
UC Riverside
UC Riverside Previously Published Works

Title
Optimized Generation of Data-Path from C Codes for FPGAs

Permalink
https://escholarship.org/uc/item/4mz1d5wg

Authors
Guo, Zhi
Buyukkurt, Betul
Najjar, Walid
et al.

Publication Date
2005

DOI
10.1109/date.2005.234

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4mz1d5wg
https://escholarship.org/uc/item/4mz1d5wg#author
https://escholarship.org
http://www.cdlib.org/

Optimized Generation of Data-path from C Codes for FPGAs

Zhi Guo Betul Buyukkurt Walid Najjar

University of California Riverside

{zguo, abuyukku, najjar}@cs.ucr.edu

Kees Vissers

Xilinx Corp.

kees.vissers@xilinx.com

Abstract
FPGAs, as computing devices, offer significant speedup

over microprocessors. Furthermore, their configurability

offers an advantage over traditional ASICs. However, they

do not yet enjoy high-level language programmability, as

microprocessors do. This has become the main obstacle for

their wider acceptance by application designers.

ROCCC is a compiler designed to generate circuits from

C source code to execute on FPGAs, more specifically on

CSoCs. It generates RTL level HDLs from frequently

executing kernels in an application. In this paper, we

describe ROCCC’s system overview and focus on its data

path generation. We compare the performance of ROCCC-

generated VHDL code with that of Xilinx IPs. The synthesis

result shows that ROCCC-generated circuit takes around

2x ~ 3x area and runs at comparable clock rate.

1. Introduction
Continued increases in integrated circuit chip capacity

have led to the recent introduction of Configurable System-

on-a-Chip (CSoC), which has one or more microprocessors

integrated with a field-programmable gate array (FPGA) as

well as memory blocks on a single chip. In these platforms

both the FPGA fabric, as well as the embedded

microprocessors are essentially programmed using

software. The earliest example is the Triscend E5 followed

by the Triscend A7 [1], the Altera Excalibur [2], and Xilinx

Virtex II Pro [3]. The capabilities of these platforms span a

wide range with the Triscend A7 at the low end and the

Xilinx Virtex II Pro 2VP125 at the high-end. These

amazing computing devices have the flexibility of software

and have been shown to achieve very large speedups,

ranging from 10x to 100x, over microprocessors for a

variety of applications including image and signal

processing [4][5][6]. Such speedups come from large-scale

parallelism made possible by high-capacity FPGAs, as well

as from customized circuit design. The main problem

standing in the way of wider acceptance of CSoC platforms

is their programmability. Application developers must have

an extensive hardware expertise, in addition to their

application area expertise, to develop efficient designs.

Presently, most CSoCs are programmed manually. The

main drawback of this approach is that it is very labor

intensive and requires large design times. Some

commercial effort in programming FPGAs have been

proposed by companies such as Synopsys [7] and Tensillica

[8]. Their focus is on moving simple loops to hardware or

on instruction-set extension.

Optimizing compilers for traditional processors have

benefited from several decades of extensive research that

has led to extremely powerful tools. Similarly, electronic

design automation (EDA) tools have also benefited from

several decades of research and development leading to

powerful tools that can translate VHDL and Verilog code,

and recently SystemC [9] code, into relatively efficient

circuits. However, little work has been done to combine

these two approaches. In other words, work is still needed

to compile a high-level language program, based on

C/C++/Java, with software level optimizations with the

intent of generating a hardware circuit. Obviously, it is

neither practical nor desirable to translate the whole

program into hardware. It is therefore imperative to provide

the programmer with tools that would help in identifying

which code segments ought to be mapped to hardware as

well as the cost and benefit tradeoffs implied.

Compiling to CSoCs and FPGAs in general is

challenging. Traditional CPUs, including VLIW, have a

fixed hardware platform. Their architectural features may

or may not be exposed to the compiler. FPGAs, on the

other hand, are completely amorphous. The task of an

FPGA compiler is to generate both the hardware (data path)

and the sequence of operations (control flow). This lack of

architectural structure, however, presents a number of

advantages. (1) The parallelism is very high and limited

only by the size of the FPGA device or by the data memory

bandwidth. (2) On-chip storage can be configured at will:

registers are created by the compiler and distributed

throughout the data path where needed, thereby increasing

data reuse and reducing re-computations or accesses to

memory. (3) Circuit customization: the data path and

sequence controller are tailored to the specific computation

being mapped to hardware. Examples include customized

data bit-width and pipelining.

