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Systems/Circuits

An Emergent Population Code in Primary Auditory Cortex
Supports Selective Attention to Spectral and Temporal
Sound Features

Joshua D. Downer,1,2 Jessica R. Verhein,1,3 Brittany C. Rapone,1,4 Kevin N. O’Connor,1,5 and
Mitchell L. Sutter1,5

1Center for Neuroscience, University of California, Davis, Davis, California 95618, 2Department of Otolaryngology, Head and Neck Surgery,
University of California, San Francisco, California 94143, 3School of Medicine, Stanford University, Stanford, California 94305, 4School of Social
Sciences, Oxford Brookes University, Oxford, OX4 0BP, United Kingdom, and 5Department of Neurobiology, Physiology and Behavior, University of
California, Davis, Davis, California 95618

Textbook descriptions of primary sensory cortex (PSC) revolve around single neurons’ representation of low-dimensional sensory fea-
tures, such as visual object orientation in primary visual cortex (V1), location of somatic touch in primary somatosensory cortex (S1),
and sound frequency in primary auditory cortex (A1). Typically, studies of PSC measure neurons’ responses along few (one or two)
stimulus and/or behavioral dimensions. However, real-world stimuli usually vary along many feature dimensions and behavioral
demands change constantly. In order to illuminate how A1 supports flexible perception in rich acoustic environments, we recorded
from A1 neurons while rhesus macaques (one male, one female) performed a feature-selective attention task. We presented sounds that
varied along spectral and temporal feature dimensions (carrier bandwidth and temporal envelope, respectively). Within a block, subjects
attended to one feature of the sound in a selective change detection task. We found that single neurons tend to be high-dimensional,
in that they exhibit substantial mixed selectivity for both sound features, as well as task context. We found no overall enhancement of
single-neuron coding of the attended feature, as attention could either diminish or enhance this coding. However, a population-level
analysis reveals that ensembles of neurons exhibit enhanced encoding of attended sound features, and this population code tracks sub-
jects’ performance. Importantly, surrogate neural populations with intact single-neuron tuning but shuffled higher-order correlations
among neurons fail to yield attention- related effects observed in the intact data. These results suggest that an emergent population
code not measurable at the single-neuron level might constitute the functional unit of sensory representation in PSC.

Key words: attention; auditory cortex; nonhuman primate; population coding

Significance Statement

The ability to adapt to a dynamic sensory environment promotes a range of important natural behaviors. We recorded from
single neurons in monkey primary auditory cortex (A1), while subjects attended to either the spectral or temporal features of
complex sounds. Surprisingly, we found no average increase in responsiveness to, or encoding of, the attended feature across
single neurons. However, when we pooled the activity of the sampled neurons via targeted dimensionality reduction (TDR),
we found enhanced population-level representation of the attended feature and suppression of the distractor feature. This dis-
sociation of the effects of attention at the level of single neurons versus the population highlights the synergistic nature of
cortical sound encoding and enriches our understanding of sensory cortical function.

Introduction
Classic accounts of primary sensory cortex (PSC) relegate PSC
function to sensory filtering. Accordingly, PSC neurons act as in-
dependent filters for low-dimensional sensory features (Hubel
and Wiesel, 1968; Merzenich et al., 1975; Kaas et al., 1979) while
“association” and prefrontal cortical (PFC) neurons integrate in-
formation about behavioral demands and other sensory modal-
ities (Robinson et al., 1978). This account supports a feed-
forward nervous system model, where information propagates
along distinct processing stages, from peripheral sensory
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receptors to motor effectors, to enable percep-
tion and behavior (Van Essen and Maunsell,
1983; Riesenhuber and Poggio, 1999).
Numerous research has shown that PSC neu-
rons form maps of the sensory epithelium,
consistent with a role as low dimensional fil-
ters (Merzenich et al., 1975). Moreover, sec-
ondary and higher-order cortical neurons
exhibit diminished, more complex, and
task-dependent versions of these maps
(Rauschecker and Scott, 2009), and PFC neu-
rons seem to represent all manner of stimulus
and cognition-related variables without clear
functional topography (Machens et al., 2010).

Primary auditory cortex (A1) receives
tonotopic feed-forward input from the lem-
niscal auditory thalamus and textbooks
chiefly describe A1 concerning its role in
spectral filtering (Purves, 2004). However,
decades of research confound categoriza-
tion of A1 neurons as static sensory filters:
myriad non-sensory variables affect firing
rates (FRs), variance and noise correlations in
A1 (Osmanski and Wang, 2015; Angeloni
and Geffen, 2018; David, 2018). Generally,
studies have shown that, under demanding
sensory conditions, A1 neuron responses
and/or tuning are enhanced, consistent with
findings across PSC modalities (Gomez-
Ramirez et al., 2016; Mineault et al., 2016;
Carlson et al., 2018). Thus, a common view is
that A1 and other PSCs are best described as
arrays of flexible sensory filters, whereby
ongoing behavioral and sensory demands
modulate simple feature tuning. However,
recent studies show that A1 neurons’ syner-
gistic interactions can contribute to sensory
processing, a role which often cannot be understood solely based
on the activity of individual neurons (Harris et al., 2011;
Bathellier et al., 2012; Bagur et al., 2018; See et al., 2018). Rather,
individual neurons’ activity may be better understood in terms of
their contributions within functional ensembles.

We recorded from A1 neurons while monkeys performed a
task wherein attention is switched between two different sound
features (Fig. 1). We found that A1 neurons robustly represent
each task variable: both sound features, as well as task context.
Importantly, contrary to findings across sensory modalities
showing that attention improves single-neuron encoding, we
found no overall attentional modulation of single neurons, since
neurons exhibited both enhanced and diminished encoding of
the attended feature in equal proportions. The fact that A1 neu-
rons encode each sound feature as well as task context, but dis-
play no average attention-related sensory enhancement, suggests
that A1 single-neuron activity in this task is not directly related
to task performance. These null effects surprised us, since the
task presents significant auditory sensory demands related to
sound features encoded by A1 neurons. This prompted us to
conduct a population-level analysis, inspired by studies per-
formed in PFC (Mante et al., 2013; Rigotti et al., 2013), to make
sense of heterogeneous single-neuron representations.

Our population analyses focused on reducing the dimension-
ality of population activity from the number of neurons to the

number of variables. Thus, we defined a low-dimensional sub-
space in which stimulus and behavioral variables are encoded at
the population level (Gao et al., 2017). Neural activity projected
into this subspace revealed strong effects of attention on popula-
tion-level sound feature encoding, where the population sensitiv-
ity to the attended feature is enhanced. Moreover, variability
in these projections accounts for subjects’ performance.
Further analyses using “surrogate” populations for compari-
son, in which the single neuron marginal statistics are kept
intact while shuffling higher order interactions (Elsayed and
Cunningham, 2017), revealed that our findings do not arise
as an expected by-product of pooling across many neurons.
Rather, these results suggest that sound-encoding in A1
relies on synergies among neurons, and these synergies sup-
port the neural code for selective listening.

Materials and Methods
Experimental design
The data presented in this present study have been previously analyzed
in a published study (Downer et al., 2017b).

Subjects
We recorded from 92 A1 neurons of two adult rhesus macaques, one
female (W, 8 kg) and one male (U, 12 kg). Subjects were each implanted
with a head fixation post and a recording cylinder over a left-sided 18
mm parietal craniotomy. Craniotomies were centered over auditory

Figure 1. Task and stimulus design. A, Subjects initiated a trial by moving a joystick laterally to present two sequen-
tial 0.4-s sounds (S1 and S2) separated by a 0.4-s silent interstimulus interval (ISI). Subjects then used the joystick to
make a behavioral report, a “yes” or “no” response indicating whether they detected the attended sound feature in S2.
B, Sounds varied along spectral (bandwidth, DBW) and temporal (amplitude modulation, AM) feature dimensions.
Subjects were trained to selectively attend to changes in one feature dimension or the other across blocks. The S1 sound
was always unmodulated and full bandwidth (AM0–DBW0, bottom left) and the S2 could be any sound in the set.
During the attend AM condition all sounds with AM (i.e., with AM1, AM2, or AM3) were targets, and during the attend
BW condition all sounds with narrower spectral bandwidth than the standard (DBW1, DBW2, and DBW3) were targets.
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cortex as determined by stereotactic coordinates, allowing for vertical
electrode access to the superior temporal plane via parietal cortex
(Pfingst and O’Connor, 1980; Saleem and Logothetis, 2012). Surgical
procedures were performed under aseptic conditions; all animal proce-
dures met the requirements set forth in the United States Public Health
Service Policy on Humane Care and Use of Experimental Animals and
were approved by the Institutional Animal Care and Use Committee of
the University of California, Davis.

