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Abstract

Background: While identifying risk factors for adolescent depression is critical for early 

prevention and intervention, most studies have sought to understand the role of isolated factors 

rather than across a broad set of factors. Here, we sought to examine multi-level factors that 

maximize the prediction of depression symptoms in U.S. children participating in the Adolescent 

Brain and Cognitive Development (ABCD) study.

Methods: 7,995 participants from ABCD (version 3.0 release) provided complete data at baseline 

and one-year follow-up data. Depression symptoms were measured with the Child Behavior 

Checklist. Predictive features included child demographic, environmental, and structural and 

resting-state fMRI variables, parental depression history and demographic characteristics. We used 

linear (elastic net regression, EN) and non-linear (gradient boosted trees, GBT) predictive models 

to identify which set of features maximized prediction of depression symptoms at baseline and, 

separately, at one-year follow-up.

Results: Both linear and non-linear models achieved comparable results for predicting baseline 

(EN: MAE=3.757; R2=0.156; GBT: MAE=3.761; R2=0.147) and one-year follow-up (EN: 

MAE=4.255; R2=0.103; GBT: MAE=4.262; R2=0.089) depression. Parental history of depression, 

greater family conflict, and shorter child sleep duration were among the top predictors of 

concurrent and future child depression symptoms across both models. Although resting-state fMRI 

features were relatively weaker predictors, functional connectivity of the caudate was consistently 

the strongest neural feature associated with depression symptoms at both timepoints.

Conclusions: Consistent with prior research, parental mental health, family environment, and 

child sleep quality are important risk factors for youth depression. Functional connectivity of the 

caudate is a relatively weaker predictor of depression symptoms but may represent a biomarker for 

depression risk.
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Introduction

Depression is a leading contributor of disability worldwide, increasingly prevalent, and 

highly recurrent (1). Its onset typically occurs during adolescence (2, 3); moreover, because 

adolescent-onset depression is associated with more severe functional impairment, greater 

risk for other mental and physical illnesses, and more recurrent episodes that are often 

resistant to treatment (4, 5), identifying risk factors for adolescent depression is critical 

for early intervention. While research studies have identified multiple biomarkers and 

putative risk factors for depression in adolescence that span different domains, including 

demographic, clinical, psychosocial, and neurobiological factors (6–11), most studies have 

sought to understand the role of isolated factors that each explain a small portion of variance 

rather than maximizing prediction across a broad set of factors. One recent exception, 

however, is an investigation by Toenders et al., which focused on structural MRI markers 

in addition to clinical, cognitive, and environmental factors (12). Here, the authors found 

that baseline depression severity at age 14, female sex, neuroticism, stressful life events, 

and surface area of the supramarginal gyrus were the strongest contributors to a model that 

predicted onset of depression 2–5 years later (12). This study, however, did not examine the 

role of functional MRI markers as a predictor of adolescent-onset depression.

Two analytic barriers have hindered our ability to integrate across a diverse set of distinct yet 

related risk factors: 1) large sample sizes are needed to accommodate statistical models with 

more predictors; and 2) risk factors for depression are often highly collinear. In this context, 

Adolescent Brain Cognitive Development (ABCD), an ongoing multi-site longitudinal 

study of brain development and mental health in nearly 12,000 U.S. children ages 

9–10 collecting comprehensive demographic, clinical, psychosocial, and neurobiological 

information, represents an ideal opportunity to leverage machine learning methods that 

address instances of multicollinearity. Here, we utilized two complementary machine 

learning techniques—regularized linear regressions (elastic-net) and non-linear ensemble 

learning (gradient boosted trees) to identify the strongest statistical predictors of depression 

symptoms in the first waves of ABCD.

Because prior work from “big data” consortia has focused on task-independent MRI markers 

of depression, including morphological characteristics (i.e., surface area, cortical thickness) 

derived from structural MRI (13–16) and intrinsic resting-state functional connectivity (FC) 

obtained from fMRI signals (17, 18), we limited our feature set (i.e., statistical predictors) 

of brain-based variables to those derived from these imaging modalities for the purposes 

of comparability with other large-scale efforts, as well as for computational tractability and 

potential clinical utility.