The objective of the ROCCC (Riverside Optimizing

Configurable Computing Compiler) project is to design a

high-level language compiler targeting CSoC. It takes high-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

level code, such as C or FORTRAN as input and generates

RTL VHDL code for the FPGA and C code for the CPU. In

this paper we describe the overall structure of the compiler

and emphasize the data path generation component. We

compare the clock speed and area of automatically

generated circuits to a number of IP codes available on the

Xilinx web site. The results show that the speed is within

10% while the area is larger by a factor of 2 to 3. The work

in [25][26] has compared generated code with hand written

VHDL. Both have shown a factor of 2 on the performance

decrease of the generated code in area and clock rate.

ROCCC is built upon the knowledge acquired from SA-C

and Streams-C. We experimentally show that the resultant

VHDL is much closer to the handwritten one.

The rest of this paper is organized as follows. The

ROCCC compiler is introduced in section 2. Related work

is discussed in section 3. Section 4 presents ROCCC

compiler RTL code generation for the controller, the buffer

and the data path. Experimental results are reported in

section 5. Section 6 concludes the paper.

2. ROCCC System Overview
Figure 1 shows the overview of the ROCCC compiler.

The profiling tool set has been described in a prior

publication [10]. It identifies the frequently executing code

kernels in a given application. ROCCC’s objective is to

compile these kernels to HDL code, which is synthesized

using commercial tools.

The ROCCC system is built using SUIF [11] and

Machine-SUIF [12] platforms. SUIF IRs (intermediate

representations) provide abundant information about loop

statements and array accesses. ROCCC performs loop level

optimizations on SUIF IRs. Loop unrolling for FPGAs

requires compile time area estimation. The work reported

in [13] shows that in less than one millisecond and within

5% accuracy compile time area estimation can be achieved.

Information to generate high-level units, such as controllers

and buffers, is also extracted from SUIF IRs.

Machine-SUIF analysis and optimization passes, such as

Control Flow Graph (CFG) library [14], Data Flow

Analysis library [15] and Static Single Assignment library

[16], are used to generate the data path.

ROCCC’s conventional optimizations include constant

folding, loop unrolling, etc. Full loop unrolling converts a

for-loop with constant bounds into a non-iterative block of

code and therefore eliminates the loop controller. In

addition to these conventional optimizations, at loop level

ROCCC performs FPGA-specific optimizations, such as

loop strip-mining, loop fusion, etc. At storage level and

circuit level, ROCCC’s optimizations are closely related

with HDL code generation and are discussed in section 4.

The restrictions on the C code that can be accepted by

the ROCCC compiler, for mapping on an FPGA fabric,

include no recursion, no usage of pointers that cannot be

statically unaliased. Function calls will either be inlined or

whenever feasible made into a lookup table.

3. Related Works
Many projects, employing various approaches, have

worked on translating high-level languages into hardware.

SystemC [20] is designed to provide roughly the same

expressive functionality of VHDL or Verilog and is

suitable to designing software-hardware synchronized

systems. Handle-C [21], as a low level hardware/software

construction language with C syntax, supports behavioral

descriptions and uses CSP-style (Communicating

Sequential Processes) communication model.

SA-C [22] is a single-assignment high-level

synthesizable language. Because of special constructs

specific to SA-C (such as window constructs) and its

functional nature, its compiler can easily exploit data reuse

for window operations. SA-C uses pre-existing

parameterized VHDL library routines to perform code

generation in a way that requires a number of control

signals between components, and thereby involves extra

clock cycles and delay. Our compiler avoids spending

clock cycles on handshaking by focusing more on the

compile-time analysis. It takes a subset of C as input and

does not involve any non-C syntax.

