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Abstract—Network communication on GPU-based systems is
a significant roadblock for many applications with small but
frequent messaging requirements. One common question for
application developers is, “How can they reduce the overheads
and achieve the best communication performance on GPUs?”
This work examines device initiated versus host initiated inter-
node GPU communication using NVSHMEM. We derive basic
communication model parameters for single message and batched
communication before validating our model against distributed
GEMM benchmarks. We use our model to estimate performance
benefits for applications transitioning from CPUs to GPUS for
fixed-size and scaled workloads and provide general guidelines
for reducing communication overheads. Our findings show that
the host-initiated approach generally outperforms the device-
initiated approach for the system evaluated.

Index Terms—Performance evaluation, High Performance
Computing, GPU Communication, SHMEM

I. INTRODUCTION

Over the past ten years, GPU-based systems have become
dominant among the fastest supercomputers around the world.
In the United States, each of the exascale systems currently
being built will derive most of its computational power from
GPUs. As the computational power in supercomputer systems
has concentrated in GPUs, communication has become more of
a bottleneck, including both communication over the network
between GPUs and communication within a node between
CPUs and GPUs. In the traditional accelerator model, all com-
munication is handled by the CPU, which introduces additional
software and hardware overheads for communication taking
place between two GPUs over the network. In terms of raw
performance, leaving CPUs in charge of all communication
introduces additional transfers over the PCI bus, lowering
performance. In addition, users also now have to manage the
added software complexity of multiple kernel launches and
data transfers.

Recent advances by hardware and software vendors aim to
ease this communication bottleneck by allowing GPUs to take
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a more active role in communication. These include new hard-
ware mechanisms for GPU communication, such as NVLink
and GPUDirect RDMA, which allow for direct communication
between GPUs within and between nodes, respectively. These
also include software mechanisms for CPU-initiated (e.g.
CUDA-aware MPI or NVSHMEM) and device-initiated (e.g.
NVSHMEM) communication between GPUs. Unfortunately
new technologies leave users with complex design choices of
understanding varying software complexity and performance
costs.

In this paper, we extend the well established LogP[1]
performance model to include GPU-initiated communication.
This enables application developers to reason about and predict
the performance of different GPU-to-GPU communication
strategies. We first build a LogP model for CPU-to-CPU
communication, then extend this model to GPU-to-GPU com-
munication initiated by either the host CPU or the GPU
itself. Our analysis highlights the overheads of GPU-initiated
communication, which is currently emulated using assistance
from progress threads on the CPU. We evaluate NVSHMEM
for the purposes of this work because, (1) it provides both
a cpu-initiated and device initiated approach and (2) it is
built directly on top of IB verbs, incurring minimal software
overheads. We then examine the implications for application
speedup from potential future hardware improvements.

Our results in Section IV suggest that host-initiated per-
formance provides moderate performance advantages to the
device initiated approach of NVSHMEM 0.3. However, our
findings conclude that the more crucial factor in application
performance is the application’s ability to increase its message
size and batch message transfers. This holds true irrespective
of whether communication is host or device initiated. In
summary, our paper makes the following contributions:

1) Derive LogP models to represent GPU communication.
2) Validate our model using a distributed matrix multipli-

cation benchmark
3) Use our model to predict application speedups for a

variety of scenarios
4) Provide recommendations for best practices of GPU

communication

We begin with an introduction to GPU communication



mechanisms and communication performance modeling, fol-
lowed by our experimental methodology for deriving com-
munication model parameters, considering the relationship
between performance, message size, and temporal locality
of communication. We then apply our analytical model to a
set of workloads in order to evaluate our model’s accuracy
before predicting application speedups along with the potential
performance improvements that could be gained by future
hardware improvements. Finally, we provide an overview of
how our approach extends related work in this field and
summarize our insights.

II. BACKGROUND

A. Remote data access methods for GPUs

In a supercomputing setting, conventional CPUs have typi-
cally been in charge of all communication, which introduces
both hardware overheads and software complexity. If all com-
munication is to be processed on the CPU, this requires that
when a message needs to be sent, the application developer
must exit the current kernel launch, where GPU code is being
executed, and return to the CPU. In the case where data
from a GPU is being sent across the network, the CPU must
issue a call to transfer data across the Peripheral Component
Interconnect (PCI) bus from the GPU to the CPU before it can
be sent across the network. On the receiving side, the CPU
must also manually transfer data across the PCI bus in order to
move the data into position on the remote GPU, often leading
to a bottleneck, particularly when there are multiple GPUs per
node.

An alternative to CPU-only communication is GPU-based
communication, where data can pass directly from a GPU on
one node to a GPU on another. NVIDIA’s GPUDirect RDMA
is one technology that offers this capability, allowing remote
direct memory access (RDMA) transfers between GPUs on
different nodes [2]. As with CPU-based RDMA, each GPU
has a shared segment of pinned memory that is accessible for
other GPUs to read and write to over the network using one-
sided put and get operations. However, it is important to note
that while the current generation of GPUDirect RDMA has a
data path that transfers data directly from one GPU to another
across the network, its control path still requires involvement
from the CPU. The CPU is responsible for preparing an
Infiniband request and sending it to the network interface card
(NIC), at which point the NIC will copy the data directly from
one GPU to another.

While GPUDirect RDMA improves performance by allow-
ing direct transfers between GPUs across the network, it still
requires involvement from the CPU. This in turn may require
synchronizing threads and thus force the application to exiting
and subsequently relaunching a CUDA kernel context after the
communication operation has been intitiated. This results in
additional performance overheads and software complexity.

