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Significance

The United States government 
would like to advance equity 
through climate policy. As 
conventional air pollutants are a 
by- product of greenhouse gas 
emissions, climate policy may 
improve historical inequities in 
air pollution. We quantify how 
different decision criteria in 
national policy implementation 
would impact racial/ethnic air 
pollution inequities. Although 
emission reduction will reduce 
total air pollution, we find that 
using cost and income as criteria 
for emission reduction, as is 
done in contemporary climate 
policy, can exacerbate inequities. 
Reducing air pollution disparities 
is therefore not an inevitable 
consequence of climate policy. 
However, removing emissions 
from regions with the most 
people of color directly and 
cutting transportation emissions 
can reduce air quality inequities.
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The United States government has indicated a desire to advance environmental justice 
through climate policy. As fossil fuel combustion produces both conventional pollutants 
and greenhouse gas (GHG) emissions, climate mitigation strategies may provide an 
opportunity to address historical inequities in air pollution exposure. To test the impact 
of climate policy implementation choices on air quality equity, we develop a broad range 
of GHG reduction scenarios that are each consistent with the US Paris Accord target 
and model the resulting air pollution changes. Using idealized decision criteria, we show 
that least cost and income- based emission reductions can exacerbate air pollution dispar-
ities for communities of color. With a suite of randomized experiments that facilitates 
exploration of a wider climate policy decision space, we show that disparities largely 
persist despite declines in average pollution exposure, but that reducing transportation 
emissions has the most potential to reduce racial inequities.

climate policy | air pollution | environmental justice

After rejoining the Paris Climate Agreement in 2021, the United States submitted an 
updated Nationally Determined Contribution (NDC), providing a vision of how the 
United States intends to cut greenhouse gas (GHG) emissions in the coming decades. 
The NDC set a target of 50 to 52% reduction of net GHG emissions by 2030 compared 
to 2005. Beyond its quantitative targets, the NDC explicitly identifies climate policy 
as an opportunity for furthering environmental justice goals, stating, “Each policy 
considered for reducing emissions is also an opportunity to improve equity and support 
good jobs in the United States” (1). In an effort to meet these targets, the United States 
recently passed the Inflation Reduction Act (IRA) (2), which promotes emission reduc-
tion largely through financial incentives and aims to invest in disadvantaged commu-
nities by providing funds for financial and technical assistance for zero- emission 
technologies, grants for community- led projects, and funding to reduce air pollution 
where pollution exceeds national standards. Many details for implementation of the 
IRA are unresolved, making technical strategies for satisfying its objectives particularly 
salient.

GHG emissions are often coemitted with criteria pollutants, which damage human 
health (3, 4). These pollutants sometimes consist of, or subsequently form, fine particulate 
matter (PM2.5), which causes and exacerbates a wide variety of other health conditions 
(5) and leads to more than 100,000 premature deaths in the United States annually (6). 
It has been repeatedly demonstrated that the burden of air pollution is not experienced 
equally among demographic groups in the United States (7–9). While reductions in GHG 
emissions would be expected to improve average air quality, bestowing a wide array of 
health, economic, and other benefits (10, 11), reductions in air pollution disparities are 
not guaranteed. While previous studies agree that reductions in GHG emissions are 
associated with air quality cobenefits, they disagree about the impact on racial dispari-
ties—some finding substantial improvements and others finding little change (12–14). 
Furthermore, these previous studies are geographically limited to California and explore 
equity cobenefits as a by- product of climate policies rather than an explicit decision 
criterion.

Here, we first contextualize the current state and recent trends of national and 
state- level air quality disparities using existing best estimates of PM2.5 concentrations 
across the contiguous United States. We then use a harmonized dataset of GHG and 
criteria air pollutant (CAP) emission sources as a baseline from which we can model 
the impact of changing GHG emissions on CAP emissions. We use this dataset to 
generate two types of illustrative NDC- constrained emission pathways, each of which 
represents a 50% reduction in total US GHG emissions with varying magnitudes and 
spatial distributions of coemitted criteria air pollution. We simulate outcomes of these 
pathways using an air quality model InMAP (15), which provides spatially explicit maps 
of PM2.5 concentrations that result from specified emissions. We then aggregate these 
concentrations by race and ethnicity at state and national levels to assess impacts on 
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both average exposures and exposure disparities. We also estimate 
costs for each pathway using a bottom- up approach for each 
sector independently that accounts for factors including up- front 
capital costs, regionally varying fuel costs, and estimates of oper-
ations and maintenance costs. More detail is available in the 
Materials and Methods and SI Appendix.