Stimuli
Sound stimuli varied along spectral and temporal dimensions (either or
both; Fig. 1B). S1 was always unmodulated, full-bandwidth Gaussian
white noise with a nine-octave range (40–20,480Hz; Fig. 1B, bottom left
in stimulus grid: AM0DBW0). Noise signals were generated from four
seeds, which were frozen across recording sessions. The center (log) fre-
quency was 905Hz and was constant across all stimuli. To introduce
spectral and temporal variance, the S1 sound was bandpass filtered to
narrow the spectral bandwidth (DBW; range: 0.375–1.5 octaves less than
the nine-octave full BW) and/or sinusoidally amplitude modulated (AM;
range: 28–100% of the depth of the original). Our bandpass filtering
method relied on sequential single-frequency addition, thereby reducing
envelope variations produced by other filtering procedures (Strickland
and Viemeister, 1997). S2 could be any of the stimuli in the set repre-
sented in the grid in Figure 1B.

The precise AM and DBW values used during recording sessions
were tailored to each subject’s psychophysical thresholds for detection of
each sound feature (AM and DBW) in isolation, determined before
recordings. The threshold values that we estimated before recordings
were used to design the stimulus set to use during recordings; thresholds
did not change after recordings began. Three values of each feature
were used in recording sessions: one near psychophysical threshold
[defined as the modulation level at which the subject’s sensitivity, meas-
ured using d’ (Wickens, 2002) was equal to 1], one slightly above thresh-
old (d’ ; 1.2), and one well above threshold (d’. 1.5). Experimental
values of DBW were 0.375, 0.5, and 1 octave for monkey U and 0.5, 0.75,
and 1.5 octaves for monkey W. AM depth values were 28%, 40%, and
100% for monkey U and 40%, 60%, and 100% for monkeyW.

In analyses in which we collapse data across monkeys, modulation
values are presented as ranks relative to subjects’ thresholds (AM0–3 and
DBW0–3, where 0 in the subscript reflects no change in that feature
dimension relative to the unmodulated, full-bandwidth; Fig. 1B). To
reduce the size of the stimulus space, we presented 13 total stimuli dur-
ing each experimental session, using only a subset of the possible como-
dulated stimuli (sounds with both AM and DBW; Fig. 1B). The AM
frequency was held constant in each individual session but varied from
day to day. Across sessions we randomly selected the AM frequency
from a small range of frequencies (15, 22, 30, 48, and 60Hz). Previous
work has shown that rhesus macaques’ average AM detection thresholds
are similar across the full range of frequencies used in our task
(O’Connor et al., 2011). We chose to randomly select the presented AM
frequency to avoid biasing our recordings toward AM-sensitive neurons
at the expense of sampling from DBW-sensitive neurons.

Sounds were 400ms in duration with 5-ms cosine ramps at onset
and offset. Sounds were presented from a single speaker (RadioShack
PA-110 or Optimus Pro-7AV) positioned approximately 1m in front of
the subject, centered interaurally. Each stimulus was calibrated to an in-
tensity of 65dB SPL at the outer ear (A-weighted; Bruel & Kjaer model
2231).

Feature selective attention task
Subjects sat in an acoustically transparent primate chair and used a joy-
stick to perform a “yes-no” task (Fig. 1A). Monkey W used her left hand
(ipsilateral to the studied auditory cortex) and Monkey U used his right
hand (contralateral to the studied auditory cortex) to manipulate the joy-
stick. LED illumination cued the onset of each trial. Subjects initiated
sound presentation with a lateral joystick movement, which was fol-
lowed by a 100-ms delay and two sequential sounds (S1 then S2) sepa-
rated by a 400-ms intersound interval (ISI). The trial was aborted if the
lateral joystick position was not maintained for the full duration of both

stimuli, and an interrupt timeout (5–10 s) was enforced. The first stimu-
lus (S1) was always the unmodulated, full-bandwidth (nine-octave)
Gaussian white noise. The second stimulus (S2) was chosen from the set
in Figure 1B. S2 sounds were presented pseudorandomly, such that the
entire stimulus set across all four noise seeds was represented over each
set of 96 trials.

The target feature (DBW or AM) alternated by block. Subjects were
given an LED cue (green or red, counterbalanced across subjects) for
which feature to attend, positioned above the speaker. The cue light
remained on throughout the entire block. The first 60–180 trials of each
block served as “instruction trials,” containing the S1 and sounds with a
single target feature (e.g., for an attend AM block all stimuli in the
instruction block were full-bandwidth (DBW0) with AM as the variable
(AM0–3). This allowed the animal to more reliably focus on the attended
feature without the distraction of variation in the unattended feature.
The length of instruction blocks depended on subjects’ performance: if
78% of trials were not correctly performed within 60 trials, another
instruction block was begun, up to a limit of three instruction blocks
(180 trials); if after three instruction blocks the subject did not reach cri-
terion, the session was terminated. Subsequently an attention block was
begun. After the offset of S2, subjects were required to respond with a
“yes” joystick movement on trials in which the target feature was present
(AM1–3 during attend AM and DBW1–3 during attend BW; Fig. 1B).
“No” responses were made by moving the joystick in the opposite direc-
tion. 50% of S2 stimuli contained the target feature, while the remaining
50% did not. The direction to move the joystick for “yes” and “no”
responses was counterbalanced between subjects. Subjects were
rewarded for hits and correct rejections with water or juice and penal-
ized with a timeout (5–10 s) for false alarms and misses. Incorrect
responses were also accompanied by the onset of a white LED light at
the same location as the cue lights. The light remained on for the dura-
tion of the timeout.

Block length varied from 120 to 360 trials, excluding instruction tri-
als. Length depended in part on subjects’ performance: if and only if
78% correct was achieved in two successive 60-trial subblocks could the
subject transition to the next attention condition. More than one block
per attention condition was performed in a given session. Sessions with
fewer than 180 completed trials in either attention condition were
excluded from analysis. Subjects’ performance in a block was below 78%
correct in 14% (5%) of blocks during attend AM (attend BW) condi-
tions. Neural data collected during these relatively low performance
blocks was included for further analyses in order ensure sufficient statis-
tical power for analyzing the effects of our many (26) stimulus condi-
tions on neural activity. In a separate set of analyses, we analyzed neural
data excluding incorrect trials; we find no qualitative differences in the
results regardless of whether incorrect trials were included or excluded.

Single neuron electrophysiology
Recordings were performed in a sound-attenuated, foam-lined booth
(Industrial Acoustics Company; 2.9� 3.2� 2 m). We independently
advanced three quartz-coated tungsten microelectrodes (Thomas
Recording, 1- to 2-MV resistance, 0.35 mm horizontal spacing) in the
vertical plane to the lower bank of the lateral sulcus. Pure tones and ex-
perimental stimuli were presented as the animal sat awake in the primate
chair during electrode advancement, and neural responses were moni-
tored until the multiunit activity was responsive to sound. We then
attempted to isolate single units (SUs). When at least one SU was well
isolated on at least one electrode, we measured FR responses to at least
10 repetitions of each of the following stimuli: the unmodulated stand-
ard, DBW1–3 as described above, and AM sounds at 100% depth across
the full range of frequencies (15, 22, 30, 48, and 60Hz) as described
above. We then cued the subject to begin the task with onset of the cue
LED and recorded for the duration of the behavioral task. We repeated
measurements of responses to the tested stimuli at the end of the session
to ensure electrode stability. Only well isolated SUs stable over at least
120 trials for each attention condition (excluding instruction) were
accepted for analysis. SU isolation was determined blind to experimental
condition. SUs presented here were well isolated for a mean of 2.6
blocks, with a range of two to five blocks. Removing SUs with only two
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experimental blocks of isolation (n=58) from
analysis does not qualitatively affect our results
nor main conclusions and interpretations.

Extracellular signals were amplified (AM
Systems model 1800) and bandpass filtered
between 0.3 and 10kHz (Krohn-Hite 3382), then
digitized at a 50 kHz sampling rate (Cambridge
Electronic Design model 1401). Contributions of
SUs to the signal were determined offline using
k-means and principal component analysis-based
spike sorting software in Spike2 (CED). The sig-
nal-to-noise ratio of extracted spiking activity
was at least 5 SDs, and fewer than 0.1% of spiking
events assigned to the same SU fell within a 1-ms
refractory period window. We also analyzed the
spike width of SUs (Hoglen et al., 2018).
Consistent with other reports from monkey
A1, a low percentage of SUs was classified as
“fast-spiking” (12/92; 13.04%).

Recording locations within auditory cortical
fields were estimated based on established meas-
ures of neural responses to pure-tone and band-
pass noise stimuli (Tian et al., 2001; Petkov et al.,
2006). SUs’ pure-tone frequency tuning was mapped across sessions to
determine A1 boundaries based on tonotopic frequency gradients (ros-
tral-caudal axis), width of frequency-response areas (medial-lateral axis),
and response latencies. Recorded neurons were assigned to putative cort-
ical fields post hoc. Only SUs assigned to A1 were considered for analysis
in this study.