NVSHMEM, which is an extension of the OpenSHMEM
API, allows both CPU-initiated and GPU-initiated communi-
cation between GPUs [3]. GPU-initiated communication is
implemented using progress threads on the CPU, each of

which has a message queue associated with it. When a GPU
thread wishes to issue a communication operation, it will
insert the metadata associated with the operation into the CPU
queue. When the associated CPU progress thread dequeues the
operation, it will prepare an Infiniband request and send it to
the NIC. At this point, the NIC will directly copy the data
over the network to the remote GPU.

NVSHMEM therefore offers a software API that allows
for CPU-initiated as well as GPU-inititated communication
between GPUs in a supercomputer environment. While new
hardware technologies may appear that change the perfor-
mance costs of using these APIs, NVSHMEM represents a
low overhead baseline for current GPU architectures.

In light of this, in this paper we develop our experiments on
top of NVSHMEM while developing a performance model for
GPU communication. From our experiments, we also found
NVSHMEM to be significantly faster than MPI implementa-
tions on the architecture evaluated.

B. Communication Modeling

In order to reason about GPU performance, we leverage the
popular LogP model [1]. Introduced in 1993, the LogP model
has been studied and extended for nearly thirty years. At the
core of LogP-based models are the original model parameters:

L an upper bound on the latency, or delay, incurred
in communicating a message containing a word (or
small number of words) from its source module to
its target module. This parameter is significant for
small messages.

o the overhead, defined as the length of time that a
processor is engaged in the transmission or reception
of each message; during this time, the processor
cannot perform other operations. This parameter is
significant for small messages.

g the gap, defined as the minimum time interval be-
tween consecutive message transmissions or con-
secutive message receptions at a processor. The
reciprocal of g corresponds to the available per-
processor communication bandwidth. This parameter
is significant for small messages.

P the number of processor/memory modules. We as-
sume unit time for local operations and call it a cycle.

The LogP model has been extended in numerous publica-
tions [4–9]. These extensions generally add additional param-
eters to account for differences across message size, synchro-
nization, contention, and divergent control paths. One example
is that big G in the LogGP model[4] is added to represent
the cost per byte of data transferred rather than using the
fixed cost per message g from the original model. This tends
to better approximate modern network systems, which can
achieve higher bandwidths with larger message sizes. As with
all models, there is a trade-off between the simplicity of the
model and its accuracy to represent real systems. In this work,
we build a LogGOP model, which means that in addition to
the o and g parameters for small message sizes, we calculate



large message overhead O and gap G as a function of message
size m (bytes). This adds two parameters:

G gap, defined as the minimum time interval between
consecutive message transmissions or consecutive
message receptions at a processor with respect to a
message of size m bytes. This parameter is signifi-
cant for large messages.

O overhead, defined as the length of time that a pro-
cessor is engaged in the transmission or reception of
each message; with respect to an m byte message.
This parameter is significant for large messages.

Another addition from Ino, Fujimoto and Hagihara [6] added
a parameter S, for synchronization within MPI rendezvous
protocols. We adapt S to account for GPU synchronization
and consistency operations.

S time spent in synchronization and consistency oper-
ations for necessary transfers between GPU cache to
HBM2 and host DRAM. This parameters is a fixed
cost irrespective of message size.

Lastly, the original description of overhead states, “the pro-
cessor cannot perform other operations when engaged in the
transmission or reception of each message”. Because of the
complexities of parallel execution and the fact that on modern
system overhead is split across multiple processors (namely
the CPU, GPU and the NIC) we relax this assumption.

Using these model parameters, we derive the parameters
using experimental results. As with parameter selection, there
are a number of papers that explore the trade-offs of different
measurement techniques. A good summary is provided by
work by Hoefler, Lichei and Rehm [10]. Generally, engineers
derive two of the three parameters experimentally and any
remaining time is associated with the remaining parameter.
When measuring the parameters there are many obstacles, such
as:

1) Absent accurate fine-grained synchronization across
clocks, latency must be derived from round-trip times.

2) Overhead for receiving (Or) is not always equal to the
overhead of sending (Os)

3) Sophisticated NICs may act as another processor allow-
ing for overlap with CPU overheads.

4) Protocol changes at various message sizes (e.g. MPI
eager/rendezvous) change the overhead cost.

5) Gap and Overhead may overlap.
6) Pipelining may increase round-trip time while increasing

throughput.
7) Caching may decrease the observed latency.
8) Scheduling of shared resources on CPUs and GPUs can

be a source of variability.

This partial list illustrates where sources of errors may arise
as we assess values for our model parameters. We will revisit
these issues in our evaluation.

III. METHODOLOGY

A. Benchmarks

We use two sets of benchmarks to derive our LogP model
parameters: OFED and NVSHMEM Perftests.

1) OFED Perftest: For the cases where it is desirable to
reduce software and CPU overheads as much as possible, we
rely on the OFED performance tests [11]. These are written
directly using the low level Infiniband Verbs (IBV) API to
minimize software overhead. In the read_lat tests, work
requests are posted one at a time with a “delta” value measur-
ing the time between consecutive post events. For any message
ki that is posted, the message ki+1 is not posted until the
completion queue signifies success with IBV_WC_SUCCESS,
reporting half round trip time (RTT/2). All OFED Perftests
utilize CPU-initiated communication, but it includes CPU-to-
CPU as well as GPU-to-GPU benchmarks, which allows us to
compare latency and bandwidth as the data path changes from
the CPU’s DRAM memory to the GPU’s HBM2 memory.