Our first set of pathways meet the US NDC by applying highly 
idealized decision criteria, targeting reductions based on income, 
race, or economic efficiency. In these pathways, we sort national 
emissions by the physical or socioeconomic characteristics of their 
source location and then remove GHG and copollutant sources from 
the top of the sorted list until the national GHG target is met. These 
represent extreme cases where national policy is carried out cohesively 
under one specific priority by removing all emissions from the most 
polluted regions (henceforth referred to as, PM2.5 Exposure), the 
neighborhoods with the highest fraction people of color (henceforth, 
POC), and the lowest income communities (henceforth, Income) 
and by removing the cheapest to abate carbon emissions (henceforth, 
Least cost). For example, in the Income pathway, we sort emissions 
by county- level median income and then remove all sources from 
the lowest income locations until the GHG target is met. The Equal 
pathway is the exception; we reduce GHG emissions proportion-
ally by the same fraction from all point and nonpoint sources by 
an equal percentage such that the GHG target is met, reducing 
coemitted CAP emissions simultaneously. The second set of sim-
ulations meets the NDC by randomly reducing emissions from 
different sectors and regions to explore air quality impacts and 
trade- offs of a more idiosyncratic implementation of climate 
policy (Materials and Methods). As a reference, we also simulate 
the air quality using the unmodified 2017 National Emissions 
Inventory (NEI) (16) for all available emissions except those 
involving fires, which we refer to as Unmodified 2017.

Raw output concentrations do not match with observations for 
several reasons, including poorly constrained emission inventories; 
imperfect model parameterizations; simplified meteorology; and 
notably the omission of mostly nonanthropogenic emission 
sources such as forest fires, agricultural burning, sea salt, and desert 
dust (SI Appendix, Fig. S1). We therefore bias- correct our results 
using the best- available estimates of PM2.5 (15, Materials and 
Methods) and present results as differences between simulations. 
Because anthropogenic and nonanthropogenic emissions are not 
fungible in their policy relevance, nonbias- corrected results are 
presented in SI Appendix. We present results both as exposures 
and as disparities; exposure is defined as the population- weighted 
mean PM2.5 concentration, and disparity is subsequently defined 
as the percent difference between a given demographic’s exposure 
and the population average exposure; both are calculated at 
national or state levels. A positive disparity means that a group is 
disproportionately impacted, and a decrease in disparity requires 
that a demographic has a larger reduction in exposure than the 
population average.

The combination of observations and simulations of PM2.5 
concentrations, aggregated into exposures and disparities, allows 
us to quantify past and potential future air quality and air quality 
equity impacts of changing emissions.

Results

For context, we first quantify historical air quality disparities in 
PM2.5 exposures over the contiguous United States. Disparities 
are pervasive across racial and ethnic minority groups nationally 
and across the vast majority of US states (Fig. 1A) and although 
overall air quality in most of the United States improved over the 
past decade, disparities have generally increased. Intuitively, the 

Fig. 1. National-  and state- level relative disparities in air pollution exposure by race and ethnicity in the contiguous United States. (A) Bars indicate national 
(Top)-  and state- level disparities for each racial/ethnic group. The bar color indicates the average absolute exposure to respirable particulate matter (PM2.5) of 
each group within each state in the 2010s. The red triangles show 2010 (light red) and 2019 (dark red) disparities, estimated from fitting a linear trend through 
annual disparities. (B) Maps of the contribution of each tract to national disparities, which is calculated as the product of tract PM2.5 concentration and the 
population of the specified group in each tract, divided by the total national population of that group. The sum of the national contributions values yields the 
population- weighted exposures for each group.

http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
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national average exposures for each demographic group are driven 
by the major population centers of those groups, which differ 
considerably for Asian, Black, and Hispanic communities 
(Fig. 1B). We find increases in disparities for POC nationally and 
in 37 of 48 states. Previous work has also found increasing dispar-
ities over time using different metrics and datasets (17). Sensitivity 
analyses like removing low- density census tracts yield consistent 
results (SI Appendix, Fig. S2). In this context of deepening envi-
ronmental inequities, we look to understand the extent to which 
equity can be enhanced in parallel with GHG- mitigating climate 
policy.