Based on previous studies examining factors associated with the onset and presence 

of depression in adolescence (3, 19–22), we hypothesized that female gender, parental 

depression, morphology and functional connectivity of regions comprising affective, 

salience (e.g., cingulo-opercular), and default mode networks would constitute the most 

important features in the best performing models.
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Methods

Participants and Ethical Considerations

Baseline and follow-up data used for the present investigation were obtained from 

the Annual Curated Data Release 3.0 from the ABCD consortium (https://abcdstudy.org/

index.html), which is a population-based cohort of 11,878 children ages 8–11 years recruited 

from 21 sites throughout the U.S. (23). Each recruitment site obtained full assent and 

consent from the children and their parent(s)/legal guardian(s), respectively in accordance 

with local Institutional Reviews Boards. Out of the 11,878 children with data at baseline, we 

excluded those without usable structural and functional MRI based on initial quality control, 

with familial participants (e.g., twins), and those with substantial missing postprocessed 

data, resulting in 8,507 unique participants at baseline. Of these, 7,995 provided one-year 

follow-up Child Behavior Checklist (CBCL) data along with all relevant predictive features. 

Therefore, we conducted all analyses in the 7,995 with data at both timepoints. See Figure 

S1 for a flowchart showing the initial sample size and final sample size.

Depression Symptoms (Outcome Measure)

Children and their parent/guardian completed the computerized Kiddie-Schedule for 

Affective Disorders–5 (K-SADS-5; 23–25) to assess current and lifetime history of Axis 

I disorders. Based on endorsement from either child- or parent-report, only 6.3% of the 

sample met lifetime criteria for any depressive disorder (i.e., Major Depressive Disorder, 

dysthymia, and depression not otherwise specified). Because a history of depression does 

not necessarily reflect current depressive symptomatology and because classification models 

for imbalanced datasets tend to introduce bias and misclassification of the minority (less 

represented) class (27), we did not use the K-SADS data in any of our statistical models. 

Instead, we elected to assess current depression symptoms dimensionally. Specifically, we 

used scores from the “Depressive Problems” subscale of the CBCL which comprises items 

consistent with the DSM-5 criteria for depression in youth from parent report. The CBCL 

is one of the most widely used measures of emotional problems and provides standardized 

scores based on national norms in children ages 6–18 (28).

Features (Predictors)

Non-brain features included history of parental depression, family conflict, parent-reported 

demographic information (including child age, child sex assigned at birth, child race, child 

education level, parental marital status, parental income, and parental education), average 

hours of sleep per night (herein referred to as sleep duration), and substances taken in 

the past 24 hours. See Table S1 and Appendix S1 in the Supporting Information for more 

information on how family conflict and sleep duration were defined. Site, scanner type 

(Siemens, GE, or Philips), and MRI device serial number were used as regressors for the 

brain-based features only (see Machine Learning Analyses, below, for more information).

All structural MRI data were preprocessed using FreeSurfer v. 5.30 (29) (http://

surfer.nmr.mgh.harvard.edu/) and underwent automated and manual quality control 

procedures. All resting-state fMRI data were preprocessed using AFNI (30) and rigorous 
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motion censoring was applied. See (31) and Appendix S2 in the Supporting Information for 

more details.

Brain features derived from structural MRI included subcortical gray matter volumes, 

cortical thickness, and cortical surface area from regions defined by the Desikan atlas 

(32). Because over 100 subjects were missing data from morphometry metrics based on the 

ventricles, we did not include ventricles in our analyses (see Appendix S3 in the Supporting 

Information). Participants with low-quality control scores on their MRIs were excluded from 

all analyses (see Appendix S2 in the Supporting Information).