Streams-C [23] relies on the CSP model for

communication between processes, both hardware and

software. Streams-C can meet relatively high-density

control requirements. However, it does not support

accesses to two-dimension arrays and therefore image

processing applications, including video processing, must

be mapped manually. This makes it very awkward to

efficiently support algorithms that rely on sliding windows.

For one-dimension input data vector, such as a one-

dimension FIR filter, Streams-C programmers need to

manually write data reuse in the input C code in order to

make sure that a data value is retrieved only once from

external memory.

SPARK [24] is another C to VHDL compiler. Its

transformations include loop unrolling, common sub-

expression elimination, copy propagation, dead code

elimination, loop-invariant code motion etc. SPARK does

not support multi-dimension array accesses.

Loop

Optimization

SUIF2

Machine

SUIF

Controller

Generation

Data Path

Generation

Graph Editor

+ Annotation

CAD

tools

VHDL Code

Generator

Bit

Stream

ROCCC System

C /C++

Fortran

Java…

…

Code

P
ro
fi
li
ng

Host

Executable

General

Compiler

Estimation

� Area

� Delay

� Power

Figure 1 - ROCCC System Overview

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

4. The ROCCC Compiler
ROCCC targets high computational density, low control

density applications. Figure 2 shows the execution model.

An engine moves the data from off-chip to a BRAM

storage. The compiler-generated circuit accesses the arrays

in BRAM and stores the output data into another BRAM,

from which an engine retrieves data into the off-chip

memory. Inside the compiler-generated circuit, the data

path is fully pipelined. The controllers and buffers are in

charge of feeding input data and retrieving output data to

and from the data path.

4.1 Controller

and Buffers
ROCCC’s scalar

replacement

transformation

converts, for

instance, the segment

in Figure 3 (a) into

the segment in Figure

3 (b). We can see that

scalar replacement

isolates memory

access from

calculation. The

highlighted region of

code is exported in

the form of Figure 3 (c) and goes to the data path generator.

At the same time, the loop statement and memory

load/store code are used to generate the controllers and

buffers. The controllers include address generators, which

export a series of memory addresses according to the

memory access pattern, and a higher-level controller, which

controls the address generators. They are all implemented

as pre-existing parameterized FSMs (finite state machine)

in a VHDL library.

One of the major reasons that account for FPGA’s

speedup over general-purpose processor is that FPGA is

capable of providing optimized I/O interface between data

path and memory units [17]. For example, each iteration of

the for-loop in Figure 3 (a) is essentially an operator on a

window of five consecutive array elements. The window

slides on the array. Two adjacent windows have four input

data in common and only one new input data per

window/iteration. ROCCC, as a high-level synthesis

compiler, uses the knowledge of memory access pattern

from the input code, such as the code shown in Figure 3

(b), to automatically generates an intelligent buffer, called

smart buffer, based on the bus size, window size, data size

and sliding-window stride. This buffer unit is able to reuse

live input data, clean unused data and export the present

valid input data set (the 5-data window in Figure 3 (b)) to

the data path [18].

4.2 Data Path Generation
Before building the data path, a few preparation passes

are done both at the front-end and back-end. Then,

ROCCC’s back-end passes perform the analysis,

optimization and data path generation.

4.2.1 Preparation Passes
ROCCC uses Machine-SUIF virtual machine (SUIFvm)

[19] intermediate representation as the back-end IR. The

original SUIFvm assembly-like instructions, by themselves,

cannot completely cover HDLs’ hardware description

functionality. On the other side, the front-end analysis may

assist and simplify the data path generation at back-end.

Besides back-end data flow analysis, ROCCC performs

high-level data flow analysis at front-end and the analysis

information is transferred through pre-defined macros to

assists back-end hardware generation.

Figure 4 (b) shows an accumulator after applying scalar

replacement in C. The variable sum is detected as a

feedback signal. Figure 4 (c) shows the resultant segment in

C, in which macro ROCCC_load_prev() and macro

ROCCC_store2next() annotate the signal feedback.

After applying scalar replacement and front-end

dataflow analysis, the function that describes the scalar

computing, like the codes shown in Figure 3 (c) or Figure 4

(c), is fed into Machine-SUIF. ROCCC performs circuit

level optimizations and eventually generates data path on a

modified version of the Machine-SUIF virtual machine

(SUIFvm) [19] intermediate representation.