Data analysis
Analyzing subjects’ behavior
We analyzed subjects’ average performance within each session by calcu-
lating a coefficient that quantifies the influence of each feature on sub-
jects’ perceptual judgment. The coefficients are derived from the
following binomial logistic regression model:

P 9Yes9ð Þ ¼ 1
11 ereg

reg ¼ vAM AMVALð Þ1vBW BWVALð Þ1vAM�BW AMVAL � BWVALð Þ1a

;

(1)

where AMVAL and BWVAL are the ranked values of AM and DBW (0–3),
respectively, and v are coefficients for the value terms. We include the
interaction term (vAM�BW), as well as an offset term (aÞ to capture
response bias. Intuitively, as a given feature’s influence on the probability
of a subject responding “yes” increases, the value of the feature coeffi-
cient will increase; when a given feature has no impact on the behavioral
response, the value of the coefficient will be ;0. We calculated each
coefficient (vAM, vBW, and vAM�BW) within each attention block. We
quantified the effect of attention by comparing the distribution of both
vAMand vBW between attention conditions (Fig. 2).

Analyzing task and stimulus effects in single neurons
We analyzed the effects of task context, AM and DBW on spike counts
calculated over the entirety of each 400-ms stimulus. We used a general
linear model (GLM) analysis to quantify the influences of each variable
[all three main effects (AM, BW, and context) as well as each of the three
two-way interactions and the three-way interaction] on each neuron’s
spike counts. We standardized spike-count (sc) distributions across neu-
rons to allow for comparisons between coefficient values by z-scoring
spike count distributions across stimuli and task context (i.e., across an
entire recording). We also standardized across feature levels (which dif-
fer in their absolute values between subjects) by converting each feature
value to a rank, between 0 (absence of feature) and 3 (largest feature
modulation), then converting ranks to fractions varying between 0 and
1. Context was coded as a binary factor (�1 or 1 for attend BW and
attend AM, respectively). The form of the GLM was thus:

sc ¼ b Ctxt Ctxtð Þ1 b AM AMVALð Þ1 b BW BWVALð Þ1
1 b Ctxt�AM Ctxt � AMVALð Þ1 b Ctxt�BW Ctxt � BWVALð Þ

1 b AM�BW AMVAL � BWVALð Þ1b AM�BW�Ctxt AMVAL � BWVAL � Ctxtð Þ;
(2)

where sc is the standardized trial-by-trial spike count calculated
between S2 onset and offset, Ctxt is the context factor, AMVAL and
BWVAL are the ranked AM and BW levels, respectively, and are coeffi-
cients for each factor. In cases where groups of neurons were recorded
simultaneously, we calculated the coefficients for each neuron using a
unique subset of trials to avoid spurious correlations in the coefficients
between neurons. In a separate set of analyses, we analyzed the time
course of effects using a 25-ms sliding window, between ISI onset and S2
offset. The window was shifted in 5-ms increments and we analyzed the
effects of context, AM and BW and their interactions at each time point.

We also calculated the area under the receiver operating characteris-
tic (ROC area), a sc-based measure of sensory sensitivity that corre-
sponds to the ability of an ideal observer to discriminate between two
stimuli based on sc alone. Performance ranges from 0.5 (chance) to 1
(for neurons with increasing sc across the range of feature values) or 0
(for neurons with decreasing sc across the range of feature values). ROC
area can be interpreted as the probability of an ideal observer properly
classifying a stimulus as containing a feature of interest, AM or DBW.
We calculated ROC area for each stimulus condition. If a neuron’s ROC
area is 0.5, that is interpreted as a failure to detect the presence of a fea-
ture. ROC area was calculated using neural activity between S2 onset
and offset only, i.e., during the entire 400-ms S2 presentation.

For each neuron, statistical significance was calculated for each of the
coefficients of the GLM by first estimating each coefficients’ p value
(using the glmfit function in MATLAB), followed by correction for mul-
tiple comparisons using the false discovery rate (FDR; Benjamini and
Hochberg, 1995). The glmfit function estimates p values based on the
estimated coefficient value and the estimated confidence interval thereof,
relative to the standard normal distribution. We calculated whether a
given coefficient was present among all A1 neurons above chance via a
permutation test. For this permutation test we created a null distribu-
tion by shuffling the trial-by-trial labels of the variables for each
neuron, and then calculating the p value using glmfit and FDR as
above. Then, across all 92 neurons, we counted the number of sig-
nificant coefficients for each variable. We repeated this procedure
100 times to obtain an estimate of the mean and SD of the count of
each coefficient spuriously reaching statistical significance. This
procedure yielded an estimate that, by chance, 5.02 6 1.08% of neu-
rons will exhibit a significant coefficient. Therefore, we consider any
variable for which we find.6.1% of neurons reaching statistical sig-
nificance to be reliably encoded by A1 neurons.

Figure 2. Both monkeys perform the task. For each monkey (Monkey U in A and Monkey W in B), we show the behav-
ioral coefficients (v AMand v BW) calculated from Equation 1 across all sessions in which a recording was performed in A1.
Open gray squares and filled black circles indicate the attention condition (attend BW and attend AM, respectively).
Selective detection of the attended feature over the distractor feature is evident for both animals by higher v AM values
than v BW values during attend AM and vice versa during attend BW [signed-rank test, p= 0.0039 (Monkey U),
p= 0.0156 (Monkey W)].
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Analyzing task and stimulus effects in neural populations
We used a targeted dimensionality reduction (TDR) approach to esti-
mate the low-dimensional subspaces in which task variables may be
encoded (Mante et al., 2013), and then quantified the strength of that
encoding using the ROC area. TDR is a method of calculating a weighted
average of neural activity across a sample of neurons. Weights for each
neuron in TDR are first calculated as the linear regression coefficients
relating the task variables to neurons’ FRs (Eq. 2). Then, the matrix of
weights across neurons and variables is orthogonalized to allow us to
estimate projections (weighted averages) of neural activity uniquely
related to each task variable. TDR both reduces the dimensionality of the
population response from # neurons to # projections and provides a way
of “de-mixing” neural activity across a population of neurons with mixed
selectivity.

TDR, and its conceptual motivation, are illustrated with a toy exam-
ple in Figure 3. Here, we contrast two hypothetical cases in which fea-
ture-selective attention modulates single-neuron tuning via a feature-
selective gain (FSG) mechanism (Martinez-Trujillo and Treue, 2004) by
simulating two separate populations of 100 sensory neurons responding
to stimuli varying along two feature dimensions. FSG is a model of atten-
tion whereby the response of a neuron is determined by both its sensory
response function and a multiplicative gain parameter that depends on
the neuron’s preference for the attended feature, yielding larger
responses when attention is directed toward the neuron’s preferred fea-
ture. In the example case of “unmixed selectivity” (Fig. 3A–D), single
neurons’ tuning strength to either of two features (feature A and feature
B) is largely mutually exclusive (i.e., non-zero tuning strength for feature
A is associated with ;0 tuning strength for feature B, and vice versa).

Figure 3. TDR for populations with “mixed selectivity.” Contrasted are two simulated populations of neurons (A–D, unmixed selectivity and E, F, mixed selectivity), each exhibiting the same
FSG influence on single neurons’ FRs. With unmixed selectivity, FSG results in a simple marginalization of population FR that enhances the response to the attended feature (e.g., FR responses
to feature A (stimulus A1B–, red dots and red PSTHs) exceed those of the feature B (A–B1) and null (A–B–) stimuli when feature A is attended (A, C), and vice versa when feature B is
attended (B, D). E–H, However, when neurons exhibit mixed selectivity for features A and B (i.e., they exhibit significant tuning strength for both features), the same modeled FSG parameter
does not yield an attention-related increase in population-averaged FR responses to the attended feature (e.g., responses to A1B– and A–B1 are roughly equal across attention conditions).
However, using TDR to de-mix population response outputs (I) can yield population-level responses that reflect a strong enhancement of the representation of the attended versus unattended
feature. The matrix M, consisting of orthogonalized regression coefficients (the b x terms in Eq. 2) for each neuron, transforms the neural data in R to a set of �-dimensional coordinates (e.g.,
in our case the 3 feature variables AM, DBW, and context), for each experimental condition in matrix P. “Variables” are the dimensions along which the conditions vary; the three variables in
this example are the two stimulus features (A, B) and attention. J, A hypothetical TDR-estimated response (in arbitrary units of projection magnitude) for a population similar to that depicted
in E–H is illustrated in J for the three stimuli (A–B–, A1B–, and A–B1) for each attention condition (attend A and attend B).

