UC Irvine
UC Irvine Previously Published Works

Title

How programming can become counterproductive: An analysis of approaches to
programming

Permalink

https://escholarship.org/uc/item/4n05k3sd

Journal
Journal of Environmental Psychology, 12(1)

ISSN
02724944

Author
Mazumdar, Sanjoy

Publication Date
1992-03-01

DOI
10.1016/50272-4944(05)80298-1

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4n05k3sd
https://escholarship.org
http://www.cdlib.org/

Journal of Environmental Psychology (1992) 12, 65-91

0272-4944/92/010065+27$03.00/0

1

© 1992 Academic Press Ltd

=PSYCHOLOGY

HOW PROGRAMMING CAN BECOME COUNTERPRODUCTIVE:
AN ANALYSIS OF APPROACHES TO PROGRAMMING

Sanjoy MAZUMDAR

Program in Social Ecology, University of California, Irvine, CA 92717, U.S.A.

Abstract

I propose seeing environmental programming as varied and differentiated, and more specifically as having a
diversity of approaches, which are best treated differently. I develop a typology of approaches to programming,
based on the mode of data collection, analysis and presentation, and describe how their inherent assumptions,
epistemological, ontological and methodological positions affect the efficacy of programming, often rendering it
counterproductive to its original aim of assisting the designer in producing suitable physical environments. I
discuss the implications of, and issues with, the different approaches to programming, and elaborate on the

counterproductiveness of programming.

Introduction

Architectural and environmental programming
were the names given to a set of activities intro-
duced into the design process which involved the
description of the needs/wants of the occupants
through the systematic and comprehensive collec-
tion and analyses of data, the specification of goals,
objectives and performance criteria, as well as the
presentation of this information to the primary
stakeholders—occupants, clients, designers (Preiser,
1975, 1976, 1978, p. 1; Wade, 1979; Palmer, 1981,
p. 17). It was expected to assist occupants, clients
and particularly designers in producing occupant
suitable designs (Figs 1 and 2) (Richardson, 1969).
Whereas in the past architects designed based on
intuition, and whatever information they could ob-
tain, with programming there was an effort at sys-
tematizing information collection through the intro-
duction of scientific techniques and an emphasis on
designs more responsive to occupants (Palmer, 1981).

These goals seemed laudable, and programming
has been increasingly used in architecture since the
1960s (Davis, 1969), partly as a means to ensure a
more useful and useable built environment. Indeed,
to many, especially those who believe that archi-
tecture ought to cater to human behavioral needs
(Lang et al., 1974; Sanoff, 1977) and those who want
goal-oriented architecture (Preiser, 1978, 1985;
Brill, 1984), programming has become not only an

65

important pre-design phase but almost an institu-
tion. This is an attempt at a systematic institutional
analysis of programming. The question of interest is
how effective is it in achieving its aims and how does
programming become counterproductive?

I present a typology of approaches to program-
ming along with an analysis of the assumptions and
positions involved in each. The efficacy of the
program can be affected by the format selected for
presentation of program information. Even when
one accepts the broader instrumentalist aims and
assumptions of programming, analysis shows that
inherent in the choice of an approach are stances,
positions and assumption which affect the efficacy of
the programming effort as this paper is intended to
illustrate. There are ontological and epistomological
differences between the approaches, as will be
evident from the descriptions to follow. Viewing
programming as varied allows us to highlight these
assumptions and positions that underlie the choice
of an approach, as well as the implications each has
for the effectiveness of the programming effort
(Zeisel, 1971). While in theory programs and pro-
grammers are supposed to ensure that the needs of
all occupants are properly represented, this does not
always happen, as I will show. I analyze issues
related to the approach selected for the program, the
advantages and counterproductive aspects of each. I
conclude by elaborating on the implications of this
study.

66 S. Mazumdar

Client

Architect
{

Project
inception

Ficure 1.

Analysis of the qualities and characteristics of the
different approaches to programming can help us
understand the strengths and weaknesses of each. It
can assist in the selection of an approach, given a
building project. It can also assist in devising new
approaches to counteract problems with existing
ones, by combining approaches for example. Thus,
this critical analysis is intended to focus attention
on the ultimate goal of creating more suitable and
responsive environments.

The idea of developing a conceptually constructed
typology of programming occurred while I was
involved in developing a program (X’) for a depart-
ment of a large organization.! The process was
designed with sufficient care to ensure that this
program contained almost all elements that would
lead to the satisfaction of all concerned stake-
holders. Program X? and the finished architectural
product were satisfactory to most. Yet the act of
doing program X, the research associated with it and
further thought revealed that the approach to
programming selected by our organization had
some potential counterproductive aspects, and that
several aspects and unresolved issues generic to
programming can make it potentially counter-
productive. The following sections deal with one
set of these. They are based on reflections about
the process of programming, the author’s role as
a programmer, on interviews carried out during
and after the process was completed, a brief review
of some writings on the subject, and a review
of approximately 25 programs done by several
organizations.?

Client Occupant Programmer
N\,

[}
|
| \,
|

Praiecr_

. A Programmin
inception ogra ing

Architect

Buiider
1
|

Occupant

!
|
| |
| |
I 1

Pre-existing design process.

Form of analysis

Before getting into the specifics of the different
approaches it will be useful to describe some general
aspects of the approach adopted here.

In examining and classifying the various approa-
ches to programming I am concerned primarily with
the manner in which program information is pre-
sented in the final program document to the stake-
holders and also in the way the data is collected and
analyzed. I am taking the view that programming is
a step preceding design in the design process, in
which information regarding the functions of the
building and the wants of the occupants is collected
and set forth as features the design ought to
accommodate.

In analyzing each kind of program I shall look at
several important aspects.

Philosophical position: Philosophical positions are
involved in each of the approaches. How should
people’s wants related to building be catered to, and
therefore how should program information be col-
lected, analyzed and presented? On one end of the
continuum emphasis is placed on society, a position
I label ‘culturalism’ or ‘societalism’, with the indivi-
dual seen as subordinate to society. Societalists
emphasize and attend to social agreements, shared
values, mores and norms of the group, social
affinities and cleavages, socially negotiated arrange-
ments, social aspirations and ideals, not found in the
other approaches. At the other end is a position
labeled ‘individualism’, where the emphasis is on

Builder Occupant

| | !

i | !
| |
{ {

Ficure 2. Modified design process including programming.

Programming Approaches 67

the individual, with little or no attention given to
society. In this position individual preferences,
desires and wants are described. The individual
thus is seen as paramount. Individualism encour-
ages the representation of individual idiosyncracies
which the architect can cater to. Taking the philo-
sophical position of individualism involves assum-
ing that the individual occupant’s wants are more
important and ought to be represented as such in
the program which may overlook other important
aspects. While individual occupants are dealt with,
group values and effects of social mediation of
spatial wants are not addressed. Hence it is possible
to err with regard to group or organisational
suitability, since these are not dealt with by the
program. In another position, ‘aggregatism’, individ-
ual preferences are subjugated to aggregated major-
ity opinion. In instances individual responses are
reduced to typicals or means mathematically com-
puted from aggregates of individual opinions. This
places greater emphasis on common features and
through mathematical computation reduces some of
the variability of individual preferences. Aggrega-
tionists feel this reduces some of the ‘error’ asso-
ciated with individual responses. Catering to these
would satisfy those whose profile most closely
matches the typical. Yet most people do not think of
themselves as typical, but rather prefer to think of
themselves as somehow distinct from others and
unique. Individualists would claim that this method
takes away some of the characteristics and idiosynec-
racies that individualism is able to provide and cater
to. Individualists assume that .societal values
appear in individual preferences, since an individual
is a member of society and, responding to individual
wants, will automatically cater to societal values.
Culturalists would argue that unless the focus was
on finding them wants expressed by individuals may
not reflect societal values. Aggregationists may also
believe that distilling commonalities of individual
responses will capture societal values. Societalists,
on the contrary, would argue that societal values
and preferences are not equally distributed in the
population and that majority opinion or mathemat-
ical computation of means from individual responses
may not lead to an understanding of societal values.
Thus it seems highly probable that the three
philosophical positions and their methodologies can
lead to very different kinds of information.

Neutrality [stance. Each approach can be seen as
representing, aiding, to a greater or lesser degree,
one set of stakeholders and therefore having a
stance. Categorizing each approach as ‘pro-archi-

tect’, ‘pro-occupant’ or ‘pro-programmer’ in stance,
even though this might cast the position a little
starkly, helps in assessing the non-neutrality and
implied position of each approach and brings atten-
tion to who a particular approach favors.

Representation. Representation of occupant wants
is essential for the architect to understand them and
design accordingly. What gets represented and what
does not and the mode of representation can directly
affect the effectiveness of the program.

Conversion. Conversion of social and behavioral
information into clear spatial terms is necessary at
some point for the programmatic requirements to be
provided by the design. A good portion of the
information collected in programming is social and
behavioral in nature, including descriptions of activ-
ities, which can be presented as such in the program
with the conversion left to the architect. Alterna-
tively, the programmer can convert the information
into spatial terms with specifications of spaces and
their qualities and characteristics. The latter
requires of the programmer some familiarity with
the kinds of information architects need and the way
they organize and use information (i.e. speak the
architect’s language) for it to be useful. Such
information is likely to be more intelligible to
architects than behavioral information. Who con-
ducts this conversion with what skills and tools can
affect the effectiveness of the program. As will be
pointed out, some approaches leave this task in
more capable hands than others.

Fidelity /discernability. The program can be
expected to provide information that has a high level
of fidelity or faithfulness and accuracy. As will be
obvious later, the fidelity of the information provided
by the different approaches is not equally high.
Some actually obfuscate important information
which can make the program counter-productive.
Discernability is a factor by which we can judge
whether the requirements of different individuals,
aggregates or groups combined for programming
purposes are identifiable in the program.

In-depth up-close knowledge and understanding.
To what extent does the program provide the
architect with good in-depth knowledge and under-
standing of the world and life of the occupants? To
what extent can the architect remain distant from
the world of the occupant? These relate to the
sensitivity with which the architect understands the
occupants’ world and designs for it.

68 S. Mazumdar

Verifiability. 1t is often necessary for the architect
to find and verify specific pieces of information
provided in the program, and to check for errors.
Such verification is more easily accomplished with
some approaches and impossible in others without
re-programming. Checking design provisions
against programmable requirements can assist in
ascertaining the suitability of the design (Farbstein,
1978).

Skills. Certain skills, such as collecting, analyzing
and presenting program information, are necessary
for program-related tasks. Effectiveness of programs
can be affected whether the programmer has the
skills necessary to carry out those tasks. For
example, does the programmer have the skills to
collect and analyze individual, aggregate and group
wants?

Appropriateness. Appropriate or suitable to the
occupants was the reason for the introduction of
programming. Should the building be appropriate in
a coarse sense or fine? Does the approach selected
for the program affect appropriateness?

Assumptions. Each approach has certain assump-
tions regarding the kind of information to be
presented, how is it to be collected, and the role of
the programmer. These affect decisions regarding
the program. When these assumptions turn out to be
invalid or wrong the programming effort can become
counterproductive.

Approaches to programming

Conceptually, programming can have several differ-
ent approaches based on the final form of the
program and the mode of data collection and
analysis. My intention is to consider what each
selection entails, irrespective of whether these are
different programs or in the same program. While
some approaches may appear better than others, my
attempt is not to ‘advocate’ any one approach.

The categories I have devised have two primary
dimensions. One dimension takes into consideration
the orientation of the program (Farbstein, 1978).
Broadly, the program can be space oriented or
person oriented. Information for the program can be
collected and presented from the point of view of the
spaces required or that of occupants and their wants
(Proshansky et al., 1970).* The second dimension,
whether space or people oriented, is based on the
program’s analytical unit, which can be individual,
aggregate or group. Together these yield six possible

approaches to programming as shown (Fig. 3).
Individual is used to indicate unitary space or
person. Aggregate refers to the clumping together of
units sometimes on the basis of certain common
characteristics. It is essentially a mathematically
computed picture. Clump refers to aggregates not
very meaningful to the occupants. Aggregate spaces
refers to spaces aggregated or clumped together so
that they could be dealt with together. Aggregated
persons refers to a number or set of persons
aggregated together, often based on certain common
characteristics, so that they could be dealt with
together. Group refers to an organization or combi-
nation of units meaningful to one or more sets of
occupants or other stakeholders. Grouped persons
refers to a social unit of interacting individuals with
shared, negotiated values and preferences; they
need not share common characteristics other than
group membership. Grouped spaces refers to the
grouping together of spaces, not necessarily with
common characteristics, which serve a common
architectural purpose or theme to be utilized in the
design.

These are analytical categories, and could also be
seen as positions on a continuum. The distinctions
among the categories depicted are not very rigid as
they may seem, since in practice it is possible for a
programmer to produce different programs using
different approaches or to combine several approa-
ches in a single program.

A description of each approach can be concisely
presented in a chart (Fig. 4) which enables compar-
ison along several dimensions.

The dimensions described are objectives, charac-
teristics, assumptions, advantages and disadvan-
tages/counterproductive aspects. Each approach can
be said to have a primary objective of providing a
certain kind of information, such as whether to
present the requirements of the people or of the
spaces. This is described under the section titled
objectives. The section on characteristics describes

ANALYTICAL UNITS
INDIVIDUAL | AGGREGATE | GROUP
SPACES Individual Aggregated | Grouped
(clumped)
Spaces Spaces Spaces
—
PERSONS Individual Aggregated | Grouped
persons (clumped) persons
persons

Ficure 3. Approaches to programming.