To quantify how these disparities and exposures might change 
under climate policy, we model several idealized pathways to meet 
the national GHG emission reduction target. As described above, 
we target counties with high historical pollution, high fraction 
POC, low income, lowest cost of mitigation, and by equal fraction 
without any prioritization. We then simulate the air pollution 
distributions resulting from the new NDC- constrained emissions 
using InMAP. Output is aggregated to tracts, is bias- corrected, 
and used to calculate exposures and disparities of five racial/ethnic 
groups (Materials and Methods).

Every NDC- constrained pathway we constructed would reduce 
national PM2.5 exposure relative to the present day (Unmodified 
2017), but reductions vary by 10 to 15% (between 0.8 and 
1.2 μg m−3, Fig. 2A). The estimated annualized costs for these 
pathways vary substantially, between about $190 billion and $340 
billion, where the Least cost pathway is much less expensive than 
the rest (Fig. 2C; uncertainty analysis in SI Appendix, Fig. S3). 
Despite large methodological differences, the emission reductions 
in our Least cost pathway are largely consistent with the results 
from integrated assessment models, which simulate coupled 

energy systems (18). As shown in those models, we also find that 
reducing the majority of emissions from power plants and the 
transportation sector is required to meet targets and is more eco-
nomical than decarbonizing other sectors (SI Appendix, Fig. S4).

In all pathways, White communities continue to experience 
lower- than- average exposures, while Asian and Hispanic commu-
nities continue to experience higher- than- average exposures 
(Fig. 2B), though absolute exposures decline in all cases (Fig. 2D). 
This highlights that the air quality cobenefits of implementing the 
US NDC are alone insufficient to overcome the long and pervasive 
history of disproportionate environmental impacts on minority 
communities (7, 19). National Black disparities consistently 
decline in all pathways, largely because anthropogenic emissions 
lead to more air pollution in the Eastern United States (SI Appendix, 
Fig. S1A), where Black people make up a larger portion of the 
population. Since these emissions must be reduced to meet the 
NDC, the pollution in the Eastern United States declines dispro-
portionately. This finding is consistent with recent historical trends 
(Fig. 1). We note, however, that the magnitude of the national 
Black disparities depends strongly on the bias correction, which 
incorporates missing nonanthropogenic emission sources as well 
as model biases. When considering only uncorrected anthropo-
genic emission from the Environmental Protection Agency (EPA) 
inventory, Black communities are the most disproportionately 
impacted group by a substantial margin and the pathways have 
little impact on the total disparities (SI Appendix, Fig. S5), high-
lighting the potentially consequential influence that inclusion of 
nonanthropogenic sources in air quality baselines could have on 
setting national- scale air quality equity priorities.

Substantial variation in disparities (Fig. 2 A and B) and expo-
sures (Fig. 2 C and D) exists between pathways, ranging from 

A B

C D

Fig. 2. Exposures and disparities of PM2.5 after implementing idealized policy priorities to meet emission reduction targets. (A) Total average national PM 
exposure, (B) national disparities by demographic group, (C) annualized costs of mitigation, and (D) absolute exposure difference by demographic group. Absolute 
exposure difference refers to the difference in exposure from the Unmodified 2017 total exposure in (A). All pathways lead to reductions in absolute PM2.5 
exposures and entail annualized costs of $190 to 340 billion. The No Industry and No Agriculture simulations, marked with asterisks, are not NDC constrained 
and do not have cost estimates.
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−2 to 0% for Black communities and 8 to 12% for Hispanic 
communities (Fig. 2B). A national prioritization of emission 
reductions in communities of color (POC pathway) is the only 
pathway explored here that reduces disparities for all non- White 
groups. While in some cases climate policy can be used as a 
means to reduce inequity in air pollution exposure in the United 
States, there is no guarantee that cutting GHG emissions will 
lead to that result. Indeed, relative to the baseline represented 
by Unmodified 2017, inequities can be amplified under certain 
climate policy priorities, including two pathways that represent 
economically and politically favorable priorities: the Least cost 
pathway, and the Income pathway, which prioritizes low- income 
communities—a common proxy for racial and ethnic dimen-
sions of environmental injustice, including in contemporary 
climate- related regulations (2).

For all demographics, the exposure reduction from implement-
ing any iteration of the NDC is larger than the variation between 
the different idealized pathways (Fig. 2A), emphasizing the robust 
air quality cobenefits of GHG emission reductions. State exposures 
and disparities are affected similarly to the national exposures and 
disparities (SI Appendix, Fig. S6); exposures decline, while dispar-
ities remain roughly constant.

