
UC Riverside
UCR Honors Capstones 2019-2020

Title
Wizard Adventure Game

Permalink
https://escholarship.org/uc/item/4n55c4k5

Author
Sells, Elias

Publication Date
2021-01-11

Data Availability
The data associated with this publication are within the manuscript.

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4n55c4k5
https://escholarship.org
http://www.cdlib.org/

1

 When I first got an in depth idea of what the capstone project was, I had no idea what

kind of project I wanted to do. The honors faculty often mentioned that formal research projects

were what students most commonly did, but I had no interest in that. As a computer science

major, I’ve gotten the most enjoyment in my academic studies at UCR when I apply the skills

I’ve learned towards a project where I get to create something. Designing a project,

programming it, and testing it are what I would’ve preferred to do. Once I realized that my

capstone could be just that, I knew for sure that I wanted to create a video game. I’ve been an

avid fan of video games since I was four years old, and video games are still a major part of my

life. Now that I’m an adult, I know that developing video games is what I want to do as a career.

Creating a video game for my senior design project and the Honors Capstone felt like a great

way to further my goal of becoming a video game developer. Creating a game would give me the

chance to hone my programming skills, especially when it comes to gameplay scripting, which

requires some skills I had not trained much in classes. It also would give me some insight on

how a game engine operates, and the process of creating a world and entities within that world,

and programming their behavior. I even would get to learn more about the artistic side of game

development. Art, animation, and music are extremely important to the quality of a video game,

but I’ve never been very talented in any of those areas, so it would be an amazing opportunity.

After considering all of these potential benefits, I set out on a plan to develop a video game for

my Honors Capstone.

 The first stage in this plan was to start working on the game as an engineering senior

design project. I have a hard time starting projects on my own and staying committed to them

when there is a lack of guidance or near deadlines, so using the BCOE senior design class as a

way to kick start this project would be the perfect solution for those problems. Senior design

2

projects are usually done in groups, so I got together with three friends of mine (Chung Chin,

Joshua Pedron, and Melissa Santos) and we enrolled together in CS179N in Spring 2019. We all

agreed that we wanted to make a video game, but figuring out the genre, the game engine to use,

and the graphical style were all challenges we faced early on. The graphical style and engine

decisions went hand in hand and weren’t too hard to decide. None of us had much experience

with 3D modelling, animation, or level design, so we decided to make a 2D pixel art game. Since

we were working in 2D, we wanted an engine that would support it, so we went with an open

source engine called Godot. Unlike more popular game engines 3D engines like Unreal Engine 4

and Unity, Godot has both a 3D engine/editor and a dedicated 2D engine/editor, so it was a

natural fit for our project. Godot also has a very detailed documentation website and a helpful

support forum, so those also helped us decide to use it. The final decision we had to agree on was

what genre to choose for the game. Even when restricted to a 2D plane, there are hundreds of

distinct genres to choose from. In the end, we decided on an Action/RPG/Platformer, also known

as a “Metroidvania”, which is a fan-made name combining the names of the popular video games

series Metroid and Castlevania, which this genre was born from. Once the genre was decided,

we started on the planning phase.

 Planning for the project is probably where our group had the most room for

improvement. It would be an understatement to say we vastly overestimated how much work we

could get done during the 10 week senior design course. In reality, it was closer to 8 weeks of

actually working on the project, since no work was done in week 1 and in week 2 we focused on

figuring out the planning. To give a brief but great example: we planned for the “final” version

of the game at the end of the quarter to have 12 levels. We ended up with 2. Thankfully, it didn’t

take us very long to realize we needed to reduce the scope of our project, so we were able to

3

focus on getting out something that was enjoyable to play. One of the main reasons we were able

to quickly change the scope of our project and adapt to implementing new features was due to

our use of what’s known as Scrum. Scrum is a project methodology often used in modern

software engineering that emphasizes being “agile” and allowing for changes in a project plan as

needed. As we worked on the project and implemented new gameplay features, animations, or

levels, we would keep track of it in our Scrum spreadsheet and compare what we’ve done to

what we had set out to do for that week and our goals as a whole. At the beginning of every

week, we discussed how the previous week had gone, and if we needed to adjust our goals for

the project. After two or three weeks of developing the game, when we were still just figuring

out how to accomplish tasks like scripting, level editing, and animating in the engine, we decided

to tone down the goals for our project, and it turned out to be the correct decision. Scrum proved

to be an invaluable tool for us in this project. It allowed us to produce a game that felt more

complete and was fun to play, rather than appearing as a cobbled together mess. Here are some

screenshots of our Scrum sheet, showing how we kept track of who completed a task, whether or

not it was tested, and the priority/importance of that task:

4

This first screenshot shows some of our planned features that never made it into the game, such

as plans for 6 of the levels.

5

 For the majority of the project, we gave ourselves specific roles so that we could become

specialized in a particular field and become more skilled over the course of the project. This

would allow each of us to excel in our specific tasks and create a better game than if all of us had

to do a little bit of everything. The four main roles we split ourselves into were level creation,

sprites/animations, gameplay scripting, and Scrum management/generalist. My role was

gameplay scripting, so that’s what I’ll be focusing on here.

