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Abstract
The mixing efficiency Rf (more formally referred to as the flux Richardson number) is a
widely used parameter that is intended to provide a measure of the amount of turbulent
kinetic energy (TKE) that is irreversibly converted to background potential energy as
a result of turbulent mixing in a stably stratified fluid. In this paper, three different
definitions of the mixing efficiency that are commonly used in stratified turbulence are
presented to highlight under what flow conditions they might be approximately equivalent
and when such equivalences might break down. Analysis of two existing DNS datasets
are presented to compare these various definitions. It was found that all three definitions
were approximately equal when the gradient Richardson number Rig ≤ 1/4. Conversely,
when Rig > 1/4, significant variations are noticeable between the various definitions.
Furthermore, the irreversible formulation of Rf is the only definition that is free from
oscillations at higher Rig values.

1 Introduction

The quantitative characterization of diapycnal (irreversible) turbulent mixing in density
stratified geophysical flows such as in the oceans and the atmosphere, remains a ma-
jor challenge. This can be attributed primarily due to the complexity introduced into
geophysical flows by density stratification in conjunction with complex topography and
other physical phenomena (e.g. internal waves) associated with such flows. Regardless,
accurate quantification of both momentum and diapycnal mixing of density is imperative
given its importance for many practical applications such as air quality prediction, nutri-
ent transport in water bodies and ocean circulation etc. It is common practice to quantify
turbulent mixing in such flows using a turbulent (eddy) viscosity νt for momentum and
a turbulent (eddy) diffusivity Kρ for density, which are based on the gradient-diffusion
hypothesis (Pope 2000). For a unidirectional shear flow, νt and Kρ are defined as

νt = − u′w′

dU/dz
,

Kρ = − ρ′w′

dρ/dz
, (1)

where, U is the mean streamwise velocity, ρ is the fluid mean density, u′w′ is the Reynolds
stress (turbulent momentum flux), ρ′w′ is the turbulent density flux and an overbar ( )
implies averaging (spatial or temporal). Direct estimates of νt and Kρ are hard to obtain
from field measurements due inherent difficulties associated with estimating turbulent
fluxes such as spatial resolution issues (e.g. in oceanic flows) as well as the coexistence of
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internal wave motions and turbulence in stably stratified flows. A clean separation of flux
contributions from turbulence to that from linear internal waves (which do not contribute
to diapycnal mixing) remains challenging. Such difficulties have popularized the use of a
number of indirect approaches that are frequently used in oceanography for the inference
of momentum and heat fluxes, of which the two most commonly used approaches are
those due to Osborn (1980) and Osborn and Cox (1972).

Major inherent assumptions of indirect methods are that the turbulent flow is statistically
stationary and homogeneous. These assumptions are used to simplify the energetics of the
turbulent flow field. Consider for example the Osborn (1980) model where (under these
assumptions), the turbulent kinetic energy (TKE) equation can be simplified to obtain
the diapycnal diffusivity of density as

Kρ =

(
Rf

1−Rf

)
ε

N2
. (2)

Here, ε is the dissipation rate of k, N =
√
−(g/ρ0)∂ρ/∂z is the buoyancy frequency of

the background (stable) density field and Rf , the mixing efficiency (also known as flux
Richardson number) which provides a measure of the amount of TKE that is irreversibly
converted to background potential energy, is traditionally defined as

Rf =
B

P
. (3)

In equation (3), B = g/ρ0(ρ′w′) is the buoyancy flux and P = −u′w′(dU/dz) is the
rate of production of k. A canonical value of Rf ≈ 0.17 was used by Osborn based off
of some controlled laboratory experiments by Britter (1974), but many studies over the
last few decades have attempted to parameterize the dependence of Rf on the strength
of the stratification, which is commonly quantified in terms of the gradient Richardson
number Rig = N2/S2, where S = dU/dz is the mean shear rate (Fernando 1991, Gregg
1987, Itsweire et al. 1993, Ivey and Imberger 1991, among others). However, a universal
parameterization of Rf remains elusive due to both the ambiguities associated with single
parameter formulations and the general complexity of stably stratified turbulence (Mater
and Venayagamoorthy 2014).