For comparison, we also conducted No Industry and No 
Agriculture simulations, which are not constrained by the NDC, 
and therefore have quite different GHG emission reductions than 
those of the NDC- constrained pathways. These sectors are not 
comprehensively represented in our pathways due to both current 
technological limitations for decarbonization and practical data 
limitations, so to illustrate that their omission does not drive our 
finding of residual disparities, we demonstrate their individual 
impacts by modeling PM2.5 distributions without their criteria 
pollutant emissions. Completely removing the emissions from 
these sectors does not diminish disparities, though it would convey 
large total air quality benefits.

We next implemented a set of 300 randomized climate policy 
experiments, still constrained by the NDC, but no longer based 
on idealized decision criteria. Instead, GHG emissions and their 
accompanying coemissions are randomly removed throughout the 
country until the NDC target is met (Materials and Methods). The 
randomly removed emissions are by design less targeted than the 
idealized pathways and therefore the variation in total and 

demographic- specific exposures between the randomized experi-
ments is roughly half as large as from the idealized decision path-
ways (SI Appendix, Fig. S7). However, this spread still allows us 
to explore relationships (or lack thereof ) between the properties 
of different pathways and their outcomes.

For example, there is little correlation between national POC 
pollution exposure and national policy cost (Fig. 3A), implying 
that it may be possible to implement national GHG emission 
reduction while optimizing air quality equity, without substan-
tially increasing costs. However, as shown using the minimum 
cost pathways above, simply ignoring the equity dimension and 
focusing entirely on cost can still worsen air quality disparities, so 
implementation would need to be sectorally and spatially targeted. 
We also show that residential electrification is largely responsible 
for higher pathway costs (Fig. 3A), though industry also contrib-
utes to a lesser extent (SI Appendix, Fig. S8D). The strong corre-
lation between total population exposure and national POC 
exposure (Fig. 3B) indicates that these two outcomes are tightly 
coupled across pathways. However, residual variation in POC 
exposure is strongly associated with the magnitude of emission 
reductions from the transportation sector. The reverse pattern is 
true for the electricity sector (SI Appendix, Fig. S8G), in part 
because electricity and transportation are the largest sources of 
GHG emissions, so NDC- constrained random pathways with 
high transportation emission reduction are also associated with 
low electricity emission reduction.

Transportation emissions drive differences in disparities between 
randomized pathways, as illustrated in Fig. 4, which summarizes 
the national and state disparity changes and shows the impact of 
removing transportation emissions on exposures and disparities 
(Fig. 4 C and F). Since each randomization includes a different 
combination of sectoral reductions, we are able to demonstrate 
that transportation reductions reduce disparities and exposures 
disproportionately for POC (changes from all sectors are shown 
in SI Appendix, Fig. S9). Each randomization is associated with a 
new set of national disparities (Fig. 4A). Black disparities decrease 
relative to present day, while Hispanic and Asian disparities 
increase, and POC and White disparities remain relatively similar, 
though the slight skew toward increases and decreases, respectively. 
The difference between the distributions is substantially smaller 
without bias correction (SI Appendix, Fig. S10), but the relative 

A B

Fig. 3. Sectoral influence in randomized experiments. National POC exposure as a function of cost, colored by reductions in residential emissions (A), and 
national population–average exposure colored by reductions in transportation emissions (B). There is little relationship between cost and POC exposure, but 
POC exposure and total exposure are strongly correlated. Costs in the randomized experiments are strongly dependent on the residential sector (A) and POC 
exposures tend to be lower when more transportation emissions are reduced (B).

http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
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positions are similar. The increase in Hispanic and decrease in 
Black disparities are consistent with recent historical trends 
(Fig. 1), as are the skews for POC and White disparities. All expo-
sures decline as a result of emission reduction (Fig. 4 D and E), 
which reiterates the cobenefits of climate policies. Distributions 
of state disparities remain largely unchanged (Fig. 4B), but reduc-
tions in transportation emissions are associated with dispropor-
tionate exposure and disparity reductions (Fig. 4 C and F and 
Materials and Methods). In most states, transportation emission 
reductions improve air quality for all demographics while simul-
taneously exhibiting large equity cobenefits compared to other 
sectors. Residential emissions demonstrate a similar but less pro-
nounced pattern (SI Appendix, Fig. S9).