Before fed to ROCCC’s passes, the virtual machine IR

first undergoes Machine-SUIF Static Single Assignment

and Control Flow Graph transformations. At this point,

control flow graph information is visible and every virtual

register is assigned only once.

The preserved macros are converted into ROCCC-

specific opcodes. For example, ROCCC_load_prev() and

ROCCC_store2next() in Figure 4 (c) are converted into

instructions with opcode LPR (load previous) and SNX

(store next), respectively. We are working on supporting bit

co
n
tro
llers

P
ip
elin
ed
d
ata
p
ath

Block RAM

Block RAM

Off-chip
MEM

Off-chip

MEM

smart buffer

smart buffer

Figure 2 - The Execution Model

for (i=0; i<N; i=i+1) {

C[i] = 3*A[i] + 5*A[i+1] + 7*A[i+2] + 9*A[i+3] – A[i+4]; }

(a)

for (i=0; i<17; i=i+1) {

A0 = A[i]; A1 = A[i+1]; A2 = A[i+2];

A3 = A[i+3]; A4 = A[i+4];

Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4;

C[i] = Tmp0; }

(b)

void main_df(int A0,int A1,int A2,int A3,int A4,int* Tmp0)

{

*Tmp0 = 3*A0 + 5*A1 + 7*A2 + 9*A3 - A4;

return; }

(c)

(a) – A 5-tap FIR in original C code
(b) – The FIR after scalar replacement
(c) – The FIR C code fed into the data path generator

Figure 3 - A 5-tap FIR in C

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

manipulation macros, which are the lack of high-level

languages.

4.2.2 Data Path Building

Each instruction that goes to hardware is assigned a

location in the data path. We add new fields into Machine-

SUIF IR to record the location of each arithmetic, logic or

register copying instruction’s location. For example, Figure

6 shows the data path for the C code list in Figure 5. We

maximize instruction level parallelism. All the input and

output operands are copied to the entry or exit of the data

flow, respectively. A virtual register’s definition and

reference should be adjoining in the data flow. If not, extra

register copying instructions are added to satisfy so.

The compiler first builds data path for each non-null

node in the CFG, as node 1 through node 4 shown in Figure

6. To parallelize alternative branches, the compiler adds a

new mux node between alternative branch nodes and their

common successor node, for instance, node 7 in Figure 6.

A new pipe node (node 6 in Figure 6, for instance) is added

to copy live variables from alternative branches’ parent

node to their common successor node.

In Figure 6, node 6 and 7 are called hard nodes since

they only appear in hardware and have no equivalence in

software. Nodes 1 through 4 are thereby called soft nodes.

Notice that if we only consider soft node, vr11 in node 4 is

vr11 in node 1, the same case as of vr13. Therefore, the soft

nodes, by themselves, will have the same behavior on a

CPU compared with the whole data path on a FPGA.

4.2.3 Data Path Pipeline
ROCCC automatically places

latches in a data path to pipeline it.

The latch location in a node is

decided based on the delay

estimation of instructions, which is

beyond this paper’s scope.

The latch location also satisfies

special opcodes’ requirements. For

example, SNX instruction must have

a latch to store the feedback signal to

the corresponding LPR instruction.

Figure 7 shows the data path of

Figure 4 (c).

After data path pipelining, each

pipeline stage is an instance of single iteration in the for-

loop body.

4.2.4 VHDL Code Generation
ROCCC generates one VHDL component for each CFG

node that goes to hardware. In a node, every virtual register

is single assigned and is converted into wires in hardware.