Given the fact that the inherent assumptions of statistical stationarity and homogeneity
are not always applicable in practice, be it in direct numerical simulations (DNS) or ob-
servational studies of geophysical flows, Ivey and Imberger (1991) proposed an alternative
definition of Rf (hereafter denoted by RII

f ) as

RII
f =

B

m
=

B

B + ε
, (4)

where the denominator m, in addition to P , includes the non-local (inhomogeneous)
transport and unsteadiness terms. This definition therefore precludes the need to assume
that the turbulence is stationary and/or homogeneous. However, it also suffers from the
effects of countergradient fluxes that are common in strongly stratified flows. Thus, a
third definition of Rf (denoted commonly as R∗f ) has been defined (Peltier & Caufield
2003, Venayagamoorthy & Stretch 2010) where only the irreversible components of the
buoyancy flux (i.e. the dissipation rate εPE of the turbulent (available) potential energy
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E ′PE) and of the production term (i.e. the total dissipation rate, ε + εPE) are used as
follows

R∗f =
εPE

ε+ εPE
. (5)

Here εPE = N2ερ(dρ/dz)−2 in which ερ = κ(∇ρ′)2 is the dissipation rate of density (scalar)
variance with κ defined as the molecular diffusivity of density. A conceptual explanation
for the basis of this definition was provided by Venayagamoorthy & Stretch (2010). It is
worth noting that for stationary homogeneous flows, R∗f = RII

f = Rf . As stated earlier,
such conditions are rarely applicable in practice and hence it is imperative to investigate
the differences and similarities between these three commonly used definitions of the flux
Richardson numbers. This simple but important goal is the focus of this work.

2 The Data

Two existing DNS datasets that have all the necessary variables for computing Rf , R
II
f

and R∗f , as functions of the gradient Richardson number Rig are used in this study.
The first dataset is from the DNS study of homogeneous shear flows by Shih et al. (2005,
hereafter SKIF). These simulations are for temporally developing homogeneous turbulence
subjected to different values of uniform mean shear rate and uniform stable stratification.
The gradient Richardson numbers used in the simulations were 0.05 ≤ Rig ≤ 1. For low
Rig, the turbulent kinetic energy k grows in time, while at high Ri (> 0.25), k decays. All
statistics were obtained by volume averaging over the computational domain. The data
presented are for nondimensional shear time St ≥ 4 to the end of the simulation time, in
order to filter out the initial transients during the development phase of the turbulence
encountered in the initialization of the simulations. Further details of the simulations
can be found in SKIF. The second dataset is from the DNS study of stably stratified
turbulent channel flow by Garćıa-Villalba and del Álamo (2011, hearefter GVA). For the
purpose of this study, we use data from simulations performed at a friction Reynolds
number of Reτ = uτδ/ν = 550, with an initial stratification given by friction Richardson
numbers of Riτ = |∆ρ|gδ/ρ0u2τ = 60. Here, uτ is the friction velocity, δ is half of the
channel depth and ν is the kinematic (molecular) viscosity and |∆ρ| is the initial density
difference between the bottom of the channel (z = 0) and the free-stream (z = δ).

3 Results

The flux Richardson numbers Rf , R
II
f and R∗f as defined by equations (3), (4) and (5),

respectively, as functions of the gradient Richardson number Rig using the DNS data
of SKIF and GVA, are shown in figure 1(a) and (b). There are two main points worth
noting from figure 1(a). First for low Rig (up to Rig ' 0.25), it can be seen that all three
definitions are approximately equivalent (albeit with some differences which on average
are within ±25%). The data suggests that the flux Richardson number (regardless of
which definition is used) increases with Rig in a quasi-linear manner for small Rig (.
0.1) and continues to increase with decreasing slope for 0.1 . Rig ≤ 0.25. The favorable
comparison between the three different definitions is encouraging in the sense that it
highlights the fact that both buoyancy and momentum fluxes are dominated by turbulent
processes in this shear dominated flow regime. The good agreement suggests that any
of the three definitions could be used for inferring the irreversible mixing in the shear
dominated regime in a stably stratified flow with a reasonable degree of accuracy.
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Figure 1: Comparison of flux Richardson numbers Rf , RII
f and R∗

f as functions of the gradient Richardson
number Rig, computed from (a) the homogeneous shear flow DNS data of Shih et al. (2005) and (b) the

channel flow DNS data of Garćıa-Villaba and del Álamo (2011).