2) NVSHMEM Perftest: As discussed in Section II,
the NVSHMEM [3, 12] communication library provides
lightweight communication operations for accessing GPU
memory. NVSHMEM is written using the IBV interface.
We have chosen NVSHMEM for our experiments for two
reasons, the first is that it provides a lightweight interface
on top of the IB network provider interface. From our ex-
periments, we found this to be significantly faster than MPI
implementations on the architecture evaluated (the system
default, Spectrum MPI took over 4us in 8B get latency tests
compared to 2.4us for NVSHMEM). The more important
reason is that NVSHMEM provides two separate control
paths for communication. One is invoked directly by the
CPU (e.g. *_get_<all_variants>_on _stream) and
the other is invoked directly within a GPU kernel (e.g.
*_get_nbi_block). As discussed in Section II, the GPU-
initiated interface currently relies on progress threads on the
CPU to help with sending the necessary Infiniband requests
to the NIC. We compare the get and put-based NVSHMEM
perftests included with NVSHMEM 0.3.0. A similar device
initiated control path is not available in any MPI implemen-
tation to date. There is an option in the benchmark to discard
the first k iterations (this is common in many communication
benchmarks to avoid reflecting cache performance). We found
that if the warm-up phase is disabled, get latency could be
as high as 8us. For our parameter assessment we enable the
default warm-up of 20 iterations.

We note that NVSHMEM supports intra-node messages
between GPUs sent over PCIe or NVLink [13]. However
this work is focuses on device vs. host-initiated inter-node
communication and Intra-node performance is not the focus.

B. Model Parameter Assessment Methodology

In order to build our LogP-based model for GPU commu-
nication, we need to isolate and derive each individual model
parameter. First, we evaluate the cost of latency L. To do this,
we evaluate a set of latency benchmarks as we change the



location of data. By increasing the physical distance from the
initiator and target we can approximate the latency of the wire.

Regarding gap, small messages are bound by the transac-
tions per second the NIC can handle. For the hardware eval-
uated here (Mellanox ConnectX-5) the vendor specification
is 200 million messages per second (Mpps) [14]. For an 8-
byte message this corresponds to a gap of 5ns, and we use
this as our cost for g. For big G we use the formula for gap
in the original LogP model (the reciprocal of per processor
bandwidth) with the numerator being the message size to
derive a lower bound on the gap per byte (m). We refer to this
as either G(m) or simply G. This is a lower bound because we
know the throughput cannot exceed the theoretical bandwidth
of the NIC. Therefore if the interval between consecutive
message transmissions is greater than g + G our model will
presume the increased time is in the result of overhead o+O.

Serial processing performance has not changed substantially
compared to increases in bandwidth since the publication
of LogP, therefore overhead (o and O) have remained rel-
atively high while g and G have decreased significantly.
(Network bandwidth has continued to double every two to
four years since 2001.) We can evaluate the cost of some
software overheads by comparing benchmark results with
an increasing amount of library overheads. Specifically we
compare the performance of IB-verbs perftests against the
additional software overheads of NVSHMEM. This provides
some approximation of overhead cost, but the reality is there
are additional overheads we are unable to measure such as
overhead in the NIC. With this in mind, we calculate overhead
of an 8 byte message (o) as the observed performance of a
benchmark minus our calculated values of L g and G. We
can perform a similar exercise, varied across message size, to
calculate the overhead per byte (O(m) or just O).

C. System Evaluated

We utilize Oak Ridge Leadership Computing Facility’s
Summit supercomputer for our evaluation [16], summarized in
Figure 1. Each node of Summit has two IBM Power9 proces-
sors as well as 6 NVIDIA Tesla V100 GPUs. Each node con-
tains 512GB of DDR4 DRAM memory (CPU memory) and
16GB of HBM2 memory per GPU. Within a socket, NVIDIA’s
NVLink provides CPU-GPU and GPU-GPU communication.
NVLink provides two links between every processor, each
with a 25GB/s peak bandwidth in each direction. A 64GBps
X-Bus (SMP) provides bandwidth between sockets. Each node
contains two Mellanox IB EDR NICs each providing 100Gbps
(12.5GB/s) of inter-node bandwidth. Each NIC is connected
to a Power9 CPU by 16GB/s PCI-e Gen 4. A three-level non-
blocking Fat Tree topology is used to connect each node in
the system together.

IV. GPU COMMUNICATION MODEL

A. Measuring Latency

In our first set of experiments we perform a set of 8-byte
OFED ib_read_lat tests varying the distance of initiator
and target to use the loopback device, a path to the adjacent

Fig. 1. Summit node layout, original image from work by Oral et. al [15]

L o O(m) g G(m) S

NV HI Put 530 229 0.074 ∗m 5 m/12.5 NA
NV HI Get. 530 247 0.067 ∗m 5 m/12.5 NA
NV DI Put 530 219 NA 5 m/12.5 4,380
NV DI Get 530 237 NA 5 m/12.5 4,570

TABLE I
MODEL PARAMETERS FOR HOST AND DEVICE INITIATED NVSHMEM ON

SUMMIT (SINGLE MESSAGES LESS THAN 8KIB IN SIZE, UNIT NS.).