69

Programming Approaches

{panuuod)

Y81y soyyer ewurerdord jo AIqisuodsey]

UOTSISAU0D

10J jJ0U JNq d[qB[TEAR UOTjRjUssaldel pur ‘sis[Bue ‘UOIJIS[[0d BIED JO S[IYS
a[qrssod jou saveds [enpiarpur Jo SUryoeyd ‘e[qrssood J0U UOIBOYLIOA

mof ‘uoryedousSSe ‘opour [euonyeiussaides Jjo AIQLII[OIU]

191880 J0U SUNTALRG

a[qissod jou AJ[IqRUINISI(]

pepunput uoryewrxoxdde suos se Y31y sB J0u AJ[OPLY

ST003 JO £91048IS 0} oNp ASBS J0U A[9SI8AUO)

alqissod A[posarp

10U soords [enprarpur jo sjuswreambar pue sjuem juednoso Surjusseideyy
sy

-qoad umo sey pue sioyjo spo[feu uoneSaidse Jo uonisod [eOIYdOSOTIYJ

{eoryuept a1e 9jeSesS8e ur syrun ueym ofqrssod suorsiacad uSisep jo Suppay)
1] $998 aYys/eY

se seoeds SunpedeadSe £q uonynyadal pue Louepunpal 8onpal UL IBWWERIS0IJ
sjusweainbar orpewweL3oad Jo uSisop st A[rqIsuodsad § 303 YLy

SISATRUR [BID0S PUB UBWNY IN0 AIIBD 0} BABY J0U $90D J09)IYITY
sjueuwreanbai [erreds ojur sjURM Juedndds 3I0AU0D 0} pesmbad Jou JRYIIY
0] popuajie SWISIU0D PUB $ISAIIUL §JOOUYIIY

STIINS I9Y/STY paadxa jou [[ix JewtrerSoxd oy Jo Liqisuodseyy

Joururess

-oxd o1 M 8q [[Im uordidep pue SISATRUER ‘UOIINL[[00 BIEP 0] S[[DIS
yoeoadde supy

u1 suop 8q ued suoisiaold uSisep Furyosyd pur sjuBM JUBANII0 JO UOTIBRIYLIBA
yoroadde siyy Aq pepraoad sjuednodo sy jnoqe a3pejmouy yidap-ur

Y81y oq [[IM UOTJEULIOUT JO AYIIQLIT[[eU]

yoroadde sty) ySnouys suop aq [[Im sjuem sjuednodo Jo Sunisleg

yS1y sjuem juednodo jo LJ[IqRULSISIP PUB UOTIBULIOJUL JO AYT[SpLg
sourmretdoxd ety

Aq ouop aQ UuRd SULI3) Jerjeds 0jJUT BIED [RIOIABYS(PUR [BIDOS JO UOISIOAUO))
saoeds pejedaiSse Jo

syusweanbea Sunordep ySnoayy aqissod syuem juednado jo uonjejussardey
[wstpeSer33e, jo uoryrsod [eoTydosoryg

soue)s ur JewweiSoad-01d,

‘spoadse [e10s pue uewiny jo siseydus jJo joe|
‘spoadse [eotsAyd Jo siseyduay

a1e80i33e Yaro Ul Joquinu oY) pue sejeSoiSde Jo Jaqunu Y] e

sooeds pejedesdde ayj Jo syuednooo 9y e

918801338 s1y] Aq pasnoy pelioddns aq 0 SOIIIATIOE @

uo1)e20] pasisjaid e

sejefesdde so130 03 ATYsuOIIB[oT ©

o1e80a33e yora 0] saryI[enb [ejuowuosiAUe pue [BoISAYd ‘[ReinioeyoIe «
:89qLIOSSp pue $I8T']

UOTIBIY1IUapP! 10§ Joquunu Jo sweu e usai§ aedsidde youy

seoeds Jo sjefei3de ue st uorpdLIdsep pue SISA[BUER JO JIU()

Kem oulos ul pejeSosdSe seoeds Jo syuswrarmbed aqLidsap qf,

ySry tewrwrerdoxd jo Lyiqisuodsey

UOISIDATUOD J0] 10U JNg

‘srourtresSoad 03 a[qe[ieAR L[[RIousS SISA[RUR PUB UOTO9[[00 BIBD J0] S[[IS
BurwureiSoxdsa noyjim o[qissod 10U UOTIBIYLIOA

papraoad jou syuednooo Jo afpejmouy yjdep-ug

SopeI) 10] PIJE[NULIOJal 8¢ 0] Peau sjuswalmbal se Asee jou Sumisleg
sooeds uo siseydwe Aq pezipaedos(A31jiqeura0sIp pue £I[optyg

a[qissod A[isea 10U SWLId] [BIjRds 0JUl sjuBM Juednodo JO UOISISAUO))

seoeds snorewnu Yiim sqol agrey 10y pue

‘goeds ur sjuednodo [BI9ASS UsYM J[NILPIP sjuem juednodo Jo uorejusseideyy
S19730 J0 199180u sorjduar wsifenpiatpui, jo uornisod jesrgdosoiiyd

papIoae siepuniq Jofewr pue suop aq ues suostaoid udisop jo Surydey)
syuawermbar srjewrurerdoad

Surgeew pue udisop Yy Lpoand Surfesp 03 peonpad AI[igisuodssa s 309]1Yary
Furures 1oy

/ST UTYILM J0u sy0adse [e1os pue uewny 0} pusyyg 0} paambal j0u 1093142y
sjuewaImboa

[eireds ojul sjuem juednddo Jo UOISIOAUOD 98w 01 pasmnbar jou 309314ory
0] POPU)IB SUIDUOD PUR $1S0ISIUI §J0NTYILY

IB9[0 9IB SI0LID pue sYse) Joj AJI[Iqisuodsey]

speuolssajoad ay3 ym sqqeprese yoeoadde styy £q peambai s|jyg
alqrssod suoistaoxd udisep Jo Suryoayo pue sjuBMm JUBRANI0 JO UOIIBOYLISA
popiacad syuednodo oY) Inoqe adpsmouwy yjdep-ug

YSTY 099TY2IE S} 03 UOHEULIOFUT JO ANTIqLIN[a7u]

yoeoadde s1y3 £q psjqeue sjuem juednodo SuIdIAleg

y31q sjuem Juednooo Jo AJIqeUILOSIp pur uorejussaides ul AN[opL]
Jeururexdoad

Aq peysidwosoe aq uwd swle] [BjBdS 0jUT SIUBM JURdNIN0 JO UOISISAUGD
sooeds [enpIATpUl paylal ySnoay) sjuem juednodo Jo uonpetussaideyy
JISTRnpIAIPUT, Jo uonisod JeorydosoTiyq

30URYS UL JO9YTYDIR-04,

‘spoadse [eos pue uewny uo siseydurs jo yoery
‘syoadse TeorsAyd uo siseyduryy

sjuednooo Jo JequInu e

aords 31dnod0 oym

ooeds ey} £q pesnoy parioddns senyiAllOE o

U017B00] poaIgyeld e

saoeds J91j30 07 diysuonelal ¢

$91]1[eND [RJUsWUOLIAUS PUR [BIISAYd ‘[BIn)dejiydie e
S9qLIDSOp pue §IST]

uorjesyrjuepl J10J IOqWINU JI0 sWBU UsALd soeds yoey

9oeds Jo jrun [enplarpul ue—uordiIdssp pue sIsA[eue Jo jupy

9oeds [enplAIpUI YorD JO sjuswalnbal aqLIossp qf,

yoroidde sooedg pojedoadly

yoeoadde seoedg [enprarpuy

spoadse
aanonpoad
I9JUno)
/sefejueapesi(q

sofeiueApy

suonndumnssy

uomsoq

sonsLIsjoRIRY))

2a199(q0

S. Mazumdar

70

(pamuzuod)

UOISISAUOD SaPN[IUL 1991Yale Jo L)irqisuodsay

peoeideu usyo st Ing pepraoad juednodo uo adpsjmouy yidep-uy

P9

-IYDIe JI0J MO] 2q UED UOIJBULIOJUL [BI00S puR [RIOlABYSq U] Jo ANTIqISIj[eru]
Burssaooad [euorippe pseu Lewr Inq d[qrssod sjuem [EOpPIAIpUI Jo SUsIAIag
poyzewr uo Jurpuedep Y81y aq jou Lewr Lyepig

$7007 JO ¥or[Aq PIPUNOJUOD A[SIDAUO))

syued

-N900 JO SI19qUINU 834B[[)IM SNOIPa) sjuem [enplalpul jJo uorjejussexdey
SUOIIRISPISUOD [BII0S N0 SOABS[Wwsijenplatput jo uoniisod pearydoso[iyd

STIIYs Joy/s1y utyim sewmreirdord Jo Liqisuodseoy

AIBss000U S[[IS oY) 9ABY sIowrmresSord

a1qissod 3uryreyd pue UOIJBOYLIIA

431y sjuem [EnprAIpul Jo L)IIqeUILsi(]

SJUBM [ENPIAIPUL Y)IM IBI[TWE] JUI00q 0] PI[[eduIod J09)Iyary
PpodlAles aq uBd sjuem juBdnodo TeNpIAIpu]

pajordep sjuem [enpiarpuy

suostad [enpIAIpUT UO S1 SNY0J Y,

sanyiqedes peanxe jou [[im sfeuoissejoxd oy} Jo Ajqisuodsey

uorptdep

pue sisA[eue ‘UOLIS[[0d BJEp I0] paimbol S[IYs eAey [[IM siowureiSorg
suotstaoxd

uSIsep Jo Surydsys ued sk suop aq Ued uocrjeuLoyur werdord jo uorjEOYLIIA
yoroadde sty Aq papraoid aq [[im syuednddo oayy jo 98parmouy yydap-ug
Y31y 8q [{Im UOHBWLIONU B} Jo APTIqIBT[[eIU]

auop oq ued sjurdnado jo SUIIAISG

9[qIUISDSIp SjUBM [ENPIAIPUL pUe USIY oq [[IM UOHIBULIOJUT 8} JO £[EPL]
a[qrssod surie} [Brjeds 0jUT UOYJBUWIIOJUT [BIOIABYS(PUE [BIOGS JO UOISISAUC))
udtsop sjeudoadde o) pe] UBd SJUBM [ENPIAIPUL JO Uorjejuasardayy
juejiodurt jsow Juednodo [enprarput ‘wsyenpiatpur, Jo uorysod yesrydosoyryg

soue)s ur juednoro-oid,

2a0qe 9] 10J ssouaiojed jeryeds e

SONIAIIOE 9y} Jo Aduenbalj PUB ‘UoIYBIND ‘OUI} @

SO[0X ‘S9NyIATIOR ‘solsLIejaeIeyd sjuednodo yoes e

1§9LIOSOP puB SIST]

POYLIISIP SORIDUASOIPI PUR s90UI9J04d ‘spaau ‘sjuem [enprarpuy
Kyuorid usard uosiad penpiatpuy

uosaad [enpiAIpul 9y} ST dnejlim pue UOTIOL[{0d Bjep JO JIUf)

Juednodo [enpIATpUL
Yoes jo syuowrarmbai {ejeds pue uo uoneuLiojul juesaid pue SqLIISIP O,

Y8y Apoweagxe sewrweadord jo Anpiqsuodsey

szowrnreSoad Suowe uowrurod jou aae Surdnoid 1oy s[g

: a[qissod 10U UOYBIJLISA

soue)sip safeanoous ‘papiaocad jou syuednooo jo adpepmouy yidep-ug
a[qissod £[3oearp jou syuem juednodo jo Sumirzeg

Jood st £[1qBUISOSI(]

UOISIaAU0D Yjim swia[qoxd o} anp Yy £ieA aq jou Lewr £)[ap1g
sonbrutyoe) Jo yaeap o) £q oyewejqoid SpeW UOISIOAUO))

a[qissod £[308aip jou sjuem sjuednodo jo uorjejuasaadayy

udisep

o[qe}ins alow 03 pes| j0u Aew seoeds Furdnoad jo uomrsed resrydosopyd

Y31y aq 0} A[O¥I] UOTYEULIOJUT Jo AYIqLBIT[EIU]

u3189p JO SOTU009NIYIIR I9PISU0D 0} paf[aduuod JeurweiSord
syuswasinbaa snewrwresdoad Sumiates L[uo Lyiqisuodses s3oaIYIIY
sisA[eue [eJolABYaq pue [e10s op 03 paimnbal jou 3003IYdIY
UOISISAUOD Op 0) paambaz jou Joayyory

0] PIPUSIIE [[oM SWIIIUOD PUE SISAIIUL SJIIYOIY

S9THAIOR pUB S[[IS JoY/sIY puofaq jou sewrwerSoad ay3 jo Lypiqisuodsay]
Jowrurei3oxd o3 03 e[qeiear aq [[im Yoroxdde styy £q paambaa s|g
s[qissod sjuswraambax

jsurede suorsiaoad ulisep Surjoayd pue uoneuLiojul wreiSoxd jo UOIIEIYLIGA
yoroadde siyy £q peplacid eq 14 sjuednooo oY) jnoqe edpaymouy yydep-ur
Y3ty uorpeurioyui sededs padnols jo AniqiSiresuy

yoroadde siyj £q pe[qeue sjuem juednodo jo Supialeg

Y81y AIqeuIsstp pue L1epLg

peast

-yor oq ueo [ereds 0JUT UOTJRULIOJUT [RIOIABYSQ PUE [BIJ0S JO UOISIIAUO))
seoeds jo

sdnoid Jo syuewreainbaa Surjordep ySnoayy sjuem juednado jo uoryejuasaiday
u3Isap 9[qe)ns 9I0W 0) ped [[M sddeds Surdnoas, jo uorgisod [esrydosolryg

a0UR)S UI JONIYdIe-01],

sjoadse [etoos pue uewny uo siseydwa jo Yoer]

syoadse [eoisAyd uo stseyduryg

sjuednooo jo JaquInu Iy} e

sjuednodo ayj e

saoeds jo dnoid ay) Aq pejroddns oq 09 senjIAIIOE @
uoredo[pesiajaxd e

dnous 1e1f30 o3 diysuorjeal e

dnoid yoes 10§ sepifenb [ejuswuollAUL pue [EISAYd ‘[RINjIBYYIIE &
'S9QLIOSOP pue sIsT]

UOI}BIYIJUSPL 10) JSQUINU J0 sureu B udALf st dnoxd yoey
sooeds Jo dnoif e st uonidudsep pue stsA[BUER Jo U]