Brain features derived from resting-state fMRI included functional connectivity between 

networks defined by the Gordon parcellation (33) and also between each of the subcortical 

structures segmented by FreeSurfer with each of the cortical networks (see 28 for more 

details). These eight cortical networks included the auditory network, the cingulo-parietal 

network, the cingulo-opercular network, the default mode network, the frontoparietal 

network, the retrosplenial-temporal network, the ventral attention network, and the visual 

network. Specifically, regions within the Gordon parcellation were classified as belonging 

to a particular network or community (e.g., retrosplenial temporal, cingulo-opercular 

network); thus, average correlations within a network were computed as the average of 

correlations (after Fisher-r-to-z transformation) for each pairwise combination of regions 

with membership to said network (i.e., network-to-network). Similarly, correlations between 

each of the networks identified in the Gordon parcellation and each of the subcortical 

structures segmented by FreeSurfer (amygdala, caudate, nucleus accumbens, pallidum, 

putamen, and thalamus; left and right, separately) were computed from the resulting Gordon 

network correlations (described previously) and the average time series from the respective 

subcortical structure. Participants for whom more than 10% of their timeseries framewise 

displacement > 0.2 mm or for whom there were fewer than 375 usable timepoints for 

modeling were excluded from the present analyses (see Appendix S2 in the Supporting 

Information for more details). See Table S2 for a summary of the filenames and variables 

used as features and outcomes in our models.

Machine Learning Analyses

We used two different machine learning approaches in order to identify features that 

converged across both strategies. First, we used elastic net (EN) to perform regularized 

linear regression, which combines L1 (least absolute shrinkage and selection operator, or 

LASSO), and L2 (ridge) penalties (34). Second, we used histogram gradient boosted trees 

(light GBT), an ensemble method of supervised machine learning that does not assume 

linearity (35). For both models, we utilized the sklearn package in Python. We first randomly 

split the data into 4-folds (25% data in each fold). Three randomly chosen folds (75% 

of the total data) were used for training (i.e., hyperparameter tuning and validation). 

The remaining 25% of the data was used solely for testing model performance, thereby 

maintaining independence in our training and test sets. That is, 75% of the data was used 

for training and validation and the remaining 25% of the data represented an independent 
sample used solely for testing purposes to yield the most conservative results (i.e., all model 

performance results are based on this independent test set). Selecting the optimal ratio for 
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splitting the data set comes from Pareto’s principle (36), which suggests that ~20% of the 

data constitute the out-of-sample data set for testing. However, as increasing the sample size 

of the test set increases generalizability (37), and given the large sample size of the ABCD 

data, we elected to have 25% of the data constitute the test set. We note that the training 

and validation procedures (i.e., on the initial 75% of the data) were still conducted using a 

standard 10-fold cross-validation scheme.

For all structural and functional MRI features, we first regressed out the effects of site, 

scanner type, and MRI serial number (after dummy coding each of these categorical 

variables) using ordinary least squares linear regression; for all functional MRI features, 

mean framewise displacement and the number of outlier volumes were also regressed out. 

For all continuous features, missing values were imputed using the median value of the 

respective feature; for all categorical features, missing values were imputed using the modal 

value of the respective feature. See Appendix S2 and Table S3 in the Supporting Information 

for more details. Critically, data were imputed after splitting the data to prevent the risk of 

leakage between the training/validation and test sets.

In the training data (75% of the total data), we conducted hyperparameter tuning using 

training and validation over a 10-fold cross-validation scheme. In other words, 9-folds 

(67.5% of the total data) were used to identify a set of hyperparameters, using grid search, 

that best fit each model based on minimizing mean absolute error (MAE), and 1-fold (7.5% 

of the total data) was used for validation. This process was repeated ten times for each fold 

to identify a model with the optimal set of hyperparameters and then applied to the training 

set (75% of the total data). This final model was then evaluated on the remaining left-out test 

set (25% of the total data), from which we report our model performance metrics. See Figure 

1.

To determine the importance of each relative feature within the best-performing model, we 

used the Shapley Additive exPlanations (SHAP) method (38). Briefly, a Shapley value for a 

feature quantifies how well a particular feature contributes to overall model performance 

even in the presence of correlated features. In more technical terms, a Shapely value 

is the average marginal contribution of a feature value across all possible coalitions or 

combinations of features other than the given feature. SHAP is a computationally efficient 

way to generate Shapley values, given the number of features in our models (almost 400 

total). One significant advantage of SHAP is that it assigns correct feature importance 

values to each feature even in the presence of correlated features. See Appendix S4 in the 

Supporting Information for more details.