Fig. 2. Deriving l values: 8-byte OFED ib_read_lat tests by varying
the distance of the initiator and target: (1) loopback device, (2) inter-socket,
(3) inter-node to target DRAM, (4) inter-node to target HBM2. Minimum,
Median and Maximum values shown.

socket, and a path across a single IB switch. In each case, the
target memory being read is located in DRAM. For a fourth
test we place the data being read on the target node’s GPU
memory. We perform 1000 iterations and report the minimum,
median, and maximum values in Fig 2. By comparing the
results of each tests we can derive a value for L. The data
shows a 280ns increase when traveling across a single IB
switch and an additional 250ns cost for accessing data in



Fig. 3. Modeled and observed NVSHMEM performance for 8B host-initiated
and device-initated latency benchmarks. Model cost is further divided into
l,o,g,S parameters. Error bars show difference in total benchmark compared
to total modeled time. All results are inter-node and use GPU HBM2 memory.

GPU memory. This does not allow us to determine the PCIe
latency, since it is included in each measurement. However,
this error term is comparatively minor when compared to
overall communication times and does not significantly impact
the prediction of the model in Section V.

B. Calculating Gap

Our values for gap are derived from the theoretical limits of
the hardware as specified by Mellanox for ConnectX-5 EDR
NICs. For small messages we are limited by the maximum
message rate of 200 million messages per second (Mpps)
which is equivalent to a gap of 5ns. This gives us the value g.
As we increase message size we are eventually limited by the
bandwidth of the NIC (12.5 GBps). This gives us our formula
for G = m/12.5ns. We validate these values in Section IV-E.

C. Calculating Overhead and Synchronization

Having established values for L, g and G, we calculate
overhead as the remaining value from our experiments. Other
approaches have measured o by inserting delays between
messages, which are increased until the delay and overhead
match the cost of the gap [17]. However, on modern systems
gap is significantly smaller and overhead may be spread across
multiple processor units, making the approach problematic.
With this in mind, we first perform a set of experiments
that derive the o, O, and S of the NVSHMEM API and
compare it with the performance. First we establish models
for NVSHMEM (NV) device (dev.) and host initiated latency
benchmarks and then run the benchmarks using small 8-byte
messages to derive o and S:

NV dev.get = 2(l +G+ S) + 4(o+ g) (1)
NV dev.put = S + 2(l +G) + 4(o+ g) (2)
NV host.get = 2(l +O +G) + 4(o+ g) (3)
NV host.put = O + 2(l +G) + 4(o+ g) (4)

These equations represent the nuanced differences between
device initiated and host initiated approaches as well as put
versus get operations.

Both puts and gets transfer the payload once, however, get
includes the full roundtrip time to retrieve the data from remote
memory, whereas put operations may return acknowledgement
once the target system has guaranteed delivery of the payload.
Depending on the system this may occur on the NIC, allowing
for a reduction in CPU overheads O. In the equations above,
only device initiated approaches incur the cost S (twice for
get and once for put).

We first evaluate performance for 8B messages. By using
small messages our equations can be simplified by removing
O, G. By substituting our values for l, g, we can then solve
for o (219 and 237ns. in Eq. 3 and Eq. 4, respectively). For
simplification, we assume a symmetric model for o and S
(i.e. it is the same on both initiator and target side). The
data comparing NVSHMEM host-initated get vs. put (Fig. 3,
suggests a nearly identical cost for o since put is within 70ns.
(3.5%) of get performance. Last we substitute our values for
o and determine S equals 4.6us. in Eq. 1.

a) Host vs Device Initiated NVSHMEM: In Fig 3 we
compare the performance of CPU-initiated NVSHMEM versus
GPU-initiated NVSHMEM. For 8-byte messages we see that
the cost of S incurred by the GPU initiated path is substantial,
72% to 82% of total time.

As discussed in Section II, in the NVSHMEM 0.3.0 im-
plementation, the GPU-initiated communication operations
over Infiniband are implemented with the help of progress
threads running on the CPU. When a GPU thread issues a
communication operation, it must also first issue a global
memory fence to flush all modified state from the L2 cache
to GPU global HBM2 memory. Only after it finishes this
global memory fence can it perform an enqueue operation
(consisting of one atomic fetch-and-add and four global GPU
memory writes) to the queue associated with its CPU proxy
thread. Once this write has been completed, the CPU progress
thread can dequeue the metadata written by the GPU thread
and prepare and send the corresponding Infiniband request to
the NIC.

In order to ensure completion of communication operations,
we can use the nvshmem_quiet() operation. In this func-
tion, the calling GPU threads poll a completion counter which
is updated by CPU progress thread once the Completion Queue
Entry (an IBV data structure) is generated. Finally, a system
level memory fence must be issued to ensure all updated data
is visible to all threads across the GPU as well as any clients
interacting with the GPU using PCIe or NVLink. If multiple
non-blocking GPU-initiated NVSHMEM communication calls
are issued simultaneously, then NVSHMEM is able to use
only one memory fence to ensure consistency for all the
communication requests.

However, with CPU-initiated communication, a CPU thread
may directly prepare and send a command to the NIC, which
avoids the overhead associated with both the progress thread’s
queue and the memory fence. However, CPU-initiated com-



Fig. 4. Overhead with respect to message size after subtracting latency and
gap values for host initiated NVSHMEM put and get. X-axis is log-scale.
Least squares regression is performed to derive values for O in Tab. I

munication may incur additional hardware overheads due to
the need to issue multiple kernel calls.