Jo33iydIE 9y 0}
[nyesn pue [nydurusowr Lem e ur padnosd seoeds jo syuewraimbal aqLIOSOp o,

syoadse
aanpnpoad
J9junoD)
/sedejurapesyq

sadejueApy

suoydumnssy

uoryIsoq

sanysLIslIRIRY)

2A119(q0

yoroadde suosiad renprarpuj

yoeoadde mouu.mm padnouay)

71

Programming Approaches

‘SurwrwresSoad o3 seyorordde x1s 97f) jo uosuredwio)) P FANOL

Y8y £L1ea Jeurwrexdoad jo Lijiqisuodsey

szswrwresdoad Suowre uowruIod jou Apnjs [eInJno Jo (IS

a[qrssod qou suorstaoad ulisep jo Furysey)

991

-uoS.ael ssojun §109)1YodB 03 d3ewWE[qodd 9 ABW UOTIRULIONUT JO ANIqLIT[[aju]
uorsIeauod 1adoad wo Juspusdap Sumisleg

s[qissod jou sjueMm [enpIATPUI Jo AN[IqBUISISI(]

$700] JO AJI[IGB[IBABUN 01 8NP IT)BRUWS[qOId UOISISAUO))

pegordep jou seouarsjeid fenplarpul ‘senfea dnoid jo uonejussardey
spoadse

9eS0158e pue [enpulpul saroult wsIje)eos, Jo uorisod [earydoso[ryg

o[qissod UOTIBIYLIDA

sjun [eroos SUi)sIXs 0] [[oM SHIOM

PAIIpISU0D 9¢ UBD SINTBA [BULIAXS Jo uorjisodwl Jo s0afH

sen[ea [RINI[NY/R08 Jo santoddns aq ues sudisse(y

dnois oy 03 (ySutusow sedse U0 poseq 9q ued suSiseq

Juednd2o 8y} JO PLIOM 0] PIINPOIIUT JINYITY

papiaoxd j1un [B130S Jo 95pajmouy| asofr-dn ydep-ug

s309dse [eIn)[nd ‘[B100s puejsiopun 03 pafedwod mwwursiiolg

PoqLIDSSP JUSUIUOIIAUS 0] Furje[ax JO SABM ‘Soq0W ‘son[eA pado[aasp dnoix)
a[doad uo siseyduy

senjI[iqe pue S[[INS Pasoxe Jou [[Im paa[oAul sTeuolssajoxd jo Aqfiqisuodseyy
SISA[BUB [eIn)[no I0] S[IYS SARY SIOWWBIS0IJ

: oqrs

-sod suorstaoxd uSisep Sunjoeyo pue uorjeuriojur wetSold Jo UOIYEOLLIOA
pepiaoad sjuednaoo Jnoqe ofpajmouy] yydep-ur

9IqISI[Sau oq [[IM pUB 91BISNJYO JOU [[IM UOTJRULIOJUT

uoreRULIOIUI [R100s dnoad Jo uonoidsp ydnoaqy 1993eq SUIAIeS
Ly1piqenIoostp pue A10PY YIry ey [[is UoyewWIOfUl dNoiy

o[qissod syuewsaInbaa ferjeds 0jUl UOIBULIOUT ST} JO UOISISAUO))

sdnoid jo £pngs ySnoay) suop 3soq sjuem juednaoo Jjo uonyejueserdeyy
[wstjejeroes, Jo uonyisod [earydosolyg

soue)s ur Juednodo-oig,

soouaigjerd pajelel soeds e

SOLIBPUNOQ pue s93rAead [BI00S e

sjusW9aldr PUB sjUsUWIaSURLIE Pa)eI)0SoU UOUIUIOD @

dnoi8 a3 jo oJif Jo Aem pue ‘sSUTPULR)SIOPUN ‘SISAIUT ‘SoN[eA PaIBYS oY} o
:159qLIOSOp puB $IST'Y

seousajexd s31 pue dnoid ey) uo siseyduuy

uosiad Jo dnosd e st sisA[eU®R JO JTU()

sjuednooo jo sdnoad
Jo sjuem Teneds pue Jutuorpunj ‘@INjeu 9Yj U0 uoljewLIOyul jussaid of,

s[qe[rear sfemle jou sis{[eue aanejruenb pue ‘Suijdures ut s[S
a[qissod jou uryoeyo ‘Surwrwreifoid-a1 oYM S[qIssod J0U UOTJBOYLIGA
aunjord pozijeious3 A[uo papiacid jou oSpajmouy| osofdo-dn ‘yidep-uy
PeIyaIe J0 sjuednooo 0} SIQISI{[AIUT 10U $8LI059780 UOTIBULIOJUT
JUI)SIXe-UOU aq A8 YITYM [Bo1dLY, 98 pawure SUuloisleg

spqissodurt AYIqRUISIST(]

ur Jjmq suorjewrxosdde se aryewaqoad A)EpLg

$100} JO joB[AQ JNOLYIP 9PLW UOISISAUO))

A}

-eyuesardessiur aq Aewr s{em pue sedusisjesd Ljurofew jo uoryejussarday]
SeATJeWIa)[e S[qela s10a[dou wsiye3aisde, Jo uonisod Teorydosoryd

A[ensn s[Is urym ewwerdoxd Jo Apqiqisuodssy]
sonbruyoa) [Bo1ISIIRIS SIINPOIIUT @

JI0M PUB WINIPd] SIINPIT »

;o811 sjuednodo Jo JoquInu UM

seords WO Jou ‘sjuednadoc uo snoiog

a3pe[mouy pue S[[I¥s I18Y] ULYIm sTeuoissajord ayj Jo Lypiqisuodsey]
udISop pPUE UOISIOAUOD 9B 0} S[qe S30031YdIR

pue uoneuniojui pejedesdde quesaxd 03 SIS oY} oaey sidweISOIJ
poyoeyo

aq ues suoisiaoid uisep pue s[qissod uorjeULIOJUl Weidold Jo UOIIEIYLISA
popraoad sjuednooo ey} noqe agpsimouy yidep-uy

21easTyqo jou [im Surjedeidde ‘o[qudreyur papraoid uorjeULIOFUT

sjuem juednaoo Funpedeidfe £q pajqeus sjuem juednddo jo Sumialeg

Y31y £)IIqewIsdSIp pue UOIBULIONUI Jo AYI[OPLY

arqissod syuswaimbal [eryeds ojul ejep [RIOIABYS(PUE [BII0S JO UOISISAUOC))
uorjederdde ySnoIy) suop 1soq sjuem juednoado jo uonjejussardey]
juejrodunr se uses sjuem pajeSoidse ¢ wmsrpe8eadse, Jo uorysod Tesrydosoryg

eoue)s ur Jewuwesdord-oig,

soousrjeld pue sjuswsambal [Bryeds 1s9jIUL @

Aouenbay ‘wonpeinp ‘ourr) A1oY3 ‘9jeSesdSe Yoea Jo SAIJIATIOR o

paje3dei38e suostad Jo sonsLIoRIBYD [RI1dL] @

:S9QLIOSOp puB s1sT']

sayeda1d8e Jo syuewamber uouros pue seoussjord peyeSeadSe uo sseydwy
9)830138e a3 SI sIsATRUR JO SyU)

SOTJSLIgORILYD UOTIUIOd U0 Paseq Ioyjedo)
poiedoadse sjuednooo jo sjuem ferjeds pue uo uoreuriojur juesaxd qf,

gpoadse
sanonpoxd
I93unoy)
/se8ejueapesiq

sadejueapy

suonydunssy

uorysod

So1)SLIAjIRIBYD)

aA9lq0

yoeoadde suosiog pednoax)

goeoadde suosiog poredoadsy

72 S. Mazumdar

special aspects of the approach, including the unit of
analysis and description and the aspects of program
information emphasized or focused on. The assump-
tions section describes the underlying assumptions
of each approach. The advantages and strengths of
each approach are described in the advantages
section. The section on disadvantages and counter-
productive aspects describes how the assumptions
may not be correct, and how the programming effort
can become unproductive or counterproductive. Dis-
advantages that may not be counterproductive are
also described. Finally, I provide examples wherever
possible.

(1) The Individual Spaces approach.

The objective in the Individual Spaces approach is
to describe the requirements for each of the spaces
to be provided.

The unit of analysis and description is an individ-
ual space—such as a room. Each space is given a
name or a number for identification. The pro-
grammer investigates and described or lists the size
of this space, relationship to other spaces, preferred
location, the architectural, physical and environ-
mental qualities required, what activities occur in
that space, who occupies it, and the number of
occupants.

Space is a primary element designers create and
manipulate in their designs. And since in this
approach the programmer attempts to collect, ana-
lyze and present information through spaces, i.e. in
a form, and speak in a language, intelligible to
designers, this approach favors the architect and is
‘pro-architect’ in stance.

This approach makes the following assumptions.
It assumes that representation of occupant wants
can be done through those of spaces, that is by
reifying spaces and attributing wants/needs to
them. Conversion of occupant wants into spatial
terms can be done by a programmer or occupant and
that these stakeholders are able to think spatially in
order to do this. In the list of spaces and their
requirements occupant wants associated with each
space will be discernible. Servicing of occupant
wants can be properly accomplished by listing
spaces and their qualities and characteristics.

The advantages of this approach are the following.
The architect’s interests and concerns are attended
to and program information presented in a manner
the architect can easily understand. The architect is
not required to convert occupant wants into spaces.
Human and social aspects, not within the training of
an architect and therefore difficult, are not men-
tioned and do not have to be dealt with by the

architect, and he/she can deal purely with physical
factors and design. The architects’ responsibility
and work are reduced and made easier in this
approach, since the architect simply has to meet
only the physical requirements stated. This program
can be used as a checklist to check whether
requirements as stated in the program have been
provided in the design prior to construction and
major blunders avoided.

There are disadvantages that can make this
approach counterproductive. Representing occupant
wants through those of spaces may not be easily
accomplished as occupant wants are not directly
depicted. It is easier when there is one-to-one
correspondence between an occupant and a space,
and when the program specifies how the space is to
perform. When the Individual Spaces program is
unable to represent wants of occupants (individuals,
aggregates or groups) there may be obfuscation and
the effort may become counterproductive. Listing
individual space requirements for large jobs with
numerous spaces can be quite tedious.? Conversion
of occupant wants into spatial terms expected of the
programmer is not easily possible due to the paucity
of tools, as will be explained later. Discerning
occupant wants is difficult since occupant wants are
not represented as such in the program. This is
exacerbated when spaces have multiple occupants.
It then becomes extremely difficult for the designer
to cater to individual wants. In such instances the
program becomes counterproductive. Servicing
requirements may not be easy in an Individual
Spaces approach, even with listing of requirements
by spaces. Specific environmental services are often
associated with particular trades, such as plumbing,
heating, air conditioning, electrical, carpentry and
metal working. In practice, program documents are
generally dealt with by architects and are rarely
turned over to engineers or to the trades. Architects
in the U.S.A. find it easier, and are sometimes
required to produce drawings for specific trades, as
opposed to indicating all services in one set of
drawings. An Individual Spaces program has to be
untangled for servicing by differing trades (MIT,
1982). Individual Spaces programs done by archi-
tects often list services by trades. In-depth know-
ledge and understanding of the lives of the occupants
is not required of the architect in this approach. This
approach does not provide a good understanding of
the world of the occupant. While programmers can
be expected to obtain in-depth knowledge this does
not always happen. Their task is seen as completing
blanks in a list or form and programmers often
resort to simply asking occupants their space-

Programming Approaches 73

related wants, mostly through a questionnaire
(Appendices 1 and 2) (see also Sterling ef al., 1988,
pp. 288-289). The architect can simply provide
programmatic requirements. Verification of occu-
pant wants is rather difficult as they are not
represented in the program. If there is an error in
representation it will be difficult for the architect to
check, rectify the error or change the program, as
that will require reprogramming. Making changes
in the program is often further hampered by various
unanticipated uses of programs.® ‘Performance
Specifications’ (Brill, 1971, 1972) was probably a
response to the inability to obtain appropriately
designed buildings through the standard Individual
Spaces approach, due to its inability to accurately
and completely represent occupant wants and there-
fore assuring appropriately designed buildings. The
programmer is expected to have the skills necessary
to collect and analyze behavioral information. But
converting this information into spatial terms is
usually not within the skills of the programmer. The
responsibility of the architect is primarily to provide
the requirements as stated in the program. In
contrast, the programmer’s responsibility is rather
high, including not only collecting and analyzing
social and behavioral information but also convert-
ing them into spatial terms and presenting them in
the program. Mismatches between program require-
ments and design provisions is the responsibility of
the architect. But mismatches in occupant wants
and their representation in the program is the
responsibility of the programmer.

Examples are Kantrowitz, Min & Associates
(1991), Welch + Epp Associates (1986, 1987), Caucus
Partnership (1987a), Research Facilities Design
(1985) and Stone, Marraccini & Patterson (19865b).

(2) The Aggregated Spaces approach

The objective is to present the requirements of the
required spaces aggregated together using common
characteristics, such as size, or commonality of
architectural qualities and requirements.

Aggregates of spaces are the units of analysis and
individual spaces lose importance. Each set of
aggregated spaces is given a name, e.g. Office Type
A, or number for identification. It lists and describes
the architectural, physical and environmental qual-
ities of each aggregate, the size, preferred location,
the occupants, their numbers and their activities.

Convenience of the programmer and, to a lesser
extent, that of the architect is prioritized by this
kind of program. This approach displays a ‘pro-
programmer’ stance.

Several assumptions are made in this approach,

some similar to the Individual Spaces approach.
Representation of occupant wants can be appro-
priately accomplished by describing the require-
ments of aggregated spaces. Conversion of occupant
wants into spatial terms can be done by a pro-
grammer or occupant who will be able to think
spatially in order to do this. Occupant wants will be
discernible on the list of spatial requirements.
Occupant wants associated with each aggregate will
be similar, if not identical (i.e. all 50 officers will
have nearly identical wants catered to by 50 Type A
officers). Servicing of occupant wants can be appro-
priately done through a program depicting require-
ments of aggregated spaces. The abstractions, cate-
gories and aggregations, e.g. ‘Office Type A’, devised
by the programmer will be intelligible and useful to
the architect and occupants. It is also assumed that
provision of the nearly identical aggregated spaces
will be seen as identical by the occupants, i.e.
geographical and social space will be seen as
equivalent, flat and level.