Downer et al. · Population Coding Supports Attention in A1 J. Neurosci., September 8, 2021 • 41(36):7561–7577 • 7565



Simulated neurons’ FRs are thus a function of only one feature and a
FSG parameter that multiplicatively scales neurons’ FRs according to
whether attention is directed toward feature A (Fig. 3A) or feature B
(Fig. 3B). In this way, the slope of the “feature tuning strength versus
FR” plot increases for the attended feature (e.g., compare the red dots in
Fig. 3A,B). This leads to a larger response to a feature when attention is
directed toward that feature (Fig. 3C,D).

However, if neurons’ feature tuning exhibits mixed selectivity, i.e.,
non-zero tuning to both features, the same FSG mechanism fails to
meaningfully segregate the population-averaged FRs (Fig. 3E–H). Thus,
when single neurons exhibit mixed selectivity in their tuning to different
sensory features, FSG as a mechanism of attention exhibits no average
attentional enhancement (Fig. 3G,H). However, via TDR, we can find
the data transformations that yield “de-mixed” representations of task
variables via projections of neural population activity onto task-specific
axes. In Figure 3I, we show how a full data matrix, R (of z-scored FRs)
can be transformed to a matrix P of uncorrelated projections via multi-
plication by an orthogonalized regression coefficient matrix,M (see next
paragraph for detailed description). Thus, each of the six experimental
conditions illustrated here (c=3 stimulus conditions � 2 attentional;
rows of R, and rows of P) yields a unique population response (projec-
tion) represented in matrix P. Therefore, each row of P represents the
population response as single point in three-dimensional space, where
each dimension corresponds to a task variable (ßA, ßB, and ßcontext, com-
prising the columns in matrix M and P). This process is analogous to re-
weighting each neurons’ outputs at the downstream synaptic level. Each
axis in Figure 3J thus could represent the activity of a single hypothetical
downstream neuron receiving its inputs from a neural population similar
to that depicted in Figure 3E–H, the input weights of which are selectively
shaped to maximize the unique encoding of each task variable; for clarity,
we display two two-dimensional spaces (one for each attention condition)
where the dimensions correspond to the variables feature A (x-axis) and
feature B (y-axis). Whereas population-averaged single-neuron FRs fail to
reveal an effect of FSG, projections onto the stimulus-variable axes may
reveal a strong effect of attention: in the attend A space, the population
response to the A1B– stimulus (red) projects much farther along the fea-
ture A axis than in the attend B space. Likewise, the population response
to the A–B1 stimulus (blue) projects farther along the feature B axis dur-
ing the attend B space than in the attend A space.

To implement TDR, the data are represented in matrix R, which con-
tains one column for each neuron and one row for each condition. Note,
in the present study we refer to “conditions” as distinct combinations of
AM, DBW and context, such that we have 26 total experimental condi-
tions (13 AM � DBW combinations across two attention conditions).
We refer to “variables” as the three dimensions along which all condi-
tions vary, namely the two sound features (AM, DBW) and context
(attention). The matrix M consists of the set of regression coefficients
calculated for each variable in Equation 2, orthogonalized via orthogonal
triangular decomposition (qr command in MATLAB) to obtain the
matrix. M is thus a set of uncorrelated variable coefficient vectors
that can be used to project our data onto orthogonal axes corre-
sponding to task variables in the form of matrix P. We illustrate the
process of TDR on our data in Figure 4. We have uploaded
MATLAB code demonstrating the analysis steps for running TDR to
https://github.com/joshuaDavidDowner/TDRdemo.

Simulating neural population activity
We analyzed neural population activity both in small ensembles of
simultaneously recorded neurons and by simulating population activity
by combining the activity of neurons that were recorded during different
sessions. For analyzing simultaneously recorded ensembles, we included
ensembles of at least three neurons (n=12 ensembles). For combining
non-simultaneously recorded neurons into simulated populations, we
used a bootstrapping approach to estimate the mean and variance of
population projections. Namely, we constructed neural populations of
size n= 92 neurons by randomly sampling, with replacement, from our
set of 92 sampled A1 neurons. We similarly simulated trials by re-sam-
pling (with replacement) from the distribution of spike counts of each
neuron in each of the 26 experimental conditions (10 trials per condi-
tion). We constructed 100 simulated populations in this way.

An important consideration with this approach is that, by combining
neurons across experimental sessions, and by randomly re-sampling tri-
als, we fail to approximate correlated and intrinsic variability between
and within neurons, respectively. Therefore, the matrix of simulated
spike counts within a condition is transformed to introduce noise corre-
lations and neuron-intrinsic variability that match that observed in the
data (Downer et al., 2017b). We determined the desired noise correlation
value between a given pair of neurons by measuring the noise correla-
tions between the simultaneously recorded pairs of neurons in the data
(n= 434 pairs) and fitting a linear regression to those noise correlation
values to determine the impact of AM and DBW tuning correlation,
joint FR and attention condition on noise correlations. We determined
the desired neuron-intrinsic variability by calculating the Fano factor
(variance/mean rate) for each neuron and scaling its simulated spike
count distribution to match the observed Fano factor. Thus, our simu-
lated populations contained realistically structured spike count variabili-
ty. The methods for introducing realistic noise correlations and Fano
factor in simulated neural populations are detailed by Shadlen and
Newsome (1998) and Downer et al. (2017a). All simulated population
results presented in this manuscript are from simulations in which we
impose noise correlations between pairs of neurons as described above.
However, our understanding of the effects of noise correlations on popu-
lation coding is still incomplete. While it is known that many facets of
the population, including heterogeneity among constituent neurons, the
presence or absence of “information-limiting correlations,” the relation-
ship between constituent neurons’ tuning properties, and many others
(Ecker et al., 2011; Hu et al., 2014; Kanitscheider et al., 2015), it is likely
that the impact of noise correlations meaningfully differs for different
neural populations. Therefore, we also performed the same analyses on
simulated populations with both unstructured global noise correlations
(i.e., noise correlations were on average 0.06 between pairs of neurons,
regardless of tuning correlations, FR, or attention condition) as well as
without imposed noise correlations (i.e., noise correlations were on aver-
age 0 between the neurons in the population). Results were qualitatively
similar regardless of whether and how we imposed noise correlations,
although the simulations with unstructured or net zero noise correla-
tions yielded a weaker effect of attention on population-level feature sen-
sitivity than simulations in which we modeled the observed attention-
related changes in noise correlations.

We determined the sensitivity for each sound feature in each popula-
tion (both simultaneously recorded and simulated) by calculating the
ROC area (as described for single neurons) by comparing distributions
of simulated trial-by-trial projections onto each sound feature axis (as
opposed to distributions of trial-by-trial spike count distributions). The
projections in a given trial were calculated as in Figure 3I. We calculated
decoding accuracy (ROC area) for AM and BW by comparing the distri-
bution of projections of AM.0 versus AM0 stimuli and BW.0 versus
BW0 stimuli, respectively, along each feature’s axis. A linear support vec-
tor machine (SVM) was fit to a training set and performance evaluated
on a test set of withheld data.

We calculated choice-related ROC area for the simulated populations
by comparing trial-by-trial projection distributions along each axis for
“yes” and “no” behavioral response trials for the same stimulus. We used
the same SVM algorithm as described for calculating sound feature sen-
sitivity to discover the linear plane of separation between the three-
dimensional (AM� BW� context) projections for “yes” and “no” trials.
This analysis was meant to illuminate the relationship between our esti-
mates of population sensory activity and subjects’ perceptual report,
regardless of the stimulus condition or task context. Importantly, we
only analyzed choice-related ROC area for stimuli with roughly equal
numbers of “yes” and “no” responses, namely, those stimuli near percep-
tual threshold, where subjects made at least five correct and incorrect
judgements, similar to Niwa et al. (2012a). This provision protects
against biases arising from re-sampling from distributions with few val-
ues, for which mean and variance estimates are unreliable. In our data,
the only stimuli that met this criterion across sessions were the AM1–D
BW0 and AM0–DBW1 sounds.

In order to evaluate the extent to which findings of simulated popula-
tion-level activity deviate from expected effects of pooling across groups of
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neurons, we constructed 1000 surrogate populations with intact single-neu-
ron tuning but decimated higher-order correlations among them (Elsayed
and Cunningham, 2017). This method constructs surrogate populations by
shuffling the original data labels, but then recovering (to the extent possible)
the marginal and covariance features of the original data by transforming
the shuffled data using a “readout”matrix. Thus, the final surrogate popula-
tions contain modeled neurons that closely approximate the neurons in the
original data, but with higher-order correlations abolished. We calculated
sensory sensitivity (ROC area) and choice-related activity precisely as we
did with the intact data set, across 1000 surrogate populations. These distri-
butions produced by the surrogate populations provide benchmarks for the
expected results given effects accountable by single-neuron features without
complex interactions among them.