D. Single-message (under 8KiB) overheads

To evaluate the cost of single message, it is necessary to
examine how O scales with respect to message size (m).
To calculate this, we run the NVSHMEM host and device
benchmarks with increasing message size. We then subtract the
previously derived values for L, o, g and G before performing
a least squared linear regression.

a) Overlap of parameters: As message size increases
messages begin to be chopped into smaller units for transmis-
sion. This enables the overlap between O and G. For Summit
we begin to see this reflected in the model for m greater
than 8KiB such that the observed impact of O decreases as G
becomes larger. For this reason, we evaluate single-message
overheads for messages up to 8KiB in Fig 4. Similarly, for the
device initiated approaches there is overlap between O and S,
such that we assign the value of NA to O for device initiated
rows in Tab I.

Least squares linear regression gives a value of O equals
0.74∗m ns and 0.67∗m ns for NV HI put and get, with a R2

values of 0.92 and 0.86, respectively. This implies a modest
portion of the variation in performance is unexplained by O (8-
14%). This does not drastically impact model accuracy, since
the importance of O, is diminished for both small and large
messages, where o or G make up the bulk of cost. This data
is displayed in Fig. 4. We use this data to populate the values
of o and O(m) in Table I.

E. Pipelined message overheads

Most communication libraries are able to take advantage
of multiple messages sent back-to-back through optimizations
such as combining/piggybacking requests onto one another.
To evaluate this we utilize bandwidth benchmarks to measure
throughput for varying message sizes. As we enqueue a large
number of messages we are able to hide the repeated round-
trip latency costs. We can then calculate time spent per byte

L o O(m) g G(m) S

IBV DRAM/Host NA NA 290 ∗m−1.15 5 m/12.5 NA
NV Host Init. NA NA 624 ∗m−1.09 5 m/12.5 NA
NV Dev. Init. NA NA 1411 ∗m−0.781 5 m/12.5 NA

TABLE II
MODEL PARAMETERS AS MEASURED FOR NVSHMEM AND VERBS ON

SUMMIT WITH MESSAGE PIPELINING (UNIT NS.).

Fig. 5. Amortized time per byte sent for varying message size (derived from
pipelined get bandwidth). Showing how overhead per byte (O) is reduced as
we enqueue a large number of messages for (1) verbs accessing target DRAM
(2) NVSHMEM Device Initiated and (3) NVSHMEM Host Initiated.

transmitted. Our experiments use the NVSHMEM perftest
bandwidth benchmarks (bw) and shmem_get_bw for host
and device initiated, respectively. In each benchmark two
separate nodes send 10,000 messages back to back for each
message size. This is plotted in Fig 5. In the plot, we see a
protocol transition at 32 byte message sizes for NVSHMEM
host-initiated. This is the result of small messages payloads
being able to piggyback on control flow between the device
and host. As message size increases, the data shows overhead
per byte is reduced across all approaches until we hit the
limitations of gap (G). By its definition in SectionII, gap
is the minimum time required between messages and cannot
be reduced through pipelining. The results show that while
overhead can be substantially decreased, both host driven
approaches see the benefits at much smaller message size.
Specifically, the verbs based approach minimizes overhead at
message sizes as small as 4KiB and host initiated NVSHMEM
minimizes overhead at approximately 16KiB.

After subtracting for the costs of g and G we perform least-
squares linear regression of the functions in the form of a
power law (Y = AxB). The derived values are in Tab. II.

V. MODEL VALIDATION

We focus on validating our model using performance bench-
marks resembling real application workloads. Our validation
focuses on the NVSHMEM CPU-initiated GPU communica-
tion, since this outperformed device initiated in earlier exper-
iments and it is the primary focus on application performance
projections in Section VI.



Fig. 6. Single-message model validation for varied matrix size and GPU
count. Showing measured communication times across multiple iterations for
varying matrix sizes. Though the difference between best case and worst case
performance is on the order of tens of microseconds, the model does a good
job predicting mean performance. Comparing single-message model with
communication timings recorded in 4-GPU (R2=0.94), 9-GPU (R2=0.94)
and 16-GPU (R2=0.96) GEMM workloads (non-overlapping communication
with computation). Results follow the trends of the single message model.

1) Distributed matrix multiply: To validate our model we
utilize a distributed Generalized Matrix Multiply (GEMM)
routine, where a matrix of n elements is divided into a
P × P tile grid (1 tile per GPU) we record the time it
takes to perform two of the

√
P successive get operations,

each containing n/P elements. We then compare our model
against this timing for validation. For very small element
counts, latency-bound communication stresses the small mes-
sage part of our model, while large element counts issue large
bandwidth-bound transfers stress the large message part of
our model. The workloads consist of various matrix sizes
(32×32 to 2048×2048) distributed across 4, 9 or 16 GPUs
(1 GPU per node to ensure inter-node communication) and
displays the communication times recorded across different
iterations. For experiments utilizing the smallest matrix size
the problem is entirely communication bound. In contrast a
matrix size of 2048 by 2048 split across 4 GPUs achieve
12.2% of theoretical FLOPS. Therefore we would expect most
applications tuned for GPUs to utilize larger matrix sizes or
increase utilization through multiple streams. At which point
they will have saturated bandwidth. However, the purpose of
this section is validation of our model against a more complex
communication and computation pattern.

a) Overlapping overhead and gap: As we use our de-
rived model parameters to estimate communication times, we
use the common assumption that overhead and gap are able to
overlap for pipelined messages. With this in mind our model
calculations incorporate the cost of whichever is larger. This
means that for small messages O dominates and as message
size increases this transitions is bound by G.

b) Simple GEMM validation: We begin with Fig 6,
a simple GEMM workload where we utilize synchronous
communication to avoid communication-computation overlap.