This approach has several advantages. The archi-
tect does not have to translate occupant wants into
spatial terms. By following this approach the pro-
grammer can simplify or reduce a large amount of
the work and tedium associated with redundancy
and repetition of the Individual Spaces approach.
For example, instead of doing offices of a certain
type 50 different times, the programmer could name
it ‘Manager’s Office’ or ‘Faculty Office’, ‘number
required = 50’ and be done simply by doing one. In so
far as requirements are identical it allows checking
of design provisions with those stated in the pro-
gram.

Several disadvantages can make the effort counter-
productive. The philosophical position is that spaces
with common features can be aggregated, with
emphasis on majority values. Representation of
occupant wants through those of aggregated spaces
is difficult for several reasons. In representing
reified spatial requirements occupant wants do not
get depicted directly. Representation of individual
spaces, unless they are identical, is not possible
since spaces are being aggregated. Conversion of
social and behavioral information into spatial terms
is not easy as tools for conversion are scarce.
Aggregation leads to homogenization. Discernability
of individual occupant wants associated with each
set of aggregated spaces becomes even more difficult
than in the Individual Spaces approach as the
program for 50 Type A offices may not display the
wants of the individual occupants. As a result the
architect can cater to the programmatic require-
ments for the Type A office but not to those of

74 S. Mazumdar

individual occupants. If, as is likely, the programmer
believes that occupant wants are not identical then
approximations and errors would be built into the
program from the outset. Fidelity of program infor-
mation can become an issue. The programmer may
avoid repetition by aggregating 50 offices having
commonalities along several dimensions. If not
identical along these dimensions the programmer
has to make judgment calls regarding which
descriptor—mean, mode or other—to use. Fidelity is
low as these are approximations in representation of
occupant wants, especially if variance and deviance
from the selected descriptor are large. Consequently
a design based on such a program would not be able
to achieve its purpose, and the programming would
be counterproductive. Servicing may not be easier
with a program listing requirements by aggregated
spaces unless requirements are listed by trade. Even
if the program did not specifically call for identical-
ness, such aggregation may often lead to the
assumption that provision of 50 Type A offices will
satisfy the 50 occupants and to the provision of
identical spaces. This implies the improbable that
the 50 Type A office occupants have identical wants
and goes against conventional knowledge regarding
people’s need for personalization, differentiation
(Sommer, 1969).” Fine tuned appropriateness is not
possible. Also identically sized and shaped spaces
are frequently not seen as identical by the occupants
as geographical and social spaces are not seen as
equivalent, flat and level, and characteristics such
as geographical location, view from the space, slight
differences in shape or size make some of these
‘identical’ spaces more desirable than others. In one
office building, view from the space became a
premium in otherwise very similar offices. Intelligi-
bility of the representational mode, aggregation, is
likely to be low to the architect and occupant.
Aggregating spaces is useful to the architect if it
leads to meaningful design solutions. This is often
not the case. If the architect is not required to
congregate physically in one area the 50 Type A
offices clumped together in the program and they
can be located anywhere and in any configuration,
then the aggregation is not meaningful or useful to
the architect. Aggregation is an abstraction devised
by the programmer for ease in programming, and
may similarly not be meaningful or useful to
occupants. Also, while aggregation is based on a
single or few common characteristics, commonality
in other aspects may be assumed. In-depth know-
ledge and understanding of the occupant’s world is
extremely low as the program depicts only aggre-
gated information. This distancing of the designer

from the end occupant is likely to lead to less, rather
than more, appropriate design. Verification of indi-
vidual wants would be very difficult as they would
not be featured. This automatically places a heavier
burden on the programmer to ensure that the spaces
called for will be conducive to the activities of the
occupants and that a ‘user-needs gap’ will not exist.
Skills such as finding commonalities, computing
means and deviations and variances are fairly
common with programmers trained in the social
sciences but may not be so common among those
trained in architecture. Since in this approach the
programmer has to colect and analyze information,
convert them into spatial terms and aggregate them,
the programmer’s responsibility is very high.
Examples are Caucus Partnership (1987a, 1988),
CRSS (1989, 1990), UCI/OPP (1987), NBBJ (1990),
Zimmer, Gunsul, Frasca (1989«,b), MIT (1973,
1982), Farbstein & Associates (1991), Donaudy
(1989), MBT Associates (1988) and Ryan (1989).

(3) The Grouped Spaces approach

The purpose of this approach is to provide infor-
mation on spaces grouped in a way comprehensible,
meaningful and useful to the architect in designing.
The major distinction with the Aggregated Spaces
approach is that aggregations are usually purely
mathematical and do not have any implications for
design, whereas groupings usually do.

In this approach the unit of analysis is a group of
spaces. Spaces could be grouped on the basis of a
variety of criteria, such as proximal relationships on
common functions, for example ‘master spaces and
servant spaces’, commonality of structural bay and
services. The grouping can be congruent with the
social grouping of the occupants, which is more
likely to result in a better fit. Generally there is no
conscious attempt to follow the groups used by the
occupants’ social organization.

This approach is most helpful to architects, and so
in stance is ‘pro-architect’.

The assumptions are the following. The philosoph-
ical position is that grouping spaces and thus
speaking the architect’s language will engage the
architect into producing a more suitable building.
Representation of occupant wants can be done
through those of spaces. A programmer will be able
to understand occupant wants, convert them into
space requirements without much slippage and loss.
Occupant wants associated with each space will be
discernible and understandable. Servicing occupant
wants will be enabled by a Grouped Spaces
approach. The form selected for the grouping will be
intelligible primarily to the architect and that this

Programming Approaches 75

will enable a better fit of occupant wants with the
design than simply aggregating them. It is expected
that the programmer will have the skills for data
collection, analysis, conversion, representation, and
for abstracting them into groups comprehensible
and useful to the architect.

Advantages of this approach include the following.
The approach compels the programmer, in the
process of grouping spaces, to consider the architec-
tonics of design, and thus to attend to some of the
architect’s considerations. The groupings should be
intelligible to the architect since it is based on
architectural considerations. It presents materials
in a manner architects can understand and relate to.
The architect’s work is greatly reduced in this
approach. The architect’s responsibility is limited to
the design of the grouped spaces and does not
include conversion, grouping or social analysis.
Grouping spaces is likely to lead to architecturally
well-organized spaces.

There are several possible disadvantages. The
philosophical position of grouping spaces in the
program is likely to lead to buildings that work out
to be less, rather than more, appropriate, as the
categories for grouping are preconceived and
imposed as opposed to being contextually developed.
While it is possible that speaking the architect’s
language will encourage the architect to take great-
er interest in the program and be more responsive, it
is not clear that this is more likely. Providing the
architect more processed information which can be
readily incorporated in his/her work encourages the
architect to take such information as ‘given’ to be
accepted rather than understood, questioned and
challenged. Representation of occupant wants is not
direct but through reified spatial requirements, as
with the other space-oriented approaches. Conver-
sion has to be carried out by a programmer, but tools
are scarce. Discernability of occupant wants is not
high but requirements of individual spaces in the
group is better than in the Aggregated Spaces
approach. In-depth up-close knowledge of the occu-
pants’ social world is not presented. The architect is
not persuaded to understand the world of the
occupants and can remain unfamiliar and distant
from it. This approach actually encourages such
distance by presenting the architect with more
processed and organized information. Verification of
occupant wants is extremely difficult as these are
not presented. Skills for deriving meaningful
abstract groupings or spaces requires the pro-
grammer to understand architectural design. While
programmers can be expected to have this capability
many do not. Responsibility of the programmer in

this approach is extremely high, proceeding far into
the design by organizing the spaces.

Examples are Welch + Epp Associates (1986),
Sterling, Wilford & Associates (1988), CRSS (1990,
1991), Caucus Partnership (1988) and Farbstein &
Associates (1991).

(4) The Individual Persons approach

The objective of this approach is to present wants
of each individual occupant.

The unit for data collection and write-up is the
individual person. Each individual occupant is of
paramount importance, and the individual’s wants,
needs, preferences and idiosyncracies are included.

This approach has the interests of the individual
occupant in mind, favors the occupant and so in
stance is ‘pro-occupant’. It would probably be fol-
lowed by occupants if they were to do the program.

Several assumptions are made in this approach.
The philosophical position of ‘individualism’ is taken
and individual occupant’s wants seen as paramount.
The building, it is felt, ought to be designed for the
wants of the individual occupant. Representation of
individual wants will enable the design of an
appropriate building. Individual idiosyncratic wants
are to be depicted. Conversion of social and beha-
vioral data presented in the program into spatial
terms can be carried out by the architect. Dis-
cernability of occupant wants will be possible, it is
assumed. Servicing of occupant wants can be done
using this approach. Information presented by this
approach will be intelligible to the architect. In-
depth up-close knowledge of the occupants will be
provided by this approach.

Advantages of this approach are the following.
The focus is on people—the occupants. Detailed
information on individuals can be sought and pro-
vided. Display and consideration of the individual’s
spatial and architectural preferences compels the
architect to become familiar with individual occu-
pants which increases the likelihood of their needs
being serviced. The architect can then choose to
categorize the wants in a manner best suited to his/
her individual approach to design. In small projects
it is possible for the architect to cater to individual
wants and idiosyncracies. Discernability of individ-
ual wants is high. Verification of individual wants is
possible. There is also the potential of using the
program as a checklist to ensure that programmatic
requirements are furnished by the design. Pro-
grammers usually have the skills to do this kind of
program.

Disadvantages and counterproductive aspects
include the following. The philosophical position of

76 S. Mazumdar

individualism leaves out consideration of other
positions and may not be the most appropriate in
instances when addressing group wants is impor-
tant. Representation of individual wants for a large
number of occupants can become quite tedious and
may not enable more appropriate designs. It is
expected that large projects be allocated more time
so that programmers and designers can do the
necessary task for each individual, but in practice
this rarely occurs. As time is reduced, the pro-
grammer has to find ways to reduce the work. The
individual then is not treated as paramount. In
practice, architects rarely organize large numbers of
occupants into categories and sub-categories so that
a larger number of occupants can be more appro-
priately serviced. Often the tendency is to reduce
this number to a more manageable set through very
rough estimation or ‘eye-balling’, or development of
a ‘typical’, ‘prototypical’, ‘user profile’, or standards
(De Chiara & Callender, 1980) rather than use
proper analysis. Such eye-balling may lead to errors
which then can get concretized in the design.
Conversion of behavioral and social information into
spatial terms is left to the architect but is difficult
due to the dearth of tools. While this approach has
high discernability, fidelity is not necessarily high.
Individual wants are often learned through self-
administered questionnaires, which may not pro-
vide options for individuals to really express their
preferences. Individuals can provide information on
aspects they have thought about, and have readily
available. They are unable to provide information
they do not have. Servicing individual occupant
wants is furthered by this approach, but the infor-
mation produced may need additional processing for
servicing. For example, the architect needs to know
not only individual occupant wants but also how to
service them through spaces. Intelligibility of the
information can be low and the behavioral informa-
tion may be confusing to the architect. For example,
reconciling different preferences for ambient tem-
perature or lighting may be difficult for the archi-
tect. In-depth knowledge and understanding of the
group is often neglected. Responsibility of the
programmer is only for collecting, analyzing and
representing behavioral information. The architect’s
responsibility is expanded to include conversion into
spatial terms.
Examples are Caucus Partnership (1987a,b).

(56) The Aggregated Persons approach

The objective is to present spatial information and
wants of occupants aggregated together on the basis
of some common characteristics. Examples are

social status or rank (associate professors), similar-
ities in activities or jobs (secretaries, computer
operators, carpenters), gender (women), color or race
(Black, White, Asian) and similarity in space needs
(assembly line workers).

Aggregates of persons are used as the units of
analysis. These programs describe the space-related
wants of a certain aggregate, for example secretaries
or assembly line workers, and simply list the
number of each even though these persons may be
involved in different tasks in different places. The
primary distinction with the Aggregated Spaces
approach is that the former uses people character-
istics while the latter used similarity in spatial
characteristics as the basis for aggregation. Thus
associate professors may have different spatial
requirements while Type A offices may have a
variety of occupants. This approach would most
commonly be used by people not very familiar with
the people the program is for.

Since the aggregates are devised by the pro-
grammer for convenience in programming, it
favours programmers and is ‘pro-programmer’ in
stance.

Several assumptions are made by this approach,
some similar to the Individual Persons approach.
The philosophical position is one of ‘aggregatism’,
with the view that aggregate wants are primary and
that the building ought to be designed for aggregate
wants. Representation of aggregated wants and
majority opinions are seen as important. Aggregate
statistics such as mean, average or mode are seen as
the best way to represent preferences of large
numbers of occupants. Conversion of aggregated
social and behavioral information into spatial terms
can be done by the architect. It is assumed that
individual and group wants will be discernible in the
program. Aggregation of individual wants will not
obfuscate or hamper the understanding of program
information or the production of an appropriate
design. Servicing occupant wants will be enabled by
this approach. Aggregations devised by the pro-
grammer will be intelligible to the architect and the
occupants. It will provide an in-depth up-close
picture of the occupants’ social world. The pro-
grammer will have the skills to collect and analyze
aggregate data. Skills in sampling and quantita-
tive analysis are required for data collection and
analysis.

The following are the advantages of this approach.
There is a focus on occupants and their require-
ments rather than on spaces. When the number of
people is large it introduces the possibility of using
statistical techniques to compute the mean, typicail

Programming Approaches 77

or unit. Aggregation reduces the programmer’s work
particularly in large projects.

