the physical theory of diffraction (PTD).  GO 

effectively involves ray bouncing and localized quadratic surface approximation; although it fails 

in caustic direction, e.g., the main beam.  GTD is a method of accounting for diffraction from the 

reflector edges, which supplements GO.   PTD provides a means of accounting for edge currents 

and so complements PO.  In the far field the PO integral has the form of (1.1) [11], where Fig. 

1-6 depicts each of the spatial vectors. 

       far field
ˆ ˆ ˆ ˆ ˆexp ' exp ' '

4

jk
I jkr J r jkr r ds

r


 




       (1.1) 

The speed of a diffraction analysis algorithm is compared in this dissertation to that of brute 

force, where brute force PO involves dividing the reflector surface area into small patches, each 

one-tenth of a wavelength on a side (electrically small), and summing the contribution from each 

partition to the overall far field antenna pattern integral.  The brute force method is accurate but 

requires a considerable amount of compute time for a practical antenna.  A few decades ago this 

brute force compute time for a practical antenna took several hours.  The subsequent computer 

hardware speed improvements have significantly reduced that compute time, according to 
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Moore’s law, which has since flattened out.  New hardware architectures, such as multi-core 

processors and the use of graphics processors for general purpose computing, have attempted to 

recover the growth of Moore’s law, but new architectures require new compute algorithms.  The 

flattening out of Moore’s law and the introduction of new computer architectures have spurred 

the development of new algorithms to continue to improve the speed of diffraction analysis of 

reflector antennas.   

 

 
Fig. 1-6.  Geometry for PO calculation of reflector far field radiation pattern. 
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1.3.1 Adaptive Sampling 

Burkholder and Lee [12] show that the brute force numerical evaluation of the physical optics 

integral may be accelerated by an order of magnitude or more in the main beam with an adaptive 

quadrature method by varying the sampling density according to the variation of the integrand. 

The variation of the integrand is determined by the gradient of the phase, which in some regions 

may require far fewer points-per-wavelength than the standard Nyquist sampling rate.  This 

technique involves nonuniform sampling of the aperture, which has been addressed by Rahmat-

Samii and Cheung [13]. 

Table 1-1.  Acceleration of brute force by adaptive sampling wrt one-tenth wavelength sampling. 

SAMPLING INTERVAL (λ) MAXIMUM PATTERN ANGLE (DEG) ACCELERATION FACTOR 

0.1 90 1 

0.25 80 6 

0.65 45 41 

0.98 30 90 

2.9 10 630 

1.3.2 FFT 

Craig and Simms [14] demonstrate the use of the Fast Fourier Transform (FFT) to calculate 

aperture radiation patterns in the main beam region and recognize that by neglecting the depth 

and curvature of the reflector surface, the aperture field method approximates the physical optics 

integral as a two-dimensional Fourier integral that can be efficiently evaluated by a very rapid 

2D FFT.  When the depth (curvature) of the reflector surface is accounted for the PO surface 

integral does not represent a Fourier integral and so the FFT cannot be so directly and efficiently 

used, but with a series approximation of the integrand it can be computed by a series of FFTs.  

Thereby accuracy is traded for speed.  Craig and Simms also point out that the aperture field 
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integral fails to account for the asymmetry in the main beam of an offset reflector in the offset 

plane — one of the compromises of using the rapid FFT technique.  The inability of the aperture 

field method to account for this asymmetry in the physical optics integral for an offset reflector is 

discussed by Rahmat-Samii [15].  Lam, Lee, Hung, and Acosta [16] compare the calculation of a 

reflector antenna pattern by the “brute force” FFT method to geometric optics (GO), geometrical 

theory of diffraction (GTD) and Fourier-Bessel techniques.  Lam, et al., also report that the 

reflector curvature prohibits direct use of the FFT for accurate calculation of the PO integral, but 

that a total of 4MN one-dimensional FFTs serve to compute the physical optics integral, where 

M and N represent the respective orders of sine series approximations of the integrand in the two 

dimensions of the aperture plane.  They report that the FFT compute time is comparable to the 

other methods.  Nezhad, Firouzeh and Mirmohammad-Sadeghi present a method for use of FFT 

with shaped reflector antennas [17] using the approximate aperture field method.  This neglects 

the curvature of the reflector surface, thereby providing an approximation of the physical optics 

integral valid for the main beam region that is computed very rapidly.  Boag [18]–[20] presents a 

method for fast evaluation of a radiation pattern using a multi-level algorithm similar to the fast 

Fourier transform.   

One of the issues with the use of the FFT is that the number of usable far field observation angles 

covering the hemisphere is at most equal to the number of aperture sample points.  The 

discretization of the aperture, relative to the wavelength, determines the discretization of the far 

field observation angle.  At spatial aperture sampling of half wavelength the number of far field 

points equals the number of aperture sample points; although, when the spatial sampling is one-

tenth wavelength, to correspond with the brute force method, the number of usable far field 
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angular points produced by the FFT is reduced by a factor of five:  The angular points outside 

this range do not represent physical angle.  Thus the angular sampling of the main beam far field 

may not be sufficient for some studies.  With a one-dimensional FFT, with an even number M 

spatial samples taken regularly along the span, the angular pattern samples calculated by the FFT 

correspond to the angles        
1 2

2 2 2
sin , ,  ... ,0, ... , /

MM Mu m m Md 
        

, where d is the 

spacing between spatial samples, which with the brute force physical optics integral is one-tenth 

wavelength.   The acceleration that the FFT method can provide over brute force though is 

limited by the fact that its computation requires that the vector value of the integral be 

numerically calculated at each of many points throughout the aperture.  On the other hand, an 

advantage of the 2D FFT is that it provides a rapid means of estimating the full hemispherical 

coverage of an antenna pattern, calculating the radiated fields in many directions all at once.  The 

Jacobi-Bessel expansion method [21], [22] also provides a similar benefit.  Such rapid 

calculations can be quite suitable for computer graphics to overlay a 3D rendering of the 

radiation pattern onto a 3D model of the antenna.   

1.3.3 Quadrature Methods 

Duan presents in Appendix D of [23] an efficient Gaussian quadrature for super quadratic 

apertures that avoids oversampling in the central region.  Duan’s method is similar to that offered 

by Jamnejad [24] for circular apertures, which claims an acceleration of compute time by a factor 

of four to seven compare to schemes to do not avoid the central crowding. 

 Ludwig’s method [25], [26] of reducing the number of points required to numerically evaluate a 

double integral provides an effective compute speed acceleration of four to eight.  It involves 
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discretization of the integration surface into rectangular patches and determining the coefficients 

to best fit a plane, in the mean-square sense, to the values of the integrand at the corners and 

thereby is a linear patch technique.  Pogorzelski [27] extended Ludwig’s method [25] to a 

triangular patch instead of Ludwig’s rectangular patches, and Santos [28] simplified 

Pogorzelski’s triangular extension by using area coordinates and an equation that only has to be 

calculated once for each triangular subregion.  Meng, Nan and Changhong [29] provide a method 

for overcoming a potential problem of a singularity occurring in Ludwig’s original or 

triangularized method.  

Crabtree [30] presents a biquadratic surface patch technique that provides more than a magnitude 

of acceleration of compute speed over brute force by approximating the physical optics integral 

with surface patches over which the amplitude and phase are each approximated by quadratic 

functions, and Parks [31] investigates its application.  Pogorzelski [32] provides a method of 

quadratic phase approximation with Chebyshev expansion of the amplitude function and shows 

that the quadratic method provides about 20 dB reduction in error with comparable compute time 

compared to the linear phase method. 

Levin [33], [34] presents an efficient method of integrating rapidly oscillating functions by 

transforming the original problem into the solution of an ordinary differential equation, for single 

integral, or a partial differential equation for multiple integrals, and Durgun [35] applied it to the 

evaluation of physical optics integrals.  Xiang [36] offers a new efficient Levin method.  Li has 

improved the Levin method so that collocation basis functions are not required, by using 

Chebyshev-Lobatto (Gauss-Lobatto) nodes and the Chebyshev differential matrix [37], and 

improving its accuracy by revealing the utility of using the truncated singular value 
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decomposition method instead of more standard matrix solution methods [37]–[42] to 

accomplish the Levin collocation.  The compute speed is also improved by avoiding some of the 

computations that are required to produce the Levin method solution. 

Ehrenmark [43] provides a three-point numerical quadrature method, comparing it to the Levin 

method, and claims it can be implemented in minutes by the average user; whereas, more 

sophisticated methods may require hours of preparation by a specialist before a computer run can 

be done. 

1.3.4 Asymptotic Methods 

1.3.4.1 Asymptotics with NURBS 

Saez de Adana, Gutierrez, Gonzalez, Catedra and Lozano published their book, “Practical 

applications of asymptotic techniques in electromagnetics” [44] which deals with physical optics 

for parametric non-uniform rational B-spline (NURBS) surfaces and summarizes the GO/GTD 

and PO/PTD techniques.  Acceleration techniques addressed include the elimination of hidden 

surfaces and an angular Z-buffer algorithm based on the light buffer technique used for computer 

graphics. 

1.3.4.2 Method of Stationary Phase 

Zhang, Yu, Zhou and Cui [45] study the use of the stationary phase method applied to physical 

optics problems with nearby stationary points, to provide compute time independent of 

frequency.  Some practical notes regarding the implementation of this technique are presented in 

the appendix section 8.5. 
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1.3.4.3 Numerical Theory of Diffraction 

Vico-Bondia, Ferrando-Bataller and Valero-Nogueira  [46], [47]develop a new fast physical 

optics technique called the numerical theory of diffraction (NTD) for integrals with a saddle 

stationary phase point, based on a new approach for the quadratic fast physical optics developed 

by Catedra [48].  The surface is broken into triangular subregions.  The NTD is based on a 

decomposition of each quadratic triangular patch into different contributions that extends the 

asymptotic contribution for high frequencies, which allows for neglecting all the triangles where 

no high frequency phenomena take place and provides for compute time being independent of 

frequency.  The Zhang, Xu and Cui [49] elaborate on the NTD method, showing that higher-

order poles have no contribution.   

1.3.4.4 Steepest Descent Path 

Wu, Jiang, Sha and Chew [50], [51] use the numerical steepest descent path method to analyze 

the highly oscillatory physical optics integral on smooth conducting parabolic surfaces, including 

both monostatic and bistatic cases.  Chou and Chou [52] present an approach using steepest 

descent method for the synthesis of shaped reflectors.  It discretizes the surface into small 

patches and uses grid nodes as synthesis variables and provides and advantage of providing 

closed-form expressions for the derivatives of a cost function. 
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1.3.5 Line-integral Boundary Diffraction 

Albani [53] presents a formulation to reduce 2D aperture radiation integrals to 1D line integrals 

for physical optics scattering from flat plates.  The integrand of the line integral along the rim of 

the aperture is free from singularities. 

1.3.6 Blunt Approximation methods 

Arias-Acuna, Garcia-Pino and Rubinos-Lopez [54] present accelerated approximation methods 

by blunt approximation methods for physical optics integration and method of moment solutions 

of dual reflectors that trade accuracy for compute speed.  They also utilize precomputation of 

complex exponentials to improve speed by an additional factor of two to three.   

1.3.7 Approximating Dual Reflector with Equivalent Single Paraboloid 

Rusch, Prata, Rahmat-Samii and Shore [55] show that the radiation pattern of a dual reflector 

system can be adequately represented by that of an equivalent single reflector for the main beam 

and first sidelobes.  Since the full analysis of a dual reflector system requires substantially more 

compute time than that for a single reflector this is a viable means of accelerating the 

computation of dual reflector main beam patterns. 

1.4 DISSERTATION OUTLINE 

This dissertation contributes to the field of the analysis of aperture and reflector antennas with 

means and algorithms to speed up the computations.  Very compact closed-form equations that 

can be quickly calculated are provided for the cylindrical mode matching of feedhorns.  Closed-
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form equations for the rapid calculation of the radiation properties of three-parameter aperture 

distributions are presented.  Asymptotic methods of Gaussian beam and Levin quadrature are 

discussed in detail.  The new OpenCL language is used to harness the compute power of 

graphics processors, and potentially other, processors in heterogeneous computer architectures to 

accelerate antenna calculations by more than two orders of magnitude.  The new MAGMA math 

library is ported to the Windows
 TM

 compute platform using the AMD HD5850 GPU. 

Chapter two discusses computer hardware and software architecture factors that affect the speed 

at which antenna analysis codes run.  Parallel processing techniques are discussed including 

OpenMP, MPI, and GPUs.  CPU acceleration methods of SSE, AVX and the software method of 

C++ extension templates and the eager versus lazy numerical evaluation models are discussed. 

Chapter three overviews several optimization methods, and discusses particle swarm 

optimization in particular.  Examples are presented, including a multi-objective optimization of a 

novel multi-band FSS subreflector. 

Chapter four discusses the three-parameter aperture distribution, generalized for sum or 

difference pattern, where the speed advantage is provided by closed-form equations of the 

radiation characteristics.  Examples of particle swarm optimized patterns are provided, and the 

far field polarization orientation equations for a general radiating aperture are derived. 

Chapter five discusses several methods for the analysis of the radiation from a corrugated 

feedhorn, which is a common type of feed used for reflector systems.  The methods include 

aperture field integration, spherical wave expansion, and cylindrical mode matching, including 

the use of optimized math libraries that accelerate the matrix arithmetic involved in the mode 
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matching.  The particle swarm optimization method is used in a multi-objective optimization to 

effectively design a smoothly profiled corrugated horn. 

Chapter six discusses several methods for the characterization of a reflector system radiation 

pattern.  These methods include brute force, Gaussian beam, Levin method and the application of 

the new OpenCL computer language to harness the power of graphical processors. 

Chapter seven discusses methods for rapidly estimating system-level characterizations of 

circularly-polarized squint and gain over temperature ratio.  The results of a study of the Ka-band 

flux emitted by the sun (which doesn’t vary much with time) are presented, from which the 

calibration is obtained to accomplish the gain-over-temperature ratio measurements for the 

characterization of the receive sensitivity of a receive antenna system. 

Chapters eight and nine respectively contain the appendices referenced in the individual chapters 

and the literature references cited throughout the document.  Chapter eight includes a brief user 

manual for the UCLA ARAM CYL_MM Windows 
TM

 software developed to support this 

dissertation and which created the cylindrical mode matching results and 3D graphics presented 

through this dissertation. 
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CHAPTER 2 COMPUTER AND SOFTWARE 
ARCHITECTURE 

The speed of computation depends largely on the computer architecture, including the central 

processor hardware and any supplemental processors included in the system architecture; e.g., 

graphics processors.  The list of capabilities incorporated into the state of the art processors and 

the programming languages to control them continue to increase, and several such capabilities 

over the past ten years or so have been found to offer a significant capability to accelerate the 

kind of computations typically involved in reflector antenna analysis and are addressed in this 

chapter. 

2.1 PARALLEL PROCESSING 

The incorporation of more than a single processor to complete some computational workload is 

in general referred to as parallel processing, of which there are several forms.  Here we discuss 

OpenMP, MPI and GPGPU.  The potential for parallel processing to accelerate the execution of 

a given compute code depends on how the routine that that code represents is organized and what 

fraction of it can be parallelized.  Highly parallelizable routines can be accelerated the most by 

parallel processing; whereas, routines that require mainly a serial implementation are not 

accelerated much at all by parallel processing.  In 1967 Gene Amdahl recognized that the 
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potential for parallel processing to accelerate a computer code depends on what fraction of the 

routine is able to be parallelized.  Amdahl’s law is depicted in Fig. 2-1. 

  
Fig. 2-1.  Amdahl’s law of the acceleration of computer code by parallel processing (from Wikipedia). 

2.2 OPENMP 

OpenMP is an application program interface created to support multi-platform shared memory 

multiprocessor coding.  The first version of the OpenMP specification was published in 1997.  

Basically, it harnesses the power of multiple processors (mutli-core) available in a computer 

architecture that otherwise would not be utilized, since the default runtime mode of a program is 

single-threaded, using only a single processing core.  OpenMP provides a set of compiler 

directives — meaning the compiler must support OpenMP, and all recent versions do — that 

affect the runtime behavior.  Thus OpenMP provides programmers with a simple interface for 

developing code for parallel processing.  By combining OpenMP with the MPI (message passing 
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interface) application program interface, the power of OpenMP can be applied to distributed-

memory computer architectures as well.   

OpenMP parallel codes utilize multithreading.  A section of code that has been parallelized with 

the use of OpenMP directives — e.g., a for loop — first has a master thread assigned, which then 

forks a specified number of slave threads.  An example C compiler directive is “#pragma omp 

parallel.”  The master and slave threads then all compute their assigned tasks, and when finished 

the master thread resumes control of the program.  If the total number of master and slave 

threads does not exceed the number of processing cores available in the computer architecture 

then all threads will run in parallel, simultaneously.  If the number of threads exceeds the number 

of available processing cores then some threads will have to wait their turn to be executed, and 

this case is referred to as hyper-threading, which is usually not as fast as avoiding hyper-

threading. 

The number of threads used in the execution of the sections of code parallelized by OpenMP is 

determined either by set values coded by the programmer into the OpenMP compiler directives, 

or by environment variables in the computer system, set by the user or system administrator.  For 

example, the system environment variable OMP_NUM_THREADS sets the number of threads 

used at runtime.  Note that the Intel MKL math library incorporates OpenMP, and the number of 

parallel threads it uses at runtime is set by the system environment variable 

MKL_NUM_THREADS.  Of course, if the number of threads set by any such variable exceeds 

the number of processing cores in the computer architecture then only the actual number of cores 

will be used as the number of threads.   
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There are usually an optimum number of threads for maximum compute speed, depending on the 

algorithm that is being parallelized.  This optimum number of threads will also depend on the 

computer architecture, such as whether all cores are contained in a single CPU or in multiple 

CPUs, and the memory bandwidth that exists in the computer architecture.  A parallelized 

algorithm may run slower as additional threads are used above the optimum number of threads. 

Special features are incorporated to handle the sharing of limited system resources 

simultaneously by a number of threads.  An example is if all threads must each access the same 

memory location.  These special features help avoid situations such as a racing condition by use 

of the compiler directive clause critical, which causes multiple threads to each take their turn, 

sequentially running the specified section of code instead of running simultaneously.  Data 

reduction is another important issue address by these special features provided by OpenMP. 

2.3 MPI 

MPI stands for message passing interface and provides a means of communication between 

networked compute nodes in a distributed memory compute model, where multiple compute 

nodes, each with their own dedicated memory, cooperate to accomplish some computing task.  It 

was introduced in 1994 and is a computer language-independent protocol used to program 

parallel computers, and it is a portable model, meaning that the code is compatible with and can 

be run on a range of different compute platforms; thus it can harness a wide range of 

computational power together.  The time spent computing on each node in between MPI 

message passing events must significantly exceed the time spent sending the messages through 

the network in order to maximum overall computational efficiency.  Computations in between 
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message passing should therefore span several seconds or more on each node for highest 

efficiency.  Although originally intended for distributed memory models, it functions in shared 

memory models as well, providing communication between the processing units — thereby, an 

MPI code intended for use in a distributed memory model can be first tested on a shared memory 

system, on which the programmer has immediate control of all resources.   

The MPI communication between compute nodes often takes the form of TCP/IP (transmission 

control protocol / internet protocol), but not necessarily.  A MPI code incorporates all 

communication between all nodes.  The one code is distributed among the different compute 

nodes and then simultaneously run on all of them.  So the MPI code represents a master plan of 

all the communication that will take place between any of the nodes involved.  MPI code entries 

are basically meant to specify that some particular node will send a message to another node (or 

nodes), and that that other node will receive the message.  Such an example is provided by the 

following two lines of MPI code.  

 MPI_Send ( data_i, count, MPI_INT, node, tag, MPI_COMM_WORLD); 

 MPI_Recv ( data_i, count, MPI_INT, node, tag, MPI_COMM_WORLD, &stat); 

The first line sends a message from one node to another, and in that line the count of the length 

of the message and the type of data it represents (integer: MPI_INT) is specified.  The second 

line corresponds with the first.  The first line runs only on the compute node that is assigned to 

send the message, and the second line runs only on the compute node assigned to receive the 

message.  When each compute node runs the one common MPI code it is assigned a unique 

compute node identifier, and the MPI code is written to assign specific tasks to specific compute 
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nodes.  Special features are also provided in MPI, similar to those mentioned for OpenMP, to 

provide for data reduction and other special circumstances.  The startup time of a MPI code 

depends on how many compute nodes are involved, and one limitation of MPI is that no breaks 

from compute loops, e.g., for loops, are allowed. 

2.4 SSE2-SSE5 

Streaming SIMD Extensions (SSE) provide a notable increase in computational efficiency by 

utilizing the Single Instruction Multiple Data model, whereby a single instruction acts on 

multiple data loaded into the one instruction set and expanded registers associated with SSE.  

SSE2 and later versions act on integer as well as floating point values.  Optimized math libraries, 

such as Intel’s MKL library, make extensive use of a CPU’s SSE capabilities.  SSE3 added 

instructions to add and subtract multiple values stored within a single extended size register.  

SSE2 was introduced in 2001, SSE3 in 2004, SSE4 in 2007, and SSE5 in 2011. 

2.5 ADVANCED VECTOR EXTENSIONS 

AVX was introduced in 2011 and extends the SIMD register on the CPU from 128 to 256 bits.  It 

introduced a three-operand SIMD instruction format and the capability for expressions such as 

c a b   use a non-destructive three-operand form to preserve the two source operands.  It 

increases parallelism and throughput in floating point SIMD calculations.   

2.6 C++11 EXTENSION TEMPLATES 

The C++ language by default uses what’s called the eager evaluation model, whereby each 

individual operation within a mathematical expression is evaluated as soon as possible, which 
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leads to the storage of partial results in temporary objects.  This eager evaluation is inefficient 

when relatively large memory objects (matrices) are involved in the calculations.  A more 

computationally efficient alternative is to delay the evaluation of the operations within a 

mathematical expression until the result is needed; thereby avoiding the intermediate calculation 

and storage of temporary memory, and this alternative method is what’s called the lazy 

evaluation model.  By applying template metaprogramming tools in C++ this “lazy,” yet more 

computationally efficient method can be achieved, using a technique called C++ expression 

templates, and it was first described by Veldhuizen [56].  CPU and also GPU code can benefit 

from the computational efficiency of the lazy model [57], for applications involving large data 

models.  Expression templates create objects with a custom, unique C++ type that specifies the 

particular algorithm to be computed, and that type is interpreted at compile-time to generate an 

efficient algorithm implementation of the whole expression, thereby minimizing the 

inefficiencies of temporary calculation and intermediate storage.  The lazy evaluation model 

appears to have a direct analogy in the just in time business production strategy that strives to 

maximize a business’ return on investment with the reduction of in-process inventory and the 

carrying costs associated with that inventory.  The 2011 release of the C++11 language standard 

provides a new r-value reference feature that incorporates move semantics and may functionally 

supersede the expression templates functionality in a more compact manner. 

2.7 GRAPHICS PROCESSORS 

General purpose computing on graphics processing units is referred to as GPGPU.  The acronym 

GPU was coined in 1999 to distinguish the graphics processor topology from the central 
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processor unit (CPU) when general programming capabilities were first included into the 

graphics processor design  The next year, 2000, GPU architectures began incorporating a 

programmable shader unit, which provided new capabilities that have enabled the evolution of 

GPGPU [58].  In 2002 Mark Harris coined the acronym GPGPU, when it was an obscure 

research topic addressed by only a few researchers, and in 2003 he founded the website 

www.gpgpu.org.  Soon after high-level shading languages came into use with DirectX9, to 

replace former assembly code, which involved much more intricate software coding.  In 2004 the 

PCIe PC bus replaced the slower AGP bus, for video cards, and the enhanced speed of the PCIe 

bus is what the GPU relies on in the transfer of data to and from the CPU.  The fundamental data 

structure in a CPU system is a one-dimensional array, and the fundamental data structure in a 

GPU system is a two-dimensional array, called a texture. A GPU kernel represents a code 

fragment, which accomplishes a portion of an overall computational task that in a traditional 

(single-threaded) CPU program would be accomplished by an unfragmented single set of code. 

Graphics processors are multi-core devices primarily developed to speed up the display of 

graphics in real time.  The website www.gpgpu.org is a source of GPGPU news and information.  

Specialized languages have been developed for GPGPU coding of GPUs, including Brook, 

CUDA, OpenCL and OpenACC. 

The graphics processing unit (GPU) was originally developed to speed up graphical displays, but 

it has proven to be useful in speeding up scientific computing as well.  One of the first 

publications describing the use of a graphics processor to antenna computations was by J.S. 

Asvestas in 1995 [59].  Over the past decade clever methods have been developed to utilize the 

GPU as a general-purpose graphics processing unit (GPGPU) to accelerate computations, 

http://www.gpgpu.org/
http://www.gpgpu.org/
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including electromagnetic problems, traditionally handled by a CPU.  The key difference 

between the GPU and CPU that determines the computational speed advantage is a difference in 

architecture: Single Instruction Multiple Data (SIMD).  With SIMD hundreds if not thousands of 

parallel GPU processors execute the same instructions on data that is stored in the GPUs high-

speed memory banks.  The largest manufacturers of GPUs are NVIDIA, AMD (ATI), and Intel.  

NVIDIA provides their own software language, CUDA [60], to program only their GPUs for 

GPGPU computing, as well as supporting OpenCL.  AMD had provided GPU drivers to support 

Stanford’s Brook [61] language since 2003, the first attempt at a GPGPU language, as well as an 

extension to the Brook language customized for AMD GPUs, Brook+, and in 2011 switched to 

providing GPU drivers only for the now industry-standard OpenCL GPGPU language.   

2.7.1 OpenCL 

OpenCL [62] is a universal GPGPU programming language, originally trademarked by Apple, 

Inc, subsequently adopted by the entire industry, and is currently under development and 

managed by the Khronos group (www.khronos.org/opencl/).  OpenCL is considered the open 

standard for parallel programming of heterogeneous systems, and it’s intended for any brand of 

GPU: NVIDIA or AMD — the idea is that OpenCL code can be run on a heterogeneous system, 

whether the computing engines include CPUs, GPUs, DSPs, or a heterogeneous combination of 

computing engines.  In 2008 the Khronos group published the first specification of the OpenCL 

language.  Some limitations of OpenCL are that the current version 2.0 does not support 

recursion, so a subroutine cannot call itself.  Also, complex variable type is not native in 

OpenCL, so complex arithmetic must be specially handled. 

http://www.khronos.org/opencl/
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2.7.2 OpenACC 

In 2012 a new GPU programming language became available: OpenACC, which is intended to 

allow existing CPU code to be simply revised to offload sections of the CPU code that can be 

computed in parallel, e.g., for loops, to a GPU for processing considerably faster than can be 

done on the CPU.  OpenACC relies on a collection of compiler directives being added to existing 

C, C++ or FORTRAN code to specify loops and regions of code in to be offloaded from the host 

CPU to an attached GPU (www.openacc-standard.org), and in this regard the coding 

implementation of OpenACC is similar to that of OpenMP (http://openmp.org/wp/).   

2.7.3 GPU Double-Precision Support 

GPU support for double-precision computing is usually only provided in the upper-end GPU 

models, and on those models only a limited percentage (about 20%) of the chip’s real estate is 

allocated to double-precision processing units (since the primary market for GPUs is graphics, 

which has no need for double-precision).  If a matrix is ill-conditioned it may solve faster, or 

only when, using double- than single-precision arithmetic [63]: Note that the truncated singular 

value decomposition method helps to solve ill-conditioned matrices [42]. 

http://www.openacc-standard.org/
http://openmp.org/wp/
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Fig. 2-2.  Timeline of GPU versus CPU Compute Speed (adapted from [64]). 

2.7.4 MAGMA 

In 2009 the University of Tennessee, which had decades previously developed the highly 

efficient LINPACK and LAPACK libraries [65] for CPU code, effectively joined the competing 

forces of the CPU and GPU by releasing their first beta version of their new MAGMA library 

(Matrix Algebra on GPU and Multi-core Architectures), to simultaneously harness the unique 

strengths of both CPU and GPU to try to solve matrix problems as fast as possible.  MAGMA 

version 1.0 was released in 2011, coded only in the CUDA language customized for NVIDIA 

GPUs.  In 2012 MAGMA was ported to the OpenCL language as clMAGMA release version 1.0 

in late 2012, supporting both AMD and NVIDIA GPUs, and part of the work of this dissertation 

involved porting clMAGMA to Windows 
TM

: That port is documented on the MAGMA User 

Forum:http://icl.cs.utk.edu/magma/forum/viewtopic.php?f=2&t=437&sid=939ece890958f1fe1ab

170fae738e4c9, http://icl.cs.utk.edu/magma/forum/viewtopic.php?f=2&t=727, and 

http://devgurus.amd.com/message/1299829#1299829, and results of the GPU acceleration speed 

achieved in comparison with CPU implementations of a few key BLAS and LAPACK routines 

are summarized in Table 2-1 below. 

http://icl.cs.utk.edu/magma/forum/viewtopic.php?f=2&t=437&sid=939ece890958f1fe1ab170fae738e4c9
http://icl.cs.utk.edu/magma/forum/viewtopic.php?f=2&t=437&sid=939ece890958f1fe1ab170fae738e4c9
http://icl.cs.utk.edu/magma/forum/viewtopic.php?f=2&t=727
http://devgurus.amd.com/message/1299829#1299829
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The MAGMA web site states, “The MAGMA project aims to develop a dense linear algebra 

library similar to LAPACK but for heterogeneous/hybrid architectures, starting with current 

‘Multi-core + GPU’ systems.  The MAGMA research is based on the idea that, to address the 

complex challenges of the emerging hybrid environments, optimal software solutions will 

themselves have to hybridize, combining the strengths of different algorithms within a single 

framework.” 

The recently-introduced Matrix Algebra for GPU and Multi-core Architectures (MAGMA) and 

clMAGMA libraries provide similar functionality for systems with a GPU as the BLAS and 

LAPACK do for a CPU, but with significant potential for further accelerating matrix algebra 

computations due to the use of the GPU.  Fig. 2-3 presents the potential of the GPU to accelerate 

computational speed beyond the CPU alone — the graph shows a GPU/CPU speed advantage 

about an order of magnitude for matrix size around 2000.  Current GPUs of moderate capability 

and cost provide more than 1000 processing units and 1 GB or more of high-speed memory. 
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Table 2-1.  GPU acceleration of clMAGMA versions of BLAS GEMM & LAPACK GESV subroutines versus CPU (AMD 

HD5850 hosted on Intel Core 2 Quad Q8200 running Windows TM). 

Netlib subroutine Matrix Size Acceleration Factor of GPU vs. CPU 

BLAS SGEMM 200 1 

DGEMM 300 1 

CGEMM 150 1 

ZGEMM 100 1 

SGEMM 4000 30 

DGEMM 4000 22 

CGEMM 4000 20 

ZGEMM 3000 10 

LAPACK SGESV 1000 1 

DGESV 800 1 

CGESV 500 1 

ZGESV 500 1 

SGESV 4000 5 

DGESV 3000 3+ 

CGESV 3000 5 

ZGESV 2000 3+ 

MAGMA and clMAGMA are provided in the form of a source code that must be compiled.  I 

have gotten MAGMA compiled and working on the UCLA Hoffman2 general cluster (NIVIDA 

Tesla Fermi C2070 GPUs) and clMAGMA working on a few desktop PCs (AMD HD5850 and 

HD6850 GPUs).  My testing indicates a clMAGMA (GPU) to LAPACK (CPU) matrix solving 

execution speed advantage of about an order of magnitude for matrix size about 2000. Below 

matrix size of a few hundred the CPU is faster, especially when supported by CPU hardware-

optimized LAPACK library such as AMD’s ACML or Intel’s MKL.   
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Fig. 2-3.  MAGMA’s advertized CPU+GPU speed enhancement over CPU alone (from 

http://icl.cs.utk.edu/magma/overview/index.html ). 

2.8 CONCLUSION 

The capabilities of the computer architecture, and the computer language features to control the 

hardware have a significant a significant impact on the rapidity of any compute algorithm.  

Through a balanced use of parallel processing and full utilization of the features of the 

processing cores and language extensions (SSE, SSE2, SSE3, SSE4, SSE5, AVX, extension 

templates, r-value references, and OpenCL for GPGPU) the characterization and optimization of 

aperture and reflector antennas can be suitably accelerated. 

http://icl.cs.utk.edu/magma/overview/index.html
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CHAPTER 3 METAHEURISTIC 
OPTIMIZATION 

Optimization techniques used in the electromagnetic engineering community are often 

metaheuristic because of the complexity of the tradeoffs involved.  Metaheuristic methods 

involve stochastic optimization to distinguish global from local optimal solutions, as opposed to 

classical optimizers that are meant to produce exact solutions for simpler classical models with 

local extrema, which if applied to real-world engineering problems tend to get stuck on local 

optimum solutions.   

A basic overview of metaheuristic methods is provided in [66].  Such methods include Ant 

Colony Optimization [67], Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [68], 

Genetic Algorithms (GA) [69], Invasive Weed Optimization (IWO) [70], PSO [71]–[76], 

Simulated Annealing [77], and Tabu Search [78].  Among these optimization techniques, the 

PSO is a practical balance between model simplicity and robust, rapid, global solution 

convergence.   

Optimization can pertain to a system with one or more variables with one or more optimization 

objectives, goals, or constraints.  With only one objective the optimization can evaluate it with a 

fitness function.  If there are multiple (competing) objectives evaluation of the optimality 

becomes more complicated.  There are generally two approaches to multi-objective optimization:  
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1) combining fitness functions and 2) referring to a Pareto front [76], [79], [80].  A classical way 

of combining multiple objectives into a single fitness function is a weighted sum of fitness 

functions — one from each objective — where the result of the overall optimization can depend 

on the choice of weighting.  An example is given in (3.1) of section 3.1, which involves the two 

competing objectives of peak sidelobe level and first-null beamwidth.  Pareto optimality 

represents the trade-off between multiple goals: A solution is Pareto optimal when it is not 

possible to improve one goal without degrading at least one of the others.  Optimization by 

Pareto front involves more intensive numerical investigation to determine the actual boundary of 

optimality between competing objectives, and a few examples of Pareto fronts are given below.  

The Pareto front provides the bottom line optimum tradeoff between the competing fitness 

functions, which is then used to narrow down the optimization process to provide a particular 

design using that knowledge.  In general there is no singly optimal solution to a multi-objective 

optimization:  The set of Pareto optimal multi-objective solutions is called a Pareto front. 

3.1 PARTICLE SWARM OPTIMIZATION 

The Particle Swarm Optimization (PSO) algorithm is similar to the concept of a swarm of bees in 

a field, effectively communicating their individual findings and so guiding the swarm as a whole 

ever closer to a suitable location to converge upon.  A PSO algorithm directs the search and 

evaluates a fitness function, customized for the particularly specified goal(s), to evaluate the 

merit of each candidate solution considered by any member of the swarm.  Example PSO 

convergence plots are shown in Fig. 3-1 and Fig. 3-2, using respective fitness functions given by 

(3.1) and (3.2), and each with twenty agents per swarm and thirty swarm trials per iteration.  



34 

These two are comparable since they both have the same goal of -40 dB PSLL; although, one is 

for a sum pattern and the other for a difference pattern.  Note that the convergence plot in Fig. 

3-1 involves a fitness function that is not conditional; whereas, that in Fig. 3-2 is conditional:  In 

the former case the average fitness is considerably larger than in the latter; although, the rate of 

convergence appears to be a bit faster in the former than the latter. 

     
2

fitness_11a PSLL dB goal FNBW /2u    (3.1) 

 
 FNBW /2,  if PSLL goal;

fitness_11b
999,   otherwise.

u 
 


 (3.2) 

 
Fig. 3-1. PSO convergence for design of 3PS pattern with -40 dB PSLL and minimum FNBW, reproduced courtesy of The 

Electromagnetics Academy [81]. 