 The Godot engine uses a proprietary scripting language called GDScript. It’s very similar

to Python, which is a programming language I was already familiar with, so thankfully learning

the syntax of GDScript was very easy. Gameplay programming as a whole was very challenging,

however. Even with three years of computer science courses at UCR under my belt, many

aspects of gameplay programming proved to be difficult. The main difference between

programming in computer science courses versus programming for a video game is that there’s

no correct way to do things. For example, in a lab project at UCR, typically you will have to

solve a relatively boring programming challenge, such as sorting an array of numbers in a certain

amount of time. There’s an explicitly laid out goal, and it should be easy to know when you’ve

reached that goal. With gameplay programming, this could not be further from the experience.

Something as simple as programming the player’s jump ability took me two weeks to finish, and

even then it was a mess. There are what feels like countless aspects you need to consider when

designing and implementing a jump function. What button should the player press to jump?

What should happen if the player holds down the jump button versus letting go of it early? What

should the maximum height of the jump be? How fast should they fall? How much should they

be able to control their air speed? How can you make sure a player can only jump when their feet

are planted on the ground? These are just some of the questions you have to ask yourself when

6

designing a jump function. However, even when you’ve implemented the entire thing and it

works the way you’ve planned, you might have to throw it all out because it doesn’t “feel” right.

In the end, the feeling of what you’ve programmed is the single most important thing for the

game. If it doesn’t feel fun to play, or if players are frustrated by the mechanics of the jump, it

was a wasted effort. Luckily, it only took a small amount of trial and error before I implemented

a jump function that felt good to use.

 The jump function was just one of many features to implement, however. As time went

on, we realized that we had bit off more than we could chew, so to speak. Just as we reduced the

number of levels from 12 to 2, we decided as a group to cut back on some of the gameplay

features and systems we wanted to include. For example, originally the player was going to be

able to collect elemental crystals around the level. They could combine different types of these

crystals together to create new spells that they could cast. For example, if a player finds two

wind and one fire crystal, they could combine these into a fire tornado spell that they could

unleash upon enemies. For a spell system like this to be fun to use and have enough different

spells to create would be a lot of work; not just for me, the gameplay scripter, but also for the

person in charge of creating the animations and visual effects for the spells. We decided to

change this spell accumulation system to something much simpler. The player would have 4

spells given to them as soon as they start the game, and they could use them whenever they want,

with some restrictions. However, this turned out to be a very fun spell system for players, despite

being born out of impending deadlines. One spell in particular, which is my personal favorite, is

a boulder that rolls around the level and bounces off of walls with semi-realistic physics,

crushing any enemies that stand in its path. Learning to create fun, engaging, and quality

gameplay and levels despite the small amount of time was one of the main things we learned

7

from this project.

 At the end of 10 weeks, despite our initially lofty goals, we were able to cut back on

enough features while keeping the ones that were important to make a fun game. The gameplay

that is in the final version of our project can’t really be called a Metroidvania, the genre we were

originally going for. The action and platforming elements are there, but the player is not able to

gain any permanent power-ups or new abilities that allow them to access new locations of the

level. This is a key component in the Metroidvania genre that separates it from other

Action/Platformer games, and without it we can’t consider our game as a part of that genre.

However, I think we created a good base that features could be added to in order to make a

Metroidvania game.

 The gameplay that we did get to implement focuses on the player exploring a level. As

the player travels to new places, they will encounter platforming (jumping) obstacles, a variety of

enemies to battle, and even some traps for the unsuspecting. The player fights against enemies by

using a basic sword swing attack with low damage and range but has no cost to use, or they can

choose to use powerful spells which cost mana points, a resource that the player has a limited

supply of. As the player traverses through the level, they will come across a boss enemy that

deals more damage and is harder to defeat. After defeating the boss, the player will gain access

to the next level.

I look back on the project and I am fairly satisfied with what we were able to make in just

10 weeks. The only thing I would’ve liked to be different was to have more time like most other

engineering senior projects, but that was never an option anyways. Another thing I could’ve done

better in this phase was looking up more tutorials. Trying to brute force figuring out how to

implement certain difficult features (like the jump function) would have been easier if I tapped

8

into the vast amount of resources that there are online.

 Below are some screenshots of the game. Some of them were taken recently after

additional changes (which I will talk about next), but the look of the game has not changed since

we finished the senior design class. Some screenshots will also be of some development tools

and level editing.

9

The boulder spell in action, barreling towards an unaware skeleton. It can’t properly be shown in

a picture, but the boulder uses a clever sprite rotation effect that gives the appearance of rolling

as it moves across the screen. When it hits a wall, it will slow down slightly and start “rolling”

and moving in the opposite direction.

10

A spectral ghost enemy shoots a shadowy projectile at the player who swiftly jumps to avoid it.

Some enemies will approach the player to use a melee attack, while some, like this one, will

launch projectiles from far away. The player must use all of the tools at their disposal to defeat

the enemy monsters.

The player walks into a trapped room full of skeletons and dies as they attack him. You’ll need

to be careful to avoid this sort of thing as you play the game.