Second, as can be seen in figure 1(a), both Rf and RII
f exhibit significant variability at

higher Rig (> 0.25) while R∗f shows almost negligible variations. Note that for a given
Rig, the variability in Rf indicates oscillations in time of both the buoyancy flux and
momentum flux, while for RII

f , the variability signifies oscillations of the buoyancy flux.
Physically, at high Rig (i.e. the so called buoyancy dominated flow regime), the production
P of k becomes small while the buoyancy flux B is increasingly dominated by adiabatic
displacements from linear internal waves. Hence, the traditional definition of Rf becomes
less meaningful in such buoyancy dominated flow regimes. Similarly, RII

f suffers from
significant oscillations at high Rig. However, it is worth noting that unlike the trend in Rf ,
on average, RII

f appears to decrease for Rig ≥ 0.25 but becomes quickly less meaningful at
higher Rig values (i.e. attains negative values) when significant countergradient buoyancy
fluxes become prevalent. On the other hand, the irreversible flux Richardson R∗f does not
suffer from such issues since by definition, it excludes the effects of reversible contributions.
Furthermore, R∗f appears to asymptote to an approximate constant for high Rig.

Figure 1(b) shows a comparison of Rf , R
II
f and R∗f using the DNS data of GVA for

a fully developed stably stratified turbulent channel flow. Again, the relatively good
agreement between the three definitions can be seen for Rig . 0.25. Given the important
fundamental differences between the two sets of simulations i.e. the GVA simulations are
for fully developed wall-bounded turbulent flow while the SKIF simulations are for time
evolving homogeneous shear flows, it is encouraging to see similar trends in the behavior of
all three definitions. This highlights the fact that the basic physics associated with shear
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Figure 2: Comparison of flux Richardson numbers Rf , RII
f and R∗

f as functions of the buoyancy Reynolds
number Reb, computed from (a) the homogeneous shear flow DNS data of Shih et al. (2005) and (b) the
channel flow DNS data of Garćıa-Villaba and del Álamo (2011). The color bars show the corresponding
gradient Richardson numbers Rig.

generated turbulence are at play in both of these flows as long as Rig . 0.25 and indicates
that the fluxes are predominantly turbulent for both flows. On the other hand, for high
Rig, the agreement between the three definitions decreases rather rapidly (but without
oscillations since the data shown is for steady fully developed flow) especially between the
traditional definition Rf and the other two definitions. This is due to the fact that the
production P of k decays as the mean shear rate drops further away from the wall (i.e.
in the inner core of the channel). On the other hand, in this far-wall region, reversible
effects from linear internal waves are dominant and contaminate the buoyancy flux. Both
RII
f and R∗f appear to level out with increasing Rig with RII

f somewhat smaller than R∗f ,
consistent with the trend also seen in figure 1(a). These results highlight the importance
of separating out the reversible contributions to both the momentum and scalar fluxes in
such time evolving (i.e. locally nonequilibrium) flows, especially in the strongly stratified
buoyancy dominated flow regime.

The the buoyancy Reynolds number Reb = ε/(νN2), where ν is the kinematic viscosity
of the fluid, is widely used for parameterizing mixing in stratified turbulence (e.g. Shih
et al. 2005). It is therefore instructive to explore the variation of Rf , R

II
f and R∗f with

Reb. Figure 2(a) and (b) show the dependence of Rf , R
II
f and R∗f with Reb. It can be

seen that all three definitions are in approximately good agreement for Reb & 30. This is
also consistent with the low Rig regime (. 0.25) as can be seen in the color bar inserts
in figure 2 and the dependence on Rig shown in figure 1. Moreover, at lower Reb values
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(< 30, and correspondingly higher Rig values), the agreement deteriorates similar to that
seen in figure 1 with Rig. This figure underscores the fact that turbulence is suppressed
(at least in these simulations) at higher Rig as buoyancy effects become dominant.

4 Conclusions

In this study, a careful comparison of the three definitions of the mixing efficiency Rf ,
RII
f and R∗f , that are commonly used to quantity diapycnal mixing in stably stratified

flows was presented. Using DNS datasets of time evolving stably stratified homogeneous
shear flow and turbulent channel flow, it was found that in the shear dominated flow
regime (0 ≤ Rig . 0.25), all three definitions are approximately equivalent. This is
a key result result in that this allows for the estimation of irreversible mixing directly
from flux measurements, and vice versa for inferring fluxes from indirect estimates of
dissipations rates. However, our analysis show that the agreement between the three
definitions deteriorates quickly as Rig increases above 0.25 with significant oscillations in
both Rf and RII

f in time evolving homogeneous stably stratified shear flows. Both Rf

and RII
f do not separate out the effects of countergradient fluxes that are pervasive in the

buoyancy dominated flow regime. The irreversible flux Richardson number R∗f is the only
formulation that is free from such large oscillations and exhibits a clear positive definite
trend with increasing Rig.
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