The disadvantages of this approach are the follow-
ing. Taking the position of aggregatism implies
neglect of viable alternate positions. Designing
buildings for aggregate wants means that the
building will not be appropriate for those whose
wants do not match the aggregated wants. Repre-
sentation of aggregated wants and majority opinions
may result in problems and lead to unsuitable
buildings, as the discussion below will illustrate.
Conversion of information to space-related specifi-
cations is difficult due to the lack of tools. Dis-
cernability of individual wants is not possible,
unless they are identical, as individual wants are
not depicted. It is unlikely that many individuals
will be identical or match the typical even along a
small number of criteria. Fidelity is a problem.
When it is known that all persons are not identical
the programmer may use mathematically computed
approximations, such as typical, mean, average or
mode. Aggregated statistics are approximations and
may not be adequately representative when the
population is diverse. Reliance on approximations
implies some misrepresentations of individual
wants. When deviations and variances from the
selected descriptor are large errors built in become
rather large and the program can become obfuscat-
ing and misleading, and this approach becomes
unsatisfactory and counterproductive. In servicing
occupant needs, aggregating people on the basis of
common characteristics implies that design fit and
appropriateness can only be aimed at some approx-
imate aggregated version of the occupants, not at
individuals. While this approach may prevent glar-
ing errors in fit, it is unlikely to enable close and
excellent fit, especially with diverse populations.
With great diversity, majority opinions may not be
appropriate to use in design. Further, these aggrega-
tion categories can direct attention away from social
alliances and cleavages that may have much more to
do with acceptance or rejection of the design by the
occupants. Intelligibility of the information is also of
concern. An aggregate is an abstraction by a pro-
grammer for convenience in programming and may
not have any relation to either the way the occu-
pants see themselves organized or would like to
have the information organized. They are generally
not important or meaningful, and at times unin-
telligible, to the occupants or to the architect—two
major participants in the process. Aggregating can
follow functional categories or structural aspects of
an organization, but this tends not to be the case.
Since the basis for the aggregating is external to the

group or organized unit it often fails to capture the
values of the group. Instead the emphasis is fre-
quently on generalized biological, ergonomic or
other ‘needs’. Categories designed for convenience in
programming get reified and treated as legitimate
socially constructed ones, as if the world is organ-
ized the way the program information is presented,
and designs done accordingly. Architects design
based on program documents rather than treat
them as semi-processed information to be further
analyzed and reformulated for a more suitable
design. Inasmuch as designers are intentionally or
unintentionally misled this approach can be obfus-
cating and therefore counterproductive. Aggrega-
tions created can obfuscate information and be
misleading. In-depth up-close knowledge is not
provided by this approach on either individuals or
groups. Group wants are not addressed. Verifying
program information is difficult without repeating
at least the analysis. Direct checking of design
provisions is not possible as physical qualities
required are not depicted. Programmers with social
science training often have the required skills, but
those with only architectural training often do not.
Whereas the architect has increased responsibility,
the programmer’s responsibility, while substantial,
is less than in the space-oriented approaches.

Examples are Stone and Luchetti (1985), Caucus
Partnership (1987a), Welch + Epp (1987), Kan-
trowitz & Associates (1978, 1990), Steinfeld (1975)
and MIT (1973).

(6) The Grouped Persons approach

The objective of this approach is to describe the
nature, functioning and spatial wants of groups of
occupants.

The unit of analysis is a group of persons. A group
consists of a collection of people, possibly with
different characteristics, having shared values,
interests, understandings, way of life, who interact
or operate together and may have a common
purpose, aim or goal, such as producing a common
product. These and space-related preferences of the
group are described. Examples of Grouped Persons
are a work group, divisional group, division, small
organization or other common purpose group. Since
groupings are derived from the way the occupants
see themselves organized, the programmer has to
learn about and understand the group, and explicate
on its preferences, values and wants. The distinction
with the Aggregate Persons approach is that the
basis for grouping in the former is expected to be
congruent with the divisions meaningful to occu-
pants, while the latter is not necessarily congruent.

78 S. Mazumdar

While study of inter-individual relationships such as
communication patterns may give some ideas of
groups, it may give a misleading picture as it may
not display information about, and even ignore,
social cleavages or boundaries. Aggregated individ-
ual values are not likely to provide information on
group values—ideal or negotiated. It is for this
reason that the Grouped Persons approach is expec-
ted to yield different information from the other
approaches.

Since it uses the occupants’ form of grouping, in
stance this approach favors occupant groups and is
‘pro-occupant’.

In this approach the assumptions are as follows.
The philosophical position of ‘societalism’ taken
gives the group and its values paramount impor-
tance. Representing group values and preferences is
seen as primary, preferable to those of individuals.
Conversion of group wants into spatial require-
ments can be accomplished by the architect. Servic-
ing of occupant wants and design of a suitable
building will be furthered by a Grouped Persons
program. The information presented in the program
will be intelligible to the architect. It is assumed
that in-depth-up-close knowledge about the social
world of the occupant will be provided by this
approach. Skills for cultural study and analysis can
be expected of programmers, i.e. programmers will
have the skills for data collection and analysis,
including the ability to understand, apprehend and
depict group values, even if time available ig
relatively short. Also, the programmer will have the
skills to objectively evaluate the functioning of
groups and recommend appropriate interventions.

Among the advantages of this approach are the
following. The focus is on occupants. It provides in-
depth up-close knowledge and understanding of the
groups as a social unit. Group developed values,
mores and ways of relating to the physical environ-
ment are described. It compels the programmer to
understand social issues, divisions and boundaries
considered important by the groups and the effects
of imposition of artificial and external ones. It
introduces the architect to the world of occupant,
albeit in a second-hand way. Designs based on
understanding of these values would most likely be
meaningful to the group. Servicing groups wants is
enabled by this program. When survival and con-
tinued existence of the social unit is desired, it is
important for the design to cater to and be support-
ive of the values of the social unit, Hence, for
existing social units this approach can work well.

Counterproductiveness occurs when the assump-
tions are incorrect. The philosophical position of

societalism implies subordination of individual pref-
erences to those of the group. Individuals are
considered primarily as members of the group.
Representation of group values in the program
means overlooking individual preferences. Conver-
sion of social and behavioral information into spatial
requirements is difficult. Servicing is dependent on
proper conversion, and individual wants may get
neglected. The program information will be intelli-
gible to the architect when the presentation is
jargon-free and simple; when not, the information
may not be intelligible and may create difficulties.
Many programs provide facts and descriptions about
the people but few provide good information for
culturally appropriate design. If this approach does
not provide an in-depth up-close picture of the
occupants’ social world it will not be possible for the
architect to design for group values. Most methods
for cultural study are fairly time consuming -and
require intensive involvement and labor on the part
of the researcher. In practice, most programmers are
not trained in cultural analysis and often lack the
time or the interest in in-depth naturalistic field
study. When trained programmers and adequate
time is unavailable a Grouped Persons approach
may produce misleading results. Responsibilities of
the programmer require evaluating the status of the
group and recommending architectural interven-
tions. This is rather complicated. Learning, under-
standing and depicting group values is difficult, as
pointed out. To further evaluate the status of the
group and pro-actively recommend architectural
interventions involves big conceptual leaps which
are difficult to accomplish, as techniques for actually
accomplishing this are scarce.

Petronis et al. (1978) is a good example. Other
examples which could be classified as Grouped
Persons approach would be Brawn & Associates
(1976) and Preiser (1985).

Concluding Discussion

Programming: monolithic?

Programming has been treated largely in an undif-
ferentiated monolithic manner in the literature.
Early writers (Studer, 1966a,b; Agostini, 1969;
Pefia, 1969; Richardson, 1969; Seaton, 1969; Peiia et
al., 1987), enthused about having found a way to
address the ‘user-needs gap’, did not make distine-
tions while later writers continued the undiffer-
entiated treatment. In contrast, by categorizing
programming based on its orientation, i.e. whether
space or people oriented, and unit of analysis—
individual, aggregate or group—I have shown that

Programming Approaches 79

each approach has inherent assumptions and prob-
lems that can affect design. I have emphasized that
it is advantageous to view programming as varied,
differentiated, diverse and multipronged, with each
approach having particular strengths and weak-
nesses, as this allows us to look for and accom-
modate some of the variety and distinctions in
people—built environment relationships as pointed
out by Stokols and Shumaker (1981).2 I have further
proposed that both spaces—independently, not as a
derivative of people categories—and people can be
categorized. When seen in conjunction, Stokols and
Shumaker’s (1981) characterization of settings adds
another dimension and layer of complexity by
alerting us to the possibility that while spaces can
be so categorized, each space itself can accommodate
individuals, aggregates or groups of occupants. It is
important then to carefully consider the unit of
analysis, the assumptive level differences and possi-
ble counterproductivities of each approach. These
affect programming as I have described. All these
factors make it imperative to view programming as
varied.

An examination of approximately 25 programs
indicates that the Aggregated Spaces, Aggregated
Persons and Individual Spaces approaches are quite
commonly followed but the Grouped Spaces, Individ-
ual Persons and Grouped Persons approaches are
less common. Most neglected is the socio-cultural
information of the Grouped Persons approach. It is
possible in practice to mix the categories I have
described and provide information from more than
one approach and philosophical position in one
program. Combination approaches, such as Individ-
ual Spaces and Aggregated Spaces approaches, are
also used (RFD, 1985; SMP, 1986a,b; Zimmer &
Associates, 1989a,b). This trend is likely to reduce
the potential counterproductivities associated with
singular approaches. It is conceivable, though not
common, that a single program will provide informa-
tion along all six categories—that would make an
excellent program. But choice of any one involves
assumptions and issues I described. While many
programs these days combine approaches it is still
necessary to consider the approaches I have descri-
bed as many are still single approach programs and
rarely are all approaches included. This paper is an
attempt to make the selection of approaches more
systematic.

Alternate views of programming

Here I have accepted the instrumentalist aims of
programming, that of serving human purposes and
wants related to people’s immediate space’ and not

the larger global environment, in developing a
typology of programming and describing the coun-
terproductiveness of each. Programming can be
viewed and studied from a variety of other angles
not considered here. Programming can be a way of
surfacing and resolving differences and conflicts
regarding space. It can be a form of negotiation, and
exchange, a quid pro quo, a way of arriving at
negotiated agreements, building consensus and con-
tinuing group identity. Programming can be a form
of occupant education about the social organization
and about the building (Caucus Partnership,
1987a,b, 1988). It can be a political device or
strategy (Silverstein & Jacobson, 1978), a symbolic
act (Zeisel, 1973) or even a ritual. Alternatively,
programming can be seen as a design activity
(Balchen, 1973; Hack, 1976) wherein certain design
decisions are arrived at and some programs incorpo-
rate design options and solutions (Welch + Epp
Associates, 1987; CRSS, 1991). Conversely, design
can be seen as a way of programming,® or at least the
initial design sketches as working toward a program
by making stakeholders more aware of design
possibilities, and of incorporating programming
information into design. Viewing design as a part of
programming would mean that there may not be a
final product to classify. Yet a philosophical position
may still be involved in the way data is collected and
analyzed. Programming can be seen as an integral
part of the design process without a distinct prod-
uct.’® This happens when the architect and the
programmer is one and the same. The more pro-
gramming becomes an integral part of the design
process the better. But architects are often not
equipped to carry out programming research, and
programmers often lack the skills of design. When
this happens the program document becomes a way
of communicating program requirements to the
architect. To some the program document becomes a
way of ensuring that the architect follows the
requirements set out in the program, and to hold the
architect (sometimes legally) accountable for lapses
(Becker, 1959; Farbstein, 1978)." The program
document then is an important instrument of com-
munication and also of compliance (Farbstein,
1978). Programming can be seen as a co-operative
endeavor between programmers and architects
which is possible and desirable. It is possible to
conceive programming as a process, even a continu-
ing, cyclical or iterative one, in which information is
prioritized such that initial effort is through broad
strokes to resolve the major problems and through
successive attempts at fine tuning to ensure fit of
minor or less important ‘details’.?

80 S. Mazumdar

It is possible to conceive of other kinds of program-
ming based on different criteria, such as the expec-
ted achievements of the program (Brill, 1971; Farb-
stein, 1984; Hershberger, 1985). Most of these could,
by their approach or final form, be classified using
my categories, which are based on the approach to
information collection, analysis and presentation. I
describe two of these brieflyy. One, commonly
referred to as ‘user-needs programming’, strongly
advocates a ‘pro-occupant’ stance. Yet this stance
may be deeply affected by the form the program is
presented in. For example, if the Aggregated Spaces
approach is selected the nature of the information
presented and the manner of presentation may
prevent it from being strongly pro-occupant. The
second, ‘building program’, conjures up an image of
a list of sets of rooms, names and corresponding
areas. Although it appears to be strongly ‘pro-
architect’ in stance, in reality it is not, since it does
not provide the architect with good information
(Gutman, 1969).

Other aspects of programming, such as its proc-
ess, methodology and uses, could be studied as
well.

There are alternate assumptions regarding archi-
tecture, and people-environment relationships I
could have taken. Alternate views of architecture,
other than serving human wants, are also possible.
Architecture can be seen as primarily an object of
art, an engineering accomplishment, a way of
technologically outfitting spaces, as having qualities
that move the spirit (Stokols, 1988; Mazumdar,
1992) or as referents of the culture. In attempting to
produce more suitable buildings primary attention
has been paid to the ‘functional’ aspects: whether
the building functions better. That is, a building is
seen primarily, and almost solely, as an envelope
and container of occupants, activities and objects.
But architects see buildings serving multiple funec-
tions (Anderson, 1987) and consider other criteria,
such as fit with the surrounding built and natural
environment and the site, esthetic appeal, function-
ing in terms of materials of construction and energy
consumption. A building’s ecological functioning is
becoming increasingly important. These criteria are
just as valid as ‘functionality’. Thus, values are
associated with such judgments (Mazumdar, 1985).