Discussion

Our results suggest that it is indeed possible to reduce, but not 
eliminate, air pollution exposure disparities through targeted 
implementation of climate policy. We find that the largest dispar-
ity reductions arise from directly targeting emission reductions in 
communities of color, but explicit consideration of race in envi-
ronmental policy has thus far been explicitly avoided to limit 
potential legal challenges (20). We find that strategies that avoid 
this political and legal sensitivity by targeting income, cost, or 
equal fractions across sectors and counties are not particularly 
effective at reducing disparities. The use of historical pollution 
exposure (PM2.5 Exposure pathway) for targeting is moderately 
effective at reducing disparities (Fig. 2B), and even more effective 

at reducing relative exposures (Fig. 2D). This implies that explicitly 
targeting air pollution reduction in communities with historically 
high pollution, as is done in some contemporary US climate pol-
icy, could reduce racial pollution disparities, though the continued 
use of income could have the opposite effect.

As with all modeling studies, our results are subject to model 
bias and model limitations. InMAP, the reduced complexity air 
quality model used here, only outputs annual average outdoor 
PM2.5 and therefore does not capture daily or seasonal variations; 
indoor air quality; or the impact of air pollutants such as NOx, 
ozone, or heavy metals. The inputs are based on one national 
emission inventory and 1 y of meteorological dataset, which are 
imperfect and do not capture the interannual variability of mete-
orology or human behavior. However, the high spatial resolution 
and low computational time allow us to run many simulations 
and calculate racial/ethnic pollution exposures and disparities.

Disparities and exposures are both useful metrics for air quality 
equity. Disparities are a socially and ethically relevant concept, 
and a stated priority of the US federal government, while exposure 
translates directly to health impacts and observations. If changes 
in disparity and changes in exposures are not perfectly corre-
lated, some amount of exposure reduction may be substituted 
for additional disparity reductions. Although such a pathway is 
possible, this trade- off appears unlikely to occur in practice when 
policies are constrained by a GHG emission target (Fig. 3B). As 
has been previously proposed, prohibiting unequal exposure 
changes from new projects that require environmental impact 
assessments (e.g., freeways and power plants) would decrease 

A B C

D E F

Fig. 4. Disparity and exposure changes and transportation influence in randomized experiments. (A) Distributions of changes in national disparity relative 
to the Unmodified 2017 case for each randomized experiment (N = 300 per distribution) (B) Distribution of state disparities (N = 48 per distribution) in each 
randomized experiment (faint solid lines, N = 300 distributions) and the Unmodified 2017 case (darker dashed lines). (D and E) Equivalent distributions as for (A) 
and (B), using exposure instead of disparity. (C and F) Distributions of state- level linear regression coefficients (N = 48 per distribution) from modeling disparity 
(C) and exposure (F) using fractional change in all the four sectors; only transportation coefficients are shown as they have the most disparate impact.

http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
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differences over time (21), which would inevitably also lead to 
decreases in disparities.

We only address the impact of emissions that are not directly 
anthropogenic, like desert dust and wildfire smoke, through a bias 
correction. These emissions are not an input to the model and 
therefore are also not included in our NDC implementations. 
However, despite confounding factors such as inherent model bias, 
we interpret the bias correction as an approximate incorporation 
of these missing emissions (SI Appendix, Fig. S1C). Generally, the 
inclusion of these sources results in a decrease in disparities for 
POC. In particular, given that a larger fraction of the Black pop-
ulation lives in the eastern half of the United States, the 
national- scale Black disparity is decreased because the correction 
decreases the contrast between the eastern and western halves of 
the country (SI Appendix, Fig. S1). Wildfires, in particular, have 
more annual variation in their intensity and location compared 
to regulated emission sources and have been increasing in magni-
tude in recent years (22). This trend has renewed efforts to better 
understand the health impacts of short- term vs. long- term expo-
sure to smoke (23) and of wildfire smoke vs. other PM (24), as 
well as the equity of access to indoor air pollution control (25). 
Whether wildfires and similar types of sources should be included 
directly when calculating disparities depends on the policy objec-
tive. Health impacts are largely a function of exposure, so if the 
primary focus of a policy is inequity in health outcomes, then 
“natural” sources like wildfires are clearly pertinent. However, if 
the primary focus of a policy is addressing the structural inequities 
around, for example, siting of emission sources, wildfires are less 
relevant.