All arithmetic opcodes in SUIFvm have corresponding

functionality in IEEE 1076.3 VHDL with the exception of

division. Arithmetic, logic and copying instructions become

combinational or sequential VHDL statement according to

int sum = 0;
for (i = 0; i < 32; i++) {
sum = sum + A[i];
}

(a)

int sum = 0;
for (i = 0; i < 32; i++) {
main_Tmp0 = A[i];
sum = sum + main_Tmp0;
}

(b)

int sum = 0;
void main_dp(int main_Tmp0, int* main_Tmp1) {
int main_dp_Tmp2;
main_dp_Tmp2 = ROCCC_load_prev(sum) + main_Tmp0;
ROCCC_store2next(sum, main_dp_Tmp2);

*main_Tmp1 = sum;
}

(c)

(a) – An accumulator in original C code
(b) – The accumulator after scalar replacement
(c) – The C code fed into data path generator after

detecting feedback variable and adding preserved

macros

Figure 4 - An Accumulator in C

void if_else(int x1, int x2, int* x3, int* x4) {

int a,c;

c = x1 - x2; /*node 1*/

if(c < x2)

a = x1*x1 ; /*node 2*/

else

a = x1 * x2 + 3; /*node 3*/

c = c - a;

*x3 = c;

*x4 = a;

return;}

Figure 5 - An Alternative Branch in C

* The pointers are only used to indicate multiple
return values. ROCCC does not support pointers

Figure 6 - The Alternative Branch Data Path

Figure 7 - The

Accumulator Data

Path

node 4

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

whether the instruction needs latched or not. A LUT

instruction invokes an instantiation of a lookup table

component. If the lookup table is a pre-existing one, such

as a cos lookup table, the compiler automatically includes

the existing component. Otherwise, for example, if a user

wants to have a probability distribution function lookup

table, the compiler instantiates the lookup table as a regular

ROM IP core unit in the VHDL code. The only thing the

user needs to do is to edit a pure text initialization file,

which defines the lookup table’s content.

By adding more data type in Machine-SUIF, ROCCC

supports any signed and unsigned integer type up to 32 bit.

The compiler infers the inner signals’ bit size automatically.

5. Experimental Results
We compare the hardware performance generated from

Xilinx IP cores and ROCCC-generated VHDL code. We

use Xilinx ISE 5.1i and IP core 5.1i. All the Xilinx IP cores

and ROCCC-generated VHDL code are synthesized

targeting a Xilinx Virtex-II xc2v2000-5 FPGA.

All the benchmarks in Table 1 are picked from Xilinx

IP core except the wavelet engine. The input and output

variables of ROCCC equivalents have the same bit sizes as

that of the IP cores.

Bit_correlator counts the number of bits of an 8-bit

input data that are the same as of a constant mask. Mul_acc

is a multiplier-accumulator, whose input variables are a

pair of 12-bit data. Udiv is an 8-bit unsigned divider.

Square_root calculates a 24-bit data’s square root. Cos’s

input is 10-bit, output, 16-bit. The arbitrary LUT has the

same port size as that of cos. FIR is two 5-tap 8-bit constant

coefficient finite impulse response filters, whose bus sizes

are 16-bit. DCT is a one-dimension 8-data discrete cosine

transform. The input data size and output data size are 8-bit

and 19-bit, respectively. For Xilinx IP FIR and DCT, the

multiplications with constants are implemented using

distributed arithmetic technique, which performs

multiplication with lookup-table based schemes. Therefore,

we set the synthesis option ‘multiplier style’ as ‘LUT’ for

the ROCCC-generated DCT and FIR.

The second and the third column of Table 1 show Xilinx

IP cores’ clock rate and device utilization and the forth and

the fifth column show ROCCC’s corresponding

performance. %Clock is the percentage difference in clock

rate of ROCCC-generated VHDL compared to Xilinx IP.

%Area is the percentage difference in area of ROCCC-

generated VHDL compared to Xilinx IP. Bit-correlator,

udiv and square root consist of a number of bit

manipulations. The C input, as a high-level code, is not

good at describing bit operations and therefore is one of the

major causes of the performance difference. Xilinx

mul_acc IP has a control input signal nd (new data) whose

Boolean value true indicates the present data is valid. In C

code, we describe the equivalent behavior using if-else

statement whose condition evaluates Boolean input nd.

Thus, extra nodes and latches are added to support the

alternative branch and take extra area. We used to convert

this C code by multiplying nd with the new input data

instead of using if-else statement. Though one more

multiplier was used, the overall area and clock rate

performance was better than the one listed in Table 1.