Results
Monkeys successfully perform the feature selective attention task
Within each feature-attention (context) block, we quantified the
degree to which a change in each feature influenced subjects’

probability of a “yes” response using a binomial logistic
regression (see Materials and Methods). We determined sig-
nificant task performance for each monkey by comparing the
distributions of regression coefficients for the attended fea-
ture versus the unattended feature using a Wilcoxon signed-
rank test. We observed higher vAM values than vBW values
during the “attend AM” condition, and vice versa during the
“attend BW” condition [p = 0.0039 (Monkey U), p = 0.0156
(Monkey W); Fig. 2].

A1 neurons exhibit mixed selectivity for sensory features and
task context
We quantified encoding of behavioral (context) and acoustic
(AM and BW) variables on the FRs of recorded A1 neurons
(n= 92) using multiple linear regression (Equation 2). For each
neuron, we calculated a set of coefficients describing the main
effect of each of these three variables and all pairwise interactions
(seven total coefficients per neuron).

Figure 4. Concrete description of matrices R, M, and P as expressed in our data. Across matrices, the color scheme parula represents the values (FR in R, coefficient value in M, and projection magni-
tude in P) of the entries in each matrix (maxima: yellow; minima: blue). The matrix R is 26� 92, where each row corresponds to a condition (all 26 combinations of 4 AM depths, 4 bandwidths, and 2
attend conditions) and each column to a neuron (92 neurons). The matrix M is 92 � 3 where each row corresponds to a neuron and each column to a vector of orthogonalized variable coefficients
(b AM, b BW, and b context from Eq. 2). The matrix P is 26� 3 where each row corresponds to a condition and each column to a variable. Here, the columns of M are (1) AM coefficients; (2) BW coeffi-
cients; and (3) context coefficients. Multiplying R� M yields the matrix P in which each row corresponds to one of the 26 conditions and each column to a variable, or axis. Each value of P represents
the projection of the population response to a condition along a given axis. For instance, column 1 of P exhibits increasing values as the rank value of AM increases (see condition labels to the left of ma-
trix R). The color bar on the right applies to all matrices and indicates values from minimum (blue) to maximum (yellow) for FR (matrix R), coefficient (matrix M), and projection (matrix P). The variable
labels to the left of matrix R correspond to Amplitude Modulation (AM), Bandwidth (BW) and Context (CX).
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We saw diverse encoding of task variables, as shown in several
example neurons (Fig. 5; each column of panels is a different
neuron). Figure 5A–C, top row, shows FRs, collapsed across con-
text and BW condition, separated by AM condition (red: AM.0;
black: AM0 = no AM). The middle row shows FRs separated by
BW condition, and the bottom row shows FRs separated by con-
text. The neuron in Figure 5A encodes BW, shown by a
decreased FR for BW.0 conditions relative to BW0 conditions
(b BW = �1.18, p=4.57e-29), while the neurons in 5B and 5C
encode both sound features as well as context [b AM = 0.63,
p=5.7e-7; b BW = 0.31, p=0.016; b Ctxt = 0.47, p= 6.2e-14 (Fig.
5B); b AM = �0.34, p=0.0012; b BW = 0.33, p=0.0033; b Ctxt =
�0.86, p= 2.3e-42 (Fig. 5C)], albeit with different directions of

FR changes [e.g., they both encode AM, but 5B exhibits an
increased FR for AM (positive b AM), while 5C exhibits a
decreased FR (negative b AM)]. Figure 5D–F shows the time
course of the coefficient values calculated for each variable by the
neurons in Figure 5A–C, respectively. Taken together, these three
example neurons illustrate that single A1 neurons exhibit diverse
encoding of variables relevant for this task, often encoding con-
text as well as both sound features. Although it is unsurprising to
find that A1 neurons encode the sensory and context variables in
this task, these example neurons provide an example of the appa-
rently “tangled” nature of this coding (Rust and DiCarlo, 2010).
Because A1 FRs simultaneously encode multiple independent
variables, single-neuron FRs may provide a poor code for any

Figure 5. A1 neurons exhibit mixed selectivity for sensory and task variables. Example PSTHs for three neurons are shown in columns A–C, with average FRs collapsed across irrelevant varia-
bles to reveal AM (top row), BW (middle), and context (bottom) encoding. The neuron in A exhibits no AM-dependent or context-dependent changes in sustained FR, but decreases its FR
when DBW. 0. The neuron in B increases its rate for both AM. 0 and DBW. 0 (red PSTH and blue PSTH above black PSTH, respectively) and has an overall higher FR during the attend
AM context (pink PSTH above purple PSTH). The neuron in C decreases rate for AM. 0, increases rate for DBW. 0, and prefers the attend BW condition. We calculated coefficients for each
variable over a sliding window (“0” means that variable does not contribute to FR), and these time-varying coefficient trajectories are shown in D–F for the neurons in A–C, respectively. The
greyscale markers along the x-axis in the bottom of each panel indicate significance of each coefficient within the 25-ms time bin in which the coefficient was calculated.
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given variable on a trial-by-trial basis, i.e., the unweighted FRs of
individual A1 neurons do not unambiguously encode the varia-
bles necessary for task performance. Therefore, marginalizing
across single neurons by unweighted averaging yields an ambigu-
ous representation. A summary across all single neurons is
shown in Figure 6.

A significant number of A1 neurons encodes each of the vari-
ables tested here, i.e., .6.1% of neurons have significant coeffi-
cients for each variable (for how we determine this significance
cutoff, see Materials and Methods). Context has a significant
main effect in more neurons than either acoustic feature, as
measured by the proportion of neurons with significant context
coefficients (49/92 with significant context coefficients; 42/92
with significant AM coefficients; 33/92 with significant DBW
coefficients; Fig. 6A). Significant interaction effects were less
common (13/92 with significant AM � context coefficients; 11/

92 with significant BW � context coefficients), suggesting that
attention does not tend to change A1 neurons’ feature tuning.
This can be seen clearly in Figure 6B as well; the color map of
proportions of significant coefficients exhibits a markedly higher
proportion of main effects (main diagonal) than interactions.
This contrasts with findings from tasks comparing passive listen-
ing and active auditory behaviors on A1 tuning: across many
studies, active task engagement result in large changes in A1 tun-
ing (David, 2018). These studies have been interpreted as evi-
dence that A1 single-neuron tuning tracks behavioral demands,
namely that tuning is enhanced when animals are actively
engaged with sounds (Niwa et al., 2012b).

Figure 6C provides a possible reason for the relatively low
incidence of attention-related changes in A1 neuron tuning. We
plot the value of AM coefficients against the value of BW coeffi-
cients and find that a majority of neurons have similar AM

Figure 6. A1 neurons robustly encode context, AM, and BW. A, The histogram showing the proportion of neurons with significant context (Ctxt), AM, and BW coefficients reveals that each
variable modulates the FR of many A1 neurons. Importantly, interactions between the variables are relatively rare, suggesting that each variable tends to make an independent, linear contribu-
tion to neurons’ FRs. The relative paucity of cells with significant context � AM or context � BW interaction terms suggests that sound feature tuning in A1 is relatively constant between
attention conditions. B, The heat map illustrates the joint encoding of task variables. Many neurons that encode one variable also encode at least one other. For instance, more than half of
those cells that encode context also encode either AM or BW. C, There is a positive relationship between AM and BW encoding, such that the single-neuron FRs tend to fail to disambiguate
between AM and BW. D, E, Context exhibits no significant relationship between AM or BW tuning, suggesting that the FSG model is inconsistent with our data. In C–E, red markers indicate a
significant coefficient for the variable on the x-axis, blue markers indicate a significant coefficient for the variable on the y-axis and gold markers indicate significance for both variables. F, G,
Single-neuron feature sensitivity is consistent across attention conditions. F, Average single-neuron AM sensitivity, as measured with ROC area (AM ROC area) does not change between condi-
tions. G, Same as F but for BW ROC area.
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and BW tuning as measured by the sign of the coefficient
(Spearman’s r= 0.35, p=0.0007). In other words, A1 neurons
rarely uniquely encode one sound feature or the other because
feature tuning co-varies at the single-neuron level (similar to Fig.
3E–H). This prevents single-neuron tuning from providing a ro-
bust basis for attentional perceptual enhancement. We also find
no significant correlation between context main effect coeffi-
cients and main effects of either sound feature [b AM vs b Ctxt,
Spearman’s r = �0.05 p=0.63 (Fig. 6D); b BW vs b Ctxt,
Spearman’s r = �0.13 p=0.22 (Fig. 6E)], nor do we find any sig-
nificant correlation between any other pairs of coefficients
(Spearman’s correlation, p. 0.05 for all). A common finding in
the attention literature is that feature attention leads to FSG,
whereby neurons tuned to the attended feature exhibit an
increased FR (Martinez-Trujillo and Treue, 2004). An FSG effect
in these data might manifest as a positive relationship between
b AM and b Ctxt and a negative relationship between b BW and
b Ctxt (since context is coded as 11 for attend AM and �1 for
attend BW in Eq. 2). On the contrary, our analyses reveal no
such correlations. Alternatively, an FSG effect in our data may
also manifest as a preponderance of cells with positive AM �
Ctxt coefficients and/or negative BW � Ctxt coefficients and/or
a negative relationship between AM � Ctxt and BW � Ctxt. We
found no evidence for any of these alternatives: the median
AM � Ctxt coefficient is �0.05 while the median BW � Ctxt
coefficient is �0.01 (Wilcoxon signed-rank text, p= 0.99 and
p=0.11, respectively) and there is no significant correlation
between AM � Ctxt and BW � Ctxt (Spearman’s r= 0.04,
p=0.48). Thus, these analyses reveal no evidence that an FSG

mechanism operates on individual A1 neurons to support fea-
ture selective attention.