All emission reductions considered here as part of our NDC 
implementations are associated with improved air quality. 
Emission sources are rarely evenly distributed across populations, 
which makes crafting policy to address disparities more compli-
cated. Industrial emissions have long been a focus of environmen-
tal justice concerns because industrial facilities have often been 
intentionally colocated with communities of color (26, 27). 
However, our No Industry simulation and randomized experi-
ments suggest that even large- scale industrial facility removals may 
not substantially reduce disparities. It is worth noting, however, 
that we do not analyze the impact of individual facilities, some of 
which are likely to have large equity cobenefits from reduced or 
removed emissions.

Among all the anthropogenic sectors considered here, we iden-
tify transportation as having the greatest potential for reducing 
pollution in communities of color via climate policy (Fig. 4C and 
SI Appendix, Fig. S9). Recent empirical studies also found that 
transportation impacts are inequitable, though not in the context 
of GHG reduction (28). We have assumed that electrified trans-
portation will not require new fossil fuel–based electricity gener-
ation, which is not guaranteed. This result for transportation 
should therefore be interpreted as a first- order estimate of remov-
ing on- road emission sources as part of climate policy, not an 
exhaustive representation of a full energy system that couples 
transportation, electric power generation, and other sectors as is 
often done in transportation- specific studies (29). Studies that do 
include this coupling have shown that population- average health 
benefits are concentrated in the Western United States, but present 
everywhere in the United States when grid electricity is largely 
from renewable sources (30).

One challenge when creating policy to address air quality 
equity is that such policies target pollution sources, not pollution 
receptors. We have assumed in the design of our simulations that 
proximity to impacted communities is a good proxy for reducing 
concentrations in those communities; in other words that the 

sources causing inequitable pollution are located in the commu-
nities experiencing the inequities. Although this may often be 
true, the transport and transformation of pollutants through 
variable meteorological and chemical background conditions can 
complicate this relationship. In the case of transportation, the 
relationship between the source and the receiver of pollutants is 
further complicated by the sources’ mobility. Infrastructural and 
economic inequities mean that the people or organizations 
responsible for the pollution are often not those who experience 
the burden (21, 31). Therefore, policies that promote pollution 
reduction may incentivize infrastructural improvements outside 
of the impacted communities. Although such policies may help 
address air quality inequities, they may have consequences in 
other equity dimensions like procedural justice and the economic 
inequality from investments, that are beyond the scope of this 
study, but are nonetheless important considerations in 
equity- focused policy design.

With these considerations in mind, a variety of policy options 
exist for addressing transportation emissions. Low maintenance 
and fuel costs have made electric vehicles (EVs) more cost com-
petitive, but they are still currently more expensive than their fossil 
fuel counterparts. Government programs that decrease the price 
difference between the two options would incentivize a faster tran-
sition. This could include rebates or tax breaks for EVs, increased 
gas tax, subsidized at- home or public charging infrastructure, or 
differentiation in vehicle registration costs. Financially or infra-
structurally incentivizing alternative modes of individual trans-
portation (e.g., walking, bicycling) or modes powered by renewable 
energy (e.g., electric rail, electric bus, e- bikes) (32) could achieve 
the same air quality benefits as replacing the current fleet of fossil 
fuel vehicles with their electric counterparts. Furthermore, these 
alternatives are less energy intensive than cars and trucks, and 
therefore require smaller increases in renewable capacity to power 
them with renewable energy.

Increased air quality equity is not an inevitable consequence of 
climate policy. However, progress toward the NDC’s equity objec-
tives is possible with explicit consideration of the distribution of 
pollution reduction cobenefits. Emission reductions in the trans-
portation sector have the greatest potential to address pervasive 
air pollution inequities. So, although climate policy alone is 
unlikely to eliminate all air quality disparities, investing in clean 
transportation and prohibiting disparate exposure changes from 
new capital projects can help meet the NDC goals of mitigating 
climate change while also improving environmental justice at both 
state and federal levels.

Materials and Methods

Historical PM2.5 Exposure. We use annual Washington University in St. Louis 
(WUSTL) surface PM2.5 concentrations, V5.GL.02. (16), which combine satellite 
data, surface measurements, and modeling results to form a best estimate of 
historical PM2.5 distributions and were shown to have an annual R2 over North 
America of 0.57 or 0.67 when compared to only World Health Organization- 
collocated sensors. For trends in Fig. 1, we use the mean of annual data within 
2 years of 2017, meaning 2015 to 2019. We aggregate the 0.01 × 0.01 degree 
resolution dataset to census tracts using area weighting. Tracts have been 
shown to be a sufficiently high resolution for estimating disparities (33). We 
use ACS5 (2013 to 2017) population estimates for exposure and disparity 
calculations.