Code Availability

All code for performing data cleaning, organization, and predictive modeling can be found 

here: https://github.com/tiffanycheingho/ABCD

Results

The final analytic sample contained 7,995 participants: 49.51% were assigned female 

at birth and 76.36% identified as being White. Distributions of parental income 
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and educational attainment were consistent with percentages reported from recent 

epidemiological data (39, 40). See Table 1 for a summary of the descriptive statistics of 

the final sample at baseline. See Table S4 in the Supporting Information for a summary 

of the descriptive statistics in the one-year follow-up (which were comparable to the full 

baseline sample).

Both EN and GBT models yielded comparable results in terms of model performance 

(see Table 2). Across both models, family conflict was the strongest predictor of youth 

depression symptoms at baseline while parental history of depression was the strongest 

predictor of youth depression at follow-up. Both models also identified child sleep duration, 

prescription medication usage, hours of screentime on the weekends as important features, 

although the rank order of these features in their contribution to their respective models 

differed slightly (see Figures 2–3).

With respect to neural features predicting baseline levels of depression symptoms, resting-

state functional connectivity between the right caudate and retrosplenial-temporal network 

(RTN) was the 8th most important feature in the EN model whereas gray matter volumes of 

the nucleus accumbens and resting-state functional connectivity between the right caudate 

and visual network were the 8th and 9th overall most important features, respectively, 

in the GBT model. With respect to neural features predicting depression symptoms at 

one-year follow-up, resting-state functional connectivity across a broader set of networks 

was identified in the EN model, with resting-state functional connectivity between the 

cingulo-opercular network and the cingulo-parietal network and between the right caudate 

and RTN as the 8th and 9th overall most important features, respectively, whereas in the GBT 

model, resting-state functional connectivity between the right caudate and RTN remained 

the most important neural feature and the 7th overall most important feature (see Figures 2–

3and Figures S2–S3). Parental depression and family conflict were moderately correlated 

(r=0.23), as was sleep duration and weekend screen time (r=0.21); the remaining top 

features mostly showed weaker or null correlations, suggesting that the family environment 

(parental depression and family conflict), sleep quality (sleep duration and weekend screen 

time), and functional neural factors represent distinct predictors of depression. See Figure S4 

for a zero-order correlation matrix among the top features across both models. See Figures 

S5–S6 for partial dependence plots which displays the marginal effect of a given feature 

on the outcome measure (CBCL depression score at baseline and follow-up, respectively). 

Finally, as a specificity analysis, we also computed Pearson’s correlations among the shared 

top features across both models with CBCL externalizing scores and found that with the 

exception of resting-state functional connectivity between right caudate and RTN, all other 

top features had similar effect sizes (see Table S5).

With the exception of gray matter volumes of the nucleus accumbens in the GBT model 

predicting baseline depression symptoms, structural MRI features were not identified among 

the top contributing features in our predictive models. In a supplemental analysis, we 

ran an EN model and a GBT model with demographic, clinical, and resting-state fMRI 

features only to predict baseline and follow-up CBCL scores. These models performed 

similarly to their full model counterparts (baseline EN: MAE=3.772, R2=0.157; follow-

up EN: MAE=4.258; R2=0.108; baseline GBT: MAE=3.778; R2=0.140; follow-up GBT: 
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MAE=4.319; R2=0.075). Moreover, many of the same top features, including parental 

depression, child sleep duration, prescription medication usage in the past 24 hours, 

weekend screen time, family support, being of mixed race, and resting-state fMRI 

connectivity between the right caudate and the RTN, were identified in these models. Our 

results, therefore, suggest that structural MRI features did not contribute meaningfully to the 

prediction of CBCL depression scores (either at baseline or follow-up).