Average A1 neurons’ feature sensitivity is constant across
attention conditions
In the analyses presented in Figure 6A–E, we calculated coefficients
across the entire experiment and used sound feature � context
interaction terms as a measure of attentional modulation of A1 neu-
ron tuning. We next measured the average effects of attention on
single-neuron feature decoding accuracy by calculating ROC area
for each feature in each attention condition for each neuron (see
Materials and Methods). Comparing ROC area for both features
across conditions reveals no attentional modulation of single-neu-
ron feature sensitivity (Fig. 6F,G; results shown are collapsed across
all AM and BW levels). In Figure 6F, the AM ROC area is shown
for the attend AM condition on the x-axis and the attend BW
condition on the y-axis. Although we do observe some scat-
ter around the unity line, neurons increase or decrease their
AM ROC area with equal likelihood (Wilcoxon signed-rank
test, p = 0.74). In Figure 6G, we show the BW ROC areas
across attention conditions and, again, find no average effect
of attention on this single-neuron metric of feature tuning
(Wilcoxon signed-rank test, p = 0.73). Therefore, when com-
paring feature tuning across the more rigorous demands of
different feature attention conditions, we do not observe tun-
ing changes that have been found in several prior studies
comparing A1 tuning between passive versus active condi-
tions and between attend-toward versus attend-away condi-
tions (Niwa et al., 2012b; von Trapp et al., 2016; Schwartz
and David, 2018).

Figure 7. A population-level analysis for feature encoding in A1. A, We provide a schematic illustration of our population-level analysis approach. The grid in A is a hypothetical population
response pattern, with population FR organized by b AM and b BW. For this hypothetical response, the group of neurons with positive b AM and b BW exhibit high FRs. B, In our data, popula-
tion response patterns differ across the stimulus set (population response grids arranged as the stimulus matrix in Fig. 1B), with clear differences in population responses related to increasing
AM and BW levels. C, Moreover, comparing C to B reveals substantial differences in population responses related to attention.
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TDR analysis reveals attentional
enhancement of sensory encoding
Given the complexity of the task, we rea-
soned that a plausible strategy for adaptive
feature selection might be a distributed
population code. Population codes can
allow unambiguous and simultaneous
encoding of many variables by distributing
the task-relevant signals across single neu-
rons (Fusi et al., 2016). Thus, during po-
pulation encoding of complex auditory
scenes involving multiple relevant varia-
bles, single-neuron FRs may provide a
complicated snapshot of the overall opera-
tions of A1. We therefore modeled A1
population coding by subsampling from
our set of single neurons and projected
population vector activity (Georgopoulos
et al., 1986) onto axes corresponding to
AM and BW encoding using TDR (Mante
et al., 2013; see Materials and Methods;
Figs. 3, 4). Such approaches have been
employed in studies of higher-order cortex
to disambiguate the often-heterogeneous
single neuron signals observed there
(Machens et al., 2010; Mante et al., 2013;
Rigotti et al., 2013).

We provide a description of population
responses across experimental conditions
in Figure 7. Here, population-averaged
FRs (averaged over the entire 400-ms S2
presentation epoch; Fig. 1A) are displayed
in 4� 4 grids, where each element repre-
sents FR averaged over a subgroup of neu-
rons sorted by b AM (x-axis) and b BW

(y-axis). A hypothetical population response
in Figure 7A shows a case in which neurons
with positive b AM and positive b BW fire
above their mean rates, whereas neurons
with negative b AM and b BW fire below
their mean rates. Our data displayed in this
manner qualitatively reveal effects of stimu-
lus feature and task context (Fig. 7B,C).
Each panel in Figure 7B,C shows the popu-
lation response (as in Fig. 7A) for a given
stimulus combination of AM and DBW (for
example, the lower right panel in Fig. 7B is
the population response in attend-AM to
the DBW0–AM3 stimulus).

By and large, increases in AM level
result in population activity patterns that
are increasingly biased toward high spike
counts among neurons with positive b AM

and increases in DBW level result in
patterns with high spike counts among
neurons with positive b BW. Moreover,
comparing population activity patterns for
a given stimulus across attention condi-
tions hints at complex changes in FR based
on both b AM and b BW. For instance, for
AM0–DBW2, the population activity pat-
tern during attend AM (Fig. 7B) seems to
exhibit high FRs for neurons with negative

Figure 8. Neural activity projected into sensory-defined subspace reveals sound feature encoding. A, Our approach
involves projecting responses of populations of neurons into lower-dimensional condition subspace defined by the stimulus
variables (dimensionality reduced from n neurons to p conditions). The eight hypothetical responses in A show idealized pop-
ulation responses that project in corresponding eight points in the AM axis projection versus BW axis projection coordinates.
(context dimension not shown.) B, Color-coded stimulus responses (see inset) in the attend AM condition are shown pro-
jected into axis-projection subspace. Symbols represent mean responses over simulated trials. Markers representing projec-
tions along the AM axis exhibit increasing (red) values, whereas markers representing projections along the BW axis exhibit
increasing (blue) values, indicating population-level encoding of sound features. In the upper right quadrant of the inset are
purple markers, representing stimuli containing both features, and markers with low color values (including black) are found
in the lower left quadrant of the inset. C, Same as B but for the attend BW condition. Axes in B, C are scaled equally.
Comparing encoding subspaces across conditions reveals substantial effects of attention on sensory subspace projections. D,
Trajectories over time through the sensory subspace for three representative stimuli [AM0–BW0 (black), AM0–BW3 (blue),
AM3–BW0 (red)] reveal encoding over the entire course of S2 presentation for the AM attend condition. Trajectories begin at
the x and y origin, indicating no sensory evidence for either AM or BW. Directly after stimulus onset, trajectories for each
stimulus follow similar paths, then diverge substantially. Trajectories reach a peak of separation, such that AM0–BW3 and
AM3–BW0 projections are in opposite quadrants (upper left and lower right, respectively), both roughly orthogonal to the
AM0–BW0 projection. Then, during the end of the stimulus response, trajectories approach the origin. E, Same as in D but
for the attend BW condition. Trajectories in both conditions exhibit an early, non-selective course wherein each stimulus proj-
ects to roughly the same area within the subspace. During the middle of the stimulus, trajectories reach their maximum sep-
aration, then trend back toward the origin. These trajectories suggest that feature selection during sound perception evolves
over time, beginning with a general detection phase, followed by a discrimination phase, then returning to a non-encoding
area of the subspace thereafter. Note that the window size and shift increment here (25 and 5 ms, respectively) in D, E are
the same used in Figure 5D–F.
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b AM, regardless of b BW. However, during
attend BW (Fig. 7C), the population activity
exhibits low FRs for all neurons except for
those with negative b AM and positive b BW.
Taken together, these panels provide a visual
intuition for how stimuli are encoded in a dis-
tributed manner across the A1 population and
how attention qualitatively affects this
encoding.