Emissions. We use the most recent (2017) NEI from the EPA as the underlying 
emission dataset. As this study is focused on potential cobenefits of climate policy, 
we require inventories of both criteria pollutants and GHGs. The NEI includes 
some, but not all GHG emissions. Most notably for this analysis, residential and oil 
& gas (O&G) GHG emissions are missing. Therefore, we estimate residential GHGs 

http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2217124120#supplementary-materials
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using EPA emission factors and estimate O&G GHGs by running the same emis-
sions calculations as used in the NEI for the criteria pollutants (see SI Appendix for 
more detail). Some emission sources were aggregated and others disaggregated 
using proxies (SI Appendix). GHG and CO2e are used interchangeably, where CO2e 
is the sum of CO2, CH4, and N2O, weighted by their respective GWP100 (CO2: 1, 
CH4: 25, N2O: 298). The emissions and their respective sector categorizations 
have been made available through the Harvard Dataverse.

Idealized Decision Pathways. The five idealized pathways (Equal, PM2.5 
Exposure, POC, Income, and Least cost) were designed to heuristically explore the 
implications of a wide range of decision criteria. Total GHG emission cuts in each of 
these pathways meet the 50% reduction target and at least 80% reduction of GHG 
emissions of electricity generation, in approximate accordance with the 2035 100% 
clean electricity target. The Equal pathway does not have this 80% criterion, because 
emissions are removed equally from all sources to meet the NDC. The other pathways 
use one county- level criterion to rank all accounted emissions from the continental 
United States and remove sources sequentially until the NDC has been met (more 
detail in SI Appendix). The county ranking for the PM2.5 Exposure pathway is based 
on 2015 to 2019 average PM2.5 concentrations from the WUSTL dataset to limit the 
impact of interannual variability when determining the most polluted regions. The 
rankings for the POC and Income pathways are based on the county- level version 
of the 5- y (2013 to 2017) American Community Survey (ACS5) from the US Census 
Bureau. For the POC pathway, we use the non- White, non- Hispanic fraction of the 
population and for the income pathway, we use the median income.

Both the GHGs and the criteria pollutants of the selected sources are set to 
zero, thereby directly coupling the GHG emission sources. Not every emission 
source was considered for removal—we limit the analysis to power plants, on- road 
transportation, residential fossil fuel use, and a subset of industrial emissions: 
cement plants, steel plants, pulp and paper plants, petroleum refineries, and 
oil & gas production; not all criteria pollutants are removed from these sources 
because we assume carbon capture and storage (SI Appendix).

Randomized Experiments. No idealized decision criteria is imposed for the ran-
domized experiments. Instead, we randomly select a national fractional reduction 
of electricity, transportation, residential, and industrial emissions required to meet 
the NDC. This was done by initializing a fraction from a random uniform distribution 
for each sector. We then calculate the total resulting emission reduction from the ini-
tialization and randomly select a sector to increment slightly; we repeat this process 
until we have a set of fractions that meet the GHG reduction criteria. After selecting 
a fraction for each sector, sources are randomly eliminated from around the country 
until those fractional reductions are fulfilled, again completely removing all GHGs 
and criteria pollutants from each source. Due to their mobile nature, we also remove 
nearby county emissions when removing transportation emissions (SI Appendix).

Coefficients describing the change in exposure or change in disparity as a 
function of fractional reductions in each sector (Fig. 4) are conducted using ordi-
nary least squares:

disparitygroup
run

= cele ⋅ f
ele
run

+ ctra ⋅ f
tra
run

+ cind ⋅ f
ind
run

+ cres ⋅ f
res
run

+ c0 + �run,

where f is the fractional reduction in each sector’s GHG emissions (shown as 
superscript) and each simulation (run) is a point in the regression. This is repeated 
for each state. The resulting coefficients (e.g., ctra for Fig.  4C) are plotted as 
distributions.