Discussion

This is the first investigation utilizing the ABCD data to examine statistical predictors of 

concurrent and subsequent (one-year follow-up) child depression symptoms across several 

domains. We found that history of parental depression, higher levels of family conflict, 

fewer hours of sleep per night (i.e., sleep duration), and medication usage were among 

the strongest features contributing to the statistical prediction of depression symptoms 

across two distinct machine learning modeling approaches. While resting-state functional 

connectivity of several cortical networks were weak contributors in the elastic net model, 

lower resting-state functional connectivity between the right caudate and retrosplenial-

temporal network (RTN) was the most important neural feature (and 8th most important 

overall feature) in the elastic net (EN) model, while resting-state functional connectivity 

between the right caudate and visual network was the most important neural feature (and 

9th most important overall feature) in the gradient boosted trees (GBT) model. Interestingly, 

lower connectivity between the right caudate and RTN was consistently identified across 

both modeling approaches (the second most important neural feature in the EN model and 

the most important neural feature in the GBT model) in predicting depression severity in this 

sample one year later. Parental depression and family conflict were moderately correlated 

(r=0.23), as was sleep duration and weekend screen time (r=0.21); the remaining top 

features mostly showed weaker or null correlations, suggesting that the family environment 

(parental depression and family conflict), sleep quality (sleep duration and weekend screen 

time), and functional neural factors represent distinct predictors of depression. Together, 

our results highlight family environment (which is arguably shaped strongly by parental 

mental health status) and sleep quality—both of which are modifiable processes that 

may be potentially important intervention targets for mental health more generally—as 

important risk factors for adolescent depression. Moreover, our results also demonstrate 

that lower resting-state functional connectivity of the right caudate with regions comprising 

visual attention and default mode network functioning—including processing underlying 

autobiographical memories and self-reflection—may be a promising biomarker of early 

depression symptoms in adolescence and that this biomarker may be specific to depression 

given the absence of associations with externalizing symptoms.

Parental mental health and relationship quality between the child and parent remain 

strong predictors of mental health outcomes in adolescents, particularly for depression 

(41). Researchers have identified a multitude of pathways that may explain the 

intergenerational transmission of depression—including genetic as well as environmental 

(e.g., caregiving quality, epigenetic) factors—although the relative contribution of these 

purported mechanisms still remains unknown (for reviews, see references (19, 42, 43). 

Critically, there is evidence of biological alterations in youth whose parents have a history 
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of depression, including smaller gray matter volumes in subcortical structures (44, 45), 

HPA-axis dysfunction (for a review see 40), and alterations in epigenetic markers (47, 48), 

even when youth whose parents have a history of depression but do not endorse current 

depression symptoms themselves. That higher levels of family conflict were identified as 

an important predictor of both current and prospective symptoms of depression further 

supports the formulation that parental behaviors, which are informed by mental health status, 

are critical for scaffolding offspring brain development. It will be important for future 

investigations of the ABCD data to examine possible mechanisms (e.g., caregiving style) 

that could be targeted to mitigate risk for depression.

Our investigation also identified shorter sleep duration and longer weekend screen time 

usage as important features for predicting depression symptoms. Adolescence is an 

important time of development that includes changes in chronobiological processes that 

regulate circadian rhythms, as well as changes in sleep homeostasis that, together, affect 

the timing and duration of sleep (49). Our findings are consistent with several studies that 

have found that shorter sleep duration is associated with higher depression and other mental 

health symptoms in adolescents (50, 51). Indeed, previous analyses from the ABCD dataset 

using non-regularized linear models found that depressive symptoms were significantly 

correlated with shorter sleep duration and, furthermore, that greater depression symptoms at 

baseline predicted shorter sleep duration at follow-up (52). We replicate these findings in a 

larger sample and further highlight the potential role of screen time. Although there has been 

controversy regarding the extent to which screen time affects mental health in adolescents 

(see 42–44), our results indicate that more weekend screen time, which will likely reflect 

more leisure usage, is related to more depression symptoms at baseline and is predictive of 

greater depression symptoms one-year later. Together, our results suggest that sleep quality 

may be targetable processes in reducing depression risk. An important next step in this line 

of research will be to obtain richer contextual information to understand the different sources 

of shorter sleep duration and longer screen time usage (e.g., academic pressure), and if these 

sources moderate the associations between sleep quality and depression.