 
Fig. 3-2. PSO convergence for design of 3PD pattern with -40 dB PSLL and minimum FNBW, reproduced courtesy of 

The Electromagnetics Academy [81]. 
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The position, in model parameter space, of the search agent (swarm member) with the best 

fitness value among the swarm at any iteration is the global best for that iteration.  Each search 

agent moves about the parameter space and its flight path is pulled toward that global best.  It is 

also pulled toward its own personal best location, and its flight path is also affected by its own 

inertia and random motion.   

Consider the flight trajectory of any particular swarm member (“search agent,” or “bee”) in the 

PSO model n-dimensional parameter space, letting 2n   here for simplicity.  Applying real-

world physics and assuming each bee naturally counteracts the force of gravity, we imagine that 

each bee has some linear momentum that Newton’s Law preserves until external forces are 

applied or the bee alters its path.  External winds and individual bee behavior combine to provide 

a seeming randomness to the individual flight paths.  By means of the waggle dance a bee 

communicates to its hive-mates in which direction with respect to the Sun and how far it flew to 

reach the food source it found.  So we can imagine that each bee’s flight path is affected by 1) 

Newton’s Law, 2) random motion, 3) its own knowledge of the best place at which it has found 

food (personal best, or pbest), and 4) the best overall location found by any member of the swarm 

(the global best, or gbest).  This is represented by (3.3) for the motion of any PSO search agent.  vn 

represents the search agent’s velocity vector in the current (n
th

) iteration, xn represents its current 

position vector, w is the momentum factor, c1 and c2 effectively represent spring constants 

pulling the search agent respectively towards its personal and the overall swarm’s global best 

locations, and rand() is a strictly-positive valued random number function ranging between the 

zero and one.  t is a discrete step representing the time between iterations. 

    1 1 1 best 2 best,  and rand() rand()n n n n n n nx x v t v wv c p x c g x           (3.3) 
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The fitness function used to evaluate the merit of the search agent’s current location in parameter 

space can represent the merit with respect to one or more complementary goals.  With a single 

goal, such as beamwidth, the fitness function can be simply a function of beamwidth that PSO 

will strive to minimize.  The fitness function can also represent multiple complementary goals by 

combining fitness functions for each of the goals into a single fitness value, where the respective 

weighting of each factor affects the outcome of the optimization process.  An effective technique 

for handling multiple goals in an optimization makes use of a Pareto front [80].  Pareto 

optimality represents the trade-off between multiple goals: A solution is Pareto optimal when it 

is not possible to improve one goal without degrading at least one of the other, and a set of 

Pareto optimal solutions determines the Pareto front.   

3.1 IMPLEMENTATION 

The particle swarm optimization can be implemented in regular code (C/C++, FORTRAN) 

single-threaded, or accelerated by parallel processing.  Generally the majority of the compute 

time of a PSO optimization run is spent calculating the fitness function of the optimization loop.  

This means that parallel processing techniques can be used to accelerate PSO by calculating the 

fitness functions for several different parameter permutations all at the same time.  The 

previously discussed techniques of OpenMP, MPI and OpenCL are well suited in this regard, 

where OpenCL allows harnessing the power of graphics processors.  The acceleration factor is 

maximized on graphics processors by writing the PSO code, including the fitness function 

calculations, so that all the PSO computations remain resident on the graphics processor as long 

as possible and having the graphics processor communicate with the host computer only at first 
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to receive the tasks instructions and then at the end to report the final results back to the host 

computer for archiving the results. 

3.2 MULTI-PARAMETER PSO OF MULTIBAND FSS SUBREFLECTOR 

The results of an example application of PSO to produce an optimized design of a four-band 

multi-layer frequency selective surface (FSS) subreflector are presented below, wherein nearly 

twenty design parameters were involved in the optimization in order to specify the respective 

thicknesses of ten internal material layers, including dielectric and honeycomb sheeting, and the 

dimensions of the frequency selective conductive elements arranged in a spatially periodic 

hexagonal pattern on four different intermediate material interfaces within the multi-layer 

construction.  At every step of the optimization a combined fitness function for the candidate set 

of design parameters, chosen by the optimizer, is determined by comparing the response of the 

subreflector over specified relative frequency bandwidths (10–20%) in four different frequency 

bands (S-band, X-band, Ku-band, and Ka-band) and over the angular range of 10–40 deg, which 

is the angular range that the rays from the feedhorn make wrt the subreflector surface normal for 

this particular example.  The electromagnetic response of the FSS subreflector is evaluated by a 

Floquet mode analysis of the periodic, multi-layer structure calculated using the QDAS software 

provided by Steatite Q-par Antennas (http://www.q-par.com/capabilities/software/fss-demo-

software-download).   

 The combined fitness function is defined to minimize the S-band transmission loss while 

simultaneously minimizing the reflection loss in the X-, Ku- and Ka-bands.  Different shapes for 

the periodic elements were considered (square, cross, etc.) and the tripole element yielded the 

http://www.q-par.com/capabilities/software/fss-demo-software-download
http://www.q-par.com/capabilities/software/fss-demo-software-download
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best results.  A unique part of this design is that the layering is asymmetrical.  Subreflectors are 

often constructed symmetrically, such that the material layering and FSS sheets are identical 

when entering the subreflector from either side, with an odd number of layers so that one 

material layer occupies the center.  It was recognized for this design exercise that the 

transmission properties are naturally independent of the direction of wave travel (due to the 

principle of reciprocity), and that the reflection loss requirements only applied to reflection from 

one particular side of the subreflector.  Thereby the optimizer was set free to evaluate 

asymmetrical material layer thickness profiles, as well as an asymmetrical layup of the FSS 

sheets (periodic arrays of conductive elements).  The asymmetrical design provides the benefit of 

minimizing the overall subreflector thickness. 

The optimized shapes of the conductive FSS element sheets chosen by the optimizer are 

indicated below, in order of the reflective side inward toward the other side of the subreflector 

multi-layer construction. 

 

Fig. 3-3.  Multi-layered subreflector construction, from www.appliedbpc.com. 

http://www.appliedbpc.com/
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Fig. 3-4.  The relative shapes of the four different periodic FSS elements, each individually repeated on a different FSS 

sheet within the multi-layer subreflector.  The dashed rhombus represents the unit cell in the respective periodic FSS 

sheet. 

Fig. 3-5 provides a sample full spectral response of the FSS subreflector for an intermediate 

design from the optimizer: after the optimizer has run for a while but not yet converged on the 

final solution — this indicates the complexity of the problem of achieving minimum loss across 

several specific frequency bands.  The S-band transmission and X-, Ku- and Ka-band reflection 

losses of the fully optimized multi-band subreflector are indicated in Fig. 3-6 through Fig. 3-9 

below versus frequency and incidence angle.  Only the horizontal central third of the indicated 

frequency plots represent the frequency bands evaluated by the optimizer fitness function:  The 

additional left and right thirds of the plots are included to indicate the trend of the subreflector 

frequency response so that the effects of manufacturing tolerance might be considered.   
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Fig. 3-5.  Intermediate optimizer result: Full spectral response of FSS after the optimizer started by not yet converged on 

the solution.  This indicates the complexity of the problem of achieving minimum loss across several frequency bands, 

showing that an initial design can have very significant losses. 
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Fig. 3-6.  Fully optimized design:  S-band transmission response of PSO optimized multi-layer FSS subreflector at 

incidence angles of 10 deg (top left), 20 deg (top right), 30 deg (bottom left), and 40 deg (bottom right). 
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Fig. 3-7.  X-band reflection response of PSO optimized multi-layer FSS subreflector at incidence angles of 10 deg (top 

left), 20 deg (top right), 30 deg (bottom left), and 40 deg (bottom right). 
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Fig. 3-8.  Ku-band reflection response of PSO optimized multi-layer FSS subreflector at incidence angles of 10 deg (top 

left), 20 deg (top right), 30 deg (bottom left), and 40 deg (bottom right). 



44 

 

 
Fig. 3-9.  Ka-band reflection response of PSO optimized multi-layer FSS subreflector at incidence angles of 10 deg (top 

left), 20 deg (top right), 30 deg (bottom left), and 40 deg (bottom right). 

3.3 CONCLUSION 

Metaheuristic optimization is utilized to solve real-world engineering problems in which there 

may be a complex relationship between local optima and a desired global optimum.  The 

literature reports that the method of particle swarm optimization (PSO) provides a reasonable 

balance between accuracy of locating a global optimum and the speed of solution convergence.  

A set of examples were discussed that indicate that PSO is able to provide good rates of 

convergence toward a stable solution and also handle real-world design optimizations with a 
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relatively large number of design parameters.  With these observations and example 

demonstrations in mind, the method of PSO is the primary optimization technique utilized in this 

dissertation. 



46 

CHAPTER 4 THREE-PARAMETER 
APERTURE DISTRIBUTIONS 

This chapter presents a unified analysis of the three-parameter aperture distributions for both 

sum and difference antenna patterns, suitable for communications or telemetry applications with 

either a stationary or tracking antenna, and with the parameters automatically determined by 

Particle-Swarm Optimization (PSO).  The optimizations involve multiple objectives, for which 

Pareto efficiency concepts apply, and are accelerated by compact, analytical closed-form 

equations for key metrics of the distributions, including the far field radiation pattern and 

detection slope of the difference pattern.  The limiting cases of the three-parameter distributions 

are discussed and shown to generalize other distributions in the literature.  A derivation of the 

generalized vector far fields provides the background for the distribution study and helps clarify 

the definition of cross-polarization in the far field.  Examples are given to show that the three-

parameter (3P) distributions meet a range of system-level constraints for various applications, 

including a sidelobe mask for satellite ground stations and maximizing pointing error detection 

sensitivity while minimizing clutter from sidelobes for tracking applications.  The equations for 

the relative angle sensitivity for the difference pattern are derived.  A study of the sensitivity of 

the 3P parameter values is presented. 
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4.1 INTRODUCTION 

There are many methods of antenna synthesis, each of which is developed in response to a given 

class of problems.  This chapter provides a unified method for antenna pattern synthesis for the 

broad classes of antennas having a single main beam, with some constraint on the sidelobe 

levels, and including tracking antennas.  This 3P unification provides closed-form equations for 

key metrics associated with each aperture distribution, including the radiation patterns for both 

sum and difference patterns, allowing quick calculation analytically rather than by brute force 

integration.   

 
Fig. 4-1. Elliptical aperture geometry, with generic sum and difference patterns, reproduced courtesy of The 

Electromagnetics Academy [81]. 

Consider an elliptical aperture as shown in Fig. 4-1.  An antenna’s radiation characteristics are 

largely determined by its aperture fields, which are respectively determined by the antenna’s 

design and construction.  When a realistic, comprehensive model of aperture field distribution is 

available with a relatively small number of parameters, the overall antenna design process can be 

effectively divided into two sequential steps: first identifying an aperture distribution model that 

meets the given system-level design constraints (considering antenna system metrics such as 

beamwidth, sidelobe level, and pointing error detection sensitivity) and subsequently designing 

the antenna to provide the chosen aperture distribution.  Ideally such a model would provide 
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analytical relationships between the aperture parameters and the system metrics, and this chapter 

provides those relationships as equations for the 3P distribution, generalized for sum and 

difference patterns.  The three parameters are ,  ,   and c. With just a few parameters for the 

aperture distribution the top-level antenna system design can be completed quickly. 

The 3P distribution, as originally published [82], applies only to sum patterns.  Here we extend it 

to include difference patterns as well and analyze both the sum and difference distributions in a 

unified manner.  The 3P distributions provide considerable flexibility, as the remainder of this 

chapter shows:  The 3P sum distribution generalizes several other distributions in the literature, 

including Hansen’s 1P distribution [83], the parabolic 2P, and the Bickmore-Spellmire 2P: all as 

discussed in [82].  These other distributions are represented by limiting cases of the 3P general 

distribution, as discussed below.  What is meant by a sum pattern is the radiation pattern from 

the fields in the entire aperture, all in phase (adding constructively).  On the other hand, the 

difference pattern negates the sign of the fields on one side of the aperture so as to cancel out the 

fields on the other side and produce a difference pattern null in the central direction that 

coincides with the sum pattern’s main beam.  Antenna tracking systems track the null in the 

difference pattern to keep the main (sum) beam peaked on the signal.   

An antenna’s radiation pattern is determined from the aperture fields by the field equivalence 

principle according to Maxwell’s equations.  A radiation pattern varies in shape as a function of 

distance from the aperture: reactive near field zone closest to the antenna, radiating near field 

(Fresnel zone) and radiating far field (Fraunhofer) zone.  Beyond a certain distance from the 

aperture, which depends on the antenna size, the radiation pattern remains effectively constant in 

shape.  In this analysis the true (infinitely distant) far fields are considered.  The radiation 
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characteristics of taper efficiency, beamwidth, sidelobe level, and the asymptotic trend of the far-

out sidelobe levels are addressed for the 3P distributions. 

The 3P model assumes a planar aperture, and there are several methods by which to synthesize 

planar apertures, e.g., [84] chapter 7, [83], or [85] chapter 6, that must relate the aperture 

parameters to a given set of design constraints.  A manual design of an aperture distribution can 

require considerable time, and as Hansen mentions [83] can result in a suboptimal result.  An 

optimizer that automatically searches the available range of distribution model parameter values 

can significantly reduce the time and effort required to meet particular design constraints — even 

finding unexpected solutions that might be missed if designed manually.   

Metaheuristic optimization is discussed, identifying the common methods currently in use, 

followed by a discussion of the fundamentals of the PSO algorithm [71]–[76], and several 

examples are given for 3P distributions designed by PSO to meet common design constraints, 

which can involve multiple competing factors.  Multiple-objective optimization is addressed 

from the perspective of Pareto efficiency [76].  The PSO algorithm serves the purposes of 3P 

distribution design quite well, as the examples reveal.   

A number of mathematical appendices are included at the end, in which the closed form 

equations discussed in the body of the text are each derived, in order to make the chapter more 

complete.  The following special functions are used: 
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 
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 Bessel function of the first kind, of order 
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For example,  
   

 
2 1

0

, ; ;
!

n

n n

n n

a b x
F a b c x

c n





  , (4.1) 

where  
0

1a   is the simplest Pochhammer symbol, and the general Pochhammer symbol is 

     1  . . . 1 ,  1,  2,  3,  . . .
n

a a a a n n        

4.2 FROM APERTURE DISTRIBUTIONS TO FAR FIELDS 

In this section the aperture geometry is summarized, a set of equations that represent the vector 

far fields in a general form are derived (applicable to both sum and difference, and providing 

insight regarding the issue of the definition of cross-polarization), basic concepts pertaining to 

antenna radiation patterns are presented, including directivity, and the particulars regarding both 

sum and difference distributions are discussed, relating the model equations presented here to 

real-life applications. 

4.2.1 Aperture Geometry 

Consider an elliptical aperture with major and minor axes, a and b, centered about the origin in 

the xy-plane bounded by  

 

2 2

1
x y

a b

   
    

   
 (4.2) 
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Any point inside the planar aperture is represented by a relative radial term, t, an angle,  , and a 

vector,   . 

    ˆ ˆ' ' ', where ' cos , ' sin , 0,1 , 0,2   x x y y x at y bt t            (4.3) 

4.2.2 Generalized Vector Far fields 

This section reviews the construction of the vector far field equations for an elliptical aperture 

distribution.  The time-convention is  exp j t , where 1j   .  The real-valued aperture 

distribution function  ,Q t   represents the magnitude and sign of unidirectional (e.g., x- or y-

directed) aperture fields, apE  and apH , assuming transverse electromagnetic mode (TEM) [11], 

with constant aperture phase other than a possible sign reversal defined by the distribution.  The 

assumption of TEM mode in the aperture imposes 

 ˆ
ap apH n E   ,  (4.4) 

where   is the free-space impedance and n̂  is the outward aperture surface normal vector — the 

z-axis here.  The aperture distribution defines the aperture fields as a function of the aperture 

coordinates according to (4.5), where p̂  is the polarization orientation of the electric field in the 

aperture, and   is the impedance of free space. 

    ˆ, , 2apE t pQ t   ,  (4.5) 

The Schelkunoff field equivalence principle [1] relates the aperture field, given by the 

distribution, to equivalent electric and magnetic currents tangential to the aperture and related to 

vector potentials. The vector potentials then determine the radiating far fields associated with the 
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given aperture distribution.  The equivalent currents relate to the aperture fields by the following 

equations. 

 ˆ ˆ  and eq ap eq apJ n H M n E       (4.6) 

Following (6-95), (6-101), and (6-102) from [11] the radiated electric far field, ffE , is 

proportional to the magnetic and electric vector potentials as given by the equations below, 

where the magnetic vector potential in the far field is ffA , the electric vector potential ffF ,   

free-space permeability,   free-space permittivity, 2 /k   ,   is the wavelength, and 'ds  the 

elemental aperture surface area.  The vector from the origin in the center of the aperture to a 

given far field observation point is  , ,r r   , with corresponding unit vector r̂ . 

 ˆ( )ff A ff F ff ff ffE E E j A r F       , (4.7) 

where 
 

 
exp

ˆexp ( ' ) '
4

ff eq

jkr
A J jk r ds

r
 




  , (4.8) 

and 
 

 
exp

ˆexp ( ' ) '
4

ff eq

jkr
F M jk r ds

r
 




  . (4.9) 

These equations reduce in the far field to 

 
 

     
exp

ˆ ˆ ˆ ˆexp ( ' ) '
4

ff ap ap

jk jkr
E n H r n E jk r ds

r
 




        
  . (4.10) 

Working out the math for the two primary polarizations yields a conditional equation: 

 
  ˆ ˆ ˆ ˆcos sin , ;exp

ˆ(1 cos ) 2   and 
ˆ ˆ4 ˆ ˆsin cos , .

ff

ff ff

Ep xjk jkr
E T H r

r p y

   
 

    

   
   

 

  (4.11) 
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Note that the equation for ffE  shows that the ˆ ˆ and    TEM spherical components of the far field 

radiated from a TEM aperture are related via sine and cosine, which is a definition of a Huygens 

source [86] (18), for which the Ludwig third definition of cross-polarization [87] applies.  

Equation (4.11) is derived in Appendix 8.1. 

T in the equation for ffE  is defined as 

      ˆ, , exp ( ' ) 'T Q t jk r ds     , (4.12) 

or      
2 1

0 0
, , exp cos sin cos sin sin sinT Q t jk at bt abt dtd



              . (4.13) 

Substituting  

    , sinu kB    , (4.14) 

where   2 2 2 2cos sinB a b     , (4.15) 

and      arctan sin / cosb a        , (4.16) 

and noting that  ,u    is the normalized radian angle, simplifies (4.13) to 

      
2 1

0 0
, exp cos( )T u Q t jut abt dtd



     .  (4.17) 

In order to generalize for both sum and difference patterns, Q is defined by (4.18), where 

  0R t  and n is zero for sum patterns or unity for difference patterns.      is the orientation 

of the plane perpendicular to the aperture in which the difference pattern is intended. 

      , cos ; 0 or 1Q t R t n n         (4.18) 
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With the help of (3.915.2) in  [88], (4.17) reduces to   

        
1

0
2 cos

0 or 1

n

nT u abj n R t J ut tdt
n

     .  (4.19) 

Equation (4.19) is derived in the appendix (8.27).  The superscript norm is used to denote 

normalization by aperture area; e.g.,  

  norm /S ST T ab .  (4.20) 

The above equations specify the form of the vector far fields in spherical coordinates for a 

general elliptical aperture distribution Q.  0n   produces a sum pattern and 1n   a difference 

pattern.  If the aperture is electrically large (yielding a pattern with a narrow beamwidth centered 

at 0  ) then the  1 cos  term, referred to as element factor of a Huygens source, can be 

neglected: In that case a study of the radiation patterns associated with various aperture 

distributions can focus entirely on T, the radiation pattern space factor, and that is the path taken 

in this analysis.   

In the remainder of this chapter the properties of the space factor are studied for two distinctly 

different types of distributions:  that for producing a radiation pattern with a main beam central 

peak (referred to as a sum pattern and commonly used for data communications), and also that 

for producing a radiation pattern with a central null (referred to as a difference pattern and 

typically used to detect antenna pointing error for tracking).  The distribution and space factor 

functions associated with the sum pattern type are respectively distinguished as 
SQ  and 

ST ; 

whereas, those for the difference pattern type as 
DQ  and 

DT .   
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4.2.3 Radiation Pattern Characteristics 

In reference to the radiation patterns there are a few terms to define.  A sum pattern has a central 

peak on-axis (zero angle), and a difference pattern has a central null.  The angular width of a sum 

pattern’s main beam at the points where the radiated power pattern drops to half its peak value is 

the half-power beamwidth, or HPBW.  A radiation pattern from an aperture with uniform phase 

typically has pattern nulls at regular angular intervals off-axis.  The angular distance between the 

two first off-axis nulls, one on each side of the axis, is the pattern’s first-null beamwidth 

(FNBW).  Other than the main central beam of a sum pattern — or dual off-axis main beams of a 

difference pattern — the sub-beams between the off-axis nulls are the sidelobes, and the level of 

the highest sidelobe in the pattern, with respect to the level of the main beam(s), is the peak 

sidelobe level (PSLL).  Taper (or illumination) efficiency, et,, is defined by (4.21), which for an 

aperture with uniform-phase and zero cross-polarization is the ratio of the effective radiating area 

to the physical area.  Zero cross-polarization occurs when the aperture fields, all throughout the 

aperture, are all oriented in the same direction, as given in (4.5). 

 

2

2

ap

t

Q ds
e

A Q ds





 (4.21) 

Equation (14) in [82] gives the taper efficiency as the ratio of the squared magnitude of the 

aperture-area-normalized on-axis space factor divided by the aperture-area-normalized area 

integral of the square of the distribution.   
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Aperture directivity is 
24 r  times the ratio of the power radiated in one direction to the total 

power radiated in all directions.  The directivity is approximated in [82], for electrically large 

apertures, by (4.22), where apP  is the total TEM aperture power.   

  

2
norm 2

0 norm

ap

1 cos
,

2

T
D D

P


 

 
  

 
,  (4.22) 

where 
0 2

4
D ab





 , (4.23) 

and 

2
1

ap ap2apnorm

ap

E H ds Q dsP
P

ab ab ab  

 
  

 
. (4.24) 

Borrowing terminology from antenna array theory, the T term in (4.11) is referred to as the 

radiation pattern’s space factor [89], and the  1 cos  term in (4.11) as the element factor, or 

obliquity factor, of a Huygens source [90].  The aperture-power normalized directivity pattern of 

an electrically large aperture (with narrow beamwidth), for sum or difference in general, is 

thereby approximated by 
2

norm norm

ap/T P , the squared magnitude of the area-normalized space 

factor divided by the area-normalized aperture power.   

A simple normalization is suitable to provide a basic comparison of the radiation patterns among 

candidate aperture distributions.  Since sidelobe level with respect to the beam peak is typically 

one of the most significant requirements for an antenna, a suitable normalization is simply with 

respect to the peak of the sum pattern, so that all normalized sum patterns peak at unity (zero 

dB).  Difference patterns, on the other hand, don’t have a main beam peak:  A natural alternative 

normalization for a difference pattern is with respect to the peak of its matching sum pattern, 
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which places the difference pattern’s dual peaks at a level of about -2 dB.   The difference 

patterns plotted in the figures simply normalize to the pattern peak in order emphasize the 

relative sidelobe levels.  The matching sum pattern results from a hypothetical aperture 

distribution equal to the absolute value of the difference pattern’s aperture distribution, and its 

on-axis peak value is denoted  0DT , defined in (4.25).   DR t  is a difference pattern’s radial 

distribution according to (4.18).   

        
2 1 1

D
0 0 0

0 cos 4D DD
T Q ds R t abt dtd ab R t tdt



          (4.25) 

Equation  (4.26), the taper efficiency of a difference pattern, is constructed using (4.21), (4.24), 

and (4.25).   

 

2
norm

D norm

apD

(0)
D

t

T
e

P

 
    (4.26) 

One of the most important features of the difference distribution is the slope of its radiation 

pattern about its central null.  That slope determines the sensitivity of its detection of pointing 

error and is the primary coefficient in any feedback tracking control system that uses the antenna 

pointing error detected by this slope.  Equation (4.27) represents the slope normalized by 

aperture area. 

 
 norm

Dnorm

0

dT u
S

udu



 (4.27) 

For the purpose of comparing slopes among candidate aperture distributions it’s appropriate to 

further normalize 
normS  by norm

apDP or  norm
|D| 0T .  Normalizing with respect to the square root of 
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the area-normalized aperture power would effectively reduce the slope by the taper efficiency; 

whereas, the normalization of (4.28) by the peak of the matching sum pattern sets the (dual) 

peaks of all difference patterns at the same level of about -2dB and so provides normalization 

independent of the taper efficiency.   Bayliss [91] suggests comparing distributions by relative 

angle sensitivity, defined as normalizing by the maximum possible slope.  The relative angle 

sensitivity, based on normalization by the matching sum pattern, is defined in (4.29), where 

normT

MAXS  is the maximum matching-sum-pattern-normalized angle sensitivity for the class of 

aperture distributions in consideration. 

  normT norm norm

|D|/ 0S S T  (4.28) 

 
relative normT normT

MAX/S S S  (4.29) 

4.3 SUM AND DIFFERENCE PATTERNS 

The terms 3PS and 3PD distinguish between a 3P distribution intended respectively for a sum 

and difference pattern.  This section introduces the basic sum and difference patterns and then 

addresses the unique details of the general sum and difference patterns respectively.  The 

distribution functions are identified, the radiation patterns developed, the asymptotic sidelobe 

behavior recognized, the equation for the total aperture power derived, and the limiting cases of 

the distributions are presented.  Pareto fronts for the limiting cases describe the unique 

characteristics of each.  For the difference pattern the normalization of the central slope is 

discussed, and the relative angle sensitivity derived. 
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4.3.1 Basic Sum and Difference Patterns 

The simplest aperture distribution that produces a sum pattern is a constant, and in that case the 

resulting space factor T is solved with the help of [88] (5.52.1) as 

 
 1norm 2

1
S

S

J u
T

Q u



.  (4.30) 

The simplest elliptical aperture distribution that produces a difference pattern effectively 

involves the difference rather than the sum of the fields on either side of the aperture.  

Distinguishing respective sides implies the choice of a particular   angle, in which phi-plane 

pattern cut the difference pattern is intended, and that angle is defined as    .  The line that 

divides the two halves of the aperture is at an angle perpendicular to  .  Instead of simply 

negating the sign of the fields on one half of the aperture, the method given in [85] is used to 

create a difference pattern from a radial aperture distribution: by multiplying the radial 

distribution by cos .  In this manner, the simplest example of a distribution that produces a 

difference pattern is a constant times cos , in which case (4.31) is the space factor for the 

resulting difference pattern, determined using [88] (6.561.1), where  0H z  and  1H z  are 

respectively the Struve functions of order zero and one. 
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       1 0 1 0norm

H H
cos

cos
D

D

J u u u J u
T j

Q u





 

 
 (4.31) 

Equation (4.31) is derived in the appendix (8.31). 
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4.3.2 Sum Pattern Distributions (3PS) 

The 3PS distribution, introduced in [82], is defined over an elliptical aperture, depicted in Fig. 

4-1.  Each unique 3P distribution is represented by a triplet of parameter values: ,  and c.  For 

the 3PS distributions these three parameters represent respectively:  ) the tail shape,  ) 

steepness, and c ) pedestal height of the distribution.  Each 3P distribution has a characteristic 

radiation pattern that is conveniently expressed by a modest closed-form equation.  The fact that 

the 3P distribution has a closed-form radiation pattern equation provides faster convergence for 

any optimization algorithm that utilizes it:  In each cycle of an iterative optimization the 

candidate three-parameter distribution is quickly evaluated (in closed-form) as the optimization 

algorithm proceeds.  Without the closed-form radiation equation the far field radiation pattern of 

the distribution would have to be computed by numerical integration, which tends to require 

substantially more compute time. 

The 3P sum distribution is defined in [82] as  Q t  and here renamed  SQ t .   

  
 

 
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I t
Q t c c t
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    ,  (4.32) 

where the domains of the three parameters (, , c) are 0,    0,    0 1c     .  The far field 

radiation integral for the 3P sum distribution is solved in closed form using [88] (6.683.2). 
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  (4.33) 
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Equation (4.33) is derived in the appendix (8.35).  The asymptotic behavior of TS for large u 

describes the level of the far-out sidelobes, and for the 3PS distribution that behavior is in (4.34).   

Note that for large argument,   1/2,  z J z z

 . 

  
3/2

S 3/2

,   0;

, 0.

u c
T u

u u c



 

 
 

 
  (4.34) 

The normalization of the 3P sum distribution is discussed in [82], where the choice is made to 

normalize by the square root of the normalized aperture power integral.  The equation for the 

aperture area normalized power integral is 

  
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.  (4.35) 

Equation (4.35) is derived in the appendix (8.43).  The limiting cases for the 3PS distribution are 

discussed in [82] and become the Bickmore-Spellmire distribution when 0c  , the parabolic 2P 

model when 0  , and the 1P model when 0   and 0c  .  These three limiting cases are 

given respectively by (4.36), (4.37), and (4.38), and several example distributions for each case 

are displayed respectively in Fig. 4-2 to Fig. 4-4. 
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Fig. 4-2.  Example distributions for 3PS limiting case of 0c  , reproduced courtesy of The Electromagnetics Academy 

[81]. 

 
Fig. 4-3. Example distributions for 3PS limiting case of 0  , reproduced courtesy of The Electromagnetics Academy 

[81]. 

 
Fig. 4-4. Example distributions for 3PS limiting case of 0c   , reproduced courtesy of The Electromagnetics 

Academy [81]. 

Since the broad classes of antennas that the 3P distributions apply to are mainly concerned with 

tradeoffs between directivity and PSLL, an appreciation of the main distinctions between the 
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three limiting cases can be obtained by considering the uniquely different tradeoff that each case 

provides between PSLL and FNBW/2, the angle  u  at which the first off-axis null occurs, 

which is an indirect measure of directivity.  A multi-objective optimization, such as a tradeoff 

between PSLL and FNBW, is effectively summarized by a Pareto front [79].  Pareto fronts for 

the radiation patterns of these three limiting cases of the 3PS distribution are given by the 

perimeters of sample-population areas presented respectively in Fig. 4-5 and Fig. 4-6.  The case 

of 0c   appears as essentially a fan sector and fills the region between the curves, and that of 

0   has particularly detailed features.  For reduction of the radiation pattern (4.33) in the 

limiting case of 0  , note that 

    
0

lim / 2 1I 




  

     

.  (4.39) 

 
Fig. 4-5. PSLL versus FNBW/2 Pareto fronts for 3PS limiting cases of 0c  , 0a c  , and 0c   , reproduced 

courtesy of The Electromagnetics Academy [81].  
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Fig. 4-6. PSLL versus FNBW/2 Pareto front for 3PS limiting case of 0  , reproduced courtesy of The 

Electromagnetics Academy [81]. 

4.3.3 Difference Pattern Distributions (3PD) 

The most commonly referenced distribution for a difference pattern appears to be that of Bayliss 

[91], which presents a two-parameter circular aperture distribution as an analog to the Taylor n  

sum distribution [90].  Section IV in [83] references the discussion in [85] of a circular Bayliss 

distribution based on multiplying by cos .  This is a natural method of producing a difference 

pattern, judging by the fact that the higher-order mode (HE21) linearly-polarized fields in the 

mouth of a large corrugated horn (commonly used for detecting tracking error in satellite earth 

stations) have the cos  dependence [92].  A difference pattern distribution for a line source is 

suggested in [93] as a complement to the 3P sum distribution in [82].  That suggestion is 

basically to multiply the radial Q(t) distribution in [82] by t.  Heeding that suggestion, along with 

the cos  factor, the 3P difference pattern distribution reviewed in this chapter for a general 

elliptical aperture is defined as  

      D S, cos (1 )
0

Q t c c t Q t
c

 
   

     
   

,  (4.40) 
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or        
 
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. (4.41) 

The 3P difference pattern far field is solved using [88] (3.915.2, 6.561.1, and 6.682.2):  

             
 

  

2 2

2
norm

D 1 0 1 0 2
2 2

2 cos H H 1
2

u J u
T u j c J u u u J u c

u
I u









 

 





 
 

        
 
 

.(4.42) 

Equation (4.42) is derived in the appendix (8.52).  The asymptotic behavior of T for large u 

describes the level of the far-out sidelobes, and for the 3P difference distribution that behavior is 

given in (4.43).  This is steeper than for the sum distribution when c = 0.    

  
3/2

D 5/2

,   0;

, 0.

u c
T u

u u c



 

 
 

 
  (4.43) 

On-axis field strength of the matching sum pattern corresponding to the absolute value of the 

3PD distribution, solved using [88] (6.683.6), is 

    
 

 
3/2norm

3/2

2
0 2 1

D

Ic
T c

I







   


  

   
  

. (4.44) 

Equation (4.44) is derived in the appendix (8.58).  The total aperture power in the 3PD 

distribution is similarly found: 
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  (4.45) 

Equation (4.45) is derived in the appendix (8.64).  The limiting cases for the 3PD distribution 

that correspond to the same aforementioned cases as for 3PS, (4.36)-(4.38), are presented in 

(4.46)-(4.48), and example distributions for each case are displayed respectively in Fig. 4-7 - Fig. 

4-9.   
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Fig. 4-7. Example distributions for 3PD limiting case of 0c  , reproduced courtesy of The Electromagnetics Academy 

[81]. 

 
Fig. 4-8. Example distributions for 3PD limiting case of 0  , reproduced courtesy of The Electromagnetics Academy 

[81]. 

 
Fig. 4-9. Example distributions for 3PD limiting case of 0c   , reproduced courtesy of The Electromagnetics 

Academy [81]. 

Pareto fronts that reveal the uniquely different tradeoff that each case provides between PSLL 

and FNBW are presented in Fig. 4-10 and Fig. 4-11.  The case of 0c   appears as a fan sector, 
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and that of 0   has particularly detailed features.  Pareto fronts revealing the tradeoffs 

between PSLL and relative angle sensitivity are presented in Fig. 4-12 and Fig. 4-13.  The case 

of 0c   is similar in shape to the former set of Pareto fronts; although, in Fig. 4-12 what was in 

Fig. 4-10 a nearly straight fan sector is seen to be significantly curved.   

  
   

 
2norm

2

1
2 cos
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
  
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 (4.49) 

 
Fig. 4-10. PSLL versus FNBW/2 Pareto fronts for 3PD limiting cases of 0c  , 0c   , and 0c   , reproduced 

courtesy of The Electromagnetics Academy [81].   

 
Fig. 4-11. PSLL versus FNBW/2 Pareto front for 3PD limiting case of 0  , reproduced courtesy of The 

Electromagnetics Academy [81]. 
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Fig. 4-12. PSLL versus relative angle sensitivity Pareto fronts for 3PD limiting cases of 0c  , 0c   , 

and 0c   , reproduced courtesy of The Electromagnetics Academy [81].  

 
Fig. 4-13. PSLL versus relative angle sensitivity Pareto front for 3PD limiting case of 0  , reproduced courtesy of The 

Electromagnetics Academy [81]. 

Equation (4.49) is derived in the appendix (8.75).  The aperture area normalized slope of the 3PD 

pattern is presented in (4.49).  Further normalizing by the peak of the matching sum pattern and 

also the maximum possible slope results in the relative angle sensitivity of the distribution, given 

in (4.51).   The maximum matching-sum-pattern-normalized angle sensitivity, 
normT

MAXS  , for a 3PD 

pattern occurs in the limit as all three of the 3P parameters approach zero, in which case the 3PD 

distribution has a triangular shape peaking at the aperture edge. 
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4.4 PARTICLE SWARM OPTIMIZATION FOR 3P 

The goal for the 3P distribution is to provide an antenna aperture distribution that provides 

specified radiation pattern characteristics, such as beamwidth, PSLL, taper efficiency, sidelobe 

level limit (mask) as a function of angle, and for the difference pattern: relative angle sensitivity.  