Fig. 7. Model validation using asynchronous GEMM benchmark for varied
matrix size and GPU count. Showing measured communication times across
multiple iterations for varying matrix sizes. Elements per Grid Point is
defined as the total matrix size divided by the number of GPUs. Com-
paring both single-message and pipelined-message model with communica-
tion/computation timings recorded in 4-GPU, 9-GPU and 16-GPU GEMM
workloads. Best-case results follow the trends of the single message model
for messages smaller than 65KiB. As the message size increases, the timings
more closely follow the pipelined model.

This is to highlight the communication model and not artifacts
of computation. We find that our single-message model is a
good match for the non-overlapping GEMM communications
achieving a R2 0.95 to 0.97.

c) Asynchronous GEMM validation: Most GEMM im-
plementations will leverage asynchronous communications
and computation to provide overlap and reduce the impact
of communication. In Fig 7, we evaluate the accuracy of our
models against this more complex scenario. By measuring
overlapping communication and computation, we see an in-
crease in the variability of recorded timings (over an order of
magnitude for small messages). This is expected as we are
adding another source of variability in the compute kernel as
well as competing for scheduling resources. However, examin-
ing the best case measured performance, we see that observed
performance follows the single-message model closely until
65K elements. At this point we see a shift towards the
pipelined messaging model. In a few cases the pipelined model
overestimates the time required to perform the communication.
The difference between the observed data and the pipelined
model is likely representative of the error accumulated by
underestimating G in Section IV. These results show the
importance of utilizing two models, one for single messages
and another for pipelined messaging as message sizes grow
and applications transition in their behavior.

d) Variability: From the results of our validation, there
is a range of variability observed in production that is outside
the capabilities of a simple LogP model to explain, but this
would be interesting to explore in future work. Comparing
the best performance to the worst performance sees a roughly
fixed difference on the order of tens of microseconds. Reasons
for delays include caching effects and system scheduling as



Fig. 8. Impact of Scaling Problem Size on Application Performance when
Porting to GPU (for the Single Message Model). Numbers in grid are factor
of speedup or slowdown. Being able to increase the amount of computation
greatly improves the benefit of the GPU. In the Fixed-problem scenario (right)
average performance improvement on the GPU is only 1.2×, whereas the
Scaled-problem (left) sees an average speedup of 2.6× (averaged across all
message sizes and fraction of communication/computation).

mentioned in II. Our applications used for validation contain
a moderate ability to pipeline messages, which contributes
to the best case performance observed. The impact of this
phenomenon is more significant as computation and commu-
nication overlap in Fig 7. Despite the variation of performance
the LogP-based model does a good job of predicting typical
performance.

VI. IMPLICATIONS FOR APPLICATION PERFORMANCE

Using the model parameters from Table I, we provide an
estimate of performance speedup for applications moving from
the CPU to the GPU. We consider three additional criteria
for this assessment, (1) the ratio of CPU/GPU computa-
tional power, (2) message size, (3) and ratio of communica-
tion/computation, such that communication plus computation
sums to one. For our CPU to GPU performance projections,
we assume the performance scales with the peak flops ratios
- 2 TFLOPS for the CPU and 10 TFLOPS for the GPU.
Unless otherwise specified, we assume a 5us kernel launch
and synchronization time for CPU-initiated communication.

a) Impact of scaling the workload: We consider two
scaling scenarios. In the first scenario, workload size remains
fixed when ported from CPU to GPU. Because the time to
perform the computation decreases and the communication
operations take longer compared to the DRAM/Host imple-
mentation (Table I, this results in less performance benefit. We
refer to this scenario as Fixed-problem. The second scenario
assumes that the problem size scales along with the increased
computing power of the GPU. This scenario generally shows
greater speedup benefits for GPUs, and we refer to it as Scaled-
problem. In both cases the baseline performance is a traditional
CPU workload that does not utilize the GPU at all.

In Fig 8 we show the difference that problem scaling makes
when porting to the GPU. The figure shows projected speedup
for both fixed and scaled problem size across varying message
sizes and ratios of communication/computation. Any value less
than one projects a slowdown on the GPU when compared to
the CPU approach. This data was generated using the single-
message model. In summary, applications that are not able
to increase the volume of computation on the GPU will be
limited by communication bottlenecks following Amdhal’s
Law. These workloads will be forced to increase message
size, enable message batching, or find ways of overlapping
communication and computation to be productive on GPUs.

While we show the impact of problem scaling in Fig. 8, for
the remainder of this paper we show projected applications
speedup assuming a Fixed-problem. Furthermore, to simplify
the presentation of Figs. 9-11, we only show data for the
scenario where the original CPU-based application spends
25% of time in communication and the remaining 75% of
time in computation.

b) Computation and Communication Overlap: Many ap-
plications are able to overlap some amount of communication
and computation, thereby amortizing communication costs.
Both CPU-initiated and GPU-initiated techniques are capa-
ble of communication-computation overlap. For GPU-initiated
communication the same kernel can continue to perform
computation while the CPU progress thread forwards the
Infiniband request to the NIC. For CPU-initiated approaches
overlap is provided via multiple independent streams (e.g.
cudaMemcpyAsync in CUDA). If an application overlaps
communication/computation this changes the fraction in Fig. 8
accordingly. For example an application that takes 10 units of
time to complete without any overlap and spends 60% of time
in communication, is rewritten so that 50% of communication
overlaps. The application now takes 7 units of time to complete
and communication is 43% of that runtime. One caveat,
illustrated by Fig. 7, is that variability tends to increase with
overlapping computation operations.