Our findings are broadly consistent with our hypotheses insofar as functional connectivity 

among portions of the affective (caudate) and default mode (retrosplenial-temporal) 

networks are implicated in depression risk; however, regions comprising the so-called 

salience network (amygdala, cingulo-opercular network, etc) were not identified as robust 

predictive features. Specifically, lower resting-state functional connectivity between the right 

caudate and retrosplenial-temporal and visual networks remained the most consistent neural 

features in predicting depression symptoms (albeit their contribution to the predictive model 

relative to other non-neural features was weaker). With respect to the role of the caudate 

in depression risk, our results cohere with a meta-analytic investigation that identified 

modest gray matter volume reductions in the caudate (Cohen’s d=−0.31) in depressed 

versus psychiatrically healthy adults (56) and in empirical studies that have identified 

lower structural connectivity of a caudate-based network in depressed versus psychiatrically 

healthy adults (57) and adolescents (58). As a component of the dorsal striatum, the caudate 

plays an important role in reward processing and stimulus-behavior mapping, particularly in 

contexts where stimulus outcomes are perceived to be contingent on one’s own behavioral 

actions (59). While previous studies have identified that node strength of the left ventral 
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striatum to other reward-related regions based on resting-state signals were informative for 

predicting depression symptoms in a relatively large sample (N=637) of Brazilian youth 

ages 6–12 years recruited from the community (10), our results suggest that intrinsic 

connectivity of the right caudate with regions outside of the putative reward network—

namely, visual attention and default mode network regions—are also useful risk markers for 

depression during late childhood and early adolescence.

In contrast, structural MRI features largely did not contribute to any of the models 

predicting concurrent or future depression symptoms, with the exception of smaller gray 

matter volumes of the nucleus accumbens in the EN model predicting baseline depression 

symptoms (which is consistent with a recent study examining nucleus accumbens alterations 

in depressed and anxious adolescents, 60). Previous investigations of the ABCD data 

using non-regularized linear models found that smaller cortical surface area (but not 

cortical thickness) and volumes of regions in the default mode network (ventromedial 

prefrontal cortex, precuneus, and posterior cingulate cortex) in the lateral and medial 

orbitofrontal cortex (OFC), and in frontal, temporal, and motor regions were associated with 

greater concurrent depression symptoms (52). Similarly, studies from the ENIGMA Major 

Depressive Disorder (MDD) consortium (13), which utilizes meta-analytic techniques to 

estimate the effects of depression on FreeSurfer-derived brain morphometry across different 

sites worldwide, have also reported similar findings. Specifically, in one subanalysis that 

compared 294 healthy controls to 213 depressed adolescents, the investigators found that 

depressed adolescents exhibited lower surface area (but no differences in cortical thickness), 

with the strongest effect sizes in the medial OFC, superior frontal gyrus, and visual, 

somatosensory, and motor areas (13). Consistent with our results, the studies from ENIGMA 

MDD did not find evidence that subcortical and cortical morphometry was associated with 

current depression symptoms (13, 14, 16). Importantly, our study extends these previous 

“big data” investigations that focused on examining associations between regional surface 

area and adolescent depression by demonstrating that functional connectivity patterns of 

the right caudate with visual attention and default mode network regions contribute to 

the prediction of concurrent and future symptoms of depression and may, thus, represent 

potentially more sensitive biomarkers of early depression symptoms than structural markers 

(although see 60).