11

A full overview of how the first level looks inside the engine/editor. The orange + symbol in the

lower left corner is where the player begins, and each blue + symbol with a lock next to it is

where an enemy is located.

The “Super Skeleton” boss of the first stage. He looks like any other skeleton at first, but players

will understand the threat he poses when they notice his faster movement and higher damage.

Behind him is a portal that leads to the next level.

12

An in-editor screenshot of an in-development level. We weren’t able to fully create this level by

the time we had to submit the project, so we scrapped it, hence the unfinished look. It was

planned to have different enemies from the first level, such as the “Hell Horse” pictured here

across from the player.

13

 After the senior project was finished, I still had a whole year left before graduation. I

knew I wanted to use this game as my capstone, but with all the extra time, I decided that I

wanted to continue working on the game and improve it. There were a couple different ways to

improve the game, and I had to pick one to do. I could go back and look at some of the things we

cut from the original project plan and try to implement them. This would include some features

such as an expanded spell system, one or two additional levels, and maybe even some more

enemy variety. The other route was to refine what was already there. I would be taking a look at

the code I had written and making it cleaner and more efficient, and, most importantly, it would

feel better in gameplay. I’d also take a look at some of the unfinished or buggy visual aspects of

our game, such as certain animations not working properly. I decided to go with refining what

we already had made. The first reason I decided to do this was because I thought it would give

me more experience in relevant skills such as programming. Taking “first draft” code and re-

writing it to make it better is an important aspect of programming, so I wanted to take this

chance to grow as a software engineer.

 I had an internship during the summer of 2019, so I didn’t start working on this project on

my own until around fall quarter. Once I did start, the first step was to figure out what aspects of

the project I wanted to improve. As I thought back several months to the senior design class,

immediately a memory came back to me: the jump function. I knew that it would have to be the

first thing I looked at improving. With that, I knew what I wanted to do first, but I didn’t know

how to start. Just trying to read through my code from not even half a year prior made me scratch

my head and wonder what I was thinking back then. It was unoptimized, hard to read, and it took

up over one hundred and fifty lines of code, which is a lot for a simple jump function. To figure

out how to fix this, I decided to look at some tutorials, as well as the Godot engine

14

documentation. I came across a YouTube channel called Game Endeavor which is dedicated to

making game programming tutorials in Godot. It was the exact thing I needed in order to figure

out how to improve my code and make something that felt better to play. The channel even had a

video about making a jump function. It was exactly what I needed to learn how to make the

player’s jump feel so much smoother. After working on it for a few days, the jump function I

created was easy to read, optimized, and I even made it so I could enter a specific jump height

for the player, while the old function had me guessing numbers until I stumbled upon a jump

height that worked. It was also only about fifty lines long, as opposed to the previous one

hundred and fifty line long version. Most importantly, it felt great to use. The jump felt like it

had momentum to it and it was easier to make a precise jump.

 Once I had successfully implemented a better jump for the player, my confidence grew

and I started to tackle some other aspects of the project that I wanted to improve. I mostly

focused on the player character, but I also did some work on the enemy you see the most, the

skeleton. For the player, I implemented some additional animations that went unused in the final

senior design project, such as a dedicated animation for attacking while mid-air and attacking

while crouching. These helped gameplay feel more fluid and it made the actions that the player

would try to perform work as they would expect. It also helped me learn about pixel art

animation and how it works in a game engine like Godot. These changes allowed me to make a

game that I felt was even better than the one we originally made for the senior design class, and

I’m glad I did them.

 Overall, I’m very happy with how this project turned out. In terms of learning experience,

I was able to get everything I wanted out of this project. I became a better programmer, I learned

how to work using Scrum methodology, I got a chance to work both in a team and on my own,

15

so I was able to see how these experiences are different in game development. While we weren’t

able to meet our original expectations for the project, we still created something that was fun to

play and that I am proud of.

Link to game executable on Google Drive:

(Windows)

https://drive.google.com/file/d/1_Ztgra65fhYzYd3pAuuhyPZlHwpg3TXn/view?usp=sharing

Controls:

 Left/right arrow keys to move

 Up arrow key to jump

 Down arrow key to crouch

 ‘X’ key to melee attack

 ‘Z’ key to cast spell

 ‘1’, ‘2’, ‘3’, ‘4’, keys to switch between the four spells.

https://drive.google.com/file/d/1_Ztgra65fhYzYd3pAuuhyPZlHwpg3TXn/view?usp=sharing

16

Works Cited

“What is Scrum Methodology?” CollabNet, 2020, https://resources.collab.net/agile-101/what-

is-scrum

Game Endeavor, Youtube,

https://www.youtube.com/channel/UCLweX1UtQjRjj7rs_0XQ2Eg/featured

Godot Community, Godot Docs, 2020, https://docs.godotengine.org/en/stable/index.html

https://resources.collab.net/agile-101/what-is-scrum
https://resources.collab.net/agile-101/what-is-scrum
https://www.youtube.com/channel/UCLweX1UtQjRjj7rs_0XQ2Eg/featured
https://docs.godotengine.org/en/stable/index.html

	sells_elias_title
	sells_elias_capstone_1