Obviously, this is not compile level optimization. But at the

same time, it shows one of high-level synthesis’s

advantages: ease to do algorithm level optimizations. In

terms of lookup tables, ROCCC-generated VHDL code

instantiates Xilinx IP cores. Therefore, they have exactly

the same performance. In Xilinx Virtex-II, 10-bit-input-16-

bit-output cos/sin lookup table stores only half wave, which

is one of the reasons that this cos/sin lookup table utilizes

less area compared with the arbitrary ROM lookup table

with the same port size. Fir operates on an array. Basically,

a 5-data window slides on the one-dimension array.

ROCCC generates smart buffer to reuse the previous input

data. The FIR’s data path consists of multipliers,

adders/subtracters and no branch. ROCCC fits this type of

algorithms and gets comparable performance with IP cores.

Like FIR, DCT has high computational density and no

branch. The throughput of Xilinx DCT IP is one output

data per clock cycle, while ROCCC’s throughput is eight

output data per clock cycle. Therefore, though ROCCC-

generated DCT runs at a lower speed (73.5%), the overall

throughput of ROCCC-generated circuit is higher. Both

ROCCC DCT and Xilinx IP DCT explore the symmetry

within the cosine coefficients. The last row in Table 1 shows

an implementation of a two-dimension (5, 3) wavelet

Table 1: A comparison of hardware performance from Xilinx IPs and ROCCC-generated VHDL code.
(*The wavelet engine is not from the Xilinx IP, it is written in VHDL)

Example Clock (MHz) Area (slice) Clock (MHz) Area (slice) %Clock %Area

bit_correlator 212 9 144 19 0.679 2.11

mul_acc 238 18 238 59 1.00 3.28

udiv 216 144 272 495 1.26 3.44

square root 167 585 220 1199 1.32 2.05

cos 170 150 170 150 1.00 1.00

Arbitrary LUT 170 549 170 549 1.00 1.00

FIR 185 270 194 293 1.05 1.09

DCT 181 412 133 724 0.735 1.76

Wavelet* 104 1464 101 2415 0.971 1.65

Xilinx IP ROCCC

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

transform engine, which is the standard lossless JPEG2000

compression transform. This wavelet transform engine

includes the address generator, smart buffer and data path.

The ROCCC-generated circuit is compared with a

handwritten one.

We derive bit width only based on port size and opcodes.

More aggressive bit narrowing, performed by users or/and

the compiler, may reduce device utilization.

6. Conclusion
The reconfigurable computing paradigm is a powerful

computing model that has a lot of potential for long-

running or streaming applications that are somehow regular

in nature. The main obstacle to its use is its

programmability. Handwritten HDL code for large scale

applications is not the most desirable approach. Automatic

compiler generation of HDL code from high-level

languages is very challenging.

The ROCCC compiler generates VHDL for

reconfigurable computing from high-level languages, such

as C or Fortran. ROCCC performs loop level, storage level

and circuit level optimizations. In this paper we have

mainly presented its data path generation. At front-end, the

compiler performs high-level data flow analysis and

transfers the analysis information through preserved

macros. At back-end, the compiler explores low-level

parallelism, pipelines data path and narrows inner signals’

bit sizes. ROCCC supports lookup tables through

automatically instantiating pre-existing lookup table IPs or

ROM IPs.

We compared the performance of ROCCC-generated

VHDL code with that of Xilinx IPs. The synthesis result

shows that ROCCC-generated circuit takes around 2x ~ 3x

area and runs at comparable clock rate. ROCCC performs

better on high computational density examples than on high

control density ones.

7. References
[1] Triscend Corporation, "Triscend A7 Configurable System on

a Chip Family." http://www.triscend.com/products/a7.htm,

2004.

[2] Altera Corp. "Excalibur: System-on-a-Programmable."

http://www.altera.com, 2004.

[3] Xilinx Corp. "IBM and Xilinx Team."

http://www.xilinx.com/prs_rls/ibmpartner.htm, 2004.

[4] W. Chen, P. Kosmas, M. Leeser, C. Rappaport. An FPGA

Implementation of the Two-Dimensional Finite-Difference

Time-Domain (FDTD) Algorithm, Int. Symp. Field-

Programmable gate Arrays (FPGA), Monterrey, CA,

February 2004.