Projecting population activity into a low-
dimensional subspace via TDR provides a
compact way of quantifying population
response patterns (Fig. 8). We focus here on
stimulus-related projections. In Figure 8A,
eight distinct, idealized population responses
show where each population response falls on
an AM axis projection versus BW axis projec-
tion plot, e.g., the population response in the
upper right of Figure 8A, would have a value
near 1 for both its AM and BW axes projec-
tions, and thus would be a dot in the upper
right for panels in Figure 8B–E. In order to
project our data onto these coordinates, we
constructed pseudo-populations by sampling
from our pool of recorded neurons and simu-
lating trial-by-trial population responses,
which are projected onto these two-dimen-
sional coordinates via a linear combination
between a data matrix of spike counts (R) and
a coefficients matrix (M; Fig. 3I,J; Materials
and Methods). Projections in the attend AM
and attend BW conditions for each stimulus
are shown in Figure 8B,C, respectively; projec-
tions averaged over simulated trials are shown
for each stimulus condition (see inset for color
code). By design, increasing AM levels corre-
spond to greater projections along the AM axis
than along the BW axis, and increasing DBW
levels correspond to greater projections along
the BW axis than along the AM axis (e.g., AM3

and DBW3 stimuli project farthest along the AM
and BW axes, respectively). The topography of
stimulus responses clearly differs between atten-
tion conditions. Thus, whereas single-neuron
FRs fail to disambiguate between AM and BW,
populations comprising these same neurons suc-
cessfully encode each feature when their outputs
are re-weighted using TDR.

Moreover, we observe that trajectories
through this subspace exhibit interesting tem-
poral dynamics (Fig. 8D,E). For clarity, only
three stimulus response trajectories are shown
[AM0DBW0 (black), AM3DBW0 (red), and
AM0DBW3 (blue)]. Time is shown with lighter
shading of the lines early in the stimulus grad-
ually getting darker over time. The initial
excursion for each stimulus, corresponding
to the onset response immediately after time
0, appears initially ambiguous and gradually
differentiates over the course of a S2 presentation. Projection tra-
jectories appear maximally separate roughly in the middle of the
stimulus, and by the end of the stimulus presentation, trajectories
return to the origin of the subspace. These temporal dynamics

suggest that early population responses function to detect a
rapid change, regardless of feature, whereas sustained
responses elicit finer-grained feature selectivity. Differences
between onset and sustained responding have been widely
observed in auditory cortex (Wang et al., 2005; Ku�smierek et al.,

Figure 9. Population, not single neuron, representations sharpen with attention. A, Single-neuron ROC areas (simi-
lar to Fig. 6F,G) are compared between the attend AM (x-axis) and attend BW (y-axis) conditions. Black (gray) “o”
markers represent single neuron average AM (BW) ROC values, with the red (orange) “1” representing the mean AM
(BW) ROC value across the population. AM ROC and BW ROC distributions each lie along the unity line, indicating no
average effect of attention (p= 0.73 and 0.74, respectively). B, Small ensemble ROC areas (one black and one gray
marker for each of the 12 ensembles) exhibit small effects of attention. AM ROC values are significantly greater during
attend AM (0.63 vs 0.58, p= 0.016). BW ROC values are higher during attend BW but the difference is not statistically
significant (0.61 vs 0.59, p= 0.26). C, Simulated population ROC areas (one black and one gray marker for each of the
100 simulated populations of size n= 92 neurons) differ significantly between attention conditions, such that the aver-
age AM ROC area is 0.159 higher during attend AM than attend BW (red1; p= 2.41e-30) and the average BW ROC
areas is 0.108 higher during attend BW than attend AM (orange 1; p= 3.08e-17). D, The distribution of attention
modulation values (the z-scored increase in ROC area for each feature when it is attended vs ignored) for 1000 surro-
gate populations is compared against the observed attention modulation in the neural data (vertical red line).
Although surrogate populations, on average, exhibit a positive attention modulation (as evidence by the peak of the
distribution well above 0), the attention modulation observed in the neural data exceeds that of any given surrogate
population. This indicates high confidence that the finding in B constitutes a synergistic effect of attention on neural
coding, above and beyond what would be expected if a weak attentional enhancement was present in a majority of
individual neurons.
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2012; Osman et al., 2018). These findings support that the tem-
poral dynamics of sensory neuron responses correspond to dis-
tinct encoding stages in population activity patterns.

Qualitative effects of attention are apparent when comparing
the population activity patterns across attend AM and attend
BW conditions (e.g., Figs. 7B vs C, 8B,D vs C,E). We next quanti-
fied to what extent population encoding of relevant versus irrele-
vant stimulus features was affected by these changes. At the
single-neuron FR level, we observe no effect of attention enhanc-
ing the representation of attended versus unattended features
(Wilcoxon signed-rank test, p= 0.73 for ROCAM, p=0.74 for
ROCBW; Fig. 9A). However, in the small ensembles of simultane-
ously recorded neurons, subtle increases in the coding of the
attended feature begin to emerge (Fig. 9B). Namely, the AM
ROC area increases from 0.58 during attend BW to 0.63 during
attend AM (Wilcoxon signed-rank test, p=0.016) and the BW
ROC area increases from 0.59 during attend AM to 0.61 during
attend BW (Wilcoxon signed-rank test, p= 0.26). The attention-
related increase is only statistically significant for AM ROC area.
Moreover, using signal detection analyses on TDR population
responses (see Materials and Methods) we find that simulated
population projections onto two-dimensional weighted-feature
space afford better decoding accuracy for each feature when it is
attended (Fig. 9B). Across 100 simulated neural populations, the

average ROC enhancement is 0.159 (0.77
vs 0.611) for AM ROC area and 0.108
(0.721 vs 0.612) for BW ROC area
(Wilcoxon signed-rank test, p=2.41e-30
and p=3.08e-17, respectively).

This dissociation between single-
neuron and population attentional
enhancement suggests a prioritized
role for population-level representa-
tions in PSC during feature selective
attention. Importantly, the difference
in sensory sensitivity effects between
single neurons and populations cannot
be attributed to greater analytical power
obtained by selective pooling over many
neurons (Fig. 9C). Comparing the atten-
tional modulation index (z score of ROC
area difference of attended relative to
unattended feature) of the neural data
(9C, vertical red line) to that of 1000 sur-
rogate populations, we find no overlap
between our observed attentional enhan-
cement and that expected by the simpler
single-neuron and pairwise covariance
properties. This suggests that our observed
population enhancement of sound feature
encoding constitutes an emergent effect,
relying on higher-order correlations
among A1 neurons.

Finally, we analyzed how subjects’
reported perceptual decision accounts for
variance in trial-by-trial projections within
the stimuli near perceptual threshold
(AM1–DBW0 and AM0–DBW1; Fig. 10).
In order to quantify these effects, we calcu-
lated the ROC area between correct and
incorrect response distributions, a metric
commonly referred to as choice probability
(CP; Britten et al., 1992). In Figure 10A–C,
we show the CP associated with variance

along each task variable axis. For each single-axis projection, we
find a significant difference from 0.5 in CP across 100 simulated
neural populations (mean CP=0.571, p=1.9e-39 for AM axis pro-
jection; mean CP=0.581, p=4.82e-47 for BW axis projection;
mean CP=0.572, p=1.37e-42 for context axis projection; Wilcoxon
signed-rank test for each comparison). We also assessed CP for pro-
jections into the three-dimensional (AM � BW � context) sub-
space using a SVM algorithm to define a plane that best separates
correct from incorrect trials’ projections (Fig. 10D). This 3D-projec-
tion exhibits especially large CP value relative to projections onto
the individual axes (mean CP=0.633, p=1.12e-61, Wilcoxon
signed-rank test). Thus, choice-related activity accounts for some
unique proportion of variance in the population data. Taken to-
gether with the attentional enhancements, the observation of per-
formance-related population-level activity in A1 supports the
notion that neurons in A1 act cooperatively to support auditory
perception and decision-making.

Discussion
We find that single-neuron representations are insufficient to
explain attention-related and choice-related activity in A1 neural
populations. Instead, a population-level description is required

Figure 10. Population subspace projections correlate with trial-by-trial performance. A, The distribution of CP values across
100 simulated populations reveals a significant relationship between AM-axis projections and task performance, as evidenced
by a mean CP across simulations of 0.573 (p= 1.90e-39). Likewise, B, C reveal that projections along the BW and context axes
also correlate with task performance, with mean CP values of 0.581 and 0.572, respectively (p= 4.82e-47 and 1.37e-42). D,
Projections of population activity into the full three-dimensional task variable subspace (AM� BW� context) are very reliably
performance related, as evidenced by the entire distribution of CP values across simulated populations lying above 0.5, with a
mean of 0.633 (p= 1.12e-61). Each significance test was a Wilcoxon signed-rank test with a null hypothesis of CP = 0.5.
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to link sensory cortical activity and perception in A1. Although
the finding that attention enhances population, but not single
neuron, coding could simply reflect the amplification of a weak
single-neuron signal, a surrogate population analysis (Elsayed
and Cunningham, 2017) revealed that attention uniquely enhan-
ces sound coding at the population level.