These characteristics are translated into a fitness function for the optimizer, which by convention 

the PSO minimizes.  Throughout the optimization process the PSO varies the 3P parameter 

values automatically, within any parameter value constraints imposed on the algorithm.  

Convergence is faster when any of the 3P parameters are constrained to within a range known to 

provide the desired solution.   

Several examples of the application of PSO to the 3P distributions are given.  Two examples of 

the design of 3PS distributions by PSO are presented:  maximizing aperture taper efficiency 

while satisfying a sidelobe mask, and minimizing the beamwidth with the peak sidelobe level 

(PSLL) set to a target value.  A study of the sensitivity of the 3P parameter values is presented, 

followed by examples of 3PD distributions design by PSO for a range of PSLL constraints.  An 

example multi-objective PSO application for the design of a corrugated horn is provided in 

section 5.4.  
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4.4.1 Example 1: 3PS Maximum Gain with a Sidelobe Mask 

The first example maximizes the gain with a sidelobe constraint.  Given a uniform phase 

aperture, which the 3P distribution assumes, maximum gain is associated with peak taper 

efficiency.  A formal constraint for the sidelobes of a geostationary satellite ground station 

antenna is the FCC 25.209 mask [94], which starts at 1.5 deg from beam peak with sidelobe 

directivity constraint of twenty-nine decibels isotropic gain minus twenty-five decibels times the 

base ten logarithm of the pattern angle in degrees (for conventional Ku- or Ka-band 

geostationary service ground stations).  The conditional fitness function which PSO minimizes 

for this example is 

 
,  if all sidelobes below the mask;

fitness_12
999,  otherwise.

te
 


 (4.52) 

If any sidelobe exceeds the mask then the candidate 3P distribution is deemed out-of-bounds and 

discarded with a very large fitness value.  This out-of-bounds treatment is the same as how 

search agents that wander outside an acceptable range of parameter values can be dealt with in 

the PSO algorithm by applying invisible boundaries [72].  Fig. 4-14 shows the 3P distribution 

and radiation pattern from this PSO run, which yields 3P parameter values of alpha = 1.9389, 

beta = 1.6928, and c = 0.5581.  The locus of the sidelobe peaks is seen to follow the mask, and a 

96.6% taper efficiency is achieved with an aperture diameter of 68 wavelengths. 
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Fig. 4-14.  PSO 3PS radiation pattern achieving maximum taper efficiency while also meeting a sidelobe mask, 

reproduced courtesy of The Electromagnetics Academy [81]. 

4.4.2 Example 2: 3PS Minimum Beamwidth with Specified PSLL 

The second example provides a 3P antenna aperture distribution that achieves a radiation pattern 

with sidelobe level (PSLL) less than –30 dB peak while minimizing beamwidth.  For this 

example the fitness function is the square of the difference between the PSLL and the goal, in 

dB, plus the angle, u, of the first null. 

  
2

fitness_13 PSLL goal FNBW/2   , (4.53) 

where the PSLL goal is -30 dB peak.  The 3P parameters produced by one PSO run meeting 

these constraints are alpha = 2.002, beta = 2.877, and c = 0.306, and the resulting radiation 

pattern and 3P distribution are shown in Fig. 4-15.  This figure also superimposes (light shading) 

the uniform-amplitude aperture radiation pattern for comparison — in which case the sidelobes 

would be considerably higher than that provided by the optimized 3P distribution. 
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Fig. 4-15. PSO 3PS distribution and radiation pattern achieving PSLL of -30 dB peak with minimum beamwidth, 

reproduced courtesy of The Electromagnetics Academy [81]. 

4.4.3 Example 3: 3PS Family of PSO Solutions 

PSO typically yields a family of solutions, the family of which is related to a Pareto front.  Fig. 

4-16 shows such a family, with a PSLL of -40 dB.  The selected family of solutions is:  1) alpha 

= 2.2390, beta = 0.5625, c = 0.139, 2) alpha = 1.2196, beta = 3.7930, c = 0.1015, and 3) alpha = 

0.6207, beta = 4.5970, c = 0.0757.  This family represent only three of many PSO solutions that 

were found to meet the given requirements, and these three were chosen because of the 

substantial variation in their alpha parameter values, to show that the combination of a high alpha 

value and low beta value can provide a similar distribution as the combination of a low alpha 

value and high beta.  There is little difference between the distributions of each of these family 

members, as the inset distribution shows (since they all meet the same design requirements).  

The fitness function is given by (4.53). 

4.4.4 Example 4: 3P Pattern Sensitivity to Variation of Parameter Values 

A practical design must account for implantation error, and so a sensitivity analysis was 

conducted to determine how sensitive the 3P distribution might be to variations in each of the 
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parameter values.  The first PSO family member 3PS solution in Fig. 4-16 is used as the basis for 

the parameter sensitivity analysis.  Fig. 4-17 shows that a 10% variation in the alpha parameter 

value can cause as much as 5-10 dB variation in the level of the first sidelobe.  Fig. 4-18 shows 

that the beta parameter value is the least sensitive to variation of its value:  Only a few dB 

variation in the level of the first sidelobe level result from a significant variation in the beta value 

from -100% to +300%.  Fig. 4-19 shows that the 3P c-parameter has intermediate sensitivity.  

The level of the first sidelobe level varies several dB with a 10% variation in the value of the c-

parameter value.  The corresponding variations in 3PD patterns are comparable to those given 

here for 3PS. 

 
Fig. 4-16. PSO 3PS distributions and radiation patterns for a family of PSO solutions all achieving PSLL of -40 dB peak 

with minimum beamwidth, reproduced courtesy of The Electromagnetics Academy [81]. 
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Fig. 4-17. PSO parameter sensitivity, showing variation of radiation pattern when only the 3PS α parameter value is 

changed from the PSO solution value by ±10%, reproduced courtesy of The Electromagnetics Academy [81]. 

 
Fig. 4-18. PSO parameter sensitivity, showing variation of radiation pattern when only the 3PS β parameter value is 

changed by -100% and +300%, reproduced courtesy of The Electromagnetics Academy [81]. 

 
Fig. 4-19. PSO parameter sensitivity, showing variation of radiation pattern when only the 3PS c parameter value is 

changed from the PSO solution value by ±10%, reproduced courtesy of The Electromagnetics Academy [81]. 
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4.4.5 Examples 5-7: 3PD Maximum Angle Sensitivity with Specified PSLL  

PSO examples are presented in Fig. 4-20 - Fig. 4-22 for 3PD distributions with PSLL design 

goals of respectively -30, -48 and -55 dB, while simultaneously maximizing the relative angle 

sensitivity, using the fitness function of (4.54).  The 3P parameter values for Fig. 4-20 are alpha 

= 1.9949, beta = 0.0194, and c = 0.0804, in which case a relative angle sensitivity of 79% is 

achieved with -30 dB PSLL.  Those for Fig. 4-21 are alpha = 2.3292, beta = 1.3064, and c = 

0.0460, in which case a relative angle sensitivity of 75% is achieved with -38 dB PSLL.  The 3P 

parameter values for Fig. 4-22 are alpha = 0.0318, beta = 8.3484, and c = 0.0031, in which case a 

relative angle sensitivity of 67% is achieved with -55 dB PSLL.  The 3PD distribution can meet 

even considerably deeper PSLL limits than given by these examples, indicated by Fig. 4-10.  

These optimal multi-objective solutions are typically found on the edge of a Pareto front.  

Bayliss [91] reveals that for a difference pattern to realistically achieve maximum relative angle 

sensitivity with a given maximum PSLL requires that its first sidelobes be of uniform level, and 

Fig. 4-20 - Fig. 4-22 show that the 3PD distributions determined by PSO with those constraints 

have that very characteristic.   

 
 relative angle sensitivity ,  if PSLL goal;

fitness_16
999,   otherwise.

 
 


 (4.54) 
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Fig. 4-20. PSO 3PD designed for -30 dB PSLL and maximum relative angle sensitivity. The inset 3PD distribution is 

shown normalized to its peak height, reproduced courtesy of The Electromagnetics Academy [81]. 

 
Fig. 4-21. PSO 3PD designed for -38 dB PSLL and maximum relative angle sensitivity.  The inset 3PD distribution is 

shown normalized to its peak height, reproduced courtesy of The Electromagnetics Academy [81]. 

 
Fig. 4-22. PSO 3PD designed for -55 dB PSLL and maximum relative angle sensitivity.  The inset 3PD distribution is 

shown normalized to its peak height, reproduced courtesy of The Electromagnetics Academy [81]. 
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4.5 CONCLUSION 

The 3P distribution is presented for both sum and difference patterns in the context of providing 

a versatile amplitude distribution model of for an entire class of uniform-phase elliptical antenna 

apertures.  Analytical closed form equations for several characteristics of a general 3PS or 3PD 

distribution were derived: the far field radiation pattern, taper efficiency, aperture power, 

asymptotic sidelobe level, and for the 3PD also the relative angle sensitivity.  The PSO algorithm 

was discussed, and references for other metaheuristic optimization methods were given.  Several 

examples of designing 3P distributions by PSO demonstrate that the 3P distribution can meet a 

range of real-world design constraints.  The PSO algorithm converges to a solution in each case 

with different 3P antenna aperture design constraints.  Radiation patterns and distributions for a 

family of solutions which all satisfy the same requirements were presented, and the sensitivity of 

each of the 3P parameter values was investigated.  The PSO optimized 3P patterns meet peak 

sidelobe, taper efficiency, and sidelobe mask requirements.  The PSO optimized 3P patterns 

display the ideal characteristic of uniform close-in sidelobe levels when in addition to 

constraining the optimization by a specified PSLL it is also additionally constrained by 

maximum taper efficiency, in the case of a sum pattern, or by maximize angle sensitivity in the 

case of a difference pattern.  The versatility of the 3P distribution and PSO’s utility as a 

metaheuristic optimizer combine to provide customized aperture distributions for a versatile 

range of applications.  Material in this chapter has been previously published by the author [81]. 
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CHAPTER 5 CORRUGATED FEEDHORN 
PATTERNS 

Corrugated feedhorns are commonly incorporated into commercial satellite antenna terminals — 

large Earth-stations that control the satellites, as well as mid-size stationary and portable 

terminals used for regional communications with the satellite, and of course the small roof-

mounted satellite dishes currently used for residential satellite television reception.  The 

corrugated horn provides a high level of polarization purity, beamwidth control, and low loss that 

contributes to high receive sensitivity.  This chapter discusses three methods of calculating the 

radiation pattern of a corrugated horn, in order of increasing computational complexity: aperture 

field, spherical wave expansion, and mode matching. 

 
Fig. 5-1.  Corrugated-conical horn parameters (φ = =0 on positive x-axis), reproduced courtesy of The IEEE [92]. 
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Table 5-1.  Far field estimation methods in order of accuracy and computational complexity, reproduced courtesy of The 

IEEE [92]. 

1 Aperture Integration (uniform-phase) 

   Closed-form evaluation of  (5.15) 

2 Aperture Integration augmented by radial phase 

   Numerical integration of  (5.14) 

3 Spherical Wave Expansion (SWE) 

   Conical surface impedance boundary model 

        (Described in section 9.4.3 of [95].) 

4 Numerical Model of corrugated horn geometry 

   Cylindrical mode matching of internal fields, 

        accounting for all corrugations  

   Integral equation, method of moments solution 

        for horn exterior currents 

The corrugated horn is typically excited with pure TE11 mode at its throat and designed to radiate 

HE11 mode in the horn aperture.  These modes are depicted below.  Through the length of the 

corrugated horn the TE11 mode ideally gradually transforms into the HE11 mode, and a good 

mode converter jumps from smooth waveguide to approximately half-wave depth corrugations, 

then gradually reduces the corrugation depth to quarter-wave depth.  The characteristic equation, 

given below in (5.1), where 0/Z RZE H j X   , is defined by the boundary conditions of zero 

  component of the electrical field at the corrugation wall, and a normalized corrugated wall 

impedance, XRZ, as seen by a wave with Poynting vector directed perpendicular to and into the 

corrugated wall. 
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  (5.1) 
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Fig. 5-2.  Characteristic Equation Roots for Corrugated Cylindrical Waveguide as a Function of Corrugation Depth. 

 
Fig. 5-3.  Pure Field Modes at Input (Fig top) and Output (Fig bottom) of Corrugated Horn. 

An approximation of the far field radiation pattern of the corrugated-conical horn, by integration 

of the aperture field, augmented with perimeter-matched quadratic radial phase, is sufficient to 

establish a baseline design for the feedhorn of a satcom antenna system.  The approximated far 

field patterns compare well to more formal analysis methods, even reasonably so in the main 

beam with a semi-flare angle as wide as 45 deg for the first two angular modes.  The field 

equations are presented in a compact complex exponential form, from which the components 
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corresponding to excitation with any polarization sense may be obtained (either sense of 

circular/elliptical polarization or linear polarization with arbitrary orientation). 

5.1 APERTURE FIELD 

 Aperture field integration provides a rapid means of estimating a feed pattern when the aperture 

field consists of pure modes, in which case those modes can be integrated in closed-form and the 

resulting equations evaluated rapidly.  An example of such a case is the corrugated horn.   

5.1.1 Introduction 

Using aperture field with quadratic phase is a popular method for smooth-walled conical and 

rectangular horns, for far field pattern estimation, and here we investigate the utility of this 

method for corrugated horns.  A simple means for quickly obtaining a reasonable approximation 

of the far field patterns can be quite valuable for a proposal or project planning.  Corrugated-

conical horns are commonly used in reflector antenna systems for microwave communication 

systems, and the design of these systems requires that the performance of the horns be 

understood reasonably well.  Having a low-cost means, with negligible learning curve, of 

approximating feedhorn performance is useful, at least for planning purposes.  Several methods 

have been investigated for such approximations and are compared in this chapter.  Olver, 

Clarricoats, Kishk and Shafai [95] suggest using aperture field integration with first-order 

(Taylor) quadratic radial phase – a first-order approximation of the spherical phase implied by 

the conical flare.  We refer to that method as first-order quadratic radial phase (FOQRP).  This 

chapter investigates an alternative quadratic phase function, perimeter-matched quadratic radial 
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phase (PMQRP), which provides an improved approximation of the radiation pattern, especially 

so for wider flare angles.  The prior work apparently presumed small flare angle and did not 

distinctly consider the PMQRP variation of the quadratic radial phase approximation. 

In this section, the basic method of far field determination by far field vector potential is 

summarized, and we present the results of the PMQRP approximation method for 12 and 45 deg 

half-flare, conical-corrugated horns for both first and second angular modes.  We compare the 

approximation with more formal methods of analysis, summarized in Table 1.   

Analysis of corrugated horns has a rich background.  The literature [6], [95]–[124] presents a 

vast collection of articles on corrugated horns from a variety of perspectives.  Minnett and 

Thomas [96], [97] and [103], Jansen, Jeuken and Lambrechtse [102], James [105], and 

Clarricoats, Saha, Olver, Kishk and Shafai [98], [99], [107] and [95] address fundamentals.  

Love [101] offers a full collection of papers on the subject.  Sakr [119] presents closed form 

radiation patterns for uniform-phase aperture, Sinton, Robinson and Ramat-Samii [120] 

addresses optimized horn profile design, Granet and James [121] overview the general design 

and Lee [122] addresses field modes and dispersion.  In [95], with their Fig. 6.1 and (6.9) and 

(9.6), Olver, Clarricoats, Kishk and Shafai suggest the use of aperture integration with quadratic 

phase.  They specify use of a first-order quadratic radial phase (FOQRP) function – a 1st term 

Taylor approximation of the spherical phase function that’s implied by the cone that fits inside 

the horn – to represent the affect of the flare.  We consider an alternative PMQRP function 

instead and find that it yields better main bean pattern estimation, especially for wider flares and 

for both of the first two angular modes. 
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This section focuses on the approximation of the circularly polarized (CP) far fields by aperture 

field integration augmented by quadratic phase.  Typically with smooth-walled horns the 

aperture mode is assumed to be the same as that which excites the horn; although, with 

corrugated horns the aperture mode is different than the excitation mode.  We presume that the 

corrugated horn has a well designed mode converter (e.g., half-wave depth corrugations at throat 

tapering to quarter-wave depth in the flare) so that balanced hybrid HE mode dominates in the 

aperture.  Note [110] that the 45 deg half-flare horn can be matched without increasing the depth 

of the corrugations from quarter wavelength. 

We present results from four different analysis methods, identified in Table 1, and find that 

adding PMQRP to the balanced HE aperture field yields far fields for the main beam in good 

agreement with more formal analysis methods.  This aperture integration analysis effectively 

models the corrugated-conical horn as a stepped cone consisting of short sections cylindrical 

waveguide, with general radius a, each supporting a single cylindrical mode.  The cylindrical 

field distributions of the balanced hybrid modes are addressed, and the far field radiation patterns 

are derived by aperture integration, augmented by radial quadratic phase, and compared with far 

field patterns determined by Clarricoats’ spherical wave expansion (SWE) method for conical 

horns, as well as cylindrical mode matching (CMM) of the detailed internal geometry of the 

corrugated horn with integral equation (IE) method of moments solution for the surface currents 

on the horn exterior.   

Both the hybrid HE11 and HE21 modes are addressed.  Corrugated horn HE11 radiation patterns 

are efficient for dual shaped reflector designs where circular symmetry and precise edge 

illumination control are critical.  HE21 patterns provide similar efficiency for difference patterns 
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for single channel monopulse auto-tracking feeds for large ground antennas.  All higher angular 

modes HEn1 , n >1, provide an on-axis pattern null; although, HE21 uniquely provides tracking 

error detection in two orthogonal axes, which are typically aligned with the antenna positioner’s 

elevation and cross-elevation axes.   

The field equations use rotational polarization (L or R), since this allows compact, general forms.  

The fields corresponding to linearly polarized excitation are obtained by linear combination of 

the two senses of rotational polarization. 

5.1.2 Aperture Field Radiation Integral 

5.1.2.1 Amplitude 

Corrugated horns propagate hybrid field modes, and hybrid field modes involve simultaneous 

propagation of both TEz and TMz modes.  Hybrid modes are designated HEnm, or EHnm, where 

the first index, n, is the angular mode index and represents the number of field cycles for every 

physical rotation in φ angle, and m is the radial mode index (m
th

 Bessel root), representing the 

number of field cycles along the radial extent of the waveguide.  The HE mode is the sum of 

TE+TM modes, and the EH mode is their difference, TE–TM.   

A well-designed corrugated horn establishes the balanced HE11 mode at the horn aperture (and 

also balanced HE21 mode if used for tracking.)  Note that a dispersion diagram concerning these  

modes is presented on page 27 of [107].  The balanced hybrid HE11 mode provides purely 

linearly-polarized transverse fields across the entire aperture, and involves the vector potential 

amplitudes being related simply through the free-space wave impedance {(10) in [96]}.  At the 



86 

corrugation boundary the balanced HE fields have only an axial component.  What uniquely 

characterizes the balanced hybrid mode condition is that the E and H vector fields have exactly 

the same form but with one rotated (90/n) deg in φ from the other, where n is the angular mode 

index {discussion of Fig. 3(d) in [106]}.  This balanced hybrid mode condition naturally occurs 

well above cutoff with quarter-wavelength corrugation, both of which are typical at the radiating 

aperture of a large, corrugated horn.  Equations (5.2)–(5.5) define the balanced hybrid HE 

transverse aperture mode fields.  To simplify (5.2)–(5.5) the phasor exp[±jnφ] is excluded, where 

the + corresponds to RCP and minus to LCP, in addition to the  exp j t   time- and  exp zjk z   

axial-propagation phasors.  J  is the cylindrical Bessel function of the first kind of order  . 
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Fig. 5-4. 12-deg half-flare angle HE11 CP co-pol far field by integration of aperture fields augmented by radial phase 

(22.2 dBi), SWE (22.30 dBi), and cylindrical MM+IE (TICRA CHAMP) numerical modeling of the corrugated horn 

geometry (22.62 dBi) with 33 corrugations (including 5 in mode converter with linear depth profile), β0b = 16.9, β0t = 4.21, 

and pitch ≈ λ/3.  Excitation is CP TE11.  Fig. reproduced courtesy of The IEEE [92]. 
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Fig. 5-5.  45-deg half-flare angle HE11 CP co-pol far field by integration of aperture fields augmented by radial phase, 

SWE (peak 13.54 dBi), and cylindrical MM+IE (TICRA CHAMP) numerical modeling of the corrugated horn geometry 

(13.12 dBi) with 11 corrugations (including 5 in mode converter with linear depth profile), β0b = 16.9, β0t = 4.21, and pitch 

≈ λ/5.  Excitation is CP TE11.  Fig. reproduced courtesy of The IEEE [92]. 
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For the balanced hybrid HE mode the transverse fields relate as  

   L
0 0 R

.  E j H j E H            (5.6) 

The balanced EH modes have the same magnitudes of field coefficients but different signs and 

with Bessel order n+1.  The boundary conditions of quarter-wave corrugation on the total fields 

at the mouth of a large horn aperture, where the balanced hybrid modes are supposed to exist, 

yield the propagation roots of the characteristic given in (5.7) and (5.8).  

    11 0 11 112.405 / , from 0 HE  modeb J b     (5.7) 
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    21 1 21 213.832 / , from 0 HE  modeb J b     (5.8) 

5.1.2.2 Phase Approximations 

In the aperture plane (z = h), the radial dependence of the phase, χ(ρ), of a spherical wave that 

originates at the apex of the cone, marked by a circled cross in Fig. 5-1, is  

       0
0r r     ,  (5.9) 

   2 2
r h   ,  (5.10) 

and h is the height of the cone, as indicated in Fig. 5-1.  χ(ρ) is fairly well approximated as a 

quadratic function,  

    
2

/u b     (5.11) 

where b is the aperture radius.  u represents the quadratic phase at the perimeter of the aperture 

and is defined, respectively for the two different quadratic functions, as 

 
 

1
1 02

2 0
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cot sec 1

FOQRP;

PMQRP.,
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u

u



 



 




  (5.12) 

ζ is the half-flare angle of the horn.  With PMQRP, u is the difference in electrical length 

between the slant and axial lengths of the cone that fits inside the horn, and thereby matches the 

spherical and quadratic phase functions at the aperture perimeter.  FOQRP effectively matches 

the spherical and quadratic phase functions only for small ρ values. 
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Fig. 5-6.  12-deg half-flare angle HE21 CP co-pol by integration of aperture fields augmented by radial phase (peak 17.1 

dBi), SWE (peak 17.19 dBi), and cylindrical MM+IE (MICIAN μWave Wizard) numerical modeling of the corrugated 

horn geometry (peak 17.17 dBi) with 33 corrugations (including 5 in mode converter with linear depth profile), β0b = 16.9, 

β0t = 4.21, and pitch ≈ λ/3.  Excitation is CP TE21.  Fig. reproduced courtesy of The IEEE [92]. 
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Fig. 5-7.  45-deg half-flare angle HE21 CP co-pol by integration of aperture fields augmented by radial phase, SWE (peak 

10.63 dBi), and cylindrical MM+IE (MICIAN μWave Wizard) numerical modeling of the corrugated horn geometry 

(peak 11.54 dBi) with 11 corrugations (including 5 in mode converter with linear depth profile), β0b = 16.9, β0t = 4.21, and 

pitch ≈ λ/5.  Excitation is CP TE21.  Fig. reproduced courtesy of The IEEE [92]. 

5.1.2.3 Radiation Integral 

The far field radiation patterns are estimated by far field vector potentials.  The radiated field 

vector potentials are obtained by integration of the equivalent aperture currents, and we combine 

the fields due to both the electric and magnetic currents to represent a free-standing aperture with 
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neither an electric nor a magnetic ground plane.  In the far field the vector potentials are 

proportional to the radiated fields.   

The balanced HE mode, far field radiation aperture-integral, including a radial phase term, exp[jξ 

(ρ’)], is given in (5.14).  Averaging the far fields due to equivalent electric and magnetic currents 

for the aperture fields causes the factor of (1+cosθ) / 2.  The second Bessel function in (5.14) 

results from the φ integral, which is done analytically. 
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 

 
2

, spherical phase;

quadratic phase./ ,u b

 
 




 







  (5.13) 

 

 

 

 

L

R

L

R

00

1 1 0
0

             

E E

exp 1 cos
       

2

( ) ( sin )

          exp

          exp[ ]       

b

n n

n

j

j r

r

J J

d

jn j

j



  



   

  





 

 

  
  

 

 

     

 

   (5.14) 

 

 

 

 

L

R

L

R

UNIFORM

00

3

2

1 0

2 2

0

E E

exp 1 cos
         

2

           ( )

[ sin ]
           

( sin ) ( )

           exp       

n

n

n

j

j r

r

b J b

J b

b b

jn j



  



 

 

  







 

  
  

 






 

  (5.15) 

γ is the radial propagation root at the aperture for mode (n,m), and j is the square root of minus 

one.  With uniform phase a closed-form (6) is obtained using the Lommel integral formula on 
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page 337 of [6] and is useful as a check of the numerical integration of (5) when ξ is zero.  These 

far field equations concur with those published by Sakr [119] and reveal that the one arbitrary 

constant, C, in Sakr’s field equations for both HE11 and HE21 depends on the angular mode index 

and the root of the characteristic equation. 

Note that the observation frame, (θ,) rotates with both θ and, with respect to the horn’s fixed 

frame, which affects the observed radiated phase (with respect to the horn’s fixed frame) for a 

rotationally polarized wave.  Expressions for linearly (or elliptically) polarized field components 

are obtained by a linear combination of the field expressions for the two rotational senses and 

using appropriate coordinate transformation [124] from the (θ,) observation frame to the 

horn’s fixed frame in which, for example, vertical or horizontal linear polarization may be 

defined.  Adding the balanced hybrid mode field expressions for the two rotational sense, L+R, 

represents linearly polarized excitation of the horn with the E field in the positive y-axis direction 

(for the HE11 main beam, with the y axis in the direction with  

5.1.3 Far field Results and Comparison of Methods 

Fig. 5-4 and Fig. 5-5 reveal how well augmenting the aperture field integration with true 

spherical or quadratic radial phase approximates the radiated fields for HE11 mode (used for 

communications) in comparison with the SWE and CMM+IE results, and Fig. 5-6 and Fig. 5-7 

for HE21 mode (used for tracking).  All figures represent CP polarization and also present 

uniform-phase patterns, which have deep nulls that the quadratic phase patterns have filled in.  

The uniform-phase patterns do well in the main beam with narrow flare angles.  With a 12 deg 

horn the numerical integration of (5) yields good agreement with SWE especially about the main 
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beam (near-axis), as shown in Fig. 5-4, which also presents the patterns calculated by numerical 

modeling of the exact geometry of the corrugated horn (by CMM the fields inside the horn and 

IE solution of the horn exterior currents).  The 12 deg horn has thirty-three corrugations, 

including five for mode converter.  The differences that are noticed, mainly off axis, between the 

aperture integration results and those of the more formal methods are due to the presence of other 

(higher order) modes other than HE11 in the aperture, as well as the aperture phase not being 

modeled exactly.  (The aperture integration and SWE methods also do not account for currents 

on the horn exterior.)  Fig. 5-5 presents similar results for a horn with half-flare angle of 45 deg, 

eleven total corrugations, and slightly shorter pitch; whereas, all the other horn parameters 

remain the same as in the previous figure.  The figure indicates that among the three aperture 

integration methods considered, PMQRP provides the best approximation of the SWE or 

CMM+IE results.  Note that an on-axis dip of about one and one quarter dB occurs in the pattern 

on-axis for the 45 deg half-flare horn using aperture integration with spherical phase; although, 

the on-axis dip is only about one quarter dB for all the other methods:  aperture integration 

quadratic phase, SWE, and full-wave CMM+IE.  The agreement of the aperture integration 

results with the SWE or CMM+IE results is less with the 45 deg half-flare than the 12 deg since 

the reasons for the differences, mentioned above, are more pronounced for a wider flare.  For 

increasing flare angle, the aperture integration results – based on modeling the horn as short 

sections of cylindrical waveguide, each supporting a single cylindrical mode – become less 

accurate; in which case, method 3 in Table 1, SWE, is a better model.  The SWE results 

presented in the figures satisfy Maxwell’s equations in spherical coordinates with the boundary 
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condition of a conical, anisotropic surface-impedance, as an ideal approximation of the 

corrugated flare.  

Fig. 5-6 and Fig. 5-7 compare the aperture integration with the more formal analysis methods for 

the second angular (tracking) mode.  The agreement is comparable to that for the first angular 

mode.  PMQRP appears to again yield the best approximate results in the main beam. 

A typical corrugated horn will have cross-pol patterns with a null on-axis and peaking just 

outside the main beam shoulder about 10-20 dB below the co-pol pattern level, and follow and 

tend toward the co-pol pattern farther off axis.  Numerical optimization of the corrugated horn 

geometry (mainly of the mode converter geometry) can reduce the cross-pol level substantially. 

5.1.4 Conclusions 

Simple equations for the far fields of corrugated-conical horn have been presented and discussed, 

demonstrating a practical approximation method using aperture field augmented with quadratic 

phase.  It provides good agreement in the main beam with more formal computational analysis 

techniques, such as SWE and accounting for the complete corrugated horn geometry (CMM + 

IE).  The equations can be used to establish a baseline design of a feedhorn for a satcom antenna.   

Aperture integration methods using spherical, and two different quadratic, radial phase functions 

are compared.  PMQRP yields significantly better results than FOQRP.  Numerical results for 12 

and 45 deg half-flare horns have been presented and discussed.  The results suggest that the 

aperture integration method works well for modest flare angles, and PMQRP works well for 

moderate flare angles. But for wide flared horns the aperture integration method may not 
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represent the true aperture fields completely, especially at far, off-axis angles, for which case 

SWE is a better – yet more numerically complicated – approximate model.  A portion of the 

material presented in this section has been previously published by the author [92]. 

5.2 SPHERICAL WAVE EXPANSION 

The method of spherical wave expansion (SWEX) provides improved accuracy compared to the 

aperture field method in estimating a horn’s radiation pattern, and it also has the ability to 

represent the pattern at an arbitrary field distance – meaning that it can estimate the horn’s near 

fields just as accurately as its far fields. It does involve a higher computational cost though, 

compared to AFIM. 

The principle involved in modeling a conical horn’s radiation fields with SWEX are to assume a 

pure spherical mode within the horn, and solving Maxwell’s equations in spherical coordinates, 

with the conical horn wall as an impedance boundary condition.  The field components have the 

following forms, as given in [107]. 
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The value of the Bessel function order  is determined numerically to satisfy the boundary 

conditions, and with that value the aperture fields (at the cap of the conical horn) are estimated 
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quite accurately by the single, pure spherical mode, which usually involves an irrational value for 

 .  The boundary condition equation is different for all three cases of HE11 (corrugated horn), 

TE, or TM modes (smooth horns).  Assuming the HE11 radiated field mode for a corrugated 

horn, the boundary condition is defined as   0mf   , where the function f is defined in general 

as 
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Once the spherical fields at the spherical aperture cap are known, a modal expansion (using 

integer orders for each expansion mode) projects the radiation pattern to an arbitrary distance 

from the aperture.   

 
     

   

A
cpol2

A
cpol Xpol2

ˆ, , 1 ,

ˆ ˆ                 1 cos 2 sin 2 ,

TE R a S R

a a S R

  

  





 

    

  (5.20) 

 

1:  HE

1:  EH
 propagation modes

0 :  TM

:  TE





  



  (5.21) 

 

       
     

2

2

1

(modal expansion at spherical cap)

,  at cap

 outside cap

       

m

m

n n

S R h kR f

h kL C f





 



 

 





    (5.22) 

 
 

   
   

  

      

           

2

2

2 1 ! sin
, ,

2 1 ! 1 1

          1 cos 1 cos

n

n

m m m m

n

n

n

h kR n n m
C L R

n n n m n nh kL

n n P f P f




 

     



 

  
  

     

    

  (5.23) 



96 

 
Fig. 5-8.  Conical Horn Geometry. 

An example comparison of the radiation pattern of a Ku-band corrugated horn, with 10 deg flare 

angle, calculated using the SWEX method, with the measured pattern is provided below.  Note 

that the SWEX method does not account for currents on the horn exterior surface, which limits 

its accuracy.  The SWEX method estimating a feed horn’s pattern is found to be quite accurate 

within the main beam. 

 
Fig. 5-9.  Comparison of Measurement versus SWEX Horn Calculation.
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5.3 MODE MATCHING 

Cylindrical mode matching represents the horn as a concatenated series of short sections of 

cylindrical waveguide, indicated in Fig. 5-10  The mode-matching method provides a means to 

accurately account for the exact geometry of the internal horn geometry, so rather than assuming 

the conic flare shape of Fig. 5-1, a completely arbitrarily shaped corrugation profile, represented 

in Fig. 5-10, is considered — arbitrary but assuming at most only a modest flare angle.  (The 

cylindrical mode matching method is limited to analyzing horn semi-flare angles only up to 

about 45 deg.  Circularly symmetric feedhorns with flare angle less than about 40 deg are 

characterized quite well by cylindrical mode matching.  Larger flare angles require spherical 

mode matching techniques.)  A brief User Manual is provided in Appendix 8.7 describing the 

use of the CYL_MM software program in which these concepts were coded.  The CYL_MM 

program was used to produce the mode-matching results and 3D graphics depicted in this 

dissertation.   

 
Fig. 5-10.  Feedhorn Represented by Short Sections of Cylindrical Waveguide. 

Each section of cylindrical waveguide propagates waves, and each junction between sections 

scatters waves.  The sections and junctions are each represented by an s-parameter scattering 

matrix, and all of the scattering matrices are sequentially cascaded into an overall scattering 
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matrix that represents the entire feed horn.  By the use of the integral equation method-of-

moments technique the exterior surface can be accounted for to determine the aperture reflection 

coefficient for each mode, and that is combined with the s-parameter cascade for the cylindrical 

sections to provide an improved estimate of the modal coefficients for the aperture fields of the 

horn.  The radiation pattern of the horn can then be calculated using a modal expansion with 

closed-form far field radiation integrals superimposed for each mode.  The horn far fields can 

then be converted into a spherical wave expansion series to allow the horn fields at any distance 

to be accurately estimated.  The most computationally intensive tasks are the calculation of the 

scattering matrices for each junction, and the cascading of all the s-parameter matrices for all of 

the cylindrical sections into a single s-parameter matrix to represent the entire horn. 

The scattering parameters for a junction are determined assuming that the smaller section is on 

the left side in the analysis presented below.  The propagation equations for the left and right 

sides of the junction are first noted below, where the z axis points to the right. 

5.3.1 Waveguide Fields 

The modal representation of the fields in the cylindrical sections is detailed in the appendix 

(8.85). 

 
Fig. 5-11.  S-parameter Model of the Cylindrical Step Junction. 
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  (5.26) 

ei and hi are the cylindrical field distributions for the i
th

 mode, respectively on the smaller (SM) 

and larger (LG) sides of a particular cylindrical step junction.  Continuity of transverse fields 

across the junction, and mode orthogonality then yields the following system of equations, which 

are used to solve for the s-parameter matrices.  The P, L and R matrices are the mode-interaction 

(coupling) integrals, for the transverse fields, as defined below, where the row index is i, and the 

column index is j.  The superscript asterisks symbolize complex conjugation. 