Alternate positions regarding people—environ-
ment relationships involve questions such as is a
person’s environment only his/her room or should it
also include common spaces and spaces occupied by
others? Should only immediate proximate environ-
ments be addressed or should larger environments
be considered? Should the environment be seen as

distinct from people (as programming has) or should
it be seen as one bound up integral socio-physical
whole where one affects the other, with the spaces
taking on the ‘personality’ of the people and the
people taking on the mood of the space?®

I have not elaborated on the effects of costs and
budgets. Decisions are made simply on the basis of
overt costs. For .example, cost is frequently pre-
sented as a reason for selecting the Aggregated
Persons approach over the Individual Persons
approach. The rationale is that a building designed
to closely fit individual, particularly idiosyncratic,
wants will become unsuitable when the population
or their wants change (see note 2), whereas the
Aggregated Persons approach, which does not seek a
close fit with individual wants, is likely to remain
somewhat suitable. Some approaches, such as the
Individual Spaces and Individual Persons approa-
ches, can be quite expensive, while the Grouped
Persons approach can be time consuming and
possibly expensive. These constitute calculation of
overt costs. Yet covert costs of not following certain
approaches, such as the Grouped Persons approach,
are not even considered,’* and the costs of not
aligning a building closely with individual wants
and of incorporating a certain amount of misfit are
neither calculated nor considered. A building
designed for individual fit may not become com-
pletely unsuitable if individual wants change, but
only in servicing those idiosyncratic wants. An
average fit can be considered a misfit whose degree
of fit depends on the variance. For example, a
majority of right-handers may lead the Aggregated
Persons program to call for right-handed writing top
chairs. For left handers, no matter how many, this
chair would be a misfit, and inappropriateness built
in from the outset. Yet the costs of doing so are not
estimated. If cost has to be the determining factor
both kinds of costs ought to be considered.

Assumptions underlying programming need to be
elaborated and tested occasionally for their efficacy,
which can become problematic as I have deseribed.
Once these assumptions are elaborated the task of
developing appropriate ontological and epistemo-
logical stances and methodologies can be taken up.
These have important implications for program-
ming.

Approaches to programming and their implications
A question of concern to programmers is what
kind of program will best serve the architect’s need
for information and encourage the architect to
produce a more appropriate building? And how
well is programming able to provide the necessary

Programming Approaches 81

information and decisions for more appropriate
designs?

Each approach involves philosophical positions
and underlying assumptions, advantages, disadvan-
tages and quirks that can deeply affect the effective-
ness of an approach. Appropriateness of a particular
approach, and therefore choice, depends on the
context. :

Choice of the Individual Persons approach implies
taking the philosophical position of individualism
with the belief that catering to individual values,
appropriateness and satisfaction are most impor-
tant. Information obtained by the Individual Per-
sons approach is likely to display idiolectal varia-
tions (Thomas, 1979, p. 104) and individual
idiosyncracies. It is not very useful in understanding
a group’s cultural system or shared cultural values.
The Grouped Persons approach, on the other hand,
places most emphasis on the group and on under-
standing and portraying group values, wants,
shared understandings and meanings. Group values
are seen as paramount, to the neglect of individual
ones, and it is assumed that designs suitable to
group values will be appropriate for individuals as
they are members of the group. An Aggregated
Persons approach assumes that aggregated statis-
tics such as means or averages are the best ways to

understand preferences of occupants. Emphasis ‘is

placed on majority opinions and preferences. Hence
there is a choice of whether one believes the
individual drives the group or the group drives the
individual (Kuper, 1972; Michelson, 1987). A num-
ber of individuals, and their individual values and
preferences, do not necessarily indicate group values
and socially mediated and negotiated arrange-
ments. '

Conversely, appropriateness of a particular
approach, and therefore choice, will vary based on
characteristics of the approach and the project at
hand. If individual appropriateness and satisfaction
are most important, the Individual Persons
approach will be the most suitable. However, if
group existence and cohesion are important then the
Grouped Persons approach may be the most appro-
priate. When occupants are not known, or are too
large in number, the Aggregated Persons approach
could be useful.

There are implications for environmental design
research. One of the primary ways environmental
design research has affected the field of architectur-
al design is through programming. What affects
programming can affect both architectural design
and environmental design research. The appro-
priateness of a building depends on the kind of

research carried out, the context and the program-
ming approach selected. Providing good valid infor-
mation in the program through environmental
design research can increase the likelihood of the
architectural design being more appropriate to the
occupants. Perhaps environmental design research
ought to be viewed from the perspective that there
are six or nine vantage points or approaches.’® Given
the differences in approaches, methodology and
relationships to the physical environment that have
been pointed out (see also Stokols & Shumaker,
1981) it is important for environmental design
researchers to not only make these distinctions and
state which aspects they are focusing on but also to
seek the interrelationships between them. For
example, for a study dealing with individual opin-
ions it will be important to know that the focus is on
the individual, but also to know the idiolectal and
idiosyncratic, what aspects are typical and general-
izable to the population, and what aspects are
cultural.

Quality of the information is of utmost concern,
but reliance on methodological purity is not neces-
sarily the best way. Methodologically, greater atten-
tion needs to be devoted to ways in which individual,
aggregate and group relationships can be learned.
Whose opinions or preferences are obtained is an
important question (Farbstein, 1976). In an Individ-
ual Persons approach hopefully every occupant’s
preferences are obtained, as in a census. In some
approaches, Aggregated and Grouped Persons in
particular, data collection involves occupant sam-
pling, biases in which can lead to erroneous results.
In one example observed volunteers comprised the
sample of occupants from whom information was
obtained.

Some feel that designers ought to be held account-
able for their designs. Accountability considerations
raise questions of accountable to whom, how many,
and along how many criteria must the building
satisfy the occupants (Davis, 1975, p. 18)? Should
100% of the occupants have to be satisfied on 100%
of the criteria? Given the various other constraints
on design this cannot normally be expected. In some
approaches, such as the Aggregated Spaces and
Aggregated Persons approaches, which have
approximations built in, this is not possible. So what
should these numbers be? Are some criteria to get
priority or are all criteria to be weighted equally and
their scores simply totalled in figuring out the
accountability factor? Further, are all occupants to
be considered equal for satisfaction purposes or do
some, such as those with social position or power, get
preference or priority? For example, in one organiza-

82 S. Mazumdar

tion facility managers attempting to make facilities
more ‘democratic’ programmed, reduced and equal-
ized space allocations for several categories of
‘technical’ and ‘administrative’ level people, but
managers, the more powerful group, were in some
instances given more space and environmental
elements. These issues, which require the appro-
priateness scale to be adjusted, are often not
addressed in programming.

Several researchable questions remain. Should
time be considered an important factor for archi-
tectural responsiveness and for validity of program
information? We have as yet not seen programming
as a process requiring explication. Neither, for
programming, have we seen occupant groups as
cultures.

Counterproductiveness of programming

Social and behavioral scientists have long criticized
architects for carelessness in satisfying occupants,
and for not having the skills and tools to acquire the
necessary information. In effect, the claim is that
architectural design has, in many instances, been
counterproductive.

It was thought that architecture could be
improved through the introduction of a ‘program-
ming’ stage (done using primarily social science
techniques) into the design process (Figs 1 and 2).
Evaluation of the productiveness and efficacy of new
interventions, such as programming, is necessary on
occasion. Of the question ‘How good is program-
ming?, this was an attempt to answer only a part
through the question ‘Can programming become
counterproductive?’.

A general assumption behind the introduction of
programming into the design process was that it will
provide information which will assist architects
design better (by some set of considerations) build-
ings than was possible through the extant form of
design. It was expected to provide a clear under-
standing of the occupants’ requirements, faithfully
and accurately provide needed information, and
perhaps deal effectively with issues relating to
policy, conflict and choice where necessary, and not
obfuscate or confuse the designer. If programming is
unable to do these effectively or is unable to offer
some ‘value added’ then it can be considered coun-
terproductive.

I have suggested that inherent counterproductiv-
ities in programming make it imperative to direct
adequate attention to the selection of appropriate
approaches and examination of their assumptions.
The programming effort can become counter-pro-
ductive when assumptions made turn out to be

incorrect; when the information contained in the
program is obfuscating, such as when space-oriented
programs do not properly represent occupant wants;
when choice of method and methodological problems
prevent proper information from being captured,
such as when group values are not represented but
ought to be; and when approximations are built in or
verification is prevented.

There are several potential disadvantages in each
of the approaches which can make the programming
efforts counterproductive. These are summed up
below.

Each approach has a philosophical position which
takes a different view of the social world, such as
individualism’s focus on individuals, to the neglect
of information from other positions that may have
aided the design of a more appropriate building.
Even though there is an effort to provide information
aimed at suitable design, the information provided
is incomplete and misleading, and therefore coun-
terproductive. In the Grouped Persons approach it is
assumed that even though individual values are
likely to differ to some degree from those of the social
unit catering to group values will be satisfactory to
the individuals in the group. This is likely to be
acceptable when all individuals are aspiring to be
good group members. For those who do not see
themselves as part of the group and do not share the
same values and aspirations this approach will not
represent their individual values and the design is
also likely not to be supportive. When the position is
made explicit it is possible to verify if the program
presents information to enable a design suitable to
that position. For example, aggregationists would
like to verify that a majority of occupants will be
satisfactorily serviced and that small changes in
population or wants will be accommodated, and
societalists would like to know if cultural informa-
tion is presented and understandable.

It appears from this analysis that programs do not
convey occupant wants in a neutral way. I have
emphasized that in each of the several approaches to
programming the programmer could consciously or
unconsciously be an advocate for a stakeholder
(Farbstein, 1976; Hershberger, 1985). This may be
surprising to those who see programming as neutral
but not to those who see programming as playing an
advocacy role and empowering powerless occupants
so that their wants would be addressed (Zeisel,
1971). Space-oriented approaches focus on identi-
fication of spaces and their ‘needs’. Since spaces do
not have wants people do, all space-oriented pro-
grams tend to be written for the convenience of the
professional involved. Since space is a primary

Programming Approaches 83

element designers create and manipulate in their
designs, and since the programmer attempts to
collect, analyze and present information in a form,
and speak in a language intelligible to architects,
the space-oriented programs mostly tend to be ‘pro-
architect’ in stance. While it is possible to base
gpace-oriented programs on a deep understanding of
the values and preferences of occupants regarding
space, activities and aspirations, this rarely hap-
pens when the primary task is seen as identifying
and listing spaces.’® Thus it is quite possible to
produce a program and yet not fulfil the original aim
of programming-—that of providing information
which will assist in making designs more appro-
priate and responsive of occupants. In space-ori-
ented programs there is a tendency to think of
spaces primarily as serving specific, singular activ-
ities, rather than see architecture as a means for
aiding human and social aspirations. Assumptions
of mono-functionalism and designs logically based
on catering to singular activities are more commonly
held in the West (Potash, 1985), and so there is a
slant towards the Western approach.

People-oriented programs, by keeping the focus on
occupants, can be more humanistic and occupant
oriented and offer possibilities of fulfilling the aims
of programming. Yet in people-oriented programs,
too, a programmer has to make several choices and
assumptions which involve taking positions and
selecting methods of information collection and
presentation which can affect the effectiveness of the
effort, as I have pointed out.

The most ‘pro-architect’ stance is displayed by the
Grouped Spaces approach as it not only converts
occupant wants into spatial terms but groups them
together. The Individual Spaces approach is also
‘pro-architect’ instance. The Aggregated Spaces
approach and the Aggregated Persons approach are
both ‘pro-programmer’ in stance since aggregation is
done primarily for the convenience of the pro-
grammer, although to a lesser extent convenience of
the architect is considered in the Aggregated Spaces
approach and that of the occupant in the Aggregated
Persons approach. A ‘pro-occupant’ stance is taken
by the Individual Persons and Grouped Persons
approaches a priority is given to representing
occupant wants.

In representing occupant wants each approach
gives an incomplete picture by taking a somewhat
different view of the social world and representing a
different picture. People-oriented approaches pro-
vide social and behavioral information related to
space but do not make any attempt to provide exact
spatial requirements and therefore do not provide

specific directives to the architect, Space-oriented
approaches, on the other hand, represent little social
and behavioral information. As a result the architect
cannot get a sense of the social and behavioral
requirements but only of architectural ones. Combi-
nation approaches attempt to provide glimpses of
both.

The programming effort can become counter-
productive when program information cannot be
utilized in design. Conversion of social and behavior-
al data into architectural requirements enables
utilization. Various methods are available for col-
lecting and analyzing useful data (White, 1972;
Michelson, 1975; Sanoff, 1977; Sommer & Sommer,
1980; Zeisel, 1981; Bechtel et al., 1987). But the
assumption that the architect or programmer will be
able to convert social and behavioral information
into spatial terms is confounded by the dearth of
appropriate tools and techniques to convert activity,
behavioral and equipment preference data into
specific spaces and environmental requirements."’
As a result it remains a creative act. If conversion
cannot be made the program’s effort is quite likely to
become counterproductive. Activity and equipment
mapping in which a programmer can gather infor-
mation on current and future activities of all
occupants, descriptions of spatial wants and list of
equipment (fixed and movable) the occupants want
(e.g. CRSS, 1991) are the few tools that can help in
conversion by giving some idea of the sizes, shapes
and areas of the spaces to be designed, if one takes
an instrumental view. The ability to think spatially
is required. Who should do the conversion of transla-
tion is an important question which can affect the
efficacy of the program. With their experience in
studying and design buildings, architects may be in
a more advantageous position than others to carry
out such conversion. The space-oriented approaches
leave the conversion to the programmer while the
people-oriented approaches entrust it to the archi-
tect, who may be more capable.

Fidelity of the information conveyed is of utmost
concern. Yet not all approaches have the same level
of fidelity.’® The aggregate approaches incorporate
approximations, as pointed out. And when there are
several sets in the aggregate the aggregated values
may give a misleading picture. Individual Persons
approach can have high fidelity provided the data is
properly collected. In the Grouped Spaces approach
the information is organized and presented in a
manner showing careful thought to the architec-
tural organization architects are not likely to check
if the program has high fidelity. Inaccurate informa-
tion can make the program counter-productive.

84 S. Mazumdar

In order for the architect to address occupant
wants and design appropriate spaces, discernability
of occupant wants is important, especially if differ-
ent occupants occupy a space (Wells, 1967). Without
discernability, the architect will not be able to get a
picture of occupant wants, and can only attempt to
meet requirements as stated in the program. In the
space-oriented approaches requirements of the dif-
ferent spaces have to be discernible, but the aggre-
gated approaches may not permit such discern-
ability. If not discernible the architect may
reasonably assume they are identical, and design
identical spaces. Person-oriented programs, too, do
not allow such discernability, could be obfuscating
information and making the program counterpro-
ductive.