Multiple recent studies of A1 highlight the importance of
population-level representations (Downer et al., 2015, 2017a,b;
Pachitariu et al., 2015; Francis et al., 2018). Population-level anal-
yses can provide clear links between A1 activity and behavior,
whereas single neurons may not (Christison-Lagay et al., 2017;
Bagur et al., 2018; See et al., 2018; Yao and Sanes, 2018; Sadeghi
et al., 2019). A critical question has remained unanswered, how-
ever: to what extent are these population-level findings an
expected by-product of marginalizing across neurons (Sasaki et
al., 2017)? For instance, in comparisons between active and pas-
sive states, in which only a single sensory feature matters for task
performance, single neurons will likely resemble noisy versions
of population representations, simply by virtue of there being
very few stimulus parameters influencing single neurons (Gao et
al., 2017). A1 neurons exhibit high dimensionality for sound fea-
tures (O’Connor et al., 2005, 2010; Mesgarani et al., 2008;
Sadagopan andWang, 2009; Sloas et al., 2016) which can provide
unambiguous population coding beyond that provided by any
single neuron (Bizley et al., 2010). Indeed, it is well established
that cortical neurons across sensory modalities have mixed selec-
tivity for many stimulus features [e.g., orientation and contrast
in visual cortex (Finn et al., 2007) and location and vibration fre-
quency in somatosensory cortex (Nicolelis et al., 1998)]. In A1,
mixed selectivity of up at least five sensory features has been
demonstrated (Sloas et al., 2016). However, the effects of atten-
tion on sensory cortical neurons’ encoding of these features
chiefly involves experiments in which only a single feature is
considered (Niwa et al., 2012b). Importantly, in the present
report, sufficiently high dimensionality of the sensory and behav-
ioral variables of the task allows for direct analysis of high-
dimensional representation in single neurons and whether sin-
gle-neuron representation suffices to explain population findings
related to perception. We find that single neurons represent be-
havioral and sound variables in substantially “mixed” fashion,
such that single-neuron FRs provide highly ambiguous informa-
tion (Fusi et al., 2016). Only at the population level do the effects
of attention and choice on neural activity become apparent (Figs.
9, 10). Such mixed selectivity/population-level primacy has pre-
viously been more linked with association and PFCs. However,
previous studies of feature-selective and feature-based attention
across the visual cortical hierarchy have revealed similarly com-
plex single neuron results, suggesting that increasing stimulus
and task complexity critically affects the interpretability of single
neuron activity in sensory cortex (Chen et al., 2012; Ruff and
Born, 2015; Schledde et al., 2017; Hembrook-Short et al., 2018).
Additionally, single somatosensory and olfactory cortical neu-
rons display distinct properties depending on task complexity
(Miura et al., 2012; Gomez-Ramirez et al., 2014, 2016; Kim et al.,
2015; Shiotani et al., 2020). Similar to the present study, neurons
in these studies reflect the mixed selectivity commonly associated
with “higher” cortical areas. Our findings therefore highlight the
importance of studying sensory cortical neurons in sufficiently
complex experimental conditions to uncover their function in
complex environments.

In many previous studies in which single neurons were
recorded while animals performed complex auditory tasks, single
neuron encoding of target sounds is enhanced during

engagement with, or attention toward, these sounds (Fritz et al.,
2003; Niwa et al., 2012b; Buran et al., 2014; Carcea et al., 2017;
Kuchibhotla et al., 2017; Schwartz and David, 2018). However,
single neuron activity can fail to approximate the information
encoded at the population level when more complex behavioral
variables such as choice are considered (Christison-Lagay et al.,
2017; Yao et al., 2019). The apparent gap between single-neuron
and population-level coding can be explained if single neurons
are considered as nonlinear contributors to the population as
whole. Moreover, increasing experimental complexity likely
widens this gap (Gao et al., 2017). We observe that context sig-
nals and sensory signals are apparently “tangled” in that the con-
text and sensory signals are largely uncorrelated, leading to
ambiguous single neuron codes (DiCarlo and Cox, 2007). Based
on our population-level analyses, these tangled single neuron sig-
nals are disambiguated only at the population level. Future, simi-
larly complex experiments, will allow a full description of the
variables relating single neuron activity to population representa-
tions in sensory cortex.

The preponderance of single neurons whose activity is modu-
lated by task context (i.e., attention condition) regardless of neu-
rons’ sensory coding bears further consideration. The abundance
of neurons encoding task context is surprising for two reasons:
(1) task context is more commonly encoded by A1 neurons than
either sound feature although A1 is a sensory brain area; (2) the

Figure 11. No evidence of attention-related changes in spike-timing-based sound encod-
ing. A, We plot the vector strength-based neural sensitivity (ROC area) of each A1 neuron
across attention conditions (attend AM, x-axis; attend BW, y-axis). There is no average differ-
ence in ROC area between conditions (Wilcoxon signed-rank test, p= 0.8849). B, We ana-
lyzed the tendency for neurons to fire spikes in the same phase relative to the temporal
modulation. Global spike timing in response to the fully temporally modulated stimulus
(AM3, red) shows a prominent peak relative to the unmodulated stimulus (AM0, black), indi-
cating that A1 neurons tend to fire synchronous spikes relative to temporal modulation. We
observe no effect of attention on this property of A1 neurons (solid lines vs dashed lines).
These results indicate a lack of attentional modulation on the response dynamics of A1
neurons.
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encoding of task context appears uncorrelated with A1 neurons’
sensory function (Fig. 6D,E). Similarly, rat A1 neurons exhibit
context encoding (Rodgers and DeWeese, 2014). In that study,
context encoding is interpreted as important for flexible switch-
ing between “selection rules,” with remarkably similar context
encoding between A1 and PFC. Considering our results along-
side this previous study, a reasonable interpretation is that A1
not only participates in the representation of sensory informa-
tion but also the behavioral context in which sounds are per-
ceived (Mohn et al., 2021). Indeed, previous studies report task-
related changes in single-neuron A1 activity that could be
explained as providing crucial task context-related information
(Buran et al., 2014; Jaramillo et al., 2014; Guo et al., 2017; Yao et
al., 2019; Zempeltzi et al., 2020). Our finding that this context
signal is independent of the sensory role of A1 neurons (Fig. 6D,
E) suggests that task context coding (often expressed as shifts in
baseline activity between task conditions) likely constitute more
than an attention-related gain mechanism (Martinez-Trujillo
and Treue, 2004), but rather reflect A1’s role in more abstract,
cognitive and/or behavioral aspects of hearing (Scheich et al.,
2011; Kuchibhotla and Bathellier, 2018).

We exclusively used FR, as opposed to spike-timing measures
of neural activity. However, A1 neurons encode temporal modu-
lations with phase-locked spikes (Lu et al., 2001; Malone et al.,
2007; Yin et al., 2011; Johnson et al., 2012). Task engagement sig-
nificantly affects spike timing (Yin et al., 2014; Niwa et al., 2015),
although in A1 these effects are modest relative to those observed
for FR. We find a substantial proportion of neurons that phase
lock to temporal sound envelopes, but no evidence of attention-
related effects on phase locking (Fig. 11), suggesting that phase
locking may not be relevant for feature-selective attention in this
task in A1. It is important to note that we designed our task such
that, even when attending to the spectral feature, many target
sounds are temporally modulated as well, and therefore phase
locking can signal the presence of a target in both attention con-
ditions. Thus, the task may not sufficiently challenge the auditory
system to drive attention-related changes in the temporal dy-
namics of A1 neurons’ spiking. It remains unresolved whether
attention affects temporal coding in other tasks or in other audi-
tory areas, since FR dynamics provide a powerful, explicit code
for temporal sound features that could help to disambiguate neu-
ral representations when FRs fail to do so. For instance, a task in
which subjects must discriminate rather than detect temporal
modulations may very well require attentional modulation of
spike timing. Few studies have measured A1 activity during a
temporal modulation discrimination task. Future studies may
find significant attention-related changes in temporal response
dynamics in A1 or other auditory structures.

Some types of early sensory neural representations are more
obviously high-dimensional – for instance, odorant coding
(Laurent, 2002). Traditionally, primary sensory areas A1, S1, and
primary visual cortex (V1) have been described in terms of a
low-dimensional property, namely the placement of the stimulus
on the sensory epithelium. However, no such “place” code exists
for olfaction, since combinations of odorants comprise the
“adequate stimulus” for olfaction and a two-dimensional sensory
receptor surface ca not achieve a simple low-dimensional map-
ping of this combination space (Mathis et al., 2016; Herz et al.,
2017). Like olfaction, auditory, somatic and visual perception
also involve the combinations of many basic features (Walker et
al., 2011; Gomez-Ramirez et al., 2014; Cowell et al., 2017; Franke
et al., 2017; Lieber and Bensmaia, 2020). Therefore, when probed
in high-dimensional conditions, all PSC fields may reflect a

similar mechanism of representation to that observed in chemo-
sensory areas. Therefore, in contrast to the classic descriptions,
PSCs may be best described in terms of their complex, combina-
torial, population-level representations.
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