            
T

P A B R C D           (5.27) 

            
* *

L A B P D C           (5.28) 
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    

    

    





 -coupling right side

  (5.29) 

The complex conjugation of the magnetic field in the mode interaction integrals of (5.29) is 

appropriate with circular polarization to cancel the complex temporal and phi phasors 
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  exp j t n     
between the electric and magnetic field equations, and consequently 

complex conjugation appears also in the resulting field matching (5.28) and s-parameter 

equations (5.34)–(5.37).  Note that the s-parameter values remain the same no matter what 

polarization the fields have (e.g., linear, circular), and that with linear polarization the complex 

conjugations of the magnetic fields are not necessary to cancel the complex temporal and phi 

phasors.  (If the conjugations are removed from the mode coupling integrals for linear 

polarization then they are also respectively removed from the field matching (5.28) and s-

parameter equations (5.34)–(5.37) as well in order to keep all the equations intact).  Only in the 

case of TE-TE mode interaction do the mode interaction integrals potentially involve a 

conjugation (when the magnetic fields are conjugated). 

In the expressions for I below for the various combinations of mode interactions, A and B may 

each symbolize either L or R (either the left or right side of the step junction), as generalizations 

of the forms of I given in (5.29).  (A represents the electric field mode, and B the magnetic field 

mode.)  The lower-case letter a is the radius of the smaller of the two cylindrical radii 

represented in the integral, which means that in the case of  
i j

R  it is the radius of the larger of 

the two radii involved in the step junction.  These equations are derived in the appendix (8.196). 
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  (5.30) 
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 TM-TE

A,B 0I    (5.31) 
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  (5.33) 

5.3.2 Junction S-parameters 

The s-parameters for the waveguide junction are summarized below in (5.34)–(5.37) and are 

derived in the appendix (8.179).  The row indices of the s-parameter matrices represent the 

output (response) modes, and column indices representing the input (stimulus) modes.   

                      
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,  (5.34) 

                
1 1
2 2

1
* * 1 *

12 2
T

S L L P R P P R


  
 

,  (5.35) 

                
1 1
2 2

1
* 1 *

21 2
T T

S R R P L P P L


  
 

,  (5.36) 

and                      
1 1
2 2

1
* 1 * * 1 *

22

T T
S R R P L P R P L P R


       

   
.  (5.37) 
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See the note regarding the complex conjugations following (5.29).  Also note that with circular 

polarization each reflection (
11S  or 

22S ) involves a reversal of the sense of rotation:  RCP once 

reflected becomes LCP and vice versa.   

Cascading of the s-parameters of one junction or section of cylindrical waveguide with the next 

section’s, to produce a combined, single set of s-parameters for the cascade as a whole, is 

accomplished by (5.39)–(5.42), for which a derivation is provided in section 6.3 of [125]. 

  
1

11 11 12 11 22 11 21

AB A A B A B AS S S I S S S S


                                 (5.39) 
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                        (5.40) 
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  
1
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AB B B A B A BS S S I S S S S


                                 (5.42) 

For analysis of a common commercial corrugated horn these matrices are typically of dimension 

about 100, and the calculations were accomplished with optimized computational efficiency 

using the matrix subprograms GEMM (BLAS), GESV (LAPACK) and GETRS (LAPACK), the 

latter of which reuses the factorization from GESV.   

The original implementation of the computer code for this arithmetic was tested against results 

from the literature for two standard test cases:  a step junction and a thick iris, as shown in Fig. 

5-12.  The step junction comparison serves to confirm the validity of the junction s-parameter 

calculations, and the thick iris comparison serves to confirm the validity of the arithmetic 

involved in the cascading s-parameter matrices as well.  The calculations compare nearly 
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identically with the published results for the step junction [126] and the thick iris [127], and quite 

well with results for a three-cavity resonator [128]. 

 
Fig. 5-12.  Test Cases:  (a) Step Junction, and (b) Thick Iris. 

5.3.3 Far Field Modal Radiation Patterns 

Once the coefficients of the aperture field modes have been calculated using the mode matching 

method, the far field radiation pattern can be calculated, for each mode, using the closed-form 

radiation integrals, given below, that were derived using the aperture field method (combining 

both the equivalent electric and magnetic current models).  The Lommel (8.253) is used to 

provide a closed-form solution for each of the Bessel product integrals.  Appendix 8.3 provides 

detailed derivations of the fundamentals and field relations used to construct the equations here.  

The  L

R
notation indicates the sense of circular polarization: The sign on the top corresponds to 

left-hand circular and that on the bottom to right-hand circular.  Linear polarization is a linear 

combination of the two circular polarizations.  In the following equations the angular and radial 

cylindrical field mode indices are respectively n and m, and the aperture radius is a.  The factor 

 
1/2

R


, defined in (5.38) and used in (5.59), representing the final waveguide section at the 

mouth of the radiating end of the feedhorn, scales  21t  from units of (modal power-normalized) 

s-parameters into units proportional to field strength for the respective modes in the horn 

aperture.   
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Following equations (6-95), (6-101), and (6-102) from [11] the radiated electric far field, ffE , is 

proportional to the magnetic and electric vector potentials as given by the equations below, 

where the magnetic vector potential in the far field is ffA , the electric vector potential ffF ,   

free-space permeability,   free-space permittivity, 
0 2 /k     is the free space wave 

number,   is the wavelength, and ds the elemental aperture surface area.  The vector from the 

origin in the center of the aperture to a given far field observation point is  , ,r r   , with 

corresponding unit vector r̂ . 

 ˆˆ ˆ( )ff A ff F ff ff ffE E E I rr j A r F         
 

, (5.43) 
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and ˆ ˆ ˆ ˆˆˆI rr       . (5.46) 
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5.3.4 Comparing Measured and Calculated Far Fields 

The Ku-band corrugated horn shown in Fig. 5-13 was analyzed by cylindrical mode matching 

method, and the results compared to measurement in Fig. 5-14 and Fig. 5-15.  The horn achieves 

30 dB return loss. 

 
Fig. 5-13.  Ku-band corrugated feed horn with 37 corrugations.  3D graphics produced by the ARAM CYL_MM 

Windows TM software developed for this dissertation. 

 
Fig. 5-14  Mode Matching Calculations Compared to Measurement at a 13.4 GHz for horn in Fig. 5-13. 



107 

 
Fig. 5-15.  Mode Matching Calculations Compared to Measurement at 14.6 GHz for horn in Fig. 5-13. 

The S-band corrugated horn shown in Fig. 5-16 was analyzed using the cylindrical mode 

matching method, and the results compared with measurements in Fig. 5-17.  The horn achieved 

a return loss of greater than 30 dB. 
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Fig. 5-16.  S-band corrugated horn with 14 corrugations.  3D graphics produced by the ARAM CYL_MM Windows TM 

software developed for this dissertation. 

 
Fig. 5-17.  Mode matching calculations compared to measurement at 2.12 GHz for horn in Fig. 5-16. 
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5.3.5 Computational Speed 

The mode-matching method involves a considerable amount of matrix algebra, and it was found 

that the computation speed of the algorithm is largely determined by the computational 

efficiency of the matrix math library compiled with the program.  See Appendix 8.6.  Charts are 

presented below comparing the speed of the mode matching algorithm with that of a baseline 

hand-written un-optimized matrix math library used for testing of the original version of this 

code, and comparing those results also with subsequent versions compiled instead with the AMD 

ACML or Intel MKL optimized math libraries.  The MKL library appears to be the fastest 

overall and the most robust, in terms of ease of compiling on various platforms and lack of 

runtime issues such as missing DLLs.  For this algorithm on a PC with a 2.4 GHz Intel Core 2 

Quad CPU, the MKL library provided an acceleration factor as high as seventy times compared 

to the un-optimized single-threaded math library.  The following charts also show that when 

using multi-threaded (parallel processing) code the speed improvement is not monotonic when 

increasing the number of cores (threads).  For this mode matching code the optimum number of 

cores (threads) is between three and four.  Results using clMAGMA math library are not 

presented here because the mode matching calculations practically almost always use modal 

expansions of order less than a few hundred, and at those sizes of matrices the CPU 

implementations of the BLAS and LAPACK math routine run considerably faster than the GPU 

implementation of clMAGMA — clMAGMA is faster only for very large matrices of size in the 

thousands, in which case clMAGMA would effectively accelerate method of moment problems 

but not cylindrical mode matching problems. 
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Fig. 5-18.  INTEL Core2 Quad Compute Speed versus Math Library with 60 modes. 

 
Fig. 5-19.  INTEL Core2 Quad Compute Speed versus Math Library with 120 modes. 

 
Fig. 5-20.  AMD Phenom II-6 Compute Speed versus Math Library with 60 modes 
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Fig. 5-21.  AMD Phenom II-6 Compute Speed Versus Math Library with 120 modes 

 

5.4 PARTICLE SWARM OPTIMIZATION 

In this section the design a corrugated horn for a reflector system is accomplished by multi-

objective PSO.  (Other examples of multi-objective PSO for the design of aperture antennas are 

provided in section 4.4.)  Consider a circularly symmetric Cassegrain dual reflector system 

operating at 14.3 GHz and fed by a corrugated horn, with the reflector optics designed with a 

feed edge angle of 17 deg.  The following multiple objectives are imposed on the optimization: 

1) the horn return loss must be minimized;  2) the reflector optics expects the feed pattern level, 

dBp1, to drop at 8.18 deg to 4.31 dB below its central peak level;  3) the reflector optics also 

expects the feed pattern level, dBp2, to drop at 16.36 deg to 18.36 dB below its central peak 

level; 4) minimize the maximum level of cross-polarization over the entire 17 deg feed angle 

range (that illuminates the reflector system); and 5) make the horn as short as possible.    The 

fitness function for this optimization is defined for this example in (5.60), where the square of 

the feed pattern deviation from the goals is amplified to emphasize its importance relative to the 
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units of the objectives.  The optimizer models the geometry of the corrugated feed horn as a horn 

flare profile over the length of the horn, plus a corrugation depth profile.  The horn flare profile 

is modeled as a balance between both a linear ramp from the starting to the ending radius and a 

sine squared profile.  The optimization chose a balance of 14% linear and 86% sine square flare 

profile.  The first ten corrugation slots from the throat make up the mode converter which 

initiates the conversion from TE11 to HE11 mode that is completed by the remainder of the flare, 

which has corrugations of a constant depth also determined by the optimizer.  In this example the 

horn model is characterized by sixteen parameters that the optimizer juggles and balances 

throughout the optimization process. 

      
2 2

fitness return loss 100 dBp1 4.31 dBp2 18.36 maxXpol length       
 

  (5.60) 

 
Fig. 5-22.  Radiation pattern of feed horn designed by multi-objective PSO. 

Fig. 5-22 presents the optimized feed radiation pattern, normalized to its peak amplitude, and the 

geometry of the optimized horn is provided in Table 5-2.  The two “+” crosses within the figure 
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represent radiation pattern goals set for the optimizer to meet, and the curves show that the 

radiation pattern of the optimized horn meets those goals quite accurately. The results of this 

multi-objective PSO corrugated feed horn optimization are a return loss of -119 dB; dBp1 is 

within 0.05 dB of the target (left cross in the figure), and dBp2 within 0.15 dB (right cross in the 

figure). The optimization achieves a maximum cross-polarization level -34.9 dBp, with respect 

to the peak level of the pattern, over the 17 deg range, and the length of the horn is minimized at 

24.3 cm.   

  
Fig. 5-23. Perspectives of the multi-objective optimized feed horn.  3D graphics produced by the ARAM CYL_MM 

Windows TM software developed for this dissertation. 
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Table 5-2.  Geometry (radius, length of the cylindrical sections in cm) of the optimized profiled horn depicted in Fig. 5-23. 

 

5.5 CONCLUSION 

This chapter has addressed the design of conical feedhorns using a variety of techniques:  

aperture field integration method with first-order and also perimeter-matched quadratic radial 

phase (FOQRP & PMQRP), spherical wave expansion method, and the method of cylindrical 

mode matching.  A comparison of the relative accuracies of each method and also the use of the 

respective methods as means to trade between accuracy and computational speed is discussed.  

Measured results are compared with the different computational methods, and the relative merits 

of each method with respect to the measured data are indicated.  The particle swarm optimization 

method is harnessed to produce an optimized multi-parameter design — with about sixteen 
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parameters — of a shaped-profile corrugated horn with a combined fitness function that 

simultaneously minimizes the return loss and radiated cross-polarization component as well as 

fitting the radiation pattern of the horn to a desired design constraint (for proper illumination of a 

shaped reflector design). 
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CHAPTER 6 REFLECTOR RADIATION 
PATTERNS 

Aspects of reflector radiation patterns and their calculation using numerical acceleration methods 

are discussed in this chapter, including the brute force method of calculating the radiation pattern 

by Physical Optics (PO), the Gaussian beam method of accelerating the calculation, and an 

improved version of the Levin quadrature method for asymptotic evaluation of the PO integral, 

and the application of graphics processors using the OpenCL language.  A typical example of a 

generic offset reflector — the roof-top satellite dish — is shown in Fig. 6-1 below, and a much 

larger, specialized offset reflector for space application (NASA SMAP soil moisture active 

passive satellite) is depicted in Fig. 6-2.    

 
Fig. 6-1. Generic Single offset Reflector with Feedhorn and LNA.  (Photo from www.ebay.com.) 

http://www.ebay.com/
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Fig. 6-2.  Six meter diameter offset mesh reflector for the NASA SMAP (soil moisture active passive) satellite, expected to 

launch in 2014, from www.jpl.nasa.gov . 

6.1 BRUTE-FORCE PHYSICAL OPTICS  

  
 

     PO

reflector

exp ˆ ˆ ˆ' exp '
far-field 4

jkr
E r jk J r jk r r ds

r
  




       ,  (6.1) 

where 

inc

PO
ˆ2 , illuminated areas

0 , shadowed areas

n H
J

 
 


 . (6.2) 

For a single reflector as depicted in Fig. 1-6, the brute force computation of the physical optics 

integral over the reflector surface involves dividing the aperture into elements of surface area one 

tenth wavelength on a side and accumulating all the contributions in the far field according to the 

integrand in (6.1).  The integral is calculated independently for each far field observation angle.  

The current J
PO

, associated with the elemental patch of aperture surface area represented by the 

integral of  (6.1), is modified to incorporate the Jacobian of the reflector surface shape to account 

http://www.jpl.nasa.gov/
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for the difference between the element of curved reflector surface and that of the flat aperture 

surface integration area.  The polarization orientation of the field illuminating the reflector from 

the feed at the reflector’s focus is that of a Huygens source, given by Ludwig’s third definition 

(which is the ideal feed polarization to create zero cross-polarization radiated from a parabolic 

reflector).  Furthermore, the polarization orientation of the fields radiated in the far field from the 

reflector system are treated again as that of a Huygens source, with Ludwig’s third definition of 

cross-polarization defining the polarization orientation of the reflector’s radiated fields.  Some 

details regarding the relationship between the polarization orientation of the aperture fields and 

those of the far fields are discussed in Appendix 8.1. 

6.2 GAUSSIAN BEAM METHOD 

6.2.1 Introduction 

The Gaussian beam (GB) method provides a significant computation speed advantage, at the cost 

of somewhat reduced accuracy, by avoiding the numerical integration of the PO reflector surface 

integral and instead accounting for the integration of an array of “spot beams” with closed form 

equations that can be calculated much faster than numerical integration.  The GB method uses a 

pseudo-hexagonal array or cluster of individual Gaussian beamlets to represent the radiation 

pattern of the feed that illuminates the reflector surface, and accounts for the overall radiation 

pattern of the reflector by accumulating the individual contributions of each beamlet 

independently.  The representation of the feed pattern by the array of GBs is referred to as a 

Gaussian beam decomposition of the feed pattern, as depicted in Fig. 6-3 below.  The 

contribution that each GB beamlet makes to the far field radiation pattern of the reflector is 
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approximated by a closed form equation with the assumption that the reflector surface is 

smoothly varying and can be approximated by a locally quadratic function within the spot of the 

reflector surface illuminated by the beamlet. 

 
Fig. 6-3.  Gaussian beam decomposition of a radiation pattern. 

6.2.2 Paraxial Approximation 

A Gaussian beam is a paraxial approximation of Maxwell’s equations.  For the approximation to 

be accurate the minimum waist of the Gaussian beam, w0, indicated in Fig. 6-4 below, must be 

greater than about six wavelengths [129].  With the minimum waist located at the origin the 

Gaussian beam’s field strength, as a function of radius   and axial distance z, is given by (6.3).  

A Gaussian beam is fully characterized by two parameters:  the minimum waist and the 

wavelength. 
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Fig. 6-4  The Gaussian beam is a paraxial solution to Maxwell’s equations. 

  
     

 
2 2
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w
GB z j k z z
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 
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,  (6.3) 

where  
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0beam waist, 1
r

z
w z w
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 
   
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,  (6.4) 

  
2

phase front radius, 1 rZ
R z z
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  
      

,  (6.5) 

   arctan
r

z
z

Z
  , (6.6) 

and 
2

0Rayleigh length, r

w
Z




 . (6.7) 

In order to provide for a smooth decomposition of a feed radiation pattern between the GB axes 

the GBs are separated by their divergence angle, which in radians is the ratio of the waist to the 

Rayleigh length. 

 0divergence angle 
r

w

Z
   (6.8) 
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Fig. 6-5.  GBs separated in angle by the GB divergence angle. 

6.2.3 Spatial distribution of GBs 

Separating the GBs uniformly (by their divergence angle) in a hexagonal pattern provides for a 

smooth, continuous decomposition of a feed radiation pattern in between the GB axes.  A deep 

reflector can span a solid angle up to and even more than a hemisphere, and yet it is not possible 

to perfectly uniformly distribute a hexagonal pattern over a hemisphere.  An approximately 

hexagonal pattern will reasonably uniformly span a small solid angle, such as what the feed in a 

dual reflector system might see, but with a single reflector it is effectively not feasible.  A 

suitable alternative is to use a spherical geodesic grid based on an icosahedron tiled with 

hexagonal cells, as shown in Fig. 6-6 below.  The simple construction of this spherical geodesic 

is described in [130].  The twenty faces of an icosahedron are tiled with the most symmetric tile 

shape, the hexagon, and projected onto the sphere.  In this fashion a great number of hexagonal 

cells can be nearly uniformly distributed over a sphere:  twelve of the cells on the sphere (at the 

icosahedron vertices) are pentagons rather than hexagons, and the hexagonal cells are slightly 

larger near the center of the twenty icosahedron faces than near the edges of the faces. 

The placement of the GB ray axes on each icosahedron face is done as follows.  Let N be the 

binary power of division.  First of all, each of the icosahedron vertices, 12 of them, contains a 
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GB axis.  Depending on the value of N each of the 30 edges of the icosahedron, excluding the 

endpoints of the edges, contains a number of GB axes:  none with N = 0, 1 with N = 1, 3 with N 

= 2, 7 with N = 3, etc.  Inside each face of the icosahedron the number of GB axis points (inside 

the edges) also depends on N: 1 with N = 0, located in the very center of the face and then 

projected outward onto the unit sphere, then for each higher N an additional point is added 

between all points for level (N-1).  Inside the face there are 4 points with N = 1, 19 with N = 2, 

85 with N = 3, etc.  When placing each and every one of these additional GB axis points inside 

the face, the new point is first located in space at the very midpoint along the dividing line 

between two existing points, form the prior level (N-1), and then projecting that point radially 

outward to the surface of the unit sphere, where the new point then resides. 

The total number of points (GB axes) distributed on the entire sphere is thereby the sum of 12 

vertices plus 30 edges, each containing 2
N
-1 points (excluding end points — the vertices), plus 

20 icosahedron faces, each containing 4
 N

 + (2
 N

 +1)(2
L-1

+1)–3(2
N
) points.  Adding these all up, 

the sphere contains 482 GB axes with N = 2, 1922 GB axes with N = 3, 7682 GB axes with N = 

4, and 30722 GB axes with N = 5.  Usually only at most one hemisphere is needed for coverage 

of a reflector, in which case the number of GB axes is have those stated.  The baseline angular 

separation between any two neighboring GBs — this varies slightly across each face of the 

icosahedron — is   164.3 deg / 2 sin / 3N  , or about 4.6 deg with N = 3. 
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Fig. 6-6.  GB axes distributed in spherical geodesic pattern (adapted from [130]).  An icosahedron’s 20 faces are filled 

with hexagonal cells, each representing the axis or one GB ray beam.  This distributes the GB rays nearly uniformly in 

solid angle over entire hemisphere. 

 
Fig. 6-7.  A feedhorn illuminating a reflector from the parabolic focus. 
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Fig. 6-8.  GB rays illuminating the reflector surface, representing a GB decomposition of the radiation pattern from the 

feedhorn. 

6.2.4 GB spot beam and Least Squares method 

The contribution to the physical optics integral from each individual Gaussian beamlet is given 

by 

  
 

     PO

GB

reflector

exp ˆ ˆ ˆ ˆ ˆ' exp '
far-field 4

GB jkr
E r jk J r jk r r ds

r
  




       .  (6.9) 

The physical optics integrand of (6.9) is approximated, within the spot on the reflector surface 

illuminated by the GB, by the quadratic exponential function 
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2 2ˆ exp x xy y x yp a x a xy a y b x b y         , with the local GB xy-plane representing a plane 

tangent to the reflector surface at the point where the GB axis intersects the reflector surface, 

with the x-axis parallel to the reflector edge, so that 

  
  2 2

reflector

exp
ˆ exp

far-field 4
x xy y x y

GB jkr
E r jk p a x a xy a y b x b y ds

r
 




          .  (6.10) 

Each of the coefficients in the argument of the exponential in the integrand of (6.10) may in 

general be complex valued.  An aspect of this approximation is that the vector orientation of the 

far field contribution from the each GB is altogether assumed to be in a constant direction, p̂ , 

across the entire spot on the reflector surface illuminated by the GB beamlet.   

The coefficients in (6.10) are estimated by a least-squares method, e.g., the CGELSD or 

ZGELSD subroutines from www.netlib.org.  The six coefficients are determined by 

simultaneously satisfying, in the least-squares error sense, six simultaneous equations, 

determined by sampling the far field contribution at six points near the intersection of the GB 

axis with the reflector surface.  The matrix determinant would tend to zero and the condition 

number to infinity if the six points were chosen symmetrically distributed about a circle; instead, 

the sample points are taken using a randomized constellation such as shown in Fig. 6-9 below, in 

order to provide a condition number around 25.  The radii indicated in Fig. 6-9 are relative to a 

normalizing sampling radius made as small as possible to minimize the GB numerical 

approximation error.   

A matrix is singular if its determinant is zero, which happens if its rows or columns are not all 

linearly independent.  If any column of a matrix can be obtained by some linear combination of 
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the other columns, then the columns are not linearly dependent and the determinant is zero.  If 

the sample points are chosen symmetrically on a circle then one of the columns tends to a linear 

combination of the others.  (Singular value decomposition shows that only one of the singular 

values tends to zero.)  If instead the sampling point locations are randomized then the condition 

number improves (reduces).  The condition number determines how ill-conditioned the matrix is 

— a zero determinant corresponds to an infinite condition number.  If the angles alone are 

randomized a zero determinant condition is avoided and the condition number improves.  If the 

radii are randomized as well the condition number further improves.  Since as noted above only 

one singular value tends to zero in the singular case of points symmetrically distributed in a 

circle, a truncated singular value decomposition (TSVD) method [42] could in that case be 

applied to solve the GB matrix system in spite of the singularity, with a slight compute speed 

penalty, in which case there would apparently be no need to randomized the sampling point 

locations. 

 
Fig. 6-9.  Least-squares sampling point constellation in local GB coordinates on the local reflector surface tangent plane, 

with the origin representing the point where the GB strikes the reflector surface. 
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The least squares method (Netlib xGELSD) solves the system of equations in (6.11), where x and 

y represent the coordinates of the i
th

 point in the constellation of Fig. 6-9 above (in the plane of 

the local reflector surface tangent), and 
if  represent the complex-valued far field contributed by 

the GB at the i
th

 point in the constellation, corresponding to the integrand of (6.10). 
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  (6.11) 

The output of the least squares solution are the coefficients 
xa ,

xya ,
ya ,

xb ,
yb , , which are 

incorporated into the closed form solutions below. 

6.2.5 Closed form GB Physical Optics PO integral 

When a GB lands on the reflector surface far from any reflector edge the GB closed form 

integral is 
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where the square root is on the right hand side of the complex plane with phase 

 2 2
arg    .   
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6.2.6 Edge contribution of GB PO integral 

  
Fig. 6-10.  GB illuminating generally oblique local reflector surface tangent plane about local GB origin with edge of 

reflector located at distance y = c from the point where the GB central axis ray intersects the reflector surface.  The 

diagram on the right represents the spot illuminated by the GB on the local tangent plane. 

The diagram on the left of Fig. 6-10 depicts a local reflector surface tangent plane at the point 

where a GB strikes the reflector surface.  The diagram on the right represents the spot 

illuminated on the tangent plane, at an oblique angle in general, by the GB.  The diagram on the 

right is divided into two regions:  I1, representing the portion of the spot that falls on the reflector 

surface, and I2, representing the portion that falls off the reflector edge. 

For a GB that is directed close enough to an edge of the reflector to provide significant 

illumination of the edge, the local GB coordinate system is rotated so that the x-axis is parallel to 

the edge, as depicted in Fig. 6-10, with the edge shown located at y c .  Significant illumination 

of the edge occurs when the GB axis is within about 3 GBangle from the direction to the edge.  

Fig. 6-10 represents the illumination of the reflector surface by a GB, but the GB does not 

actually have a sharp contour, as shown in Fig. 6-10; instead, the has a continuous distribution 

that is concentrated near the center.  Note that when the GB strikes the reflector surface at an 
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oblique angle, as depicted by the elongated ellipse in Fig. 6-10, the peak amplitude of the 

exponential in the integrand of (6.10) does not occur at the central point where the GB axis 

strikes the reflector surface.  The edge location parameter, c, is positive when the GB axis lands 

on the reflector surface; on the other hand, the edge parameter, c, is negative when the GB axis 

does not intersect the reflector but goes off the edge.  The closed form equations for the surface 

integrals, representing the areas respectively below (I1) and above (I2) the edge in Fig. 6-10, are: 
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where the square root is on the right hand side of the complex plane with phase 

 2 2
arg    .  I

c  
 represents (6.12). 

6.2.6.1 Customized Implementation of the Error Function 

The error function,  erf , with complex argument, is used in (6.13) and (6.14) to account for 

the contribution of the GB to the reflector far field due to the reflector’s edge.  The GBs that land 

on the reflector surface more than a few GB waists from the edge reflect nearly entirely in the 

specular direction, and as a result the diffraction from the reflector edge is determined essentially 

entirely by the few GBs that illuminate the edge (and primarily those fewer GBs that illuminate 

the edge at an angle that places the observation point near the diffraction Keller cone).  Since the 

edge contribution can compete in amplitude with the specular component at angles more than a 
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few GBangle from the specular direction, but the specular component, [ ]cI 
 in (6.13) and (6.14)

, becomes diminishingly (exponentially) small only a few GBangle from the specular direction, 

the magnitude of the error function must become extremely exponentially large in amplitude at 

some observation angles so that its product with the diminishing amplitude of the specular 

component properly accounts for the edge effect of the PO integral.   

The following algorithms presented in Fig. 6-11 and Fig. 6-12 below, are found to provide a fast 

and sufficiently accurate approximation of the error function with complex argument for use in 

the GB method.  The first presents the basic error function algorithm, and the latter modifies the 

algorithm so as to provide the exponential z2 as a separate output, ln_out, so that it can be 

summed by the host program with the corresponding exponential in the vanishing specular term 

and produce a useful result.  That exponent ln_out can represent a factor up to the full maximum 

numerical computing floating value of about 1.0 E 308.  If ln_out were not output separately to 

be summed with the specular term’s corresponding exponent, then the exponential in the 

specular term can become deemed so small by the computer that it is assigned a vanishing zero 

value, and then its product with the error function is also forced to zero unnecessarily.  By 

treating the exponent of the error function separately in this manner the effective dynamic range 

of the arithmetic is extended to provide a range useful enough for the GB method computations 

to account for the effect of the edge. 
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Fig. 6-11.  Algorithm for error function with complex argument. 
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Fig. 6-12.  Algorithm for error function with complex argument revised to output exponent (ln_out) separately. 
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6.2.7 Results 

The Gaussian beam method was used to characterize both symmetric and offset single reflector 

systems, and the results compared to brute force methods. 

6.2.7.1 Speed 

Compared to brute integration of the PO integral the GB method is 96 times faster for 

comparable results with a symmetric reflector of 240 wavelengths diameter for far field 

observation at modest theta angles.  This speed is comparable to that reported in [131], [132].  

Whereas the brute force calculation of a PO integral for a large antenna pattern cut might take an 

hour, the same pattern cut calculated using the GB method can take as little as half a minute, 

depending on the accuracy desired. 

6.2.7.2 Symmetric Reflector 

Fig. 6-13 shows the comparison of results of both brute force and the GB method for the case of 

a symmetric reflector of diameter 240 wavelengths, with f/D of 0.5 and Gaussian feed with 12 

dB taper.  The agreements of the co-polarized and cross-polarized components with brute force 

are both within a fraction of a decibel over the plotted range. 
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Fig. 6-13.  Comparing Gaussian beam and brute force PO methods for symmetric reflector. 
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6.2.7.3 Offset Reflector 

   
 

Fig. 6-14.  The geometry of the offset reflector system analyzed in Fig. 6-15:  The right view is from the main beam 

direction in the far field (orthographic projection); whereas, the left view is a perspective view from a point near the 

reflector.  3D graphics produced by the ARAM CYL_MM Windows TM software developed for this dissertation.  The 

CYL_MM software provides a 3D visualization of the reflector geometry specified in a set of ARAM DUAL reflector 

analysis software input files.) 

Fig. 6-14 shows the offset reflector geometry for the comparison in Fig. 6-15 of brute force and 

the GB method for the case of an offset reflector of diameter 120 wavelengths, with f/D of 0.5 

and Gaussian feed with 12 dB taper.  The agreements of the co-polarized and cross-polarized 

components wrt brute force are both within less than a decibel over the plotted range.  In order to 

achieve this level of accuracy the GB waist had to be adjusted to increase it slightly; although, 

such an increase tends to degrade the far-out sidelobes.  This method appears to require a denser 

array of GBs for convergence of far-out sidelobes at correspondingly larger angles; e.g., N=3 out 

to 10 deg, N=4 to 25 deg, N=5 to 50 deg.  Better results for the offset reflector were obtained in 

the cut plane orthogonal to the offset plane than in the offset plane. 
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Fig. 6-15.  Comparing Gaussian beam and brute force PO methods for the offset reflector depicted in Fig. 6-14, with 

pattern cut plane orthogonal to the offset plane. 

6.2.8 Limitations 

Because the GB phase front is parabolic rather than spherical (as a far field solution of 

Maxwell’s equations require) the approximation of a feed’s radiation pattern by an array of GBs 

is limited to a finite range of distance.  If a feed pattern is decomposed into an array of GBs at a 

given distance from the feed, then that decomposition will match the feed pattern reasonably 

well only out to about ten times the given distance or one tenth closer in.  This is indicated in the 

representative GB array patterns plotted as a function of distance in Fig. 6-16. 
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Fig. 6-16.  GB array aggregate pattern as a function of distance. 

The angle of incidence of the feed’s illumination of the reflector surface must be modest.  If a 

feed ray strikes the reflector at a very oblique, near-grazing, angle, then the locally quadratic 

Gaussian approximation breaks down. 

The view angle of the reflector, as seen by the feed, must be significantly larger than the 

GBangle spacing of the GBs.  The GB method assumes that the reflector surface is illuminated 

by a larger number of GBs. 

The paraxial approximation requires that the Gaussian beam waist be larger than approximately 

six wavelengths [129].  By spacing the GBs by the divergence ray angle (to obtain a smooth 

decomposition of a radiation pattern), the paraxial approximation then effectively requires that 

the GB spacing be less than about three degrees; although 5 degrees is acceptable. 

 0

0

GBangle  ray divergence angle , for small GBangle
r

w

Z w




     (6.15) 

 
1

 rad  3 deg
6

   (6.16) 

The GB method assumes that the size of the GB spot beam on the reflector surface is minimized, 

and that condition in conjunction with spacing the GBs by the divergence ray angle establishes 

(6.17), where w is the GB waist, and GBangle is the angular separation of the GBs. 
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Fig. 6-17.  Z1, the minimum distance between feed and reflector as a function of GBangle. 

According to Fig. 6-17 the GB method is effectively limited to use with reflector systems with at 

least 120 wavelengths distance between the feed and the reflector surface, and at that minimum 

distance the minimum GB spot diameter (twice the waist) on the reflector surface is about twenty 

wavelengths — with the maximum GBangle of 3 deg.  (If smaller GBangle were used the spot 

illuminated on the reflector surface would be even larger.)  If a dual reflector system has less 

than 120 wavelengths between its feed and subreflector but greater than that between the feed 

and the equivalent parabola [55], then the GB method can still be applied to the equivalent 

parabola of the dual reflector system.  With a typical ratio of focal length to diameter of 0.4 for 

reflectors used in communications applications, the GB method is effectively limited to 

reflectors of diameter larger than 300 wavelengths 

6.3 LEVIN METHOD 

The Levin method applies to integration over a rectangular domain.  The two-dimensional Levin 

method [33], [35] is a numerical quadrature with the integrand being the product of one term that 
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slowly varies and an exponential term that can vary rapidly.  The Levin method turns the original 

highly oscillatory integral problem into one of solving a partial differential equation instead.  The 

equivalent partial differential equation is solved using a matrix collocation method, where a grid 

of points — about ten to thirty on a side — samples both the slowly varying term and the 

derivative of the exponential argument from the original integrand at a limited number of points.  

The original Levin method requires a minimum magnitude of phase derivative for convergence.  

Li [38]–[41] revises Levin’s method to alleviate the minimum phase derivative requirement by 

revealing that the rank of the target matrix allows application of the truncated singular value 

decomposition method to solve the matrix system with good accuracy in spite of being ill-

conditioned, using a Chebyshev differential matrix on Chebyshev-Lobatto nodes.  Specifically, 

Li shows that only the last of the singular values of the target matrix approaches zero when the 

Levin system is ill-conditioned: The truncated singular value decomposition (TSVD) method 

reconstructs the system after removing that one, nearly zero-valued singular value and is thereby 

able to solve the system accurately.  Essentially the TSVD solution resolves the problem of the 

Chebyshev differential matrix being inherently singular, with a zero determinant.  Li utilizes a 

change of integration variable so that the substituted integration limits span from -1 to 1, to 

correspond with the range of the Chebyshev-Lobatto nodes.  Li’s two-dimensional method gains 

a considerable speed advantage over the original Levin method partly by approximating the two-

dimensional integral with a cascade of two sets of one-dimensional integrals, at the cost of a 

slight loss of accuracy due to neglecting some of the terms in the two-dimensional total 

derivative. 
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6.3.1 Levin Fundamentals 

The fundamentals of the Levin method are explained for the one-dimensional case.   Given an 

original integral of the form 

    exp

b

a

I f x ig x dx    ,  (6.18) 

which is equivalent to integrating the total derivative of a different compound integrand: 

     exp

b

d

dx

a

I p x ig x dx    , (6.19) 

whereby define the auxiliary function,  p x , by the ordinary differential equation 

            ,   where .d
x x x dx

p x ig x p x f x p x p x    (6.20) 

The original one-dimensional integral is equivalent to  

        exp expI p b ig b p a ig a        . (6.21) 

Thereby the problem of solving the original integral is transformed into one of solving an 

ordinary differential equation for the auxiliary function,  p x , which can be computed quite 

rapidly using matrix collocation techniques.  If the function is sampled at N points then the size 

of the matrix system to be solved is N.   

Extension to the two-dimensional case is directly analogous.  Given the two-dimensional integral 

    , exp ,

b d

a c

I f x y jq x y dxdy     ,  (6.22) 

which is equivalent to the integral of the total differential of a different compound integrand, 
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     
2

, exp ,

b d

a c

I p x y jq x y dxdy
x y


        (6.23) 

whereby define the auxiliary function  ,p x y  by the partial differential equation 

  xy y x x y xy x yp jq p jq p jq q q p f     . (6.24) 

Then the original two-dimensional integral is equivalent to 

 
       

       

, exp , , exp ,

  , exp , , exp ,  .