c) Increasing message size and pipelining: Fig. 9 es-
timates the application benefit of increasing message size
for the single-message and pipelined models for a fixed
problem size and host-initiated communication. As shown in
previous sections, the efficiency of communication increases
significantly with message size. This has a noticeable impact
on single-message applications that are able to send messages
greater than 10KB. In cases where applications are unable to
increase the message size, but are able to batch messages, the
pipelined model shows a greater range of effectiveness. For the
scenario shown, the pipelined model achieves the maximum
possible speedup of 2.5× using just 100B messages, whereas
the single model approach must send messages larger than
1MB to approach the same benefit.

d) Reducing kernel synchronization times: For future
GPU based systems one of the goals of vendors is to re-
duce kernel synchronization and launch times. To evaluate
the impact this has on application performance, we evaluate
our Single message model using an assumed 5us and 2us



Fig. 9. Pipelining Communication Application Benefit. Speedup porting
fixed-problem to GPU (25% comm., 75% comp. on CPU). Two additional
techniques for increasing performance for applications porting to GPUs are
(1) increasing message size and (2) batching messages to take advantage
of pipelining. If the application sends a small number of large messages
(>100KB), GPUs provide good value. If message sizes are smaller, pipelined
messaging increases efficiency and provides a much larger range of effective
message sizes.

Fig. 10. Benefit of Reduced Kernel Synch. Times (5 us. vs. 2 us.) for
Application Ported to GPU (25% comm. on CPU with Single-message
Model). Reducing kernel overheads from 5us to 2us is projected to have the
biggest impact for small message (1.49×) and tapers off for large messages.

kernel launch time. Fig. 10 provides an estimate of the
relative performance improvement. Again we assume a 25%
communication to 75% computation ratio for the original
CPU implementation with fixed problem size. The benefit of
reducing kernel synchronization times has the biggest impact
on small message communications, going from a slowdown
of 0.8× to a speedup near 1.3×. However, as message size
increases, the significance of reducing kernel synchronization
times diminishes.

e) CPU vs. GPU-initiated communication: In Fig. 11 we
compare the impact of CPU versus GPU-initiated communica-
tion in NVSHMEM. We again assume a 25% communication
to 75% computation ratio for the original CPU implementation

Fig. 11. Host vs. Device-initiated Projected Speedup for Application Ported
to GPU (25% comm. on CPU). Host initiated approaches maintains a
performance benefit (1.26×) until messages near 512KB in size. For very
large messages device initiated improves application performance by 1.09×.

with a fixed problem size. For the pipelined model we see a
brief window (1-100B) where there are significant benefits to
the host initiated approach before both approaches saturate
available bandwidth (limited by g and G). The trade-offs are
more nuanced for the single-message model. For messages
less than 512KB, applications should use the host-initiated
approach. For very large message sizes the device initiated
approach provides some minor application speedups.

f) Priorities for performance: The results of our mod-
eling work suggests that when optimizing an application for
GPUs, developers should prioritize the following:

1) Scaling up the problem size on the GPU relative to CPU.
However, due to limited GPU memory sizes relative to
DRAM this potentially requires greater data reuse.

2) Sending larger messages to increase efficiency
3) Batching/pipelining messages when possible
4) Reducing kernel launch and synchronization times
5) CPU-initiated messaging currently provides the best per-

formance, but under some circumstances device initiated
messaging may be viable to reduce the number of kernel
synchronization events (item 4).

The reason why CPU-initiated vs. GPU-initiated communica-
tion ranked least important among our priorities is because
of the high cost of providing memory consistency for GPU
memory. This cost is incurred regardless of the approach and
dominates the overall communication overheads [18]. If this
aspect of performance was improved, then the importance of
increasing message size, and pipelining messages would be
reduced.

VII. RELATED WORK

Parallel machine models, e.g. PRAM [19], LogP [1],
logGP [4], loPC [5], LogGPS [6], or logGOPS [8], have been
instrumental in developing parallel algorithms both at the ap-
plication and communication runtime levels. The development
of these model is intended to provide a simple yet effective



abstraction for evaluating evolving architectural designs and
to ease the assessment of algorithmic variants.

The advent of heterogeneous systems, especially with the
use of hardware accelerators, brings back to the forefront
the modeling question of these complex systems. Moving
data between accelerator memories has been a significant
bottleneck in distributed computing environments [20, 21].
Unlike earlier systems that rely mainly on CPU-initiated mech-
anisms [20], moving data residing on accelerator memories
has recently involved novel mechanisms, including device-
initiated [3, 12, 22–24] and hardware transparent migration
using unified memory models [25, 26].

A data transfer initiated from an accelerator device could
possibly traverse multiple hardware technologies [27], includ-
ing NVlink, PCIe, QPI, X-Bus, IBV, each technology with
its performance attributes, ordering constraints, overheads,
making performance prediction a cumbersome task.

Striking a balance between accuracy and clarity is a chal-
lenge in developing a performance model. As such, we relied
on a well-understood model, LogGOP [8], to consolidate the
impact of multiple technologies that the data traverse during
their journey between the memories of accelerator devices.