Enabling proper servicing of occupant wants
should be the focus of programming efforts. As
explained earlier, the form of the program makes
servicing more difficult in some approaches, the
person-oriented approaches for example. The Indi-
vidual and Grouped Spaces approaches are easier to
service directly. But in the Grouped Spaces approach
the grouping is often the result of a priori theorizing
imposed on the problem at hand than a development
from an analysis of the context. Such importation of
ideas and theories, and their imposition, often leads
to neglect of the situational context and actually
leads to less responsiveness rather than more. In the
space-oriented approaches the architect can only
service the requirements described in the program,
as occupant wants are not directly depicted.

Intelligibility of the information for the architect
varies from one approach to another. A good pro-
gram should be comprehensible to the architect. The
aggregated approaches can obfuscate information
important in design, such as subsets with different
wants which ought to be treated separately. Often
aggregation is based on commonalities along a few
criteria and other criteria are not mentioned. It is
thus not clear whether the units in the aggregate
ought to be treated as identical, or having differ-
ences and whether they need to be supplied with
identical spaces. With a Grouped Persons program
the architect may not be able to understand the
social mores, cleavages and complexities of group
dynamics if these are not presented simply and
clearly.

In-depth up-close knowledge of the occupants’
social world is necessary for the architect to produce
a suitable design. This kind of knowledge is provid-
ed only by the Grouped Persons approach. The other
approaches do not require the architect to get
intimately involved in the lives of the occupants and

feel as they do. Some approaches, such as the
Aggregated Persons and the space-oriented approa-
ches, actually encourage lack of such knowledge and
distance. The Individual persons approach ean
provide in-depth knowledge about in-depth knowl-
edge about individuals, but often does not.

Verification of program information is important
to ensure that the program is still valid. Verification
is not possible without reprogramming in the space-
oriented approaches. Verification of individual
wants is possible on site with the Individual Persons
program by asking the necessary questions of the
individuals. This is not possible with the Grouped
Spaces approach, as individual wants are not even
represented. Verifying societal values and aggregate
wants is much more time consuming and difficult to
accomplish quickly. Checking design provisions
against programmatic requirements gives a sense of
the extent to which the design satisfies them. Such
checking is not possible in the person-oriented
approaches since they often do not list spatial
requirements.

It is expected that programmers and architects, as
hired professionals, will have the necessary skills to
do the job. Programmers with social science training
usually have the skills for data collection and
analysis for individual and aggregated approaches.
Those with skills only in architecture often lack
skills in social and behavioral data collection and
analysis. Some programs require skills not only in
programming and social or behavioraly sciences but
also in architectural design, as in the Grouped
Spaces program. Those lacking design skills also
have difficulty with conversion to spatial require-
ments and developing meaningful groups of spaces.
Most programmers do not have the skills for
cultural analysis required in the Grouped Persons
approach; they also often lack the inclination,
interest or time to conduct cultural analysis. It is
also assumed that a programmer will be skilled in
collecting, analyzing and depicting social and beha-
vioral data, and the architect will be skilled in
design. But not all programmers are highly skilled
in social analysis and not all architects in design.
There are no specialised degrees of specific system-
atic educational requirements to become a pro-
grammer.

The responsibility of the programmer is very high
in some approaches. For example, in the Grouped
Spaces approach the programmer has to take the
additional responsibility of developing categories or
groups of spaces useful to the architect, for which
some familiarity with the ways architects design is
necessary. In practice, the Grouped Spaces approach

Programming Approaches 85

is taken often by architect-programmers to get
further along the process of design once program
information has been obtained and analyzed. Also
this approach requires the programmer to take
complete responsibility for the conversion of occu-
pants’ wants into spaces and spatial characteristics,
since verification of the conversion is difficult. When
the programmer or the architect has responsibility
for tasks for which he or she lacks the skills and
training, the chances for errors increase greatly.
Slips and errors effectively render the programming
effort counterproductive. For example, an occupant
may want an office with a smaller private portion to
it. Mentioning an area of 100 sq. ft. or asking for an
L-shaped office may still not accomplish a ‘smaller
private portion’.

Here I focused on the form of the product of
programming and its assumptions. Clearly, further
studies of the product and process of programming
(how it gets done) (Evans, 1969; Hack, 1976; White,
1991) need to be carried out before we are able to
determine in toto the usefulness of the addition of
programming into the design process. This cannot
be done through post-occupancy evaluations (Fried-
man et al., 1978; Welch+Epp, 1988) alone, as that
amounts to comparing ‘apples and oranges’, as often
it is difficult to tell if design inappropriateness is due
to the design, the program, or the occupants. While
programming is seen as a process by many, building
is seen primarily as a product and not as a process.
Typically programs are implemented and forgotten.
But programs can be used as the datum for sub-
sequent building and program evaluations. New
tools, combining individual and social system per-
spectives, need to be devised to test the efficacy of
programming. Making distinctions between the
quality of the program and how well it represents
the different viewpoints, individual, aggregate and
group will help. Meanwhile, it is hoped that this
paper will spur some thought and perhaps even
some debate on how programs are being counter-
productive—since, as I have described, the potential
clearly exists.'®

Acknowledgements

Sincere thanks to Daniel Stokols, Gary Evans,
David Canter and the ‘blind’ reviewers for their
help, encouragement, and comments in the re-
writing of this paper and to the people and organiza-
tions who shared their programs with me, especially
NBBJ (Deepak Dandekar) and MIT for permission
to reproduce materials.

Notes

(1) The views expressed here are those of the author,
who was a member of the team and the organization, and
not necessarily those of the latter. For confidentiality
reasons this program is referred to simply as Program
X,

(2) Although information was collected from the point
of view of individual persons and groups, the program
information was presented in the manner of an Aggre-
gated Spaces program. This was done partly as a response
to organizational policy where not too much time could be
invested in doing an Individual Persons program. The
organization also felt that since the occupants were likely
to change, it probably was not appropriate to cater the
design too closely to those present at the time of the
program. ‘

(3) Request for programs were sent to programmers in
U.S.A,, Germany, U.K., Australia, New Zealand. At the
time of writing about 25 responses were received, all from
the U.S.A. Some of the programs too multiple approaches
and are featured as examples in more than one approach.
While it is possible to analyze and criticize the work of
architects as these are in the public domain unfortunately
we cannot do the same with programmers as their work is
not in the public domain and is often proprietary.

(4) Space oriented programs could involve data gather-
ing and analysis of occupants and their wants. But, the
final form of the program has certain implications as I
shall point out, see also note 2.

(5) Programming for a large facility with numerous
spaces can be quite tedious. Examples are the program for
the 80,000 sq. ft. Social Science II building at U.C.I
(NBBJ, 1990), and M.I.T. AE.C.S. (1982). Scale is an
important issue. The aggregated approaches are more
suitable for larger projects as I have mentioned. Never-
theless there are problems with them, and when we select
an approach we should do so conscious of the limitation of
that approach, or try to devise new approaches to mitigate
their negative effects.

(6) The material on ‘unanticipated uses of program-
ming’ forms the subject of another paper.

(7) Architects have often been blamed by social scien-
tists for providing similar and identical spaces and not
allowing differentiation.

{8) While developed independently, my categories close-
ly match those offered by Stokols and Shumaker (1981).

(9) I am thankful to the ‘blind’ reviewer who suggested
this point of view.

(10) Some, such as Farbstein (1984), have seen pro-
gramming and design as distinct yet circularly iterative
activities, not as distinct linearly phased activities with
one beginning where another ended (Moleski, 1974).

(11) According to Professor E. T. White (telephone
conversation 4 June 1991) programming in America is
seen more as a legal and managerial tool, while briefing in
England is a way of getting to know the client and
occupants. Min Kantrowitz (telephone conversation 3
April 1991) also mentioned that the program has some-
times been used as a legal contract requiring signatures
from all parties.

(12) I am grateful to Professor Daniel Stokols for
debating this aspect with me and pointing out that it is
possible to conceive of programming as constituting
progressively finer stages where individual idiosyncratic

86 S. Mazumdar

’

features are progressively incorporated. Whether ‘details
are achieved through such refinement or whether they
‘determine’ the success of a program or building is open to
debate. Post-occupancy evaluations often tend to bring out
what many architects consider to be ‘minor details’ and
therefore unimportant. In any event, I like to make a
distinction between the process, along with its concomi-
tant temporal aspects, and the product of programming.
This paper deails much more with the product of program-
ming rather than its process. ‘Process of programming’
can be the subject of another paper. But even if such
individual idiosyncratic wants are brought in at a later
stage, they should be part of the program document given
to the architect.

(13) I am thankful to the ‘blind’ reviewer who suggested
this point of view.

(14) ‘The Costs of Not Knowing’ was the wonderful
theme of a conference (see Wineman et al., 1986).

(15) The idea that environmental design research per-
haps affords opportunities of a number of approaches or
vantage points needs to be explicated in another essay.
Meanwhile see Stokols and Shumaker (1981) in conjunc-
tion with this piece. .

(16) The task becomes one of filling out blanks in
standardized forms and it becomes difficult to retain the
focus on occupants and appropriate design, as I found
out.

(17) The paucity of tools and methods can be seen as
‘constraints on programming’. Exposition of the subject, is
not possible here due to space limitations, but can from
the subjects of another paper.

(18) One could argue that all programs ought to
represent occupant wants with a high degree of fidelity.
Yet, while some program display information which allows
for verification and checks of fidelity, not all do. Presented
information in an architecturally ‘digested’ way increases
the likelihood of the architect taking the information and
analysis for granted and designing. In general, space
oriented approaches put the focus on meeting the spatial
requirements called for whether they would satisfy the
occupants or not. Also, in general, people oriented pro-
grams put the focus on meeting occupant wants rather
than spatial requirements alone. It is in this sense, I
argue, that the programmer’s responsibility is greater.
Also, it is not unreasonable to expect that architecture will
cater to occupants’ values, wants, desires and aspirations,
but experience shows that this does not always happen.

(19) Only a few authors have written about their
experience with programming (Presier, 1976, 1985; Farb-
stein, 1984). 1 hope this paper will encourage others to
publish their experiences and problems with program-
ming so that more thought can be devoted to these
issues.

References

Agostini, E. J. (1969). The value of facilities programming to the
client. Building Research, 6(2), 29-32.

Anderson, S, (1987). The fiction of function, Assemblage, 2,
19-31.

Balchen, B. (1973). Where programming is the design. AIA
Journal, 59(4), 39—48.

Bechtel, R. B., Marians, R. W. & Michelson, W. (Eds) (1987).
Methods in environmental and behavioral research. New York,
NY: Van Nostrand Reinhold.

Becker, N. (1959). Space analysis in architecture. AIA Journal,
31(4), 40-47.

Brawn, G. & Associates (1976). Functional Program: Lane County
Adult Corrections. Vancouver, BC: Brawn & Associates.

Brill, M. E. (1971). Evaluating buildings on a performance basis.
In C. Curnett et al., Eds., Architecture for Human Behavior,
Philadelphia, PA: A.LLA. Chapter.

Brill, M. E. (1972). Techniques for developing performance
specifications for buildings. In B. E. Foster, Ed., Performance
Concept in Buildings, Vol. 1: Invited Papers. Proceedings of a
Symposium Sponsored by RILEM, ASTM & CIB. Philadelphia,
PA: National Bureau of Standards Special Publications, 361,
pp. 171-180.

Brill, M. E. (1984). Using Office Design to Increase Productivity.
Buffalo, NY: Workplace Design & Productivity.

Caucus Partnership (1987a). Data Collection Report on Inter-
national Bank Library Move. Buffalo, NY: The Caucus Part-
nership.

Caucus Partnership (19875). Space Program, International Bank.
Buffalo, NY: The Caucus Partnership.

Caucus Partnership (1988). Revised Space Program, Computer
Services, International Bank,. Buffalo, NY: The Caucus Part-
nership.

CRSS (1989). Land Phasing Plan Program, Texas. Irvine, CA:
CRSS.

CRSS (1990). Telephone Company, Interior Design Program.
Irvine, CA, CRSS.

CRSS (1991). Fine Arts Addition and Gallery/Museum. Irvine,
CA, CRSS.

Davis, G. (1969). The independent building program consultant.
Building Research, 6(2), 16-21.

Davis, T. A. (1975). Formulating habitability criteria from
research information. In W. Preiser, Ed., Programming for
Habitability. Urbana Champaign, IL: University of Illinois,
Department of Architecture, pp. 18-21.

De Chiara J. & Callender, J. H. (Eds) (1980). Time-saver
Standards for Building Types. New York, NY: McGraw-Hill.
Donaudy, T. (1989). Project Program: Village of Patchogue
Recreation Center. Tallahassee, FL: Florida A & M University,

School of Architecture Project.

Evans, B. (1969). Architectural programming practices. Building
Research, 6(2), 12-15.

Farbstein, J. (1976). Assumptions in environmental program-
ming. In P. Suedfeld & J. A. Russell, Eds., The Behavioral Basis
of Design. Stroudsburg, PA: Dowden Hutchinson & Ross,
pp- 21-26.

Farbstein, J. (1978). A juvenile services center program. In W. F.
E. Preiser, Ed., Facility Programming. Stroudsburg, PA: Dow-
den, Hutchinson & Ross.

Farbstein, J. (1984). Using the program, application to design,
occupancy and evaluations. In D. Duerk & D. Campbell, Eds.,
EDRA 15: The Challenge of Diversity. San Luis Obispo, CA:
EDRA, pp. 240 ft.

Farbstein, Jay & Associates with Patrick Sullivan Associates
(1991). Architectural Program and Concept Design for Model
Residential Facility. San Jose, CA: Jay Farbstein & Asso-
ciates.

Friedman, A., Zube, E. & Zimring, C. (Eds) (1978). Environmental
Design Evaluation. New York, NY: Plenum Press.

Gutman, R. (1969). The sociological implication of programming
practices. Building Research, 6(2), 26-27.