I p b d jq b d p a d jq a d

p b c jq b c p a c jq a c

       

       

  (6.25) 

Thereby the problem of solving the original integral is transformed into one of solving a partial 

differential equation for the auxiliary function,  ,p x y , which can be solved using matrix 

collocation techniques.  If each dimension is sampled at N points, then the size of the matrix to 

be solved is N
2
.  (An NxN matrix is required to uniquely solve the partial differential equation 

using collocation techniques.) 

Note that the compute time for solving a matrix system of size S using LAPACK GESV scales 

as O(S
3
) [www.netlib.org/lapack].  Thus with each dimension sampled at N points the compute 

time of the one-dimensional case scales as N
3
, and that of the two-dimensional case scales as N

6
.  

Li’s revision of the Levin method approximates the two-dimensional integral by a cascade of two 

sets of one-dimensional integrals in order to gain a considerable speed advantage, with a slight 

loss of accuracy due to the approximation.   

Li’s two-dimensional revision of the Levin method involves the cascade of two stages of one-

dimensional integrals.  Assume that the two dimensions of the rectangular domain are sampled 

respectively by M and N points.  Li’s first stage involves solving N systems of matrices each of 

www.netlib.org/lapack
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size M, representing N different one-dimensional integrals over the first variable in the 

rectangular domain, divided into N strips parallel to that first dimension, each respectively 

located at the N different sample points of the second dimension.  Li’s second stage then 

involves solving two final systems of matrices each of size N, representing one-dimensional 

integrals over the outer two strips of the rectangular domain, respectively located at the extrema 

of the sample points in the first dimension.  The compute time of Li’s revision of Levin’s two-

dimensional method thereby scales as (2N
3
 + NM

3
), compared to (MN)

3
 for the original Levin 

method.  Li’s method thereby gains an additional speed advantage for cases in which the 

integrand varies relative less over one dimension than the other — whereby numerical 

convergence can be achieved with different minimum M and N. 

    
Fig. 6-18.  The two stages, left then right, of Li’s revision of the Levin 2D integration, respectively along the two 

dimensions: pictured on the left, with the horizontal bands, are the set of p(), and on the right the two vertical bands r(), 

on the left in blue, and q(), on the right in pink. 

Li’s revision of the two-dimensional Levin method is summarized by (6.26)–(6.33). 

        , exp , , exp ,

b d d b

a c c a

I f x y jg x y dxdy f x y jg x y dx dy
 

        
 

      (6.26) 

Approximation:     ~ , exp , ,

d b

c a

d
I p x y jg x y dx dy

dx

 
   

 
    (6.27) 

where        , , , ,x xp x y jg x y p x y f x y  . (6.28) 
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Here  ,p x y  is solved along strips of x at different y using matrix collocation techniques.  

Subsequently, 

        ~ , exp , , exp ,

d d

c c

I p b y jg b y dy p a y jg a y dy        .  (6.29) 

          ~ exp , exp ,

d d

c c

d d
I q y jg b y dy r y jg a y dy

dy dy
        ,  (6.30) 

where        , ,y yq y jg b y q y p b y  , (6.31) 

and        , ,y yr y jg a y r y p a y  . (6.32) 

Here ( )q y  and  r y  are each solved along their respective strip of y using matrix collocation 

techniques.  Finally, 

                ~ exp , exp , exp , exp ,I q d jg b d q c jg b c r d jg a d r c jg a c                 .  (6.33) 

6.3.2 Chebyshev-Lobatto Nodes 

Li’s revision of the Levin method uses Chebyshev polynomial expansions to provide a 

computational speed advantage.  Chebyshev polynomials of the first kind [133] have the form of 

(6.34).  The Chebyshev polynomials provide faster convergence, in general, than other 

polynomial series [133], [134].   

        1 1cos cos cosh coshnT x n x n x     (6.34) 

The respective inverse trigonometric identities    1 2cos / 2 ln 1z j jz z      and 

   1 2cosh ln 1z z j z     help relate the two forms of the Chebyshev polynomials of the first 

kind.   
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The computational speed advantage that Li’s revision gains is related to the use of the 

Chebyshev differential matrix, which requires that the function that is represented by a 

Chebyshev polynomial expansion be sampled at the Chebyshev-Lobatto nodes.  The specific 

locations of the Lobatto nodes are defined in (6.35).  The Chebyshev-Lobatto nodes sample the 

endpoints of the integration interval more densely than the central region. 

Lobatto nodes: cos ,  0,1, 2...k

k
x k N

N

 
  

 
  (6.35) 

 
Fig. 6-19.  Example set of Chebyshev-Lobatto nodes (line of large dots), showing how they relate to a uniform angular 

division of the unit circle and that they are more densely populated near the ends. 

There are a few choices for implementing the Chebyshev-Lobatto grid system for the Levin+Li 

quadrature method.  A few examples are shown in Fig. 6-20, which displays a) rectilinear 

integration axes with independent integration limits, b) cylindrical integration axes with 

independent integration limits, and c) rectilinear integration axes with the limits of the second 

integration axis being dependent on the first — in this case representing a circular aperture.  The 

first (a) option provides significantly higher numeric quadrature computational efficiency than 

the others:  It has the highest uniformity in its distribution of the grid points; whereas, the other 

two have their grid points clumped together in areas that do not contribute to convergence of the 

quadrature.  Option (b) has an inefficient clustering of points in its central region as well as on its 

right side; its quadrature converges but requires substantially higher degree than (a) and thereby 

provides much lower computational efficiency.  Convergence of the first four sidelobes using (b) 
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requires N on the order of 50; whereas, the grid system of (a) requires only N < 10.  The two 

axes in (c) lose their orthogonality at the left and right sides of the circle, where the two axes 

become essentially parallel to each other, which hinders the convergence of the quadrature.   

  
Fig. 6-20.  Two-dimensional Chebyshev-Lobatto node grid system options for Levin method:  a) independent rectilinear 

coordinates [x,y], b) independent cylindrical coordinates [ρ,φ], and c) rectilinear with the integration limits of the second 

integration variable dependent on the first variable [x,y(x)], in this case creating a circular aperture.  The first option with 

independent rectilinear coordinates achieves the Levin quadrature with the highest computational efficiency. 

6.3.3 Chebyshev Differential Matrix 

The Chebyshev differential matrix, D, assumes a Chebyshev polynomial expansion that is 

sampled at the Lobatto nodes.  The derivative of the Chebyshev polynomial expansion (of some 

function), sampled at the Lobatto nodes, is simply the matrix product of the differential matrix, 

D, and the sample vector (of points sampled at the Lobatto nodes). 
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where 
2,  0, ;

1,  1,2,...N 1.
k

k N
c

k


 

 
  (6.37) 

Table 6-1.  Chebyshev differential matrix, Di,j 
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An abbreviated summary of the Chebyshev differential matrix entries is that the off-diagonal 

values are 

 
 1

,   , 0,1,2... ,

k j

k
kj

j k j

c
D k j N k j

c x x



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

 , (6.38) 

and the diagonal values are a summation of the off-diagonal terms along a given row:   

 
0,

N

kk kn

n n k

D D
 

   . (6.39) 

6.3.4 Collocation Method of Solution 

A matrix collocation method is used to solve for the auxiliary function p, sampled at the Lobatto 

nodes, as a key step to obtain the numerical estimate of the integral.   By solving the differential 
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equation for the auxiliary function the oscillatory integral is solved.  The original Levin method 

requires that  

  g 1x x b a    (6.40) 

in order to (solve the matrix equation to) achieve prescribed accuracy.  With Li’s version of 

Levin’s method (6.20) becomes, in matrix form,  

     A p f , (6.41) 

      A D xi g   . (6.42) 

[A] is called the target matrix.  If (6.40) is not satisfied then the target matrix become ill-

conditioned and standard linear matrix methods fail to solve for  p x .  Li found a way around 

this problem using truncated singular value decomposition by revealing that if [A] is of rank N 

when well-conditioned then the rank of [A] becomes only N-1 when it is ill-conditioned and only 

a modest number Chebyshev-Lobatto nodes (< 128) are used on each edge of the integration 

patch.  The singular value decomposition (Golub [135], Sections 2.5.3 and 2.5.6) of [A] is [A] = 

[U][S][V]
H
, where all matrices are square of size N+1 (about 10 to 30 < 128).  [S] is a diagonal 

matrix containing a non-increasing ordered list of the singular real values, and [U] and [V] are, in 

general, complex unitary matrices with columns containing respective the left [U] and right [V] 

singular vectors.  When the target matrix is ill-conditioned, as stated above, only the smallest of 

the target matrix’ singular values becomes nearly zero-valued, and with that knowledge (6.41) is 

solved accurately using a truncated singular valued decomposition method (TSVD).  An example 

of solving (6.41) by TSVD is  

         
1 H

1 1 1V S Up f


 , (6.43) 
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where [S1] is square of size N ([S] with its last row and column removed), and [U1] and [V1] are 

of size N+1 rows by N columns, being respectively [U] and [V] with their last columns removed.  

A fast TSVD method for solving (6.41) is provided by Chan [42], published when he was a 

UCLA professor.  Chan’s method uses a rank-revealing QR factorization and provides a least 

squares solution while avoiding having to compute the full singular value decomposition. 

The procedure for solving the two-dimensional Levin method involves solving N+1 systems 

each of matrix size N+1, representing the first dimension of integration (e.g., y-axis), and then 

solving two more systems each of matrix size N+1, representing the second dimension of 

integration (e.g., x-axis).  The solutions of the first set of N+1 systems are stored as the columns, 

j, of a size (N+1) x (N+1) storage matrix, and the first and the last rows of this storage matrix are 

subsequently used for the two respectively final system solutions, integrating over the second 

integration variable.  The N+1 equations in the first set are summarized by (6.44), where 

1 1 and -1 1k kx y      are the Chebyshev-Lobatto nodes.  (A substitution of the original 

integration variables is made so integration occurs over the domain of the Lobatto nodes.) 
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 . (6.44) 

The two final systems to be solved, integrating over the second dimension, are summarized by 

(6.45)–(6.48): 
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  (6.45) 

        1 1 exp 1,1 1 exp[ 1, 1I q ig q ig        (6.46) 
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  (6.47) 

        2 1 exp 1,1 1 exp[ 1, 1I r ig r ig          (6.48) 

Finally, the solution of the two-dimensional numeric quadrature by the Levin method is 

 
1 2I I I   . (6.49) 

If    ,1 , 1x xg x g x  , which can hold for far field physical optics integrals with symmetrical 

reflector systems on principal phi cuts, the matrix systems (6.45) and (6.47) would then represent 

the same linear system differing only with unique right-hand side column vectors, in which case 

both systems can be solved simultaneously; e.g., using LAPACK xGESV, to help reduce the 

overall computational workload. 

6.3.5 Truncated Singular Value Decomposition 

The two-dimensional Levin solution by Li’s method involves first solving N+1 different linear 

matrix systems of size M+1 (to effectively integrate over the first dimension) — here M and N 

are the parameters used in defining the order of the Chebyshev differential matrices — and then 

two more solutions of linear matrix systems of size N+1, to obtain the two-dimensional numeric 
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quadrature of the original physical optic integral.  If the target matrix is well-conditioned, then 

the TSVD method is not required and the matrix equations may be solved using more traditional 

matrix methods.  In the extreme case of zero phase derivative,  g 0x x  , then [A] of (6.41) is 

singular, with zero determinant, and yet the TSVD method solves the matrix system anyway, 

yielding    p x f x   in matrix form (sampled at the Chebyshev-Lobatto nodes).  The original 

Levin method solves a single matrix system of dimension (N+1)
2
, and also involves additional 

computations involving a basis function expansion of  p x  that Li’s method completely avoids 

(exploiting the natural properties of the Chebyshev polynomials sampled at the Chebyshev-

Lobatto nodes), for which reason the improved Levin method runs considerably faster than the 

original Levin method. 

There may be a way to obviate the need for use of the TSVD altogether:  It may be possible to 

re-derive a variation of the Chebyshev differential matrix for use with the Chebyshev polynomial 

series expansion whereby the sample points are slightly — perhaps randomly — offset from the 

Chebyshev-Lobatto nodes.  This would decorrelate the sample nodes from an exact 

correspondence with points sampled at equal angular spacing along a unit circle, and perhaps 

correspondingly provide for a non-singular differential matrix.  This suggestion parallels the 

reasoning in 6.2.4 regarding the avoidance of a singular sampling matrix for the Gaussian beam 

method. 

6.3.6 Limitations 

First of all, Li’s revision of the Levin method has somewhat reduced accuracy since it 

approximates Levin’s 2D auxiliary partial differential equation with a two-stage cascade of 
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several 1D ordinary differential equations.  Otherwise, the main restrictions of the use of 

(Levin’s original and) Li’s improved version of the Levin method [41] for physical optics 

applications are that the integration patch should not contain a stationary point with steep phase 

gradient within the central region of the integration patch, and the integration domain should not 

contain a resonant point (phase gradient perpendicular to the edge) with steep phase gradient.  

The issues in these regards are that the Chebyshev-Lobatto points sample the central regions only 

sparsely, while sampling the terminal regions of the integration domains densely, and sparse 

sampling is insufficient to capture the integrand content associated with a steep stationary or 

resonant point.  Most accurate numerical quadrature results using Li’s version of Levin’s method 

are obtain by identifying the locations of any such stationary and or resonant points in the 

physical optics structure and choosing to place those points coincident with the corner vertices of 

the Levin integration patches in those areas.  The Levin+Li method yields fast and accurate 

quadrature of the main beam and first sidelobes of a symmetric reflector using only a single 

Levin integration patch with only modest node count of N = 8; although convergence of the far-

out sidelobes may required considerably higher nodes, perhaps N = 50.  The quadrature will 

converge with much smaller N by locating the integration patch so that the phase gradient — 

even if small — varies more-or-less monotonically across the patch, as opposed to centering the 

patch about a pseudo stationary point (with only modest phase gradient):  An example of this 

distinction is modeling a symmetric square reflector with a single Levin patch as opposed to four 

quarter patches — the main beam and first few sidelobes will converge with only modest node 

count in either case; although, the far out sidelobes in the latter case will converge with 

considerably smaller node count than the former. 
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6.3.7 Practical Application 

A practical application of the Levin method is a large reflector system in which pseudo-

rectangular patches are built into the structure.  Fig. 6-21 shows an example of a large reflector 

constructed of large pseudo-rectangular subpanels.  The physical optics contribution from each 

panel (or clusters of panels) may be quickly calculated using the Levin method.  For example, 

Fig. 6-22 presents the far field radiation pattern of a square aperture parabolic reflector:  The 

numeric quadrature is completed by the Levin method almost two thousand times faster than 

brute force with a standard one-tenth wavelength integration patch size.  Fig. 6-25 presents the 

far out sidelobes by Levin+Li and brute force for a different square aperture reflector. 

 
Fig. 6-21. Reflector antenna constructed with large pseudo-rectangular subpanels, from http://www2.l-3com.com/datron/. 

http://www2.l-3com.com/datron/
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6.3.8 Results 

The following figures present a comparison of the results of the application the improved Levin 

method versus brute force for a few single reflector configurations involving symmetric and 

offset reflector apertures, as well as on- and off-axis feeds.  Generally, the Levin method requires 

a higher order for off-axis feeds than on-axis feeds, and the use of the higher order does slow 

down the improved Levin calculations a bit.  For the close-in sidelobe region of the far field 

pattern the improved Levin method requires a minimal order (around eight) for convergence with 

a symmetric reflector aperture.  Resonant points must be avoided [35], [41] for convergence of 

the far-out sidelobes, and this in general means that the phase function over the Levin patch 

should be more-or-less monotonic to minimize the numerical order required for convergence.  

The inset graphics in the upper right corner of the following figures indicate the respective 

reflector models considered, and Fig. 6-25 through Fig. 6-27 in particular use an offset aperture, 

with one corner on-axis, in order to avoid resonant points within the Levin integration patch. 
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Fig. 6-22.  Levin+Li method versus brute force with symmetric aperture and feed on axis:  Far field pattern 45 deg cut 

phi angle, between E- and H-planes, of a square aperture parabolic reflector illuminated by a Gaussian feed with -12 dB 

feed taper at the center of the aperture edge.  The numeric quadrature is completed by the Levin method 1800 times 

faster than brute force with one-tenth wavelength integration patch size.  This uses the grid option (a) indicated in Fig. 

6-20.  Peak directivity is 57.2 dBi. 

 
Fig. 6-23.  Levin+Li versus brute force close in sidelobes, with symmetric aperture and feed on axis.  This represents the 

same reflector and feed as in Fig. 6-22 but a different φ cut.  Peak directivity is 57.2 dBi. 
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Fig. 6-24.  Levin+Li versus brute force close in sidelobes, with symmetric aperture and feed offset for 2 HPBW scan.  This 

represents the same reflector and feed as in Fig. 6-23 but with the feed displaced off-axis.  Peak directivity is 56.9 dBi. 

 
Fig. 6-25.  Levin+Li versus brute force far out sidelobes, with offset aperture and feed on axis.  This is an offset square 

aperture with one corner on-axis.  The same feed pattern is used here as in Fig. 6-22.  
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Fig. 6-26.  Levin+Li versus brute force far out sidelobes, with offset aperture and feed offset from axis for 0.7 HPBW 

scan.  The same feed pattern is used here as in Fig. 6-22.  

 
Fig. 6-27.  Levin+Li versus brute force far out sidelobes, with offset aperture and feed offset from axis for 2 HPBW scan.  

The same feed pattern is used here as in Fig. 6-22.  The reduced accuracy indicated in the inset plot is believed to be due 

to the approximation Li makes as identified in (6.27), which becomes more evident with asymmetrical systems such as this 

case of the feed being displaced significantly off axis. 
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The acceleration by Levin+Li for the two cases in Fig. 6-22 and Fig. 6-25 of square apertures 

with 240 wavelengths on a side is almost 2000 times compared to standard brute force with one-

tenth wavelength sampling.  The acceleration factor increases by the square of the frequency 

since the compute time of the Levin method is independent of frequency. 

6.4 OPENCL GPGPU 

The application of the graphics processor to computing antenna radiation patterns provides a 

substantial acceleration in speed.  The same brute force physical optics (PO) code; e.g., a 

symmetric single reflector of two hundred forty wavelengths diameter, that runs single-threaded 

C/C++ on an Intel Core 2 Q8200 CPU and compiled to be optimized for speed, runs one hundred 

times faster when ported to OpenCL and run on AMD HD5850 GPUs hosted by the CPU 

systems.  Porting the code to OpenCL involves opening the processing loops to be run in parallel 

and some additional code to host the GPU in the CPU system.  The ability to accelerate antenna 

pattern computations by a factor of one hundred provides substantial benefits when many 

patterns need to be computed repeatedly, such as when optimizing a reflector system.  With a 

GPU many work items (“threads”) run in parallel and are grouped into local work groups, each 

sharing a modest pool of fast, local memory.  A GPU has several compute units, and all work 

items in a work group operate on the same compute unit. 

6.4.1 Introduction 

GPGPU has proven to speed up scientific computing.  In 2008 Peng and Nie [136] reported that 

their MoM calculations using a GPU (NVIDIA 8800GTX: Brook) ran more than 100x faster 
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than on a 3 GHz Intel Pentium 4 CPU.  Tao, et al. [137], also in 2008, reported that their 

GeForce 6800 Ultra GPU electromagnetic computations were from 30 to several hundred times 

faster than on a 3.7 GHz Intel Pentium Extreme. And in 2010 a few APS magazine articles cited 

GPU acceleration versus single-threaded CPU: [138] reports 42x for FDTD (NVIDIA 9500GT 

GPU: CUDA) versus 1.8 GHz CPU, and [139] reports 50x for MoM (NVIDIA GTX-280 GPU: 

CUDA) versus 2.2 GHz CPU and anticipates porting the work to OpenCL.   

OpenCL is like a multi-lingual interpreter helping to supervise a collection of workers of 

different languages. The overall operation of the program addressed in this chapter is 

summarized in Fig. 6-28; wherein, the run time of the number crunching section is to be 

minimized, and that section can be coded in different languages, but only OpenCL code (a 

kernel) is designed as a cross-platform language to utilize all of the processing elements in a 

heterogeneous system. 

 
Fig. 6-28.  An overview of the operation of the number-crunching computer code addressed here, highlighting the 

versatility of OpenCL. 
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This section presents an evaluation of the application of OpenCL language to code a GPU (AMD 

HD5850, 750 MHz baseline core clock) to calculate the brute force physical optics (PO) 

radiation patterns of a reflector antenna and compare the compute speed to that of single-

threaded CPU code (Intel Core 2 Q8200 2.3 GHz).  The HD5850 has 18 compute units (SIMD 

cores), each with 16 streaming cores (thread processors), each with 5 processing units (stream 

processors), for a total of 1440 processing units.  The 18 compute units each have 32 kB of very 

fast, local memory shared by all work items in a workgroup.  GPU time includes data transfer 

back to the CPU. 

6.4.2 Physical Optics Implementation 

The software codes implement the following equations.  The far-field PO integral in spherical 

coordinates is defined in (6.50).  The vector to a point on the reflector surface is 'r , the unit 

vector in the observation direction is r̂ , the distance to the observation point is r, 2 /k   ,   

is the wavelength,   is the impedance of free-space, n̂  is the reflector surface unit normal 

vector, incPO ˆ2J n H   is the PO reflector surface current from the magnetic field from the feed, 

and j is the positive square root of negative one with time convention exp[jωt].  Co- and cross-

polarization field orientation is defined by Ludwig’s 3
rd

 definition for both the feed and the far-

fields. 

      ˆ'

PO
ˆ ˆ ˆ ˆ '
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jkr
jk r r
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jk e
E J r e ds

r


 






     (6.50) 
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The CPU pseudo code:  surface area for-loop; feed pattern (Ludwig 3rd); JPO; pattern angle for-

loop; co- & x-pol (Ludwig 3rd); propagation phase; accumulator (PO integral); end pattern and 

surface area loops. 

The GPU implements the same functionality in OpenCL, hosted by the CPU. The code is 

organized with two OpenCL kernels and the host program. Pseudo code of the host program: 

allocate host memory; initialize OpenCL (identify the GPU, create OpenCL context and two 

command queues); enqueue (run) the two kernels; transfer the PO pattern data from GPU to CPU 

to be archived; release OpenCL and host resources.  The PO kernel #1 program:  identify which 

elemental surface area the work item represents; feed pattern (Ludwig 3rd); JPO; pattern angle 

for-loop; co- & x-pol (Ludwig 3rd); propagation phase; store result in local memory; barrier 

(coordinate work items); first-stage reduction (sum up all contributions from all work items in 

the work group); barrier; the one head work item in the work group copies the result from local 

to global memory; barrier; end pattern loop.  The final reduction kernel #2 program: identify 

which PO pattern sample this work item represents; reduce kernel #1’s work group contributions 

for the pattern sample from global memory, with mem_fence() between each global memory 

read; store the result in global memory.  Kernel #1 involves 262,144 work items divided into 

4096 work groups (64 work items each), with each work item allocated two float complex values 

of local data shared (LDS) memory, recycled for each pattern point, for a total of 1 kB LDS per 

work group (32 kB available). Kernel #2 involves 512 work items divided into 64 work groups 

(8 work items each). 
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6.4.3 Results and Conclusion 

Fig. 6-29 summarizes the results computing the far field PO patterns of a parabolic, symmetric 

single reflector antenna with a square aperture 240 wavelengths on a side. The f/Dside is 0.5, 

with linear polarization (parallel to aperture edge).  A cos
q
 feed pattern is used with q = 2.708 for  

12 dB feed taper at the middle of the sides.  Using GPU native math functions provides about 

20% speed increase of the PO kernel #1 at a cost of a very few hundredths of a dB accuracy.  

Using the native math the GPU is 130x faster (than single-threaded C/C++ CPU code compiled 

using MS Visual Studio with the –O2 compiler option to maximize runtime speed), with 

essentially identical results. The GPU reduction spends about 40% of the GPU compute time. 

Using the GPU’s native math and the manufacturer’s over-clocking utility to set the GPU core 

clock to 1 GHz makes the GPU 170x faster than the CPU, in which case the GPU’s (compute 

time) (clock rate) product is 370x smaller than the CPU’s. The significant speed advantage of the 

GPU can significantly reduce the run time of applications such as the optimization of reflector 

systems, which repeatedly calculate many patterns. 
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Fig. 6-29.  CPU & GPU (open squares) PO co- and cross-pol far field 45 deg phi cuts (between E & H planes, along 

aperture diagonal) of parabolic reflector with square aperture 240 λ on a side.  CPU single-threaded compute time 7.9 sec 

with 128 pattern points and 0.47 λ integration patch size.  GPU compute time 61 ms using GPU native math functions or 

77 ms without.  The feed pattern is cosq with q = 2.708 for -12 dB feed taper at center of aperture side edge. 

 

6.5 CONCLUSION 

The method of physical optics, with its reference single-threaded compute speed, is compared to 

several method of numerical acceleration.  The Gaussian beam method employs decomposition 

of the feed pattern by an angular array of Gaussian beams (paraxial solutions of Maxwell’s 

equations) and a closed-form asymptotic evaluation of the contribution to the overall physical 
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optics integral by each beam.  The improved Levin method utilizes Chebyshev-Lobatto nodes 

and the Chebyshev differential matrix, along with the truncated singular value decomposition 

least squares method to provide fast numerical solution of matrix equations that significantly 

accelerate the computational speed — by up to three orders of magnitude with integration patch 

size of 240 wavelengths on a side — over pseudo-rectangular patches of single-threaded physical 

optics integral.  The new OpenCL language harnesses the compute power of graphics processors 

to calculate the very same equations as the brute force physical optics method, except that when 

ported to OpenCL these same equations run hundreds of times faster on a graphics processor 

than the reference speed of single-threaded physical optics.  A summary comparison of the 

speeds of these methods is presented in Table 6-2. 

Table 6-2.  Relative speed comparison of several methods for computing physical optics integral radiation patterns with 

1000 point phi cut covering the main beam and first several sidelobes. 

METHOD APERTURE 

DIAMETER 240 λ 

APERTURE 

DIAMETER 2400 λ 

ACCOUNTS FOR 

REFLECTOR DEPTH? 

COMPUTATIONAL 

MEMORY DEMAND 

Brute Force (λ / 10) 1 1 YES Few MB 

Gaussian Beam (N = 3) 6e1 6e3 YES Few MB 

Levin + Li (N = 8) 2e3 2e5 YES Few MB 

BF OpenCL GPU 1e2 1e2 – 1e3 YES 100MB–10GB 

FFT2D (λ / 10, CPU) 3e3 2e3 NO 100MB–10GB 

Three-Parameter Distrib. 7e6 7e8 NO Few MB 
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CHAPTER 7 SYSTEM-LEVEL 
CHARACTERIZATION 

At the system level there are particular performance characteristics that can significantly affect a 

reflector antenna’s performance in a given application, which must be considered and evaluated.    

Two such characteristics are squint of a circularly polarization beam and the ratio of receive gain 

to system noise-temperature (G/T).  Any squint between the complementary circularly polarized 

(CP) beams (left-handed LCP and right-handed RCP) causes beam separation that, if 

unaccounted for, can cause unexpected signal loss in one beam when tracking the other.  The 

G/T of a receiving antenna is basically the bottom-line metric of the antenna’s reception 

capability:  It’s a key factor included in a communication system’s link budget.  The higher the 

G/T is the higher the quality of communications, since high gain and low system noise-

temperature promote better reception quality.  System noise-temperature is primarily determined 

by a low-noise amplifier that is often integrated with the reflector’s feed horn. 

1.1 CP SQUINT 

Squint of circularly polarized (CP) beams is a characteristic of an offset reflector antenna system, 

where the squint occurs in the plane perpendicular to the offset plane.  Offset reflectors have the 

advantage of having no aperture blockage – the feed is offset out of the aperture – but have the 

side effect of beam squint.  Squint is only associated with circular, and not linear, polarization.  
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The CP squint plane is perpendicular to the offset plane.  The LCP and RCP beams squint in 

opposite directions (which match the directions of the eyes in a cross-eyed face looking in the 

direction of the reflector’s beams) in the squint plane. 

 
Fig. 7-1.  Squinted (exaggerated) CP beams from an offset reflector.  (Photo from www.ebay.com) 

A simple formula that accurately approximates the magnitude of the squint can provide a fast 

estimate of the effect to help accelerate the analysis of a reflector antenna’s characteristics.  The 

CP squint is caused by a natural tilting of the polarization vector across the aperture, which is 

naturally caused by the offset reflector geometry.  With CP a rotational tilt of the polarization is 

equivalent to either an advance or delay of the propagation phase, depending on the direction of 

the tilt: left or right.  If you were to be able to watch the RCP polarization vector as it illuminated 

the face of the reflector through its cycles, it would appear to rotate counter-clock-wise.  With 

the offset feed located below the reflector aperture, and looking at the reflector aperture from the 

far field, the offset reflector geometry naturally causes the polarization vector to tilt like a 

backslash \ on the left side of the aperture (effectively advancing the phase of the propagation 

wave) and to tilt like a forward slash / on the right side (effectively delaying the phase of the 

propagation wave on the right side).  These relationships cause the RCP beam to tilt to the left 

when viewed from behind the reflector (or to the right when viewed from the far field), because a 
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linear phase gradient across the aperture is equivalent to a beam squint.  These same 

relationships cause the LCP beam to tilt in the opposite direction.  The magnitude of the squint 

can be determined by analyzing the geometry of the polarization tilt across the reflector aperture. 

 
Fig. 7-2.  Polarization Tilting Across an Offset Reflector Aperture.  (The offset is vertical.) 

Rotational matrices provide a simple evaluation of the magnitude of the squint, starting with a 

reference vector in the polarization reference frame (using Ludwig’s 3
rd

 definition of polarization 

[87]).  A rotational matrix is first used to lay a reference polarization vector (unit y vector) from 

the feed down onto the offset reflector surface, with rotation angle 
S , as depicted in Fig 3.g.i-3.  

A second rotational matrix is then used to translate the prior resulting vector into the general 

feedhorn reference frame, with rotation angle  .  A third rotational matrix, with rotation angle 

0 , then translates the prior result into the main reflector reference frame (with its z-axis parallel 

to the axis of the parent parabola of the offset reflector).  The final result is the Ludwig (3
rd

) 

polarization vector q, as viewed from the far field. 

 
Fig. 7-3.  Geometric diagrams for squint calculations. 
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The squint angle, assumed small, is then derived through a small-angle approximation of the 

vector q. 
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This simple equation can be used to quickly and accurately estimate the magnitude of the CP 

squint from an offset reflector system. 

7.1 G/T 

Antenna gain-to-system-noise-temperature ratio (G/T) is a key figure of merit in the 

characterization of an antenna’s reception performance.  The most practical method of measuring 

G/T involves the use of a distant signal source of known signal strength.  The Sun is a very 
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distant and strong signal source which has been studied by many organizations to evaluate its 

signal strength in different frequency bands.  Here we evaluate the method, review several 

published solar flux models, and identify which appears to be the most accurate of those models.  

G is the antenna gain in decibels, referenced to isotropic gain, and T is the equivalent noise 

temperature of the receiving system in Kelvin, all at the same receive frequency and referenced 

to the same point in the antenna system.   

The basic relationship involved in measuring an antenna’s G/T using the Sun equates 

Boltzmann’s law with the effective aperture size of the antenna, Aeff, and the solar flux density, 

S.  Solar radio emission is un-polarized and so includes both polarizations (polarization is always 

divided into a complementary pair, such as horizontal/vertical or RCP/LCP):  Thus an additional 

factor of two is included in Boltzmann’s relation involving the Sun’s effective radio noise 

temperature. 

 Sun(2T ) SAeffk    (7.7) 

The Friis transmission formula relates the effective antenna aperture size to the gain, G, as a 

function of wavelength.  The solar G/T measurement involves taking the ratio of noise power 

detected by the antenna receive system (including its low-noise amplifier, or LNA) with the 

antenna pointed at the Sun, then pointed away from the Sun (at “cold sky”), and then comparing 

the two values.  The detected noise power in latter direction (cold sky, pointed away from the 

Sun) is defined as the system noise power level.  This measurement is referred to as a “Y factor.”  
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Two correction factors are introduced to improve the accuracy of the measurement. The intent 

here is to measure the peak G/T, at the peak of the antenna’s main beam, which has a finite 

beamwidth.  Since the Sun is not a point source, and the Sun’s radio signal is received over a 

finite portion of the antenna’s beam pattern, a correction factor, KHPBW, is introduced to account 

for the antenna’s half-power beamwidth in relation to the Sun’s apparent radio diameter [140].  

The Sun’s apparent radio diameter is a function of frequency, and this is also accounted for [141] 

in the determination of the KHPBW  correction factor.  The solar flux level varies day by day and 

the high-noon flux value is reported by a number of stations distributed around the world (e.g., 

National Oceanic and Atmospheric Association).  An additional correction factor, KATMOS, is 

included to account for the local atmospheric attenuation, which is a function of both the local 

weather and also the elevation angle of the Sun at the particular hour at which the G/T 

measurement is taken.  The atmospheric attenuation affects the G/T measurement by absorbing a 

portion of the solar radio flux.  An accurate model of the atmospheric attenuation up to 60 GHz 

is documented by equations found in ITU-R P.676 (Attenuation by Atmospheric Gases), P.618 

(Propagation data and prediction methods required for the design of Earth-space 

telecommunication systems) and P.453 (The radio refractive index: its formula and refractivity 

data).  ITU-R stands for the International Telecommunication Union (ITU), radio 

communications sector.   
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All of the factors discussed in the preceding few paragraphs combine to produce the following 

equation used to measure an antenna’s G/T ratio using the Sun: 

  HPBW ATMOS
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T
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The solar radio emission spectrum has a characteristic shape as a function of frequency.  At high 

frequencies (far above 10 GHz) the solar spectrum adheres closely to the Planck blackbody 

radiation model and varies little throughout the sunspot cycle.  At frequencies below 10 GHz the 

solar emission spectrum exceeds the blackbody model, as shown in the figure below, and there is 

notably strong emission band near 2 GHz during the active period.  The Sun’s radio emission 

spectrum changes substantially at frequencies below 10 GHz as it passes through the active and 

quiet periods of its eleven year sunspot cycle.  Some notable models of the solar emission 

spectrum [142] fail to satisfy the high frequency boundary condition of convergence with the 

Planck blackbody model.  The Daywitt model [141] under/over estimates the solar spectrum for 

frequencies below/above 5 GHz.  Among published solar spectrum models [141]–[143], the 

emission flux of the quiet Sun is represented most accurately by the Kennewell model [143]. 

 



171 

 
Fig. 7-4.  Solar Radio Emission Spectrum: Active and Quiet Phases. 

 
Fig. 7-5.  Historical record of the solar sunspot cycle. 

 
Fig. 7-6.  Kennewell Model Compared to NOAA Data of Quiet Sun Phase. 
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Fig. 7-7.  Comparison of Several Models of Solar Spectrum: [Kennewell, Daywitt, Linsky (JPL)] with Typical Data. 

 
Fig. 7-8.  Reflector antennas system used to make the solar measurements.  (Photo cleared for public presentation by L-3 

Communications [144]) 
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Table 7-1.  UCLA/Datron 27 GHz Lunar/Solar Flux Measurements. 

 

The columns in Table 7-1 indicating the elevation angles of the moon and sun at the times of the 

measurements show that the measurements were timed so those elevation angles were nearly 

identical during each measurement.  This was done to try to normalize out the effects of the 

atmospheric losses due to various weather conditions, and as can be seen by the second row of 

data the method worked rather well:  On March 25, 2011, the weather was overcast with drizzle, 

and the Y-factors measured with both the moon and the sun were correspondingly low, and yet 

the effectively measured solar flux level is comparable to the other measurements taken with 

clear weather.   