[5] J. Keane, C. Bradley, Clark, C. Ebeling. A Compiled

Accelerator for Biological Cell Signaling Simulations, Int.

Symp. Field-Programmable gate Arrays (FPGA), Monterrey,

CA, February 2004.

[6] Berkeley Design Technology, Inc.:

http://www.bdti.com/articles/info_eet0207fpga.htm#DSP-

Enhanced%20FPGAs, 2004.

[7] Synopsys, Inc. http://www.synopsys.com, 2004.

[8] Tensilica, http://www.tensilica.com, 2004.

[9] SystemC Consortium. http://www.systemc.org, 2004.

[10] D. C. Suresh, W. A. Najjar J. Villareal, G. Stitt and F. Vahid.

Profiling Tools for Hardware/Software Partitioning of

Embedded Applications. Proc. ACM Symp. On Languages,

Compilers and Tools for Embedded Systems (LCTES 2003),

San Diego, CA, June 2003.

[11] SUIF Compiler System. http://suif.stanford.edu, 2004.

[12] Machine-SUIF.

http://www.eecs.harvard.edu/hube/research/machsuif.html,

2004.

[13] D. Kulkarni, W. Najjar, R. Rinker, and F. Kurdahi, Fast Area

Estimation to Support Compiler Optimizations in FPGA-

based Reconfigurable Systems, IEEE Symp. on Field-

Programmable Custom Computing Machines (FCCM),

Napa, CA, April 2002.

[14] G. Holloway and M. D. Smith. Machine SUIF Control Flow

Graph Library. Division of Engineering and Applied

Sciences, Harvard University 2002.

[15] G. Holloway and A. Dimock. The Machine SUIF Bit-Vector

Data-Flow-Analysis Library. Division of Engineering and

Applied Sciences, Harvard University 2002.

[16] G. Holloway. The Machine-SUIF Static Single Assignment

Library. Division of Engineering and Applied Sciences,

Harvard University 2002.

[17] Z. Guo, W. Najjar, F. Vahid and K. Vissers. A Quantitative

Analysis of the Speedup Factors of FPGAs over Processors,

Int. Symp. Field-Programmable gate Arrays (FPGA),

Monterrey, CA, February 2004.

[18] Z. Guo, B. Buyukkurt, W. Najjar. Input Data Reuse In

Compiling Window Operations Onto Reconfigurable

Hardware, Proc. ACM Symp. On Languages, Compilers and

Tools for Embedded Systems (LCTES), Washington, DC,

June 2004.

[19] G. Holloway and M. D. Smith. Machine-SUIF SUIFvm

Library. Division of Engineering and Applied Sciences,

Harvard University 2002.

[20] SystemC Consortium. http://www.systemc.org, 2004.

[21] Handel-C Language Overview. Celoxica, Inc.

http://www.celoxica.com. 2004.

[22] W. Najjar, W. Böhm, B. Draper, J. Hammes, R. Rinker, R.

Beveridge, M. Chawathe and C. Ross. From Algorithms to

Hardware - A High-Level Language Abstraction for

Reconfigurable Computing. IEEE Computer, August 2003.

[23] M. B. Gokhale, J. M. Stone, J. Arnold, and M. Lalinowski.

Stream-oriented FPGA computing in the Streams-C high

level language. In IEEE Symp. on FPGAs for Custom

Computing Machines (FCCM), 2000.

[24] SPARK project. http://mesl.ucsd.edu/spark/, 2004.
[25] J. Frigo, M. Gokhale, and D. Lavenier. Evaluation of the

Streams-C C-to-FPGA Compiler: An Applications

Perspective. Ninth ACM/SIGDA International Symposium

on Field Programmable Gate Arrays (FPGA), Monterey, CA,

2001.

[26] Z. Guo, D. C. Suresh, W. A. Najjar. Programmability and

Efficiency in Reconfigurable Computer Systems, Workshop

on Software Support for Reconfigurable Systems, held in

conjunction with the Int. Conf. Of High-Performance

Computer Architecture (HPCA), Anaheim, CA, February

2003.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