Programming Approaches 87

Hack, G. (1976). Environmental programming: creating respon-
sive settings. Cambridge, MA, MIT PhD Dissertation.

Hershberger, R. G. (1985). Values: a theoretical foundation for
architectural programming. In W. F. E., Preiser, Ed., Program-
ming the Built Environment. New York, NY: Van Nostrand
Reinhold.

Kantrowitz, Min & Associates (1978)..A Program for Housing for
Low Income Elderly in North Barelas. Albuquerque, NM: City
of Albuquerque & MKA.

Kantrowitz, Min & Associates (1990). Therapeutic Recreation
Center Study, Phase I. Albuquerque, NM: Albuquerque Parks
and Recreation Department & MKA.

Kantrowitz, Min & Associates (1991). Therapeutic Recreation
Center Study, Phase II. Albuquerque, NM: Albuquerque Parks
and Recreation Department & MKA.

Kuper, H. (1972). The language of sites in the politics of space.
American Anthropologist, 712, 411-427.

Lang, J., Burnette, C., Moleski, W. & Vachon, D. (Eds) (1974).
Designing for Human Behaviour: Architecture and the Beha-
vioral Sciences, Stroudsburg, PA: Dowden, Hutchinson &
Ross.

Mazumdar, S. (1985). Architecture—an artifact of culture? Reflec-
tions, 3(1), 36-49. ‘

Mazumdar, S. (1992). The romance of architecture—an optimistic
view. In J. Bassin, Ed., An Optimistic View of Architecture. New
York, NY: NIAE.

MBT Associates (1988). Updated Detailed Project Program: PS1
Renovation. San Francisco, CA: MBT Associates.

Michelson, W. (Ed.) (1975). Behavioural Research Methods in
Environmental Design. Stroudsberg, PA: Dowden, Hutchinson
& Ross.

Michelson, W. (1987). Groups, aggregates and the environment.
In E. Zube & G. T. Moore, Eds., Advances in Environment and
Behavior Research. New York, NY: Plenum, pp. 161-186.

MIT Planning Office (1973). Program: Undergraduate Housing,
West Campus. Cambridge, MA: MIT Planning Office.

MIT AECS (1982). Program. Undergraduate Teaching Labo-
ratories, Department of Chemistry. Cambridge, MA: MIT/
AECS.

Moleski, W. (1974). Behavioral analysis and environmental
programming for offices. In J. Lang, C. Burnette, W. Moleski &
D. Vachon, Eds., Designing for Human Behavior: Architecture
and the Behavioral Sciences. Stroudsberg, PA: Dowden
Hutchinson & Ross.

NBBJ Group (1990). University of California, Irvine, Social
Sciences Unit-2: Detailed Project Program. San Francisco, CA:
NBBJ

Palmer, M. (1981). The Architect’s Guide to Facility Program-
ming. Washington, DC: AIA.

Peria, W. (1969). Organization for programming. Building
Research, 6(2), 8—11.

Pena, W., Parshall, S. & Kelly, K. (1987). Problem Seeking: An
Architectural Programming Primer. Washington, DC: AIA Press.

Petronis, J. P, Kline, L. S. & Pugh, R. (1978). Programming
across cultures: a cultural food preparation center for Cochiti
Indian pueblo. In W. F. E, Presier, Ed., Facility Programming.
Stroudsburg, PA: Dowden, Hutchinson & Ross.

Potash, B. (1985). Kitchens are for sleeping: anthropology and the
training of architects. Williamsburg, VA: College of William &
Mary, Anthropology, Studies in Third World Societies, Publica-
tion 31, pp. 143-161.

Preiser, W. F. (Ed.) (1975). Programming for Habitability:
Symposium Proceedings. Urbana-Champaign, IL: University of
llinois, Department of Architecture, Monograph.

Presier, W. F. et al. (1976). User-oriented programming of
facilities: workshop summary. In P. Suedfeld, J. A. Russel, L. M.
Ward, F. Szigeti & G. Davis, Eds., The Behavioral Basis of
Design: Book 2. Stroudsburg, PA: Dowden, Hutchinson &
Ross.

Preiser, W. F. (Ed.) (1978). Facility Programming: Methods and
Appplications. Stroudsberg, PA: Dowden, Hutchinson & Ross.

Preiser, W. F. (Ed.) (1985). Programming the Built Environment.
New York, NY: Van Nostrand Reinhold.

Proshansky, H. M., Ittelson, W. H. & Rivlin, L. D. (Eds) (1970).
Environmental Psychology: Man and His Physical Setting. New
York, NY: Holt Reinhart & Winston.

Research Facilities Design (RFD) (1985). Detailed Project Pro-
gram: Physical Sciences Unit 1. San Diego, CA: RFD.

Richardson, S. (1969). The value of a program to the architect.
Building Research, 6(2), 40-42.

Ryan, T. J. (1989). A Community High School Facility for
Northern Leon County. Tallahassee, FL: Florida & A & M
University, Department of Architecture, B. Arch. Thesis.

Sanoff, H. (1977). Methods of Architectural Programming.
Stroudsburg, PA: Dowden, Hutchinson & Ross.

Seaton, R. (1969). Research for building programming. Building
Research, 6(2), 36-39.

Silverstein, M. & Jacobson, M. (1978). Restructuring the hidden
program: toward an architecture of social change. In W. F.
Presier, Ed., Facility Programming: Methods and Applications.
Stroudsburg, PA: Dowden, Hutchinson & Ross.

Sommer, R. (1969). Personal Space: The Behavioral Basis of
Design. Englewood Cliffs, NJ: Prentice Hall.

Sommer, R. & Sommer, B. (1980). A Practical Guide to Behavioral
Research Tools and Techniques. New York, NY: Oxford Uni-
versity Press.

Steinfield, E. (1975). Barrier Free Design for the Elderly and the
Disabled: 111: Programmed Workbook. Syracuse, NY: Syracuse
University.

Stirling, J., Wilford, M. & Associates & IBI Group/Paul Zajfen
(1988). Detailed Project Program: Science Library, UCI. Irvine,
CA: UCL. 321 pp.

Stokols, D. (1988). Instrumental and spiritual views of people—
environmental relations. Paper presented at Symposium on
The Role of Psychological Science in Promoting Environmental
Quality, Annual Conference of the Eastern Psychological
Association, Buffalo, NY, 22 April.

Stokols, D. & Shumaker, S. A. (1981). People in places: a
transactional view of gettings. In J. H. Harvey, Ed., Cognition,
Social Behaviour, and the Environment. Hillsdale, NJ: L.
Erlbaum, pp. 441-488.

Stone, Marraccini & Patterson (SMP) (1986a). Detailed Project
Program: Steinhaus Hall (School of Biological Sciences) Reno-
vation. San Francisco, CA: SMP.

Stone, Marraccini & Patterson (SMP) (1986b). Detailed Project
Program.: Biological Science Unit 2. San Francisco, CA: SMP.

Stone, P. J. & Luchetti, R. (1985). Your office is where you are.
Harvard Business Review, 63(21), 102-117.

Studer, R, (1966a). On environmental programming. Arena, The
Architectural Association Journal, 81(902), 290-296.

Studer, R. (1966b). Architectural programming, environmental
design and human behavior. Journal of Social Issues, 4,
127-136.

Thomas, D. H. (1979). Archaeology. New York, NY: Holt Rinehart
& Winston.

University of California, Irvine, Office of Physical Planning
(1987). Campus Child Care Center: Detailed Project Program.
Irvine, CA: UCI/OPP, Nov.

88 S. Mazumdar

Wade, J. W. (1979). Architectural programming. In J. C. Snyder &
A. J. Catanese, Eds., Introduction to Architecture. New York,
NY: McGraw-Hill, pp. 191-207.

Welch+Epp Associates (1986). Architectural Program for the
South Boston Police Station for City of Boston Public Facilities
Department. Boston, MA: Welch+Epp Associates.

Welch+Epp Associates with Prellwitz/Chilinski Architects (1987).
Architectural Program for Yarmouth Teen Mothers Residence
for Executive Office of Communities and Development
and Yarmouth Housing Authority. Boston, MA: Welch+Epp
Associates.

Welch+Epp Associates (1988). Post Occupancy Evaluation:
Quincy Mental Health Center. Boston, MA. Welch+Epp
Associates.

Wells, B. (1967). Individual differences in environmental
response. Arena: The Architectural Association Journal, 82,
167-171.

White, E. T. (1972). Introduction to Architectural Programming.
Tucson, AZ: Architectural Media, Ltd.

White, E. T. (1991). Design Briefing in England. Tucson, AZ:
Architectural Media, Ltd.

Wineman, J., Barnes, R. & Zimring, C..(Eds) (1986). The Costs of
Not Knowing: Proceedings of EDRA 17. Washington, DC:
Environmental Design Research Association (EDRA).

Zeisel, J. (1971). Fundamental values in planning with then non-
paying client. In C. Burnette et al., Eds., Architecture for
Human Behavior. Philadelphia, PA: ATA, pp. 23-30.

Zeisel, J. (1973). Symbolic meaning of space and the physical
dimension of social relations; a case study. In J. Walton & D.
Carns, Eds., Cities in Change. Boston, MA: Allyn & Bacon.

Zeisel, J. (1981). Inquiry by Design. Monterey, CA: Brooks/Cole
Publishing Company.

Zimmer, Gunsul, Frasca Partnership & Earl Walls Associates
(1989a). Detailed Project Program. Engineering Unit 2: Vol. 1:
Final Document. Irvine, CA: UCIL

Zimmer, Gunsul, Frasca Partnership & Earl Walls Associates
(1989b), Detailed Project Program: Engineering Unit 2: Vol. 2:
Room Data Sheets and Program Drawings, Final Document.
Irvine, CA: UCL

Manuscript received 3 August 1990
Revised manuscript received 30 August 1991

Space Function

Sequence
of Procedures

Equipment

Furnishings/
Casework

Finishes and
Critical
Dimension

Programming Approaches

Appendix 1 Room Data Sheet
Source: NBBJ (1990) (reprinted with permission)

Room Data Sheet

89

The NBBJ Group

Project Department
Job Number Room Name
Date Room Numbers

Prepared by

Key Relationships
Key Operational Assumptions

Hours of Use: Average Occupancy

Length of Procedures

Hours of Use: Maximum Occupancy

Length of Clean-up

Description Size Fixed/ Power Emerg. Ground Vent Light Stab Other
Make/Model mobile req'mt power reqg’'mt reqg’'mt req'mt volt
1
2
3
4
5
6
Attach Manufacturer’s specifications if possible
Use additional sheets to expand list
Size Quantity Size Quantity Other Size Quantity

Desks Counter

(ength)
Chairs Files ~
Tables Carrels
Multile seating Chalkboard
Typewriter Tackboard
CRT Screen
Shelving (length) Other
Floor Comments Wall Comments Ceiling Comments
Material Material Material
Finish Finish Finish
Access Wainscot Access
Base Handrail - Height
Dimensions Bumper 1 IV Track

90

Openings

Electrical

Mechanical

Plumbing

The NBBJ Group

S. Mazumdar

Door Comments Relites Comments Windows
Size Size [Required
Finish o Glazing [] Not required
Lock [] Operable [] Not desired
Rating [] Fixed [/ Fixed/Operable
[l Manuél Q %per‘ies o
E] Auto S [Light control
[Closer O Draperiesb
[X-ray prot.] Blinds
Power Comments Lighting Comments Communication
[Ji120Vv 7208V [Fluorescent [Telephone
[J1¢ [13¢ [1 Incandescent intercom
[0 Emergency [] Emergency [Paging
7] Strip recep. B [] Task [] Music o
[1 Floor recep. Controlh - [] Data procesé.)
[Ceiling recep. Level (fc) - JceTv éamera B
[] Grounding Other 3 CCTV monitor o
[Expl. proof Exam wk -
[] Waterproof Fixed [1 Emergency powél
[J Uninteruptible Pd;ver Supply Moveable [] Telemetry
[] Clean (Filtered) Power B] Physiological Monitor B
[] Dedicated Circuit [] Nurse Call
Other o [___]T)ictation
Ventilation Comments Air Conditioning Comments Pressure
[Mechanical Min. Temperature [] Positive
[Natural Max. Temperature [] Negative
[J Exhaust Min. Relative Humidity] Neutral
Max. Relative Humidity éontro]
Acoustical control [Individual
Filtering o [Zone
Piped Service Quantity Fixtures Comments Fixtures
[] Oxygen [Sink [WEC Law
[] Nitrogen Type [Floor Drain
[JAir Material JEWC
[Vacuum o Sink Control
[Nitrous Oxide [] Wrist Accessories Size Quantity
[Carbon dioxide] Foot
Other [Electronic i - [[] Soap Dish)
[Hot Cold Water B [Shelf o
{1 Vacuum Cleaner O wWe] Mirror B
[] Steam [] BP Washer o [Towel Bar ;7
[] Natural Gas o] Urinal o {1 Grab Bar o
[] Distilled Water - [Lavatory CHok
] Deionized Water aTub - [] Waste Recep.
] Size - [Toilet Paper

Location

[1 Column

[] Showerstall
[Service Sink]
ngIushing Rim

[J Hose

[Spray

] Dist. Water

(1 Plaster Trap

[San. Napkins

[Seat Cover Disp.

] Bench

[J Shower Curtai;l

[Other

Programming Approaches

Appendix 2 Room Data Sheet
(Source: MIT (1982) (reprinted with permission))

GROUP:
NAME OF SPACE:

NUMBER REQUIRED:

TOTAL AREA:
FACILITY NUMBER:

FACILITY NUMBER:

AREA PER SPACE
PURPOSE
OCCUPANT
LOCATION
FLOORS

WALLS

CEILINGS
CEILING HEIGHT
DOORS
WINDOWS
ACOUSTICS

HVAC

ELECTRICAL

PLUMBING

PIPED SERVICES
SAFETY REQUIREMENTS

COMMUNICATIONS
SPECIAL REQUIREMENTS
FURNISHINGS/EQUIPMENT

FIXED

MOVABLE

91