7.2 CONCLUSION 

In this chapter the system-level characteristics of the squint of a circularly polarized beam in an 

offset reflector configuration and the measurement of receive antenna system gain-to-system-

noise-temperature (G/T) ratio are discussed in a manner that helps make the characterization of 

such system more rapid.  A closed-form expression that can be quickly evaluated is derived by 

considering the polarization tilting across the aperture of an offset reflector system illuminated 

by a circularly polarized feed.  The results of a Ka-band solar flux study are presented that allows 
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for properly calibration of the solar flux over frequency in order to utilize measurements of the 

solar flux by an antenna under test (AUT) to quickly estimate the G/T ratio of the AUT.  The 

G/T ratio of a receive system is often considered the bottom-line measure of the quality of the 

receive antenna.  At 27 GHz the solar emission was calibrated by this study at a level of 1340 

SFU.  This measurement effectively extends the NOAA data with a natural curve, along both the 

Kennewell ASA and Daywitt quiet Sun spectral models, and projects convergence with the 

Planck blackbody radiation model, as would be expected. 
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CHAPTER 8 APPENDICES 

The appendices for the individual chapters are gathered altogether here. 

8.1 APERTURE FAR FIELD POLARIZATION (3.1) 

The following three theoretical (zero cross-polarization) aperture field scenarios address the field 

orientation in the far field for the aperture cases of magnetic field only, electric field only and 

balanced TEM with both electric and magnetic fields.  Koffman [86] pg 39 states that with 

(feedhorn) apertures larger than a few wavelengths the far field polarization is similar to that of a 

Huygens source, for which the   and   field components are related through tan :  That is 

shown to be the case for a balanced TEM aperture in case 3 below.  Thus Ludwig’s third 

definition of polarization [87] — that of a Huygens source — is applied to all apertures 

considered in this dissertation, feedhorn or reflector, since all apertures in consideration are 

larger than a few wavelengths with essentially balanced TEM electric and magnetic fields. 

1. If a zero cross-polarization planar aperture has purely y-directed
APH  field only 

 AP 0E  , then by the field equivalence principle [2] and using the vector potential [11] 

to determine the far fields, the orientation of 
FFE  is simply that of

AP AP
ˆH n  projected 

into the far field  ,   view plane.  And correspondingly, the orientation of 
FFH  is that 
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of 
FFr̂ E .  Furthermore, the ratio of the phi- to theta-components of 

FFE  in this 
APH  

case is 

 
FF

FF

sec tan
E

E





     (8.1) 

2. If a zero cross-polarization planar aperture has purely x-directed 
APE  field only 

 AP 0H  , then by the field equivalence principle and using the vector potential to 

determine the far fields, the orientation of 
FFH  is simply that of

AP APn̂ E  projected into 

the far field  ,   view plane.  And correspondingly, the orientation of FFE  is that of 

FF
ˆH r .  Furthermore, the ratio of the phi- to theta-components of FFE  in this 

APE  case 

is 

 cos tan
FF

FF

E

E





     (8.2) 

3. If a zero cross-polarization planar aperture has balanced TEM fields, 
AP AP /H E  , 

with E field x-directed, then by the field equivalence principle and using the vector 

potential to determine the far fields, the orientation of 
FFE  or

FFH  is not simply that of 

AP AP
ˆH n  or 

AP APn̂ E  projected into the far field  ,   view plane.  Furthermore, the 

ratio of the phi- to theta-components of FFE  is as given in (8.3).  Note that 

/ tanE E   , or / tanE E   , is effectively a definition of a Huygens source, 

which is what Ludwig’s third definition describes. 

 tan
FF

FF

E

E





    (8.3) 
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The above relationships are supported by the following arithmetic.  For cases 1 and 2 above the 

electric or magnetic aperture field can be respectively excluded in the following derivations to 

obtain the respective result for the given case. 

The electric far field is obtained with the following steps, according to Equations (6-101a) & (6-

102b) of [11], where Aff and Fff are respectively the far field magnetic and electric vector 

potentials. 

 ˆ ˆ ˆ( )FarField Aff Fff ff ffE E E j A r F            
 

  (8.4) 

  
exp( )

ˆexp ( ' ) '
4

ff

jkr
A J jk r r dS

r





    (8.5) 

  
exp( )

ˆexp ( ' ) '
4

ff

jkr
F M jk r r dS

r





    (8.6) 

 ˆ ˆ  and a aJ n H M n E       (8.7) 

  
exp( ) 1 ˆ ˆ ˆ ˆ( ) ( ) exp ( ' ) '

4
ff

jk jkr
E J r M jk r r dS

r


   

 

 
          

 
   (8.8) 

      
exp( ) ˆ ˆ ˆ ˆ ˆ ˆexp ( ' ) '

4

a a

ff

jk jkr
E n H r n E jk r r dS

r
  




             

      (8.9) 

Let ˆaE x Q , then ˆ ˆ ˆ   since   a Q
H y n z


  . 

    
exp( ) ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ exp ( ' ) '

4
x ff

jk jkr Q
E z y r z xQ jk r r dS

r
  

 

  
              

  
   (8.10) 

    
exp( ) ˆ ˆ ˆ ˆ ˆ ˆ( ) exp ( ' ) '

4
x ff

jk jkr
E x r y Q jk r r dS

r
 




        
     (8.11) 
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 ˆ ˆ ˆ ˆsin cos sin sin cosr x y z         (8.12) 

 ˆ ˆ ˆ ˆ( ) cos sin cosr y x z        (8.13) 

 ˆ ˆ ˆ ˆ ˆ( ) (1 cos ) sin cosx r y x z          (8.14) 

 ˆ ˆˆ ˆsin cos cos cos sinx r            (8.15) 

 ˆˆˆ cos sinz r       (8.16) 

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ( ) sin cos cos cos sin (1 cos ) cos sin sin cosx r y r r                       
   

 (8.17) 

    2ˆ ˆˆ ˆ ˆ ˆ( ) cos cos (1 cos ) sin cos sin (1 cos ) sin cosx r y r                     (8.18) 

Thus when ˆaE x Q ,  

 ˆ ˆˆ ˆ ˆ ˆ( ) (1 cos ) cos sin sin cosx r y r             
 

  (8.19) 

and so  
exp( ) ˆ ˆ ˆ(1 cos ) cos sin exp ( ' ) '

4
x ff

jk jkr
E Q jk r r dS

r
    




    
    . (8.20) 

Now let ˆaE y Q   , then ˆ ˆ ˆ   since   a Q
H x n z


   . 

    
exp( ) ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) exp ( ' ) '

4
y ff

jk jkr Q
E z x r z yQ jk r r dS

r
  

 

  
               

  
  (8.21) 

    
exp( ) ˆ ˆ ˆ ˆ ˆ ˆexp ( ' ) '

4
y ff

jk jkr
E y r x Q jk r r dS

r
 




       
     (8.22) 

 ˆ ˆˆ ˆsin sin cos sin cosy r            (8.23) 

 ˆ ˆˆ ˆ ˆ ˆ ˆ(1 cos ) sin sin (1 cos ) sin cosy r x y z               
 

  (8.24) 
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Thus when ˆaE y Q , 

  
exp( ) ˆ ˆ ˆ(1 cos ) sin cos exp ( ' ) '

4
y ff

jk jkr
E Q jk r r dS

r
    




    
     (8.25) 

In summary, when the aperture has balanced TEM with both electric and complementary 

magnetic field, 

  
ˆ ˆ ˆcos sin ;exp( )

ˆ(1 cos ) exp ( ' ) '
ˆ ˆ4 ˆsin cos ;

a

ff
a

E xQjk jkr
E Q jk r r dS

r E yQ

   


    

   
   

 
  . (8.26) 

The term in the curly brace on the right hand side represents the polarization of a Huygens 

source, for which Ludwig’s third definition of cross-polarization applies. 

8.2 THREE-PARAMETER CLOSED-FORM DERIVATIONS (3.1) 

This appendix presents the derivations of the closed form equations in Chapter 1.1.  Each cited 

equation below is given, followed by the defining equation, which is then worked into a 

mathematical form that is solved with reference to either a referenced table of integrals or a 

symbolic math software program. 

Derivation of (4.19), the generalized space factor integral equation: 

        
1

0
, 2 cos

0 or 1

n

nT abj n R t J ut tdt
n

         (8.27) 

From (4.17) and (4.18),    
1

1
0

,T I R t abt dt    , (8.28) 

where after substituting x   , 
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           
2

1
0

cos cos sin sin exp cosI nx n nx n jut x dx


              . (8.29) 

Using [88] (3.915.2), and noting that the term with sine is zero because it’s an odd function: 

    1 2 cosn

nI j n J ut      (8.30) 

Q.E.D. 

Derivation of (4.31), the space factor of the simplest difference pattern: 

 
 

 
       1 0 1 0norm

H H
cos

cos
D

D

J u u u J u
T j

Q u





  

  
 (8.31) 

From (4.19),   

          
1 1

norm

D 1 1
0 0

, 2 cosT j R t J ut tdt J ut tdt       . (8.32) 

[88] (6.561.1) provides 

(6.561.1):            
1
2

1
1 1

1 120
2 H Hv v v

v v v v vx J ax dx a v J a a a J a 

       , (8.33) 

thus              norm 3
D 1 0 1 02

, 2 cos H HT j J u u u J u
u


 

 
        

 
. (8.34) 

where  3
2

/ 2  .  Q.E.D. 

Derivation of (4.33), the 3PS radiation pattern space factor: 
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 

 
 

  

2 2

1
1norm

S 1
2 2

2
( ) 2 1

J uJ u
T u c c

u
I u









 

 






  



 (8.35) 

From (4.19), 

        
 

 
 

2

1 1
norm 2

S 0 0
0 0

1
2 2 (1 ) 1

I t
T R t J ut tdt c c t J ut tdt

I

 








 
 

     
 
 

   (8.36) 

Consider first the constant term, utilizing [88] (5.52.1): 

(5.52.1):    1 1

1

p p

p px Z x dx x Z x 

  (8.37) 

Thereby,  
 1

1

0
0

2 2
J u

c J ut tdt c
u

  (8.38) 

Let I2 symbolize the second term on the RHS of (8.36), utilizing [88] (6.683.2). 

 
 

 
     

1
2 2

2 0
0

2 1
1 1

c
I t J j t J ut tdt

J j











    (8.39) 

Then substitute 21 sint x  : 

 
 

 
   

/ 2
1

2 0
0

2 1
sin cos sin cos

c
I J j x J u x x xdx

J j














   (8.40) 

(6.683.2):    
 

 

2 2

1 2 1 1 2/2
1 1

1 2
10

2 2

1 2

sin cos sin cos

v u

v u
v u

v u
v u

z z J z z
J z x J z x x xdx

z z

  
 

 





  (8.41) 
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Thus 
 

 

   
 

 
 

   

2 2 2 2

1 1

2
1 1

2 2 2 2

22 1
1

j J u J uc
I c

J j
u I u

 

 

 




   

   

 

 

 
  

 

, (8.42) 

Q.E.D. 

Derivation of (4.35), the 3PS aperture power integral: 

  
 

 

   

 

2 2

1 1norm 2

apS 2

1
4 1 1

2 1

I c I
P c c c

I I

 

 

 

   

 
 

        
 (8.43) 

The aperture power integral according to (4.24) is 

  
2 1

2

apS S
0 0

,P Q t abtdtd


    , (8.44) 

where     
 

 

2

2

S

1
, 1 1

I t
Q t c c t

I

 









    . (8.45) 

Thus   
 

 

2
2

1
norm 2

apS
0

1
2 1 1

I t
P c c t tdt

I

 







 
 

    
 
 

 . (8.46) 

Let 
 

 

 

 

2

norm 2

apS 3 42

1 1
4

c c c
P c I I

J j J j  

 
   , (8.47) 

where   
1

2 2

3
0

1 1I J j t t tdt


    , (8.48) 

and   
1

2 2 2

4
0

2 1 1I J j t t tdt


    . (8.49) 

3I  is solved by change of variables 21x j t  to reduce it to the form of (8.37). 
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 

 
 11

3 2 0

1 j J j
I x J x dx

jj













   (8.50) 

For 
4I  let 

21x t   to put it into a form that Maple™ solves: 

  
   2 2

1
12

4
0 2 1

J j J j
I J j x x dx

 



 





 

  (8.51) 

Q.E.D. 

Derivation of (4.42), the 3PD radiation pattern space factor: 

            
 

  

2 2

2
norm

D 1 0 1 0 2
2 2

2 cos H H 1
2

u J u
T j c J u u u J u c

u
I u









 

 





 
 

        
 
 

(8.52) 

From (4.19),        
1

norm

D 1
0

, 2 cosT j R t J ut tdt       (8.53) 

where      
 

 

2

2

D

1
1 1

I t
R t c c t t

I

 








     (8.54) 

The first term on the RHS with the c coefficient was derived above starting with (8.31).  For the 

second term, define 

  
 

 
 

2

1
2

5 1
0

1
1

I t
I t t J ut tdt

I

 







 
 

  
 
 

 . (8.55) 

Let sint x : 
 

   
/ 2

2 1

5 1
0

1
sin cos sin cosI J u x J j x x xdx

j I











   (8.56) 
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Utilizing (8.41), 
 

   

2 2

2

5
2

2 2

u J u
I

I u









 

 










 (8.57) 

Q.E.D. 

Derivation of (4.44), 3PD matching sum pattern space factor: 

    
 

 
3/2norm

3/ 2

2
0 2 1

D

Ic
T c

I







   


  

   
  

 (8.58) 

From (4.25),        
2 1 1

norm

0 0 0

1 4
0 cosD DD

T R t t dtd R t tdt


 
 

       (8.59) 

    
 

 

2

1
2

0

14
1 1

I t
c c t t tdt

I

 





 

 
 

    
 
 

  (8.60) 

Let cost  :  
 

 
 

/ 2
norm 1 2

0

4 12
0 sin sin cos

D

cc
T J j d

J j








    
  




    (8.61) 

Using [88] (6.683.6) 

(6.683.6):         
/ 2 1 2 1 1

1
0

sin sin cos 2 1
u p p p

u p uJ a d p a J a


   
   

     (8.62) 

  
 

 
    

1
2

3/2norm 3
3/22

4 12
0 2

D

cc
T j J j

J j




 
  






   
 

 (8.63) 

Q.E.D. 
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Derivation of (4.45), the 3PD aperture power integral: 

 

   

 

 
 
 

 

 

     

2
3/ 2

3/ 2

2
2

2 3norm 1
apD 2 22

2 1 2 2

2 1

2 2

2 2, 1 / 2 ;

2 1,2 3, 1 ;
1

1

2 2 1 2 1 1

c c Ic

I

FI
P

c I

I

















 

 

   



   







 
 

 
 

    
  

      
    

    
     
  
  
  
    

 (8.64) 

The aperture power integral according to (4.24) is 

  
2 1

2

apD D
0 0

,P Q t abtdtd


    , (8.65) 

where        
 

 

2

2
1

, cos 1 1D

I t
Q t c c t t

I

 




 



 
 

      
 
 

. (8.66) 

Thus    
 

 

2
2

1
norm 2

apD
0

1
1 1

I t
P c c t t tdt

I

 







 
 

    
 
 

 . (8.67) 

Let 
 

 

 

 

22
norm

apD 6 72

1 1
2

2 2

c c cc
P I I

J j J j  

 
   , (8.68) 

where   
1

2 2 2

6
0

1 1I J j t t t dt


    , (8.69) 

and   
1

2 2 2 3

7
0

2 1 1I J j t t t dt


    . (8.70) 
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For 
6I  let 21x t   to yield a form that Maple ™ and Mathematica ™ will solve: 

  
 

 

1
3/21 2

6 3/20
1

2

J j
I J j x x x dx

j










   . (8.71) 

For I7 let 
21x t  :    

1 1
2 1 2

7 8 9
0 0

I x J j x dx x J j x dx I I 

       (8.72) 

From Maple™:  
   2 2

1
12

8
0 2 1

J j J j
I x J j x dx

 



 





 

  (8.73) 

Maple™: 
      

   

2 21
2 3 2

9 2 1 2

2 2, ; 2 1,2 3, 1 ;

2 1 1

j F
I





      

 

    


  
 (8.74) 

Q.E.D. 

Derivation of (4.49), the slope of the difference pattern: 

 
 

 
   

 

norm

D 2norm

2

1
2 cos

0 6

dT u c Ic
S j

udu I







 


  

     
   

 (8.75) 

Recalling (4.42): 

 
 

 
         

 
  

2 2
norm

2
D

1 0 1 0 2
2 2

H H 1
2 cos 2

u J uT u
c J u u u J u c

j u
I u









 

 





 
 

         
 

 (8.76) 

Equation (4.27) defines the slope: 
 norm

Dnorm

0

dT u
S

udu



 (8.77) 
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Using either Maple™, Mathematica™ or working out the arithmetic by hand, noting that 

 0
0

lim H / 2 /
x

x x 


  and    2

1
0

lim H / 2 / 3
x

x x 


 , yields the given result. 

8.3 CYLINDRICAL CORRUGATED HORN FIELDS (CHAPTER 5) 

This appendix presents the cylindrical waveguide field equations, along with the corresponding 

closed-form far fields and directivity, with reference given to Bessel identities that are presented 

in section 8.4. 

8.3.1 Cylindrical Waveguide Fields 

Fields within a cylindrical horn are modeled in cylindrical coordinates.  General expressions for 

cylindrical fields propagating in the positive z-axis direction in either left or right (L/R) 

rotational sense (LCP/RCP) are given below.  Phasor representation is used, including exp[jωt] 

time- and exp[–jkZz] axial-propagation phasors (the latter for the cylindrical fields inside the 

horn); although, the time- and axial-phasor(s) are not explicitly shown.  The radian temporal 

frequency is ω.  kz(z) is the axial wave number and γ(z) is the radial wave number, both for 

propagation within the cylindrical waveguide/horn structure at position z. 

The TEz fields are represented by an electrical vector potential, 
C F , only with z-axis 

component, as 

 L
C 0 R( ) exp[ ],  nZF F J jn     (8.78) 

where the left subscript, C, in 
C ZF

 
indicates that this vector potential is associated with the fields 

within the cylindrical horn, modeled in cylindrical coordinates.  The electric vector potential is 
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defined such that the electric flux, D E , is the negative curl of the electric vector potential.  

The SI units of F  in (8.78) are A·s/m.   

The TMz fields are represented by a magnetic vector potential, 
C A  , only with z-axis component, 

as  

 L
C 0 0 R

( ) exp[ ( )],   Z nA F J j n         (8.79) 

where the left subscript, C, in 
C ZA  

indicates that the vector potential is associated with the fields 

within the cylindrical horn, modeled in cylindrical coordinates.  The magnetic vector potential is 

defined such that the magnetic flux, B H , is the curl of the magnetic vector potential.  The 

SI units of A  in (8.79) are V·s/m.  The   parameter determines the field mode: 

 

0, TE;

, TM;

1, HE;

1 EH.





  



  (8.80) 

The fields corresponding to the electric and magnetic vector potentials are determined, in general 

for any coordinate system by (8.81)–(8.84), where the left subscript, C,
 
indicates that the vector 

potential is associated with the fields within the cylindrical horn, modeled in cylindrical 

coordinates.   

 ( 1 / ) F;CE   
F

  (8.81) 

 ( / ) ( F);C CH j F j      
F

  (8.82) 

 ( / ) ( A);C CE j A j      
A

  (8.83) 



189 

 (1 / ) A .CH  
A

  (8.84) 

The individual cylindrical field components are presented below derived from the vector 

potentials above. 

 

L
R

0

  

    ( / ) ( ) exp[ ]

   ( / ) [ ( )] exp[ ( )]

F A

n

z n

E E E

jn J jn

k J j n

  



  

    


 

   

   

  (8.85) 

 

1

0

0

( ) exp[ ( )]

exp[ ( )]

  + ( )
1

exp[ ]

z
n

z

n

k
E J j n

k
j n

n
J

j jn




  

 

 
 









 
    

 

 
  

 
  
    
  

  (8.86) 

 

 

L
R

0

  

     ( / ) [ ( )] exp[ ]

   / ( / ) ( ) exp[ ( )]

F A

z n

n

H H H

k J jn

j n J j n

  


  

     





 

  

   

  (8.87) 

 

1

0

( ) exp[ ]

exp[ ( )]

  + ( )

exp[ ]

z

n

n

z

k
J jn

j n
n

J
k

jn

H

j




 




 










  


 



 
 
 

 
 
 
 
 
 

  (8.88) 

 

 

L
R

0

  

    (1/ ) [ ( )] exp[ ]

   ( / ) ( / ) ( ) exp[ ( )]

F A

n

z n

E E E

J jn

j n k J j n

  


  

     




 

 

    

  (8.89) 
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1

0

( ) exp[ ]

exp[ ( )]

  ( )
1

exp[ ]

n

z

n

E J jn

k
j j n

n
J

jn




 



 
 









 
  
 

 
   
 
 
  
 

  (8.90) 

  

L
R

0

  

     ( / ) ( / ) ( ) exp[ ]

   ( / ) [ ( )] exp[ ( )]

F A

z n

n

H H H

j n k J jn

J j n

  



   

    


 

   

   

  (8.91) 

 

 

0
1

0

( ) exp[ ( )]

exp[ ( )]

  ( )

exp[ ]

n

n

z

H J j n

j n
n

J
k

j jn



 
  




 











 
    

 

 
  

 
 
   
 

  (8.92) 

 

L
R

2

0 n2

0

  

J ( ) exp[ ( )]

Z ZAE E

j j n


    




    
  (8.93) 

 

L
R

2

n2

0

  

J ( ) exp[ ]

Z ZFH H

j jn


  




  
  (8.94) 

8.3.2 HE mode Far fields and Directivity 

In this section closed form equations for the HE balanced hybrid mode far fields in spherical 

coordinates, ( , , )r   , are derived for the cylindrical feedhorn.  (The difference between these far 

field equations and those presented in section 5.3.3 are that in this section the assumption is 

specifically made that the aperture fields represent balanced HE modes, for which with circular 
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polarization the H and E fields are related as given in (8.102) — in section 5.3.3 the fields are not 

in general balanced but may represent any combination of TE or TM modes).  Far field vector 

potentials A  and F  are defined and then the far fields are determined from the far field vector 

potentials.  Apostrophes are given to the arguments associated with the source fields within the 

horn aperture, to distinguish them from the arguments associated with the location of the point at 

which the far fields are to be evaluated.  The aperture currents, M  and J , equivalent to the horn 

aperture fields, are assigned components in cylindrical coordinates, and the far field integrals, L  

and N , assigned components in spherical coordinates. 

 

0

in spherical far - field

( , ') ( ) '

( , ') ( ) '

4

aperture

aperture

j r

G r r J r dvA

F G r r M r dv

Ne

r L









 



 
   

   
    

  
    
   





 

  (8.95) 

    0 ap
ˆˆ ˆ ˆexp( ' ) ;  nN J J r r j r r ds J H         (8.96) 

    0 ap
ˆˆ ˆ ˆexp( ' ) ;  nL M M r r j r r ds M E          (8.97) 

 

2

0

,

E A Aj
j

H F F

A
j

F








     
         

    

 
   

 

A

F

         

  (8.98) 

since in the far field limit what becomes effectively a plane wave has essentially zero divergence.   

Thus 
0

Far-field

Far-field

.
4

j rE Ne
j

H r L




 

     
      

      

A

F

  (8.99) 
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Vector summation of the E field directly due to N  along with that corresponding to the free-

space H field due to L  yields the electric far fields as 

  0
   Far-Field 0 0

exp( )
E N L

4

j r
j

r
  


 




    , (8.100) 

and  0
   Far-Field 0 0

exp( )
E N L .

4

j r
j

r
  


 




     (8.101) 

For balanced hybrid mode we have 

 L
0 R

j ,   E H    (8.102) 

Thus   L
0 R

/ ,   J j M    (8.103) 

and   L
0 R

/ .  N j L    (8.104) 

The effect of an extended PEC flange (or ground plane) about the aperture would be estimated 

using two times L  and zero N  (since the PEC causes 0J  , by the field equivalence principle 

and imaging theory), and the effect of an extended PMC flange using two times N  and zero L  

(since the PMC causes 0M  ).  By involving both N  and L  an average between the two types 

of flanges is obtained, which can be considered an approximation of an absence of any flange 

about the aperture.  

The equivalent magnetic current at the exit aperture of the horn for balanced hybrid mode is 

given by  

 ap
ˆ ˆ ˆn E E  .M E            (8.105) 
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 L
1 RM E ( )exp[ ] nJ jn 


 

         (8.106) 

 
L

1 2 R

M E

      ( )exp[ ( )] nJ j n

 


 



 



 

   
  (8.107) 

 ˆ ˆr ' x cos siny          (8.108) 

 ˆ ˆ ˆ ˆsin cos sin sin cosr x y z         (8.109) 

Consider L  : 

2

0
0 0

ˆL [ ]exp[ sin cos( )]

                 

b

M j

d d




     
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   

  

    (8.110) 
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0
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b
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d d




     

  

   

  

    (8.111) 

 ˆ ˆ cos cos( )          (8.112) 

 ˆ ˆ cos sin( )          (8.113) 

 ˆ ˆ sin( )          (8.114) 

 ˆ ˆ cos( )         (8.115) 

For LCP: 
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 
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 
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    (8.116) 
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  
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  (8.117) 
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  (8.118) 

 
 
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1 0

L

R
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n
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

     


  

     


  (8.119) 

For HE11 LCP: 

0 0 0
0

           

cosL exp[ ]

( )2 ( sin )
b

j

J J d

 





      



    

  (8.120) 
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  (8.121) 

Use the Lommel integral formula (8.253). 
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  (8.122) 
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  (8.123) 
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With balanced HE mode the E and H fields have identical forms but with one rotated (90 / n) deg 

in φ from the other, thus 

   L
0 R

/ . N j L    (8.124) 

The HE11 far fields for the uniform-phase flat circular horn aperture are thereby as follows. 
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  (8.125) 
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  (8.126) 

For HE21 LCP: 
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  (8.127) 
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  (8.130) 

Use the Lommel integral formula (8.253). 
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  (8.131) 
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  (8.132) 

   L
0 R

/  N j L    (8.133) 

The HE21 far fields for the uniform-phase flat circular horn aperture are thereby as follows. 
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  (8.135) 
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The directivity of HE11, HE21 or any mode, is defined as the ratio of the total power on a sphere 

(radius observation distance) uniformly illuminated with the field radiated in the chosen direction 

at the observation distance, to the total power in the transverse field integrated over either the 

aperture, as given by 

  
 

22

far-field

2
transverse

aperture
peak

aperture

4 ,
, ,

r E
D

E dA

  
  


  (8.136) 

or over the far field sphere (yielding the same result in either case).  Note that the aperture phase 

efficiency due to radial quadratic phase is about 85% for both the HE11 and HE21 modes with 

horn half-flare angle about 12 deg; whereas, with a 45 deg horn half-flare angle the phase 

efficiency drops to about 10%. 

The aperture taper efficiency, ηtaper, which for HE11 is about 69%, is defined as 

 

2

taper 2
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,
E dA

A E dA
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  (8.137) 

 
 

11HE

taper 2

11

4
.

b



   (8.138) 

8.3.3 Field Mode Matching at Waveguide Junction 

Fig. 8-1 depicts a general waveguide step junction, with the smaller end on the left side, used in 

this section to derive the field matching matrix equations (5.27) and (5.28), which are repeated 
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here in (8.139) and (8.140).  The axial propagation z-axis vector and the junction surface normal, 

n̂ , are both defined to point to the right in Fig. 8-1. 

 
Fig. 8-1  Cylindrical Waveguide Step Junction 

            
T

P A B R C D           (8.139) 

            
* *

L A B P D C           (8.140) 

Equations (8.139) and (8.140) above summarize the field matching relations and are derived in 

the following discussion below.  The asterisks symbolize complex conjugation.  The tangential 

fields on either side of the junction plane are given by the following modal expansions, in 

reference to (5.25) and (5.26), where 
SMN  modes are assigned to the smaller waveguide on the 

left side, and 
LGN  modes assigned to the larger right side.  A practical rule of thumb for 

computations is that a sufficient number of modes to include for each section is proportional to 

the respective radii. 
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E d c e
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  
LG

LG LG

1

N

t m m m

m

H d c h


    (8.144) 

The mode sets are assumed to be orthogonal as given in (8.145), which holds for the fields in the 

complete waveguide cross section on either side of the junction: S = LG or SM.   

  
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S S

S
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i j

i j
e h ndS

i j
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   (8.145) 

Let    
*

SM SM

SM

ˆ
i ji j

L e h ndS   ,  (8.146) 

and    
*

LG LG

LG

ˆ
i ji j

R e h ndS   .  (8.147) 

A cross-coupling integral is designated as P. 

    
*

SM LG

SM
ˆ

i ji j
P e h ndS     (8.148) 

Consider the electric field boundary equation (EFBC) on the larger side of the junction and the 

magnetic field boundary equation (MFBC) on the smaller side.   

EFBC: 
SM

SM

SM

0,            ;
ˆ

ˆ ,  .

LGn E
n E

 

 


  

 
  (8.149) 

MFBC:  SM

SM
ˆ ˆ ,  LGn H n H        (8.150) 

Dotting the left hand side of the EFBC with a the complex conjugate of a single magnetic field 

mode on the larger side, utilizing (8.153), and accounting for mode orthogonality we find 

       
*

LG LG

LG

ˆ
j j j jj

n E h dS c d R    .  (8.151) 
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Exercising the EFBC and since the transverse electric field at the junction is zero along the 

junction wall, 
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,  (8.152) 

where use is made of the vector identify 

      A B C C A B B C A        .  (8.153) 

Combining (8.151), (8.152) and (8.148): 

       
SM

1

N

n n j jn j jj
n

a b P R c d


   , (8.154) 

which is represented in matrix form, with both sides having matrix size 
LG 1N   , by 

            
T

P A B R C D           (8.155) 

Dotting the left hand side of the MFBC with a single electric field mode on the smaller side, 

accounting for mode orthogonality, and referring to (5.25), (5.26), (8.153), and (8.148) yields 
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Combining (8.146), the MFBC (8.150), and (8.153) yields 

            
** * *SM SM SM

SM SM
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n H e dS a b e h ndS a b L           .  (8.157) 
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Thus        
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i i m mii i m
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or        
LG

* *

1

N

i i m mii i m
m

L a b P d c


   ,  (8.159) 

which is represented in matrix form, with both sides having matrix size 
SM 1N   , by 

            
* *

L A B P D C         .  (8.160) 

See the note regarding the complex conjugations following (5.29).   

8.3.4 Junction S-Parameters  

In this section the s-parameters of the waveguide junction, (5.34)–(5.37), are derived, with 

shorthand that excludes some of the matrix brackets.  First pseudo-s’-parameter are derived, 

which relate the in-going and out-going modal voltages on the two sides of the junction, and then 

from those the true S-parameters are derived by accounting the different wave impedances of 

each mode.  (Microwave S-parameters are defined to relate in- and out-going root power, and are 

not just ratio of voltages.) 

Isolating  B  in (8.155) provides 

  T-1B P R C D A   .  (8.161) 

Substituting (8.161) into (8.160) yields (8.162), where superscript “T-1” reads “inverse of the 

transpose,” 

     * * T-1P D C L A P R C D A       ,  (8.162) 
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or * * T-1 * * * T-12P L P R D L A P L P R C          ,  (8.163) 

or T * 1 * T T * 1 *2P L P R D P A P L P R C           .  (8.164) 

Since        21 22D s A s C   , (8.165) 

where the s’ are the pseudo– s-parameters that relate only the modal voltages between the ports, 

then 
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Furthermore, now isolating  D  in (8.155) provides 

  1 TD R P A B C   .  (8.168) 

Substituting (8.168) into (8.160) yields 

     * 1 T *P R P A B C C L A B       ,  (8.169) 
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Since        11 12B s A s C   , (8.171) 

then  
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and  
1
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12 2s L P R P P


     . (8.173) 

The pseudo-s’-parameters relate the in- and out-going modal voltages according to (8.174), 
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 

 

   
   

 

 
11 12

21 22

B As s

s sD C

     
    

        

; (8.174) 

although the pseudo-s’-parameters  s  do not in general have the properties of the conservation 

of power and reciprocity, stated in (8.175) and (8.176), where p is the output port and q the input 

(stimulus) port, which are defined properties of microwave s-parameters for a lossless passive 

network such as the presumed perfectly electrically conductive (PEC) metallic corrugated 

feedhorn structure in consideration here.  The reason the pseudo-s’-parameters do not represent 

conservation of power or reciprocity is that the waveguide modes each have different wave 

impedances.  The true s-parameters, here symbolized as capital  S  and defined in (8.177), are 

obtained from  s  by first normalizing [145] the input columns (right matrix multiplication) by 

the square root of the self-coupling power integrals for the cylindrical waveguide at the input 

port (  
1

2


 matrices), and subsequently scaling the output rows (left matrix multiplication)  by the 

square root of the self-coupling power integrals (  
1
2  matrices) for the cylindrical waveguide at 

the output port.    

Given mode j stimulating port q: 
2

1pq ij
i p

s    . (8.175) 

Passive network reciprocity: pq pqs s . (8.176) 

 
1 1
2 2

out inpq p pq qS s


                , (8.177) 

where  
 1

2
in ,  ;

in
0,       .

i i

i j

i j

i j

 
 



  and  
 1

2
out ,  ;

out
0,       .

i i

i j

i j

i j

 
 



 (8.178) 

 in
 
and  out  each represent the self-coupling matrix for the respective input and output ports 

for the given s-parameter:  either  L  or  R . 
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Thereby the true microwave s-parameters for the junction, relating the in- and out-going root 

power between the ports, are summarized in (8.179)–(8.182). 

                      
1 1
2 2

1
* * 1 * * 1

11

T T
S L L P R P L P R P L


      

   
,  (8.179) 

                
1 1
2 2

1
* * 1 *

12 2
T

S L L P R P P R


  
 

,  (8.180) 

                
1 1
2 2

1
* 1 *

21 2
T T

S R R P L P P L


  
 

,  (8.181) 

and                      
1 1
2 2

1
* 1 * * 1 *

22

T T
S R R P L P R P L P R


       

   
.  (8.182) 

        
1 1
2 2 and 
i j i j i j i j

R R L L    (8.183) 

Note the absolute value operation on each matrix element of the self-coupling matrices in (8.183)

.   

Note that pseudo-s’-parameters,  s , represent the modal voltages, which are proportional to 

field strength for any given mode, but the true s-parameters
 
 S  are not; so to convert from  S  

to field strength,  S  must be left-matrix multiplied by  
1

2out


, where out represents the port at 

which the field strength values are desired, either  
1

2R


 or  
1

2L


.   

8.3.5 Mode Interaction Coupling Integrals 

In the following four sections the mode interaction coupling integral (8.184), for cylindrical 

waveguide is derived for the four combinations of fields in the junction plane:  transverse 

magnetic to transverse magnetic (TM-TM), transverse magnetic to transverse electric (TM-TE), 
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transverse electric to transverse magnetic (TE-TM) and transverse electric to transverse electric 

(TE-TE).  The junction model used here has the smaller diameter, a, on the left, larger, b, on the 

right, and the coupling integral is defined as the junction plane surface integral of the cross 

product of the electric field on the left and the magnetic field on the right side of the junction, 

dotted with the surface normal vector.  (If an actual junction subsequently in consideration has its 

larger waveguide on the left then the resulting s-parameters calculated with this junction model 

can be simply transposed.)  The field polarization in these equations is circular, where the upper 

sign in the “ ” and “ ” symbols each represents the polarity for left circular polarization, and 

the lower sign represents that for right circular polarization:  L

R
.  The phase shift between the 

two linearly polarized components that make up the circularly polarized wave is assumed to be 

90 deg, / 2  , to provide for zero circular cross polarization.  The assumption is made that 

the angular modal index is the same for the field modes on both sides of the junction, and the 

radial modal indices for the left and right sides are respectively p and q.  Cylindrical coordinates 

are used to represent the fields, with the cylindrical z-axis pointing to the right (into the larger 

waveguide).  Only the axial z-component of the field cross product is considered since the mode 

matching only involves the fields tangential to the junction plane.  The coupling integral involves 

the difference between the product of the rho component of the e-field on the smaller left side 

and the complex conjugate of the phi component of the h-field on the larger right side and the 

product of the phi component of the e-field on the smaller side and the complex conjugate of the 

rho component of the h-field on the larger right side.  0  is the free-space wave number, and 
zk  

is the propagation wave number in the axial direction for the given mode, where 
2 2 2

0 zk   .  
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Note that   is a function of angular modal index, the radial modal index, the field mode (TM, 

TE) and the cylindrical waveguide radius.   