Several limitations must be considered when interpreting our findings. First, while the 

CBCL provides dimensional measures of depression symptoms, it is a measure based on 

parent-report, which may not necessarily be concordant with child-report, particularly for 

depression and other internalizing disorders (61, 62). Future assessments of the ABCD 

Study will also include the Youth Self-Report, a child-reported questionnaire that captures 

the same symptom dimensions as the CBCL, which will provide us an opportunity to 

replicate the analyses in the present investigation. Similarly, sleep duration and screen time 

were measured based on parent-report from questionnaires; future assessments of the ABCD 

Study will seek to comprehensively assess these constructs using more objective measures 

(e.g., actigraphs or other wearables, sensor data from smartphones) in order to understand 

the role of sleep quality on depression risk in adolescents. Second, the sample composition 

of ABCD limits generalizability of our findings, particularly with respect to important 

racial, ethnic, and socioeconomic factors. It will be critical to apply predictive modeling to 
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test the extent to which our findings replicate in other cohorts that are enriched in these 

factors, as well as cohorts outside of the United States, which are needed to shed critical 

insight into cultural factors that undoubtedly play an important role in the development 

of adolescent depression. Third, it is important to note that our analytic approaches were 

data-driven for the purposes of constraining the wide parameter space, which we believe will 

be informative for researchers designing and conducting future studies examining adolescent 

depression risk where it may not be possible to acquire data as broad in scope as those 

that are being collected in ABCD. Fourth, even though the results from the EN (linear) 

models performed better than the GBT (non-linear) on several metrics of model performance 

(including mean absolute error and explained variance, although GBT performed slightly 

better in median absolute error), it is nonetheless worth examining non-linear associations 

between the features and outcomes of interest. Given the complexity of ensemble learning 

models such as GBT, it is difficult to interpret the results of the GBT analyses, as the 

non-linear results may be capturing higher-order interaction effects. That said, our partial 

dependence plots indicate that while there is a strong linear association between family 

history of depression and prescription medication usage with CBCL depression scores, there 

is an increasing monotonic association between family conflict and CBCL depression scores 

that appears to plateau, and an exponential association between sleep disturbances and 

CBCL depression scores. Future research with study designs targeting these processes of 

interest is needed to disentangle the nature of these associations.

In conclusion, our study identified multi-level predictors of depression symptoms in a 

nationally representative sample of almost 8,000 youth ages 9–10. We found that higher 

parental depression symptoms, higher levels of family conflict, shorter sleep duration, 

longer weekend screen time, and lower resting-state functional connectivity of the caudate 

were associated with greater concurrent and one-year depression symptoms. Our findings 

point to two modifiable processes for depression risk that may be important considerations 

for depression prevention—family environment and sleep quality—as well as highlight 

the potential of caudate-based functional connectivity patterns to be biomarkers of early 

depression emergence in youth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key points

1. While identifying risk factors for adolescent depression is critical for early 

prevention and intervention, most studies have sought to understand the role 

of isolated factors rather than across a broad set of factors.

2. The significance of the present study is that we sought to examine multi-level 

factors that maximize the prediction of depression symptoms in a large 

epidemiological sample of almost 8,000 children in the U.S. who were 

participating in the Adolescent Brain and Cognitive Development (ABCD) 

study.

3. We found that parental mental health, family environment, and child sleep 

quality are potentially modifiable risk factors for youth depression.

4. Unlike previous large-scale studies examining MRI correlates of depression, 

we did not find evidence of robust structural MRI patterns contributing 

to depressive risk. In contrast, resting-state functional connectivity of the 

caudate was a relatively weaker predictor of depression symptoms but may 

represent a biomarker for depression risk.
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Figure 1. 
Visualization of the machine learning approach used to identify features contributing to the 

prediction of concurrent depression symptoms.