Air Quality Modeling. To simulate air quality, we ran InMAP version 1.8 over the 
continental United States with the default variable grid configuration (15). InMAP 
is a reduced complexity model (RCM) that finds an annual equilibrium solution 
using user- defined input emissions. The variable grid means that locations with 
higher population density have smaller horizontal resolution, which is helpful 
for quantifying air pollution disparities. The model output resolution is variable, 
with very low resolution of around 50 km in low population density areas and very 
high resolution of up to 120 m in populated areas. To make results comparable, 
both to observations and between simulations, we aggregate the output to census 
tracts using area weighting.

Area emissions were allocated to appropriate subcounty regions using spatial 
surrogates. On- road emissions were allocated to roads using annual average 
daily traffic from the Department of Transportation. Heavy trucks are limited to 

Interstates, Freeways, and Expressways. Residential emissions were downscaled to 
tracts using 2017 ACS5 tract population. Ship, port, rail, and agricultural emissions 
were also allocated using proxies (SI Appendix) though they are not modified in 
our pathways. Shapefiles of the input emissions for the idealized pathways have 
been made available through the Harvard Dataverse.

InMAP is a useful tool for this type of study because it is computationally inex-
pensive and can therefore be used to run many more simulations than would be 
possible with a more conventional chemical transport model. However, despite the 
high spatial resolution, the temporal resolution is limited to annual, and the model 
only uses one one set of meteorological data. Furthermore, there is no modeling 
of NOx, ozone, or other air pollutants, and as with any atmospheric model results 
depend on parameterizations and the quality of input data. These limitations are 
relevant to the interpretation of this and other studies based on RCMs.

Bias Correction. We applied a tract- level bias correction using 2015 to 2019 
mean surface PM2.5 data from the WUSTL dataset described above. We regrid both 
the InMAP simulation output and the gridded WUSTL dataset to the tract level 
using area weighting. We take the difference between the InMAP simulation that 
uses the unmodified inventory, and the WUSTL dataset, and use that difference as 
the correction for all InMAP output such that PM2.5 absolute differences between 
the simulations remain unchanged but baseline concentrations are better repre-
sented (SI Appendix, Fig. S1). We believe this better represents the true distribu-
tion of PM2.5 and allows the model to define the differences. Many of our figures 
are repeated in SI Appendix without this bias correction to demonstrate that this 
methodology does not fundamentally impact the interpretation of our results.

Costs. We estimate costs of the NDC- constrained pathways using different bot-
tom- up approaches for each sector. All costs are estimated relative to a fossil 
fuel–dependent alternative. These estimates are not intended to be exact, but 
rather to illustrate differences between pathways in a self- consistent manner. They 
represent total societal costs and do not differentiate by the different actors that 
may bear the burden of the costs. The costs are spatially and sectorally heteroge-
neous, but otherwise linear (e.g., electrifying half of cars in a certain county costs 
half as much as electrifying all of them). All costs, after adjusting for inflation to 
2020 US dollars, reflect the changes required to meet the 2030 mitigation targets 
and are annualized using a 5% interest rate assuming that the costs continue over 
time (unless otherwise specified).

Electricity sector costs are estimated as the cost of replacing existing fossil fuel 
power plants with the cheapest available renewable energy generation in the region 
using the input files to the USA Global Change Analysis Model (GCAM- USA). These 
costs include capital cost, grid interconnection cost, operating and maintenance 
cost, and fuel cost. Transportation costs are estimated as the cost of electrifying the 
fleet, using capital and maintenance costs based on GCAM input files and using 
vehicle miles traveled from the Federal Highway Administration and GCAM energy 
intensities for fuel costs. Residential costs are calculated as the premium required to 
decarbonize residential sources, specifically to electrify space heating, water heating, 
stoves, and dryers that are powered by natural gas, propane, or fuel oil/kerosene. 
This relies on purchasing costs from the gray literature and the Residential Energy 
Consumption Survey for fuel costs. As described above, only some industrial sources 
are removed in the pathways. Since refineries and O&G facilities can be completely 
removed in our simulations, costs are based on the value- added estimates from the 
US Bureau of Economic Analysis, excluding the gross operating surplus since this is 
not a component of societal value. For cement, steel, and pulp and paper facilities, 
we use the cost of implementing carbon capture and storage from Leeson et al. (34). 
Details of all cost calculations are available in SI Appendix.

Data, Materials, and Software Availability. Previously published data were 
used for this work [ref. 16, EPA National Emissions Inventory (2017) https://www.
epa.gov/air- emissions- inventories/2017- national- emissions- inventory- nei- data].
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