      
* * *

SM ,LG SM LG SM  LG  SM  LG  

SM SM

ˆ
p q p q p q p qI z e h ds e h e h ds           (8.184) 

8.3.5.1 TM-TM Mode Coupling Integral 

 
Fig. 8-2  Junction with TM-TM modes: Coupling e field on left with h field on right. 

Consider the fields on both sides of the TM-TM junction for the mode coupling integral (8.184): 

electric field on left and magnetic on right.  From (8.86) and (8.90) for transverse magnetic mode 

(TM:    ), the rho and phi components of the electric field on the left side of the junction are 

given as follows.   

 L
SM 1 R

0 0

( )exp[ ( )] exp[ ( )] ( )z z
n n

k n k
E J j n j n J


     

    


   
         

   
, (8.185) 

or  
SM SM

SM SM L
SM 1 1 R

0

( ) ( ) exp[ ( )]
2
z m

n m n m

k
E J J j n


     

 
      , (8.186) 

utilizing the Bessel identity of (8.250), 

and   L
SM R

0

exp[ ( )] ( )z
n

kn
E j j n J   

  
     , (8.187) 

or    
SM

SM SM L
SM 1 1 R

0

( ) ( ) exp[ ( )]
2

z
n n

k
E j J J j n      

 
       . (8.188) 
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From (8.88) and (8.92) for transverse magnetic mode (TM:    ), the rho and phi component 

of the magnetic field on the right side of the junction are 

 0 L
LG R

( )exp[ ( )]
n

n
JH j j n 




 


    , (8.189) 

or  1 1

LG LG0 L
LG R

( ) ( ) exp[ ( )]
2

n nq qJ JH j j n    


 


 
    , (8.190) 

and 0 0 L
LG 1 R

( )exp[ ( )] exp[ ( )] ( )n n

n
H J j n j n J

  
     

  


 
       

 
, (8.191) 

or  LG LG0 L
LG 1 1 R

( ) ( ) exp[ ( )]
2

n nH J J j n

 
     


      . (8.192) 

Consider the two terms of the axial component of the cross product, where superscripts L and 

SM both refer to the left, smaller side of the junction and R and LG to the right, larger side. 

 

   

        

* *
SM LG SM LG

SM LG SM
SM LG SM LG

1 1 1 1

0

                 
2

z
n n n n

E H E H

k c
J J J J

   

 
       

 
   



 
  (8.193) 

  
*

SM ,LG SM LG

SM

ˆ
p q p qI z e h ds    (8.194) 

When L R   the integral is solved in closed form using the Lommel integral (8.253). 

 

       

   

   

   

R L R L R

1 2 2 1

2 2
L R

TM-TM L R L

L ,R R L R
0 1

2 2
L R

L R

L

n n n n

p q z

n n

a J a J a a J a J a

c
I k

a J a J a

     

 
 

    

  

   



 
 
  

  
 
 

   

  (8.195) 
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Equation (8.195) simplifies when 1n   to 

 

 
   

 
 

L LL L
2TM-TM R L

L ,R 12
L R

0

L R

1, 2 1/ 1

nz
p q n n

a J aa kc
I J a J a

n n

 
 

   

 





    
   

     


,  (8.196) 

and when 1n   it simplifies instead to  

 

   
        

L R L
TM-TM L L R R L R

L ,R 1 0 0 12 2
L R

0

L R

2
1,

z
p q

a kc
I J a J a J a J a

n

 
     

   

 

 
  

  



.  (8.197) 

When L R   the integral is solved using (8.257). 

    
2TM-TM L 2

L ,R 1

0L R

p q z n

c
I a k J a


 

 
 





  (8.198) 

Note that for TM mode    L R 0n nJ a J b   ,    L L

1 1n nJ a J a    , and 

   R R

1 1n nJ b J b    .  In the case of self-coupling (b=a) of different modes ([L] and [R] 

matrix off-diagonals) the TM-TM coupling integral is identically zero, as shown below.   

Consider the numerator of the term in large braces in (8.195), as given in (8.199), for the self-

coupling integrals.  The double-crossed terms are zero-valued (TM mode).  The single-crossed 

terms are zero-valued (TM mode) only in the case of the self-coupling integrals (for [L] and [R]) 

but not for the general case of the general junction mode coupling integrals for [P], as defined in 

(5.29). 
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        R L R L R

1 2 1

numerator

n n n na J a J a J a J a       

     L L R L

2 1n n na J a J a J a    

 
  

   R

1nJ a
 
  

  (8.199) 

 

   R L L

2n na J a J a   
 

 
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2 2

2 1

2 1

n

n n n

a
J a
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a
a J a J a J a

n





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

 

   
      

         

  (8.200) 

 
 

   
L R

L R

2
2 1

n n

a a
J a J a

n

 
  


  (8.201) 

 zero for self-coupling   (8.202) 

8.3.5.2 TM-TE Mode Coupling Integral 

 
Fig. 8-3  Junction with TM-TE modes: Coupling e field on left with h field on right. 

Consider the fields on both sides of the TM-TE junction for the mode coupling integral (8.184): 

electric field on left and magnetic on right.  From (8.186) and (8.188) for transverse magnetic 

mode (TM:    ), the rho and phi components of the electric field on the left side of the 

junction are given as follows.   

  
SM SM

SM SM L
SM 1 1 R

0

( ) ( ) exp[ ( )]
2
z m

n m n m

k
E J J j n


     

 
      , (8.203) 
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    
SM

SM SM L
SM 1 1 R

0

( ) ( ) exp[ ( )]
2

z
n n

k
E j J J j n      

 
       . (8.204) 

From (8.88) and (8.92) for transverse electric mode (TE: 0  ), the rho and phi component of 

the magnetic field on the right side of the junction are 

 
1

L
LG R

( )exp[ ] exp[ ] ( )z

n n

z n k
J jn jn J

k
H     

 






   
 

  
 

, (8.205) 

or    1 1

LG LG
LG LG L

LG R

0

( ) ( ) exp[ ]
2

n n

z J J
c k

H j j n    


 
 

 
    , (8.206) 

and  LG   exp[ ] ( )z
n

kn
H j jn J  

 

 
    

 
, (8.207) 

or    
LG LG

LG LG L
LG 1 1 R

0

( ) ( ) exp[ ]
2

z
n n

c k
H J J j n


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 
 


    . (8.208) 

Consider the two terms of the axial component of the cross product, where superscripts L and 

SM both refer to the left, smaller side of the junction and R and LG to the right, larger side. 
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 (8.209) 

  
*

SM ,LG SM LG

SM

ˆ
p q p qI z e h ds     (8.210) 

When L R   the integral is solved in closed form using the Lommel integral (8.253). 
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  (8.211) 

If L R   the integral is solved using (8.257), and again is identically zero. 

 
TM-TE

L ,R

L R

0p qI

 





  (8.212) 

Note that for TM mode  L 0nJ a  , and    L L

1 1n nJ a J a    .  For TE mode 

   R R

1 1n nJ b J b   .  For all mode combinations the TM-TE coupling integral is identically 

zero: TM mode in the smaller section does not couple at all to TE mode in the larger section.  

The proof of zero coupling, in general, is given here, starting with the numerator of (8.211), 

using    L L

1 1n nJ a J a    , where La  is a (TM) Bessel zero,
 

 L 0nJ a  , and also using 

the Bessel identity (8.250). 
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numerator

                   

n n n n

n n n

a J a J a J a J a

a J a J a J a

    

   

  

 

  
 

   R

1nJ a
 
  

  (8.213) 

 
      

   

R L R R

1 2

L L R

2 1

n n n

n n

a J a J a J a

a J a J a

   

  

 

 

  
 

 
 

  (8.214) 
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 

 
 

   

R L R

1 1R

L L R

2 1

2 1
n n

n n

n
a J a J a

a

a J a J a

  


  

 

 

  
   

   

 
 

  (8.215) 

          L R L L R

1 1 2 12 1 n n n nn J a J a a J a J a            (8.216) 

      L L

22 1 n nn J a J a   
 

     
L

R L L R

1 2 1
2 1

n n n

a
J a a J a J a

n


     

          

  (8.217) 

        L L R L L R

2 1 2 1n n n na J a J a a J a J a            (8.218) 

 numerator 0;  Q.E.D.   (8.219) 

8.3.5.3 TE-TM Mode Coupling Integral 

 
Fig. 8-4  Junction with TE-TM modes: Coupling e field on left with h field on right. 

Consider the fields on both sides of the TE-TM junction for the mode coupling integral (8.184): 

electric field on left and magnetic on right.  From (8.86) and (8.90) for transverse electric mode 

(TE: 0  ), the rho and phi components of the electric field on the left side of the junction are 

given as follows.   

   L
SM R

1
exp[ ] ( )n

n
E j jn J  

 

 
    

 
, (8.220) 

or    
SM

SM SM L
SM 1 1 R

( ) ( ) exp[ ]
2

n nE J J j n


     


 


    , (8.221) 
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utilizing the Bessel identity of (8.250), 

and L
SM 1 R

1
( )exp[ ] exp[ ] ( )n n

n
E J jn jn J


   

  


   
       
   

, (8.222) 

or      
SM

SM SM L
SM 1 1 R

( ) ( ) exp[ ]
2

n nE j J J j n


     


       . (8.223) 

From (8.190) and (8.192) the transverse magnetic mode (TM:    ) rho and phi component of 

the magnetic field on the right side of the junction are 

  1 1

LG LG0 L
LG R

( ) ( ) exp[ ( )]
2

n nq qJ JH j j n    


 


 
    , (8.224) 

and  
LG

LG LG0 L
LG 1 1 R

( ) ( ) exp[ ( )]
2

n nH J J j n

 
     


      . (8.225) 

Consider the two terms of the axial component of the cross product, where superscripts L and 

SM both refer to the left, smaller side of the junction and R and LG to the right, larger side. 

 

   

        

* *
SM LG SM LG

SM LG
SM LG SM LG

1 1 1 1                 
2

n n n n

E H E H

c
J J J J

   

 
       


   



 
  (8.226) 

  
*

SM ,LG SM LG

SM

ˆ
p q p qI z e h ds     (8.227) 

When L R   the integral is solved in closed form using the Lommel integral (8.253). 
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       

   

       

   

R L R L L R

1 2 2 1

2 2
L R

TE-TM L R

L ,R R L R L L R

1 1

2 2
L R

L R

n n n n

p q

n n n n

a J a J a a J a J a

c
I

a J a J a a J a J a

     

 
 

      

  

   

 

 
 
  

  
 

 
   

  (8.228) 

Equation (8.228) simplifies to  

 

   
     

L R L
TE-TM L R L R

L ,R 12 2 RL R

L R

2
p q n n n

c
I n J a a J a J a

   
   

  

 



 
  

 



  (8.229) 

If coincidentally L R   the integral is solved using (8.257).  Since the two sides have different 

modes (TE and TM) it would have to be a peculiar ratio of the two waveguide radii to cause the 

two gammas to become equal. 

         
2TE-TM

L ,R 2 2

L R

2
p q n n n

c
I a J a J a J a


   



 

  



  (8.230) 

Note that for TM mode  L 0nJ a  , and    L L

1 1n nJ a J a    .  For TE mode 

   L L

1 1n nJ a J a   .  In the case of self-coupling (b=a) of different modes ([L] and [R] 

matrix off-diagonals) the coupling integral is identically zero, which can be shown by 

manipulating (8.228) using the above noted relations in addition to Bessel identity (8.250), as 

given below.  
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Consider the numerator of the term in large braces in (8.228), as given in (8.231) for the self-

coupling integrals.  The single-crossed terms are zero-valued (TM mode) only in the case of the 

self-coupling integrals (for [L] and [R]) but not for the general case of the general junction mode 

coupling integrals for [P], as defined in (5.29). 

        

       

R L R L R

1 2 1

L L R L R

2 1 1

numerator

n n n n

n n n n

a J a J a J a J a

a J a J a J a J a

    

    

  

  

  
 

  
 

  (8.231) 

           R L R L R L L

1 2 1 2n n n n na J a J a a J a J a J a         
    

   
  (8.232) 

        
 R L R L R L

1 2 1 1 L

2 1
n n n n

n
a J a J a a J a J a

a
     


   

  
      

   

  (8.233) 

           R L R R R R L

1 2 2 1n n n n na J a J a a J a J a J a         
    

   
  (8.234) 

    R L R

1n na J a J a   0 for self-coupling   (8.235) 

8.3.5.4 TE-TE Mode Coupling Integral 

 
Fig. 8-5  Junction with TE-TE modes: Coupling e field on left with h field on right. 

Consider the fields on both sides of the TE-TE junction for the mode coupling integral (8.184): 

electric field on left and magnetic on right.  From (8.221) and (8.223) for transverse electric 
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mode (TE: 0  ), the rho and phi components of the electric field on the left side of the 

junction are given as follows.   

    
SM

SM SM L
SM 1 1 R

( ) ( ) exp[ ]
2

n nE J J j n


     


 


    , (8.236) 

      
SM

SM SM L
SM 1 1 R

( ) ( ) exp[ ]
2

n nE j J J j n


     


       . (8.237) 

From (8.206) and (8.208) for transverse magnetic mode (TE: 0  ), the rho and phi component 

of the magnetic field on the right side of the junction are 

    1 1

LG LG
LG LG L

LG R

0

( ) ( ) exp[ ]
2

n n

z J J
c k

H j j n    


 
 

 
    , (8.238) 

and    
LG LG

LG LG L
LG 1 1 R

0

( ) ( ) exp[ ]
2

z
n n

c k
H J J j n


     

 
 


    . (8.239) 

Consider the two terms of the axial component of the cross product, where superscripts L and 

SM both refer to the left, smaller side of the junction and R and LG to the right, larger side. 

 

   

 
        

* *
SM LG SM LG

*
SM LG LG

SM LG SM LG

1 1 1 1

0

                 
2

z

n n n n

E H E H

c k
J J J J

   

 
       

 
   



 

  (8.240) 

  
*

SM ,LG SM LG

SM

ˆ
p q p qI z e h ds     (8.241) 

When L R   the integral is solved in closed form using the Lommel integral (8.253). 
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       

  

   

 

 
 
  

  
 
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  (8.242) 

Equation (8.242) simplifies to 

 
 

 
      

*
R R

TE-TE L R R

L ,R 1 12
R L

0

L R

1 /

z

p q n n n

a kc
I J a J a J a


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   

 

 

 
  

 



. (8.243) 

When L R   the integral is solved using (8.257). 

 
 

          
2

*
TE-TE R 2

L ,R 1 2 2

0

L R

2
2

p q z n n n n

c a
I k J a J a J a J a

 
   

 

 

      



  (8.244) 

Note the complex conjugation of R

zk  in (8.243) and (8.244), and see the note regarding complex 

conjugation depending on field polarization following (5.29).  For TE mode 

   L L

1 1n nJ a J a   , and    R R

1 1n nJ b J b   .  In the case of self-coupling (b=a) of 

different modes ([L] or [R] matrix off-diagonals) the coupling integral is identically zero, which 

can be shown by manipulating (8.242) using the above relations in addition to Bessel identity 

(8.250). 



218 

Consider the numerator of the term in large braces in (8.242), as given in (8.245) for the self-

coupling integrals.   

 
       

       

R L R L R

1 2 1

L L R L R

2 1 1
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n n n n

n n n n

a J a J a J a J a
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  

  

  
 

  
 

  (8.245) 

 
      

      

R L R R

1 2

L R L L

1 2

n n n

n n n

a J a J a J a

a J a J a J a

   

   

 

 

  
 

  
 

 (8.246) 

    
 

   
 R L R L R L

1 1 1 1R L

2 1 2 1
n n n n

n n
a J a J a a J a J a

a a
     

 
   

       
       

         

 (8.247) 

 0 for self-coupling integrals  (8.248) 

8.4 BESSEL IDENTITIES (CHAPTER 8) 

  
 

 
nx

n

n

x J x
F x

J x



     (8.249) 

  1 1( ) ( ) ( )
2

xJ x J x J x        (8.250) 

 1[ ( )] ( ) ( )n n n
nJ J J


   





    (8.251) 

  an integer( ) ( 1) ( ); n

n n nJ x J x     (8.252) 

Lommel Integral formula [6], pg 337: 
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( ) ( )

x
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n nx

n nx

J x J x xdx
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J x J x

 

 

   







 
     


  (8.253) 

From [146] (11.3.20), (11.3.32) and (11.3.34) respectively, the following integrals are obtained. 

    0 1
0

z

t J t dt z J z   (8.254) 

      2 2

1 2
0

0

2 2
z

n n k

k

t J t dt n k J z


 



    (8.255) 

      
2

2 2 2

0 0 1
0 2

z z
t J t dt J z J z      (8.256) 

From [88] (5.54.2) the following integral is obtained. 

         
2

2 2

1 1
2

n n n n

t
Z at t dt Z at Z at Z at     (8.257) 

From [88] (6.561.1) the following integral is obtained. 

          1 1 0 0 1
0

H H
2

z

t J t dt z J z z J z z


      (8.258) 

Hv(z) is the Struve function, used to compute the aperture taper efficiency of the second angular 

mode, which is greater than that of the first angular mode. 
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  (8.259) 
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  (8.260) 



220 

The code used to calculate Bessel functions of the first kind, Jv(x), was adapted to C language 

from the FORTRAN code provided online by Netlib:  http://www.netlib.org/specfun/rjbesl, 

which provides a speed/precision tradeoff — using the NSIG and RTNSIG parameters — and 

applies to non-negative real order Bessel with non-negative real argument.  The following code 

for calculating the above Struve functions was adapted to C language from the special function 

code in FORTRAN found online at the following Internet hyperlink: 

http://jin.ece.illinois.edu/routines/routines.html.  It is relatively fast with sufficient accuracy. 

 

#include <math.h> 

/* 

C 

C       ==================================================== 

C       Purpose: This program computes Struve function  

C                H0(x) using subroutine STVH0 

C       Input :  x   --- Argument of H0(x) 

C       Output:  H0(x) 

C       Example: 

C                   x          H0(x) 

C                ---------------------- 

C                  0.0       .00000000 

C                  5.0      -.18521682 

C                 10.0       .11874368 

C                 15.0       .24772383 

C                 20.0       .09439370 

C                 25.0      -.10182519 

C       ==================================================== 

C 

*/ 

float struve_h0( float X ) { 

#define myabs(x) ( x < 0 ? (-x) : ( x ) ) 

#define SQ(x) ((x)*(x)) 

/* 

C       ============================================= 

C       Purpose: Compute Struve function H0(x) 

C       Input :  x   --- Argument of H0(x) ( x ò 0 ) 

C       Output:  SH0 --- H0(x) 

C       ============================================= 

*/ 

  int K, KM; 

        double PI=acos(-1.);//3.141592653589793; 

        double S=1.0; 

        double R=1.0; 

  double A0, T, T2, P0, Q0, TA0, BY0; 

   

  double dtemp; 

http://www.netlib.org/specfun/rjbesl
http://jin.ece.illinois.edu/routines/routines.html
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        if (X <= 20.0) { 

           A0=2.0*X / PI; 

           for( K=1; K<=60; K++ ) { 

              R=-R*X/(2.0*K+1.0)*X/(2.0*K+1.0); 

              S=S+R; 

              if ( myabs(R) < myabs(S)*1.0e-12 ) break; 

           } 

           return(A0*S); 

        } else { 

           KM=(0.5*(X+1.0)); 

           if (X>=50.0) KM=25; 

           for( K=1; K<=KM; K++ ) { 

        dtemp = ((2.0*K-1.0)/X); 

              R=-R*SQ(dtemp); 

              S=S+R; 

              if ( myabs(R) < myabs(S) * 1.0e-12 ) break; 

           } 

           T=4/X; 

           T2=SQ(T); 

           P0=((((-.37043e-5*T2+.173565e-4)*T2-.487613e-4) 

              *T2+.17343e-3)*T2-.1753062e-2)*T2+.3989422793; 

           Q0=T*(((((.32312e-5*T2-.142078e-4)*T2+.342468e-4)* 

              T2-.869791e-4)*T2+.4564324e-3)*T2-.0124669441); 

           TA0=X-0.25*PI; 

           BY0=2./sqrt(X)*(P0*sin(TA0)+Q0*cos(TA0)); 

           return(2./(PI*X)*S+BY0); 

        } 

} 

 

/* 

C 

C       ===================================================== 

C       Purpose: This program computes Struve function  

C                H1(x) using subroutine STVH1 

C       Input :  x   --- Argument of H1(x) 

C       Output:  H1(x) 

C       Example: 

C                   x          H1(x) 

C                ----------------------- 

C                  0.0       .00000000 

C                  5.0       .80781195 

C                 10.0       .89183249 

C                 15.0       .66048730 

C                 20.0       .47268818 

C                 25.0       .53880362 

C       ===================================================== 

C 

*/ 

float struve_h1( float X ) { 

#define myabs(x) ( x < 0 ? (-x) : ( x ) ) 

#define SQ(x) ((x)*(x)) 

/* 

C       ============================================= 

C       Purpose: Compute Struve function H1(x) 

C       Input :  x   --- Argument of H1(x) ( x ò 0 ) 
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C       Output:  SH1 --- H1(x) 

C       ============================================= 

*/ 

  int K, KM; 

        double PI=acos(-1.);//3.141592653589793; 

        double S; 

        double R; 

  double A0, T, T2, P1, Q1, TA1, BY1; 

   

  double dtemp; 

//        IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

        R=1.0; 

        if (X<=20.0) { 

           S=0.0; 

           A0=-2.0/PI; 

           for( K=1; K<=60; K++) { 

              R=-R*X*X/(4.0*K*K-1.0); 

              S=S+R; 

              if ( myabs(R) < myabs(S) * 1.0e-12) break; 

           } 

           return(A0*S); 

        } else { 

           S=1.0; 

           KM=0.5*X; 

           if (X>50.0) KM=25; 

           for( K=1; K<=KM; K++ ) { 

              R=-R*(4.0*K*K-1.0)/(X*X); 

              S=S+R; 

              if ( myabs(R) < myabs(S)*1.0e-12 ) break; 

           } 

           T=4.0/X; 

           T2=SQ(T); 

           P1=((((.42414e-5*T2-.20092e-4)*T2+.580759e-4)*T2 

              -.223203e-3)*T2+.29218256e-2)*T2+.3989422819; 

           Q1=T*(((((-.36594e-5*T2+.1622e-4)*T2-.398708e-4)* 

              T2+.1064741e-3)*T2-.63904e-3)*T2+.0374008364); 

           TA1=X-0.75*PI; 

           BY1=2.0/sqrt(X)*(P1*sin(TA1)+Q1*cos(TA1)); 

           return(2.0/PI*(1.0+S/(X*X))+BY1); 

        } 

} 

 

8.5 METHODS OF STEEPEST DECENT PATH AND OF STATIONARY PHASE 

(CHAPTER 1) 

Consider a function,  f z , of complex variable z, that is analytic over a given line integral 

contour domain and a line integral of that function of the following form: 
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    
SDP

expI F z f z dz    ,  (8.261) 

where   is large positive real.  Let there be a stationary (saddle) point at 
xz , and with a Taylor 

expansion of the argument of the exponential, let 

    
 
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s s

z z
f z f z f z


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Then    
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 ,  (8.263) 

and the saddle-point surface on which the steepest descent path (SDP) exists is defined by 

constant   Im f z .  Thus  

      
 

 
2

Re Re
2

s

s s

z z
f z f z f z


    (8.264) 

must be negative real along the SDP.  Let  

  expsz z s j  . (8.265) 

Consider the line passing through the saddle-point and parallel to the SDP at that point: 

    , expsz s z s j   ,  (8.266) 

where s is real, and   is the angle, with respect to the x-axis, of the direction that the SDP 

passes through the saddle-point.   
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j
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





  (8.267) 



224 

Then 
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  (8.268) 

Define   so that      exp 2 s sj f z f z    . (8.269) 

Note that   is chosen so  exp 2j   cancels out the phase of  sf z . 
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Since 
2exp ,    real > 0ax dx a

a
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
    , (8.272) 

finally,    
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where of the two candidate values for   the correct one defines the direction through the saddle-

point for the SDP contour integral — from the lower to the upper integration limit — with the 

shortest total contour path length.  This is analogous to Fermat’s principle for optics, which 

states that a stationary point is defined by minimum total optical path length. 

Similarly, the saddle-point surface for the Method of Stationary Phase (MSP) technique is 

defined by constant   Im f z ,  
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 (8.274) 

where 
MSP'  is chosen so that  
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     MSPRe exp 2 0sj f z   . (8.275) 

Consider the proper choice of 
SDP  when applying the method of SDP to the following integral: 
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  (8.280) 

  

According to Cauchy theory of complex variables, the above integral is independent of the 

contour path through the z-plane between the fixed integration limits, since the integrand is 

analytic.  Thus the same integral result is obtained whether or not the integration contour passes 

through any particular point; e.g., a stationary point.  If the integration contour does pass through 

the stationary point then the integral is independent of the direction the contour takes through 

that or any other point. 

Path independence no longer applies though, when the integral is approximated by the MSP or 

SDP asymptotic methods, because MSP and SDP only consider the contribution in the 
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immediate vicinity of the stationary point.  Applying the SDP method to the above example: the 

two candidate solutions are 0,SDP   , and the correct result, (8.279), is obtained by SDP, 

according to (8.274), only with 0  .  If the contour path were taken in the opposite direction, 

with 
SDP   , then the SDP result would be in error by a factor of 1 .  In order to utilize the 

incorrect 
SDP    angle the contour path would have to take a significant detour in the 

complex plane so as to go past the stationary point, then turn back around to pass backwards 

through the saddle point, then detour again to finally head in the direction of the upper limit of 

the integration: Such detours extend the total contour path length and produce the wrong integral 

result.  This is illustrated in Fig. 8-6. 

 
Fig. 8-6.  An analogy of Fermat’s principle, of shortest path length, determines the proper choice of the two candidate 

values of ψ for SDP or MSP, given the fixed integration end points. 

As an interesting example of the application of the SDP method to integrals involving a saddle 

point, consider the following two integrals, which upon initial inspection might seem to produce 

the same result, because the values of the respective integrands behave the same as the respective 

(straight-line) contour path is traveled; although, use of the SDP (or MSP) method produces 

distinctly different results for the two integrals. 
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Applying the SDP method to both integrals produces distinct results, which agree with 

Mathematica™ and Maple™. 

  1 SDP exp / 2I j    (8.283) 

  2 SDP exp / 4I j   (8.284) 

8.6 USE OF DIFFERENT MATH LIBRARIES (CHAPTER 5) 

This appendix summarizes the differences between using the different math libraries in different 

versions of the cylindrical mode matching (CYL_MM) computer program distinguished by their 

use of different math libraries but otherwise being functionally identical: custom hand-written 

math library, Netlib, ACML and MKL.  The different versions of CYL_MM each involve a main 

program that does not call any BLAS or LAPACK functions from the math library, supported by 

subroutines that do call routines from the math library.  All the versions except the original one 

using the hand-written library share the same main program.  (The one using the hand-written 

library was eventually abandoned and lost main-program compatibility somewhere during the 

evolution of the program development.)  The Microsoft Visual Studio™ (2008) integrated 

development environment (IDE) setup is the same and shared by all CYL_MM program 

versions, so the differences are mainly in the VS2008 project linker additional dependency 

settings that are specified in the particular VS2008 solution (IDE) file, and for the ACML cases 

also distinguished by some unique differences in the content of the subroutines that call BLAS 

and LAPACK routines. 
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8.6.1 Custom Hand-Written cmath.h Math Libraries 

 A) At top of subroutine file: 

 #include "cmmath.h" 

   

 B) Declarations at top of inside subroutine:  nothing in particular. 

   

 C) Example BLAS and LAPACK calls: 

  None:  Matrix A is inverted, then left multiplied with the b vector.   

8.6.2 Netlib - BLAS (e.g. xGEMM) & LAPACK (e.g. xGESV) 
 

VS2008 setup: Tools / Options / VC++ Directories /  

 Include: c:\Program Files\CLAPACK\INCLUDE 

 Libraries: c:\Program Files\CLAPACK\lib 

Project / Properties ... / Linker / input / additional dependencies 

 libf2c.lib    // My C calls are converted to FORTRAN calls that linker ties to math lib. 

 blas.lib 

 lapack.lib 

In source codes that call on Netlib: 
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 A) Declarations outside subroutine: 

 // for BLAS & CLAPACK 

 namespace lapack { 

   extern "C" { 

 #include "f2c.h" 

 #undef abs 

 #include "clapack.h" 

   } 

 } 

 

 B) Declarations at top of inside subroutine: 

 // vars for BLAS ZGEMM, matrix multiply 

 char z_transa, z_transb; 

 lapack::integer  z_m, z_n, z_k;  

 complex<double> alpha, beta; 

 lapack::doublecomplex * z_alpha = (lapack::doublecomplex *) &alpha, * 

z_beta = (lapack::doublecomplex *) &beta; 

 lapack::integer z_lda, z_ldb, z_ldc; 

 lapack::doublecomplex * z_a, * z_b, * z_c; 

 // vars unique for CLAPACK ZGESV, solve linear matrix eq 

 lapack::integer z_nrhs; 

 lapack::integer z_ipiv[maxArrayTotLenSqr]; 

 lapack::integer z_info; 

 

 C) Example BLAS and LAPACK calls 

 zgemm_( &z_transa, &z_transb, &z_m, &z_n, &z_k, z_alpha, z_a, &z_lda, 

z_b, &z_ldb, z_beta, z_c, &z_ldc ); 

 zgesv_( &z_n, &z_nrhs, z_a, &z_lda, z_ipiv, z_b, &z_ldb, &z_info ); 

8.6.3 ACML Single Threaded 

The ACML library is not directly compatible with the Netlib library as MKL is, so the 

subroutine that calls the ACML library routines (BLAS / LAPACK) has to be slightly revised 

from the Netlib standard convention to match either the ACML FORTRAN or C calling 

convention.  Here the choice was made to use the FORTRAN convention, to be pseudo 

compatible with the Netlib standard FORTRAN calling convention, as used in the prior case. 

VS2008 setup: Tools / Options / VC++ Directories /  
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 Include: c:\AMD\acml4.4.0\ifort32\include 

 Libraries: c:\AMD\acml4.4.0\ifort32\lib 

// Intel compiler files (ifconsol.lib, etc. required to link ACML lib): 

c:\Program Files\Intel\Composer XE 2013\compiler\lib\ia32   

Project / Properties ... / Linker / input / additional dependencies 

 libacml.lib 

 libacml_dll.lib 

In source codes that calls BLAS or LAPACK: 

 A) Declarations outside subroutine: 

 // AMD ACML BLAS/LAPACK excerpt from acml.h 

 extern "C" { 

 typedef struct 

 { 

   double real, imag; 

 } doublecomplex; 

 // all ACML routines called in subr must be declared here 

 extern void ZGEMM(char *transa, char *transb, int *m, int *n, int *k, 

doublecomplex *alpha, doublecomplex *a, int *lda, doublecomplex *b, int *ldb, 

doublecomplex *beta, doublecomplex *c, int *ldc, int transa_len, int 

transb_len); 

 extern void ZGESV(int *n, int *nrhs, doublecomplex *a, int *lda, int 

*ipiv, doublecomplex *b, int *ldb, int *info); 

 extern void ZGETRS(char *trans, int *n, int *nrhs, doublecomplex *a, int 

*lda, int *ipiv, doublecomplex *b, int *ldb, int *info, int trans_len); 

 //  From ACML Doc / acml.txt: 

 //   * The FORTRAN interface names are appended by an underscore (except 

 //     for the Windows 32-bit and 64-bit Microsoft C/Intel Fortran 

 //     version of ACML, where FORTRAN interface names are distinguished 

 //     from C by being upper case rather than lower case - this is the 

 //     default for the Intel Fortran compiler) 

 } 

    Some of the ACML Fortran calls for BLAS (ZGEMM & ZGETRS) have 

additional arguments  

 (,ione,ione or ,ione added respectively to end of ZGEMM/ZGETRS arg lists, 

where ione is defined as int ione=1, 
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 and is not of pointer type but value in the arg list, to specify length 

of char string inputs) which do not appear 

 in Netlib's LAPACK Fortran calls or documentation. 

 A2) Alternative to the above is: 

 Include the whole acml header file, putting it in its own namespace 

avoids conflict with <complex>: 

 namespace acml { 

   acml.h 

 } 

and replacing declarations using doublecomplex with acml::doublecomplex instead 

 B) Declarations at top of inside subroutine: 

 int ione = 1; // See note in (A) above. 

 // vars for BLAS ZGEMM, matrix multiply 

 char z_transa, z_transb; 

 int  z_m, z_n, z_k;  

 complex<double> alpha, beta; 

 doublecomplex * z_alpha = (doublecomplex *) &alpha, * z_beta = 

(doublecomplex *) &beta; 

 int z_lda, z_ldb, z_ldc; 

 doublecomplex * z_a, * z_b, * z_c; 

 // vars unique for CLAPACK ZGESV, solve linear matrix eq 

 int z_nrhs; 

 int z_ipiv[maxArrayTotLenSqr]; 

 int z_info; 

 

 C) Example BLAS and LAPACK calls 

 ZGEMM( &z_transa, &z_transb, &z_m, &z_n, &z_k, z_alpha, z_a, &z_lda, z_b, 

&z_ldb, z_beta, z_c, &z_ldc, ione, ione ); 

 ZGESV( &z_n, &z_nrhs, z_a, &z_lda, z_ipiv, z_b, &z_ldb, &z_info ); 

8.6.4 ACML Multi-Threaded (Parallel) 

VS2008 setup: Tools / Options / VC++ Directories /  

 Include: c:\AMD\acml4.4.0\ifort32_mp\lib 

 Libraries: c:\AMD\acml4.4.0\ifort32_mp\lib 

// Intel compiler files (ifconsol.lib, etc. required to link ACML lib): 
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c:\Program Files\Intel\Composer XE 2013\compiler\lib\ia32   

Project / Properties ... / Linker / input / additional dependencies 

 libacml_mp.lib 

 libacml_mp_dll.lib 

In source codes that call on BLAS or LAPACK: 

 A) Declarations outside subroutine: Same as for ACML single-threaded case. 

 B) Declarations at top of inside subroutine: Same as for ACML single-threaded case. 

 C) Example BLAS and LAPACK calls: Same as for ACML single-threaded case. 

See section 0 below regarding control of how many parallel threads to use. 

8.6.5 MKL Single Threaded 

The MKL library is directly compatible with the Netlib library, so no change is required to be 

made to the code, only to the Visual Studio solution file, to direct the linker to link the BLAS 

and LAPACK libraries from MKL instead of Netlib. 

 

VS2008 setup: Tools / Options / VC++ Directories /  

 Include: None: (MKL is fully integrated into Visual Studio.) 

 Libraries: None: (MKL is fully integrated into Visual Studio.) 
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Project / Properties ... / Linker / input / additional dependencies 

 libf2c.lib    // Just like my Netlib case,  my C calls are converted to FORTRAN calls that 

linker ties to math lib. 

 mkl_intel_c_dll.lib 

 mkl_sequential_dll.lib 

 mkl_core_dll.lib 

In source codes that call on BLAS or LAPACK: 

 A) Declarations outside subroutine: Same as for Netlib case. 