Ho et al. Page 15

J Child Psychol Psychiatry. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Shapley values of the top 10 features in the elastic net (A) and gradient boosted trees 
(B) models predicting baseline depression symptoms.
The summary plots indicate the relationship between the value of a feature and the impact 

on the prediction, thus combining feature importance with feature effects. Each point on the 

summary plot is a Shapley value for a feature and an instance. The position on the y-axis 

is determined by the feature and on the x-axis by the Shapley value. The color represents 

the value of the feature from low (blue) to high (pink). The features are ordered according 

to their importance. See Figure S2 for a summary of the magnitude of Shapley values per 

feature in each model. FC=functional connectivity; Hx=history; RTN=retrosplenial temporal 

network; Rx=prescription medication
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Figure 3. Shapley values of the top 10 features in the elastic net (A) and gradient boosted trees 
(B) models predicting 1-year follow-up depression symptoms.
The summary plots indicate the relationship between the value of a feature and the impact 

on the prediction, thus combining feature importance with feature effects. Each point on 

the summary plot is a Shapley value for a feature and an instance. The position on the 

y-axis is determined by the feature and on the x-axis by the Shapley value. The color 

represents the value of the feature from low (blue) to high (pink). The features are ordered 

according to their importance. See Figure S3 for a summary of the magnitude of Shapley 

values per feature in each model. BMI=body mass index; CON=cingulo-opercular network; 

CPN=cingulo-parietal network; FC=functional connectivity; Hx=history; RTN=retrosplenial 

temporal network; Rx=prescription medication
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Table 1.
Demographics of final analytic sample (N=7,995).

Continuous variables are reported as mean ± standard deviation (min – max) or median ± IQR for variables 

with outliers or likely errors. All variables unless otherwise noted are from the baseline assessment.

Total N 7995

Sex (% Female) 49.52%

Age (in years) 9.49 ± 0.51 (8–11)

Race (% White) 76.36%

Puberty Development Score 6.74 ± 2.87 (1–20)

Body mass index 17.51 (15.89–20.34)

% with caffeine consumption in past 24 hours 17.44%

% with prescription medication use in past 24 hours 14.25%

% with over-the-counter medications use in past 24 hours 15.25%

Sleep duration (hours per night) 9–11 hours: 48.73%
8–9 hours: 37.19%
7–8 hours: 10.88%
5–7 hours: 2.96%
<5 hours: 0.24%

Current grade 1st grade: 0.025%
2nd grade: 0.39%
3rd grade: 17.12%
4th grade: 44.61%
5th grade: 34.75%
6th grade: 3.08%
7th grade: 0.025%

Highest parental education 3rd grade: 0.038%
4th grade: 0.026%
5th grade: 0.026%
6th grade: 0.34%
7th grade: 0.12%
8th grade: 0.35%
9th grade: 0.70%
10th grade: 0.69%
11th grade: 0.84%
12th grade (no diploma): 1.27%
High school graduate: 6.26%
GED or equivalent: 2.36%
Some College Degree: 12.29% 
Associate Degree (Occupational, Technical, or Vocational): 7.29%
Associate Degree (Academic Program): 5.11%
Bachelor’s Degree: 25.83%
Master’ s Degree: 25.11% 
Professional School Degree: 5.34%
Doctoral Degree: 6.01%

Weekend daily screen time (hours) 3.78 ± 2.58 (0–24)

Parental marital status Married: 70.58%
Never Married: 10.96%
Divorced: 8.63%
Living with Partner: 5.45% 
Separated: 3.61%
Widowed: 0.77%

Combined family income, past year <$5k: 2.82%
$5k – $12k: 2.99%
$12k – $16k: 2.31%
$16k – $25k: 4.06%
$25k – $35k: 5.50%
$35k – $50k: 7.65%
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Total N 7995

$50k – $75k: 12.68%
$75k – $100k: 21.94%
$100k – $200k: 28.86%
>$200k: 11.19%

% parental history of depression 30.68%

Family Conflict Scores 2.50 ± 1.96 (0–9)

CBCL (Youth) Depression (t-score)
Baseline
Follow-up

53.54 ± 5.67 (50–89)
53.87 ± 6.02 (50–87)
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Table 2.
Summary of model performance metrics.

EN=Elastic Net; GBT=Gradient Boosted Trees; MAE=Mean Absolute Error.

Outcome Model Type MAE R2

Baseline CBCL EN (linear) 3.757 0.156

Baseline CBCL GBT (non-linear) 3.761 0.147

Follow-up CBCL EN (linear) 4.255 0.103

Follow-up CBCL GBT (non-linear) 4.262 0.089
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