Most MPI implementations for distributed GPU program-
ming focus on host-initiated techniques [28], which has been
simplified with the introduction of unified virtual address-
ing [29]. RDMA-based programming frameworks, with their
simple semantics and low overheads, enable efficient device-
initiated distributed GPU programming. NVSHMEM [12]
leverages the relaxed memory semantics of the SHMEM [30]
programming abstraction to provide efficient inter-GPU com-
munication. Numerous studies [3, 12, 22–24] studied the per-
formance issues associated with scaling NVSHMEM without
developing a performance model to guide algorithm develop-
ment. In contrast, our study aims at not only guiding algorithm
development but also identifying hardware bottlenecks with
the greatest impact on the performance.

VIII. FUTURE WORK AND CONCLUSIONS

a) Recent improvements to NVSHMEM: Since this work
began, NVSHMEM performance has steadily improved. In
the recent 1.0 version get operations are notably faster, with
a reduction of 1.84 us for device initiated get operations
compared to the results obtained in version 0.3. Furthermore,
there are further improvements in development for small mes-
sage shmem g/get latencies which reduce roundtrip latencies
to 6 us. These improvements are enabled by avoiding an
additional consistency operation once the data is received by
the requester.

b) Future work: Our model sets the foundations for what
we expect in GPU communication for current architectures.
However, we leave several areas for future work. First, we
would like to examine the impact of multiple GPUs per
node. While, many systems dedicate a NIC per GPU, the
impact of sharing NIC resources is something we will explore
in the future. Secondly, collective communications are an
area that deserves further study. Collectives may be able to

take advantage of hardware acceleration within the NIC and
switches of the network. Furthermore, collectives must be
tuned to reduce congestion as they generate more complex
communication patterns. This also is related to predicting the
impact of variability in communication, which we leave for
future work.

c) Forward-looking projections: GPU vendors are ac-
tively working on techniques to reduce kernel launch times. In
Fig 10 we show the impact of reducing kernel synchronization
costs to 2us. Our data suggests that this would allow GPUs
provide a benefit even for applications that spend 80% of time
in communication. However we believe the biggest priority
should be, using larger messages, pipelining and reducing the
cost of memory consistency operations, which will enable a
larger set of applications to port to GPUs successfully.

d) Summary of contributions: In this report we assessed
the parameter values for two methods of GPU communication.
Our findings suggest that for current systems, host controlled
communication is generally preferred, especially if kernel
launch overheads can be kept below 8us. Our results support
work by Hamidouche and LeBeane [18] that a majority
of communication time is spent synchronizing memory in
preparation for communication rather than communication
over the network itself. We prioritize the design considerations
application developers should consider when porting to GPUs.
We show that applications can expect to see speedups on
next-generation GPU systems through a variety of techniques.
Although GPU-communication has pitfalls, our models help
navigate around them to deliver performance.
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ARTIFACT DESCRIPTION/ARTIFACT EVALUATION

We use two sets of benchmarks to derive our LogP model
parameters: OFED and NVSHMEM Perftests.

OFED: For the cases where it is desirable to reduce
software and CPU overheads as much as possible, werely
on the OFED performance tests. These are written directly
using the low level Infiniband Verbs (IBV) API to minimize
software overhead. In the read lattests, work requests are
posted one at a time with a “delta” value measuring the time
between consecutive post events. For any message k ithat is
posted, the message ki+1 is not posted until the completion
queue signifies success with IBV WC SUCCESS, reporting
half round trip time (RTT/2). All OFED Perftests utilize CPU-
initiated communication, but it includes CPU-to-CPU as well
as GPU-to-GPU benchmarks, which allows us to compare
latency and bandwidth as the data path changes fromthe CPU’s
DRAM memory to the GPU’s HBM2 memory.)

NVSHMEM Perftest: The NVSHMEM communication
library provides lightweight communication operations for
accessing GPU memory. NVSHMEM is written using the
IBV interface. NVSHMEM provides two separate control
paths for communication. One is invoked directly by the CPU
(e.g.* get on stream) and the other is invoked directly within
a GPU kernel (e.g.* get nbi block). As discussed in Section
II, the GPU-initiated interface currently relies on progress
threads on the CPU to help with sending the necessary
Infiniband requests to the NIC. We compare the get and put-
based NVSHMEM perftests included with NVSHMEM 0.3.0.
A similar device initiated control path is not available in
any MPI implementation to date. There is an option in the
benchmark to discard the first k iterations (this is common
in many communication benchmarks to avoid reflecting cache
performance). We found that if the warm-up phase is disabled,
get latency could be as high as 8 us. For our parameter
assessment we enable the default warm-up of 20 iterations. We
note that NVSHMEM supports intra-node messages between
GPUs sent over PCIe or NVLink. However this work is
focuses on device vs. host-initiated inter-node communication.

URL/DOI List:
https://gitlab.com/h4u5/gpu-comm,
3988559446a4c17125654d173cece6f71ef57a5a
https://github.com/berkeley-container-library/bcl,
2ac6da10c96375e2750bb36239f86ee2cb32785a

Relevant hardware details:
Summit System OLCF, IBM Power9, OS version 4.14.0-
115.21.2.el7a.ppc64le, gcc-6.4.0, NVSHMEM-0.3, spectrum-
mpi-10.3.1.2, cuda-10.1.168

Paper Modifications:
Infiniband perftest
https://github.com/linux-rdma/perftest,
6369e620429197f7cc0b6bfcb9734fe70f0b92f0

The following variables were specified:
GRB SPARSE MATRIX FORMAT=1
NVSHMEM SYMMETRIC SIZE=9GB
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