 B) Declarations at top of inside subroutine: Same as for Netlib case. 

 C) Example BLAS and LAPACK calls: Same as for Netlib case. 

   

 Note that nowhere in the code is there a #include "mkl.h," because -- for code 

compatibility with Netlib math lib – BLAS or LAPACK routines are called using the F2C 

convention, and the VS linker is directed to link to MKL-provided FORTRAN BLAS/LAPACK 

subroutines rather than Netlib’s. 
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8.6.6 MKL Multi-Threaded (Parallel) 

The MKL library is directly compatible with the Netlib library, so no change is required to be 

made to the code, only to the Visual Studio solution file, to direct the linker to link the BLAS 

and LAPACK libraries from MKL instead of Netlib. 

VS2008 setup: Tools / Options / VC++ Directories /  

 Include: None: (MKL is fully integrated into Visual Studio.) 

 Libraries: None: (MKL is fully integrated into Visual Studio.) 

Project / Properties ... / Linker / input / additional dependencies 

 libf2c.lib    // Just like my Netlib case,  my C calls are converted to FORTRAN calls that 

linker ties to math lib. 

 mkl_intel_c_dll.lib 

 mkl_intel_thread_dll.lib 

 mkl_core_dll.lib 

 libiomp5md.lib 

 

In source codes that call on BLAS or LAPACK: 

 A) Declarations outside subroutine: Same as for single thread. 
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 B) Declarations at top of inside subroutine: Same as for single thread. 

 C) Example BLAS and LAPACK calls: Same as for single thread. 

 Note that nowhere in the code is there a #include "mkl.h," because -- for code 

compatibility with Netlib math lib – BLAS or LAPACK routines are called using the F2C 

convention, and the VS linker is directed to link to MKL-provided FORTRAN BLAS/LAPACK 

subroutines rather than Netlib’s. 

8.6.7 Specifying the Number of Parallel OpenMP Threads to Use 
 

For the ACML or MKL parallel multi-threaded versions (that use OpenMP to multi-thread), 

there is ability to control the maximum number of threads that will be used on a system (up to 

the max available): 

ACML thread control:  To specify how many threads a code compiled with the ACML MP 

parallel library uses, set Environment Variable OMP_NUM_THREADS to the desired number 

of threads. 

MKL thread control:  To specify how many threads a code compiled with the MKL parallel 

library uses, set Environment Variable MKL_NUM_THREADS to the desired number of 

threads. 
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8.7 ARAM CYL-MM SOFTWARE USER MANUAL (CHAPTER 5) 

8.7.1 Input and output files 

The CYL_MM program provides cylindrical mode-matching analysis for an axially symmetric 

feedhorn of arbitrary geometry.  It receives its feedhorn geometry specification from an input file 

with the file name extension .aram1, and provides outputs in text and graphical windows (2D & 

3D) as well as an archival output text file with .txt file name extension.   The F1 key pops up a 

help menu that summarizes all the features available to the user.  The 3D graphics window will 

display the feedhorn along with any reflector system geometry specified by dual.dat1 and 

dual.dat2 DUAL program input files placed in the same directory where the .aram1 corrugated 

horn file resides.  (Exceptions are that the Jacobi-Bessel shaped surface and the array feeds are 

not yet implemented in the code for viewing.)  Thereby the CYL_MM 3D graphics window 

serves as a DUAL geometry 3D viewer for any single or dual reflector system of either 

Cassegrain or Gregorian geometry:  The CYL_MM corrugated horn is rendered in 3D along with 

the reflectors.  There is an input flag that directs the program to not produce any windows: This 

flag is intended for use in optimization runs, for which the results of the cylindrical mode 

matching analysis are desired from the program’s output .txt file as rapidly as possible, to 

minimize the optimization cycle time.  At the completion of the optimization the .aram1 file may 

be run by the CYL_MM program (with that input flag reset) to view the optimized geometry in 

3D. 

The CYL_MM program opens two windows:  a text and 2D window on top, and a separate 3D 

window below.  The far field pattern of the corrugated horn (geometry specified in the .aram1 
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file) is shown in 2D on the right side of the top CYL_MM window and is also output to the 

out.txt file that is generated by the program in the same directory where the .aram1 file is 

launched from. 

 
Fig. 8-7. Example display of DUAL reflector geometry with super quadratic main and subreflector apertures, (peculiarly 

stubby Cassegrain system for example only) along with the feedhorn.  3D graphics produced by the ARAM CYL_MM 

Windows TM software developed for this dissertation. 

   
Fig. 8-8.  Two views of the ARAM CYL_MM software’s display of the DUAL reflector geometry for the Cassegrain dual 

reflector example given in the ARAM DUAL reflector analysis software User Manual. 

The .aram1 input file name extension is intended to be the first of possibly a number of 

Windows™ registered file type extensions associated with perhaps a suite of programs to be 
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developed by the UCLA ARAM group in the future.  Examples are provided below of an input 

file and corresponding output file for the analysis, by the CYL_MM program, of a Ku band 

corrugated horn. 

1. Input file 

Header info line 1: Ku feed horn 

Header info line 2: 13.4-14.0 & 14.6-15.2 GHz 

Header info line 3: 

cm      dimensional units ("cm" or "m" or "in") 

13.7e9  center freq, Hz 

0.6e9   bandwidth, Hz 

1       angular mode index 

20       # radial modes 

1       excitation radial mode(add #RadialModes to any TM mode index) 

1       1= # radial modes a function of radius 

0.0     zero radius mode # factor 

1       exponent of mode # by radius function 

0       1=list evanescent s-params 

1       excitation port for field plots (1 or 2) 

10      max modes to plot 

90      deg far-field plot angular range  

40      dBp far-field plot range 

0       1= linear polarized far fields, 0= circular polarized 

0      X rotation (deg pitch) 

0       Y rotation (deg yaw) 

0       Z rotation (deg roll) 

0       translation in X 

0       translation in Y 

0       translation in Z 

0       eyeZ (camera location: positive is into the screen) If zero will be set 

to suitable value by progrma. 

0  1= Do not display any windows, and quit right after completing 

calculations and closing output file. 

1.143000000 5.334065000   [radius, length] of individual cylindrical sections 

2.231266063 0.431362055   that make up the feed horn's circularly symmetric 

1.369237585 0.484680063   geometry, starting from throat end of horn. 

2.379078291 0.432026747 

1.689551967 0.300178455 

2.549185548 0.359478097 

1.881546587 0.499689568 

2.665961572 0.468863812 

#   9.2         8.1       You can comment out lines by inserting the # charcter 

at the beginning of the line. 

1.983033046 0.309883861 

2.597460002 0.461565309 

2.10693065 0.398105751 

2.771475583 0.499814026 

2.177723683 0.473708024 

2.181959175 0.334563418 

2.760138067 0.378552181 

2.298577754 0.236324718 

#   9.2         8.1       You can comment out lines by inserting the # charcter 

at the beginning of the line. 

2.880992138 0.378552181 
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2.419431825 0.236324718 

3.001846209 0.378552181 

3.406116563 0.378552181 

3.14455625 4.236324718 

3.726970634 0.378552181 

3.265410321 0.236324718 

3.847824705 0.378552181 

3.386264392 0.236324718 

3.968678776 0.378552181 

3.507118463 0.236324718 

4.089532847 0.378552181 

3.627972534 0.236324718 

4.210386918 0.378552181 

3.748826605 0.236324718 

4.331240989 0.378552181 

3.869680676 0.236324718 

4.45209506 0.378552181 

3.990534747 0.236324718 

4.572949131 0.378552181 

4.111388818 0.236324718 

4.693803202 0.378552181 

4.232242889 0.236324718 

4.814657273 0.378552181 

4.35309696 0.236324718 

4.935511343 0.378552181 

4.473951031 0.236324718 

5.056365414 0.378552181 

4.594805102 0.236324718 

5.177219485 0.378552181 

4.715659173 0.236324718 

5.298073556 0.378552181 

4.836513244 0.236324718 

5.418927627 0.378552181 

4.957367314 0.236324718 

5.539781698 0.378552181 

5.078221385 0.236324718 

5.660635769 0.378552181 

5.199075456 0.236324718 

5.78148984 0.378552181 

5.319929527 0.236324718 

5.902343911 0.378552181 

5.440783598 0.236324718 

6.023197982 0.378552181 

5.561637669 0.236324718 

6.144052053 0.378552181 

5.68249174 0.236324718   A blank line (not commented out) starts a separate, 

optional section to specify the exterior horn surface: 

        A "blank" line is defined as any line that begins with "white space," 

which includes space or tab.           

1.5 0       [radius, axial location (wrt horn throat end)] 

1.5 4       These represent cardinal points that define the curve  

2.5 4       of the external body of the horn. 

3.5 7 

3.5 13 

6.5 28 

6.5 30.03003 

2. Example Output File (created by the CYL_MM program in response to the above file): 

Header info line 1: Ku feed horn 
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Header info line 2: 13.4-14.0 & 14.6-15.2 GHz 

Header info line 3: 

 

 1.37e+010 Hz center freq (13.7 GHz)  

 

 6e+008 Hz freq bandwidth (0.6 GHz)  

 

Angular mode index = 1 

# radial modes max = 20 

Excitation mode = TE 1,1 

modes_by_radius = 1 

zero_rad_mode_num_factor = 0 

mode_num_by_rad_func_pwr = 1 

list_evanescent_s_params = 0 

 

plotExcitePort = 1 

modes2plot = 10 

 

far-field angular range (deg) = 90 

far-field dBp range = 40 

Far Field polarization = 0 

Default worldRotX = 0 degrees pitch 

Default worldRotY = 0 degrees yaw 

Default worldRotZ = 0 degrees roll 

Default worldTransX = 0 

Default worldTransY = 0 

Default worldTransZ = 0 

Default eyeZ camera view point = 0 

Quit right after completing calculations flag = 0 

 

Internal horn cylindrical geometry: 

Sect   1: radius (cm)=        1.143, length (cm)=      5.33406 

Sect   2: radius (cm)=      2.23127, length (cm)=     0.431362 

Sect   3: radius (cm)=      1.36924, length (cm)=      0.48468 

Sect   4: radius (cm)=      2.37908, length (cm)=     0.432027 

Sect   5: radius (cm)=      1.68955, length (cm)=     0.300178 

Sect   6: radius (cm)=      2.54919, length (cm)=     0.359478 

Sect   7: radius (cm)=      1.88155, length (cm)=      0.49969 

Sect   8: radius (cm)=      2.66596, length (cm)=     0.468864 

Sect   9: radius (cm)=      1.98303, length (cm)=     0.309884 

Sect  10: radius (cm)=      2.59746, length (cm)=     0.461565 

Sect  11: radius (cm)=      2.10693, length (cm)=     0.398106 

Sect  12: radius (cm)=      2.77148, length (cm)=     0.499814 

Sect  13: radius (cm)=      2.17772, length (cm)=     0.473708 

Sect  14: radius (cm)=      2.18196, length (cm)=     0.334563 

Sect  15: radius (cm)=      2.76014, length (cm)=     0.378552 

Sect  16: radius (cm)=      2.29858, length (cm)=     0.236325 

Sect  17: radius (cm)=      2.88099, length (cm)=     0.378552 

Sect  18: radius (cm)=      2.41943, length (cm)=     0.236325 

Sect  19: radius (cm)=      3.00185, length (cm)=     0.378552 

Sect  20: radius (cm)=      3.40612, length (cm)=     0.378552 

Sect  21: radius (cm)=      3.14456, length (cm)=      4.23632 

Sect  22: radius (cm)=      3.72697, length (cm)=     0.378552 

Sect  23: radius (cm)=      3.26541, length (cm)=     0.236325 

Sect  24: radius (cm)=      3.84782, length (cm)=     0.378552 

Sect  25: radius (cm)=      3.38626, length (cm)=     0.236325 

Sect  26: radius (cm)=      3.96868, length (cm)=     0.378552 

Sect  27: radius (cm)=      3.50712, length (cm)=     0.236325 

Sect  28: radius (cm)=      4.08953, length (cm)=     0.378552 

Sect  29: radius (cm)=      3.62797, length (cm)=     0.236325 

Sect  30: radius (cm)=      4.21039, length (cm)=     0.378552 

Sect  31: radius (cm)=      3.74883, length (cm)=     0.236325 
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Sect  32: radius (cm)=      4.33124, length (cm)=     0.378552 

Sect  33: radius (cm)=      3.86968, length (cm)=     0.236325 

Sect  34: radius (cm)=       4.4521, length (cm)=     0.378552 

Sect  35: radius (cm)=      3.99053, length (cm)=     0.236325 

Sect  36: radius (cm)=      4.57295, length (cm)=     0.378552 

Sect  37: radius (cm)=      4.11139, length (cm)=     0.236325 

Sect  38: radius (cm)=       4.6938, length (cm)=     0.378552 

Sect  39: radius (cm)=      4.23224, length (cm)=     0.236325 

Sect  40: radius (cm)=      4.81466, length (cm)=     0.378552 

Sect  41: radius (cm)=       4.3531, length (cm)=     0.236325 

Sect  42: radius (cm)=      4.93551, length (cm)=     0.378552 

Sect  43: radius (cm)=      4.47395, length (cm)=     0.236325 

Sect  44: radius (cm)=      5.05637, length (cm)=     0.378552 

Sect  45: radius (cm)=      4.59481, length (cm)=     0.236325 

Sect  46: radius (cm)=      5.17722, length (cm)=     0.378552 

Sect  47: radius (cm)=      4.71566, length (cm)=     0.236325 

Sect  48: radius (cm)=      5.29807, length (cm)=     0.378552 

Sect  49: radius (cm)=      4.83651, length (cm)=     0.236325 

Sect  50: radius (cm)=      5.41893, length (cm)=     0.378552 

Sect  51: radius (cm)=      4.95737, length (cm)=     0.236325 

Sect  52: radius (cm)=      5.53978, length (cm)=     0.378552 

Sect  53: radius (cm)=      5.07822, length (cm)=     0.236325 

Sect  54: radius (cm)=      5.66064, length (cm)=     0.378552 

Sect  55: radius (cm)=      5.19908, length (cm)=     0.236325 

Sect  56: radius (cm)=      5.78149, length (cm)=     0.378552 

Sect  57: radius (cm)=      5.31993, length (cm)=     0.236325 

Sect  58: radius (cm)=      5.90234, length (cm)=     0.378552 

Sect  59: radius (cm)=      5.44078, length (cm)=     0.236325 

Sect  60: radius (cm)=       6.0232, length (cm)=     0.378552 

Sect  61: radius (cm)=      5.56164, length (cm)=     0.236325 

Sect  62: radius (cm)=      6.14405, length (cm)=     0.378552 

Sect  63: radius (cm)=      5.68249, length (cm)=     0.236325 

 

Horn exterior surface cardinal points. 

Point #   1: radius (cm)=          1.5, axial location (cm)=            0 

Point #   2: radius (cm)=          1.5, axial location (cm)=            4 

Point #   3: radius (cm)=          2.5, axial location (cm)=            4 

Point #   4: radius (cm)=          3.5, axial location (cm)=            7 

Point #   5: radius (cm)=          3.5, axial location (cm)=           13 

Point #   6: radius (cm)=          6.5, axial location (cm)=           28 

Point #   7: radius (cm)=          6.5, axial location (cm)=        30.03 

Header info line 1: Ku feed horn 

Header info line 2: 13.4-14.0 & 14.6-15.2 GHz 

Header info line 3: 

 

 1.37e+010 Hz center freq (13.7 GHz)  

 

 6e+008 Hz freq bandwidth (0.6 GHz)  

 

Angular mode index = 1 

# radial modes max = 20 

Excitation mode = TE 1,1 

modes_by_radius = 1 

zero_rad_mode_num_factor = 0 

mode_num_by_rad_func_pwr = 1 

list_evanescent_s_params = 0 

 

plotExcitePort = 1 

modes2plot = 10 

 

far-field angular range (deg) = 90 

far-field dBp range = 40 
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Far Field polarization = 0 

Default worldRotX = 0 degrees pitch 

Default worldRotY = 0 degrees yaw 

Default worldRotZ = 0 degrees roll 

Default worldTransX = 0 

Default worldTransY = 0 

Default worldTransZ = 0 

Default eyeZ camera view point = 0 

Quit right after completing calculations flag = 0 

 

Internal horn cylindrical geometry: 

Sect   1: radius (cm)=        1.143, length (cm)=      5.33406 

Sect   2: radius (cm)=      2.23127, length (cm)=     0.431362 

Sect   3: radius (cm)=      1.36924, length (cm)=      0.48468 

Sect   4: radius (cm)=      2.37908, length (cm)=     0.432027 

Sect   5: radius (cm)=      1.68955, length (cm)=     0.300178 

Sect   6: radius (cm)=      2.54919, length (cm)=     0.359478 

Sect   7: radius (cm)=      1.88155, length (cm)=      0.49969 

Sect   8: radius (cm)=      2.66596, length (cm)=     0.468864 

Sect   9: radius (cm)=      1.98303, length (cm)=     0.309884 

Sect  10: radius (cm)=      2.59746, length (cm)=     0.461565 

Sect  11: radius (cm)=      2.10693, length (cm)=     0.398106 

Sect  12: radius (cm)=      2.77148, length (cm)=     0.499814 

Sect  13: radius (cm)=      2.17772, length (cm)=     0.473708 

Sect  14: radius (cm)=      2.18196, length (cm)=     0.334563 

Sect  15: radius (cm)=      2.76014, length (cm)=     0.378552 

Sect  16: radius (cm)=      2.29858, length (cm)=     0.236325 

Sect  17: radius (cm)=      2.88099, length (cm)=     0.378552 

Sect  18: radius (cm)=      2.41943, length (cm)=     0.236325 

Sect  19: radius (cm)=      3.00185, length (cm)=     0.378552 

Sect  20: radius (cm)=      3.40612, length (cm)=     0.378552 

Sect  21: radius (cm)=      3.14456, length (cm)=      4.23632 

Sect  22: radius (cm)=      3.72697, length (cm)=     0.378552 

Sect  23: radius (cm)=      3.26541, length (cm)=     0.236325 

Sect  24: radius (cm)=      3.84782, length (cm)=     0.378552 

Sect  25: radius (cm)=      3.38626, length (cm)=     0.236325 

Sect  26: radius (cm)=      3.96868, length (cm)=     0.378552 

Sect  27: radius (cm)=      3.50712, length (cm)=     0.236325 

Sect  28: radius (cm)=      4.08953, length (cm)=     0.378552 

Sect  29: radius (cm)=      3.62797, length (cm)=     0.236325 

Sect  30: radius (cm)=      4.21039, length (cm)=     0.378552 

Sect  31: radius (cm)=      3.74883, length (cm)=     0.236325 

Sect  32: radius (cm)=      4.33124, length (cm)=     0.378552 

Sect  33: radius (cm)=      3.86968, length (cm)=     0.236325 

Sect  34: radius (cm)=       4.4521, length (cm)=     0.378552 

Sect  35: radius (cm)=      3.99053, length (cm)=     0.236325 

Sect  36: radius (cm)=      4.57295, length (cm)=     0.378552 

Sect  37: radius (cm)=      4.11139, length (cm)=     0.236325 

Sect  38: radius (cm)=       4.6938, length (cm)=     0.378552 

Sect  39: radius (cm)=      4.23224, length (cm)=     0.236325 

Sect  40: radius (cm)=      4.81466, length (cm)=     0.378552 

Sect  41: radius (cm)=       4.3531, length (cm)=     0.236325 

Sect  42: radius (cm)=      4.93551, length (cm)=     0.378552 

Sect  43: radius (cm)=      4.47395, length (cm)=     0.236325 

Sect  44: radius (cm)=      5.05637, length (cm)=     0.378552 

Sect  45: radius (cm)=      4.59481, length (cm)=     0.236325 

Sect  46: radius (cm)=      5.17722, length (cm)=     0.378552 

Sect  47: radius (cm)=      4.71566, length (cm)=     0.236325 

Sect  48: radius (cm)=      5.29807, length (cm)=     0.378552 

Sect  49: radius (cm)=      4.83651, length (cm)=     0.236325 

Sect  50: radius (cm)=      5.41893, length (cm)=     0.378552 

Sect  51: radius (cm)=      4.95737, length (cm)=     0.236325 
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Sect  52: radius (cm)=      5.53978, length (cm)=     0.378552 

Sect  53: radius (cm)=      5.07822, length (cm)=     0.236325 

Sect  54: radius (cm)=      5.66064, length (cm)=     0.378552 

Sect  55: radius (cm)=      5.19908, length (cm)=     0.236325 

Sect  56: radius (cm)=      5.78149, length (cm)=     0.378552 

Sect  57: radius (cm)=      5.31993, length (cm)=     0.236325 

Sect  58: radius (cm)=      5.90234, length (cm)=     0.378552 

Sect  59: radius (cm)=      5.44078, length (cm)=     0.236325 

Sect  60: radius (cm)=       6.0232, length (cm)=     0.378552 

Sect  61: radius (cm)=      5.56164, length (cm)=     0.236325 

Sect  62: radius (cm)=      6.14405, length (cm)=     0.378552 

Sect  63: radius (cm)=      5.68249, length (cm)=     0.236325 

 

Horn exterior surface cardinal points. 

Point #   1: radius (cm)=          1.5, axial location (cm)=            0 

Point #   2: radius (cm)=          1.5, axial location (cm)=            4 

Point #   3: radius (cm)=          2.5, axial location (cm)=            4 

Point #   4: radius (cm)=          3.5, axial location (cm)=            7 

Point #   5: radius (cm)=          3.5, axial location (cm)=           13 

Point #   6: radius (cm)=          6.5, axial location (cm)=           28 

Point #   7: radius (cm)=          6.5, axial location (cm)=        30.03 

 

Number of modes on each side of each junction determined by respective radii. 

numModesInput = 6 

 

Step   1: rad_L =    1.143, rad_R =    2.231, len_R=    0.431, #modes=   3:  7 

Step   2: rad_L =    2.231, rad_R =    1.369, len_R=    0.485, #modes=   7:  4 

Step   3: rad_L =    1.369, rad_R =    2.379, len_R=    0.432, #modes=   4:  7 

Step   4: rad_L =    2.379, rad_R =    1.690, len_R=    0.300, #modes=   7:  5 

Step   5: rad_L =    1.690, rad_R =    2.549, len_R=    0.359, #modes=   5:  8 

Step   6: rad_L =    2.549, rad_R =    1.882, len_R=    0.500, #modes=   8:  6 

Step   7: rad_L =    1.882, rad_R =    2.666, len_R=    0.469, #modes=   6:  8 

Step   8: rad_L =    2.666, rad_R =    1.983, len_R=    0.310, #modes=   8:  6 

Step   9: rad_L =    1.983, rad_R =    2.597, len_R=    0.462, #modes=   6:  8 

Step  10: rad_L =    2.597, rad_R =    2.107, len_R=    0.398, #modes=   8:  6 

Step  11: rad_L =    2.107, rad_R =    2.771, len_R=    0.500, #modes=   6:  9 

Step  12: rad_L =    2.771, rad_R =    2.178, len_R=    0.474, #modes=   9:  7 

Step  13: rad_L =    2.178, rad_R =    2.182, len_R=    0.335, #modes=   7:  7 

Step  14: rad_L =    2.182, rad_R =    2.760, len_R=    0.379, #modes=   7:  8 

Step  15: rad_L =    2.760, rad_R =    2.299, len_R=    0.236, #modes=   8:  7 

Step  16: rad_L =    2.299, rad_R =    2.881, len_R=    0.379, #modes=   7:  9 

Step  17: rad_L =    2.881, rad_R =    2.419, len_R=    0.236, #modes=   9:  7 

Step  18: rad_L =    2.419, rad_R =    3.002, len_R=    0.379, #modes=   7:  9 

Step  19: rad_L =    3.002, rad_R =    3.406, len_R=    0.379, #modes=   9: 11 

Step  20: rad_L =    3.406, rad_R =    3.145, len_R=    4.236, #modes=  11: 10 

Step  21: rad_L =    3.145, rad_R =    3.727, len_R=    0.379, #modes=  10: 12 

Step  22: rad_L =    3.727, rad_R =    3.265, len_R=    0.236, #modes=  12: 10 

Step  23: rad_L =    3.265, rad_R =    3.848, len_R=    0.379, #modes=  10: 12 

Step  24: rad_L =    3.848, rad_R =    3.386, len_R=    0.236, #modes=  12: 11 

Step  25: rad_L =    3.386, rad_R =    3.969, len_R=    0.379, #modes=  11: 12 

Step  26: rad_L =    3.969, rad_R =    3.507, len_R=    0.236, #modes=  12: 11 

Step  27: rad_L =    3.507, rad_R =    4.090, len_R=    0.379, #modes=  11: 13 

Step  28: rad_L =    4.090, rad_R =    3.628, len_R=    0.236, #modes=  13: 11 

Step  29: rad_L =    3.628, rad_R =    4.210, len_R=    0.379, #modes=  11: 13 

Step  30: rad_L =    4.210, rad_R =    3.749, len_R=    0.236, #modes=  13: 12 

Step  31: rad_L =    3.749, rad_R =    4.331, len_R=    0.379, #modes=  12: 14 

Step  32: rad_L =    4.331, rad_R =    3.870, len_R=    0.236, #modes=  14: 12 

Step  33: rad_L =    3.870, rad_R =    4.452, len_R=    0.379, #modes=  12: 14 

Step  34: rad_L =    4.452, rad_R =    3.991, len_R=    0.236, #modes=  14: 12 

Step  35: rad_L =    3.991, rad_R =    4.573, len_R=    0.379, #modes=  12: 14 

Step  36: rad_L =    4.573, rad_R =    4.111, len_R=    0.236, #modes=  14: 13 

Step  37: rad_L =    4.111, rad_R =    4.694, len_R=    0.379, #modes=  13: 15 
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Step  38: rad_L =    4.694, rad_R =    4.232, len_R=    0.236, #modes=  15: 13 

Step  39: rad_L =    4.232, rad_R =    4.815, len_R=    0.379, #modes=  13: 15 

Step  40: rad_L =    4.815, rad_R =    4.353, len_R=    0.236, #modes=  15: 14 

Step  41: rad_L =    4.353, rad_R =    4.936, len_R=    0.379, #modes=  14: 16 

Step  42: rad_L =    4.936, rad_R =    4.474, len_R=    0.236, #modes=  16: 14 

Step  43: rad_L =    4.474, rad_R =    5.056, len_R=    0.379, #modes=  14: 16 

Step  44: rad_L =    5.056, rad_R =    4.595, len_R=    0.236, #modes=  16: 14 

Step  45: rad_L =    4.595, rad_R =    5.177, len_R=    0.379, #modes=  14: 16 

Step  46: rad_L =    5.177, rad_R =    4.716, len_R=    0.236, #modes=  16: 15 

Step  47: rad_L =    4.716, rad_R =    5.298, len_R=    0.379, #modes=  15: 17 

Step  48: rad_L =    5.298, rad_R =    4.837, len_R=    0.236, #modes=  17: 15 

Step  49: rad_L =    4.837, rad_R =    5.419, len_R=    0.379, #modes=  15: 17 

Step  50: rad_L =    5.419, rad_R =    4.957, len_R=    0.236, #modes=  17: 16 

Step  51: rad_L =    4.957, rad_R =    5.540, len_R=    0.379, #modes=  16: 18 

Step  52: rad_L =    5.540, rad_R =    5.078, len_R=    0.236, #modes=  18: 16 

Step  53: rad_L =    5.078, rad_R =    5.661, len_R=    0.379, #modes=  16: 18 

Step  54: rad_L =    5.661, rad_R =    5.199, len_R=    0.236, #modes=  18: 16 

Step  55: rad_L =    5.199, rad_R =    5.781, len_R=    0.379, #modes=  16: 18 

Step  56: rad_L =    5.781, rad_R =    5.320, len_R=    0.236, #modes=  18: 17 

Step  57: rad_L =    5.320, rad_R =    5.902, len_R=    0.379, #modes=  17: 19 

Step  58: rad_L =    5.902, rad_R =    5.441, len_R=    0.236, #modes=  19: 17 

Step  59: rad_L =    5.441, rad_R =    6.023, len_R=    0.379, #modes=  17: 19 

Step  60: rad_L =    6.023, rad_R =    5.562, len_R=    0.236, #modes=  19: 18 

Step  61: rad_L =    5.562, rad_R =    6.144, len_R=    0.379, #modes=  18: 20 

Step  62: rad_L =    6.144, rad_R =    5.682, len_R=    0.236, #modes=  20: 18 

 

Far Field patterns (deg, dB): CP [co-, x-pol] 

 0.00    0.00 -199.00 

 0.91   -0.03  -59.58 

 1.82   -0.13  -47.60 

 2.73   -0.29  -40.67 

 3.64   -0.52  -35.84 

 4.55   -0.81  -32.17 

 5.45   -1.17  -29.25 

 6.36   -1.60  -26.87 

 7.27   -2.10  -24.89 

 8.18   -2.67  -23.24 

 9.09   -3.31  -21.84 

10.00   -4.02  -20.67 

10.91   -4.81  -19.68 

11.82   -5.68  -18.86 

12.73   -6.64  -18.19 

13.64   -7.68  -17.66 

14.55   -8.82  -17.24 

15.45  -10.06  -16.95 

16.36  -11.42  -16.75 

17.27  -12.91  -16.66 

18.18  -14.55  -16.65 

19.09  -16.36  -16.74 

20.00  -18.39  -16.91 

20.91  -20.69  -17.16 

21.82  -23.36  -17.49 

22.73  -26.57  -17.89 

23.64  -30.58  -18.37 

24.55  -35.68  -18.91 

25.45  -39.26  -19.52 

26.36  -36.58  -20.20 

27.27  -33.62  -20.94 

28.18  -31.73  -21.74 

29.09  -30.58  -22.60 

30.00  -29.92  -23.52 

30.91  -29.62  -24.49 
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31.82  -29.58  -25.53 

32.73  -29.75  -26.61 

33.64  -30.11  -27.75 

34.55  -30.63  -28.94 

35.45  -31.28  -30.17 

36.36  -32.07  -31.45 

37.27  -32.98  -32.77 

38.18  -34.00  -34.13 

39.09  -35.13  -35.52 

40.00  -36.34  -36.94 

40.91  -37.61  -38.36 

41.82  -38.92  -39.78 

42.73  -40.19  -41.18 

43.64  -41.36  -42.53 

44.55  -42.34  -43.81 

45.45  -43.09  -44.99 

46.36  -43.61  -46.06 

47.27  -43.92  -46.99 

48.18  -44.13  -47.79 

49.09  -44.28  -48.47 

50.00  -44.44  -49.03 

50.91  -44.65  -49.50 

51.82  -44.91  -49.90 

52.73  -45.24  -50.25 

53.64  -45.65  -50.55 

54.55  -46.11  -50.82 

55.45  -46.64  -51.08 

56.36  -47.23  -51.33 

57.27  -47.85  -51.57 

58.18  -48.50  -51.81 

59.09  -49.17  -52.06 

60.00  -49.84  -52.32 

60.91  -50.49  -52.60 

61.82  -51.10  -52.90 

62.73  -51.66  -53.21 

63.64  -52.17  -53.55 

64.55  -52.62  -53.91 

65.45  -53.01  -54.29 

66.36  -53.34  -54.70 

67.27  -53.64  -55.13 

68.18  -53.91  -55.59 

69.09  -54.16  -56.07 

70.00  -54.40  -56.57 

70.91  -54.65  -57.09 

71.82  -54.91  -57.64 

72.73  -55.18  -58.20 

73.64  -55.47  -58.78 

74.55  -55.78  -59.37 

75.45  -56.11  -59.97 

76.36  -56.46  -60.58 

77.27  -56.83  -61.19 

78.18  -57.23  -61.79 

79.09  -57.65  -62.38 

80.00  -58.08  -62.94 

80.91  -58.53  -63.46 

81.82  -59.00  -63.93 

82.73  -59.49  -64.33 

83.64  -59.98  -64.65 

84.55  -60.49  -64.88 

85.45  -61.00  -65.00 

86.36  -61.51  -65.02 

87.27  -62.02  -64.94 
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88.18  -62.52  -64.77 

89.09  -62.99  -64.52 

90.00  -63.43  -64.22 

 

******** 

******** S-Parameters 

******** 

 

S11: response to excitation mode TE 1, 1: 

TE 1, 1 (prop) =  -31.0 dB @   61 deg,   0.1%P, |V|=   0.028  

 

S21: response to excitation mode TE 1, 1: 

TE 1, 1 (prop) =   -1.7 dB @   71 deg,  67.9%P, |V|=   0.824  

TE 1, 2 (prop) =   -7.7 dB @   66 deg,  16.9%P, |V|=   0.411  

TE 1, 3 (prop) =  -27.4 dB @   94 deg,   0.2%P, |V|=   0.043  

TE 1, 4 (prop) =  -48.4 dB @  -70 deg,   0.0%P, |V|=   0.004  

TE 1, 5 (prop) =  -57.9 dB @  115 deg,   0.0%P, |V|=   0.001  

TM 1, 1 (prop) =   -9.5 dB @   61 deg,  11.1%P, |V|=   0.334  

TM 1, 2 (prop) =  -15.0 dB @ -100 deg,   3.2%P, |V|=   0.178  

TM 1, 3 (prop) =  -22.3 dB @ -100 deg,   0.6%P, |V|=   0.076  

TM 1, 4 (prop) =  -33.4 dB @   21 deg,   0.0%P, |V|=   0.021  

 

S12: response to excitation mode TE 1, 1: 

TE 1, 1 (prop) =   -1.7 dB @   71 deg,  67.9%P, |V|=   0.824  

 

S22: response to excitation mode TE 1, 1: 

TE 1, 1 (prop) =  -14.4 dB @  -47 deg,   3.7%P, |V|=   0.191  

TE 1, 2 (prop) =   -8.7 dB @  170 deg,  13.4%P, |V|=   0.366  

TE 1, 3 (prop) =  -11.6 dB @ -125 deg,   6.9%P, |V|=   0.263  

TE 1, 4 (prop) =  -31.8 dB @  -28 deg,   0.1%P, |V|=   0.026  

TE 1, 5 (prop) =  -45.3 dB @  146 deg,   0.0%P, |V|=   0.005  

TM 1, 1 (prop) =  -13.2 dB @   57 deg,   4.8%P, |V|=   0.219  

TM 1, 2 (prop) =  -15.9 dB @ -121 deg,   2.6%P, |V|=   0.161  

TM 1, 3 (prop) =  -22.6 dB @   99 deg,   0.6%P, |V|=   0.074  

TM 1, 4 (prop) =  -30.3 dB @   15 deg,   0.1%P, |V|=   0.031  

 

Port 1: sum of power from excitation =   1.000, or 0.000 dB 

Port 2: sum of power from excitation =   1.000, or 0.000 dB 

 

Total run time = 0.92 seconds. 

8.7.2 Software Installation 

The serial number required for installation of the CYL_MM setup program (setup.exe with its 

associated arch6.msi file) is currently seven ones followed by one zero.  A copy of the ARAM 

CYL_MM Windows
 TM

 program is available to members of the UCLA ARAM group headed by 

Prof. Rahmat-Samii for student use.  The CYL_MM installation setup files, source code, and 

example files are archived on the ARAM workstations “fat-man” and “jen” in the directory 

C:\CYL_MM.  The CYL_MM program produced all the feedhorn mode-matching results and 
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the feedhorn and reflector 3D graphics depicted in this dissertation.  The CYL_MM program 

provides 3D visualization of the ARAM DUAL reflector analysis DOS program’s geometry, and 

the ARAM DUAL program, with user manual and source code, is archived on fat-man and jen in 

the directory C:\DUAL. 
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