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An artificial intelligence accelerated virtual
screening platform for drug discovery

Guangfeng Zhou 1,2,10, Domnita-Valeria Rusnac3,10, Hahnbeom Park 4,5,
Daniele Canzani6, Hai Minh Nguyen7, Lance Stewart 2, Matthew F. Bush 6,
Phuong Tran Nguyen8, Heike Wulff 7, Vladimir Yarov-Yarovoy 8,9,
Ning Zheng 3 & Frank DiMaio 1,2

Structure-based virtual screening is a key tool in early drug discovery, with
growing interest in the screening ofmulti-billion chemical compound libraries.
However, the success of virtual screening crucially depends on the accuracy of
the binding pose and binding affinity predicted by computational docking.
Here we develop a highly accurate structure-based virtual screen method,
RosettaVS, for predicting docking poses and binding affinities. Our approach
outperforms other state-of-the-art methods on a wide range of benchmarks,
partially due to our ability to model receptor flexibility. We incorporate this
into a new open-source artificial intelligence accelerated virtual screening
platform for drug discovery. Using this platform, we screen multi-billion
compound libraries against two unrelated targets, a ubiquitin ligase target
KLHDC2 and the human voltage-gated sodium channel NaV1.7. For both tar-
gets,wediscover hit compounds, including sevenhits (14%hit rate) toKLHDC2
and four hits (44% hit rate) to NaV1.7, all with single digit micromolar binding
affinities. Screening in both cases is completed in less than seven days. Finally,
a high resolution X-ray crystallographic structure validates the predicted
docking pose for the KLHDC2 ligand complex, demonstrating the effective-
ness of our method in lead discovery.

Structure-based virtual screening plays a key role in drug discovery
by identifying promising compounds for further development and
refinement. With the advent of readily accessible chemical libraries
with billions of compounds1, there has been an increasing interest in
screening the expansive chemical space for lead discovery. Despite
the benefits of screening these ultra-large libraries2, only a few suc-
cessful virtual screening campaigns using ultra-large libraries have
been reported3. Moreover, virtual screening of an entire ultra-large

library becomes increasingly time and cost prohibitive for physics-
based docking methods. In recent years, a number of techniques
have been introduced to accomplish the ultra-large library virtual
screening, including the development of scalable virtual screening
platforms to parallelize docking runs on high-performance com-
puting clusters (HPC)4, deep learning guided chemical space
exploration or active learning techniques to only screening a small
portion of the library for similar performance5–8, hierarchical
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structure-based virtual screening9, and GPU accelerated ligand
docking10.

However, the success of the virtual screening campaigns using the
aforementioned techniques depends crucially on the accuracy of the
ligand docking programs used to predict the protein-ligand complex
structure as well as to distinguish and prioritize the true binders from
non-binders. Leading physics-based ligand docking programs, such as
Schrödinger Glide11–13, CCDCGOLD14, along with their virtual screening
platforms for ultra-large library screens, are not freely available to
researchers. Autodock Vina15, as one of the widely used free programs,
has slightly lower virtual screening accuracy compared to Glide.
Moreover, there is a lack of an open-source scalable virtual screening
platform that employs active learning for ultra-large chemical library
virtual screens. The emergence of deep learning technology has led to
a number of models16–20 aimed at predicting protein-ligand complex
structure in a significantly reduced time. However, these methods are
better suited for blind docking problems, where the binding site of the
small molecule is unknown. In scenarios where the binding site is
known, which is often the case in virtual screening, physics-based
ligand docking methods continue to outperform deep learning
models21. In addition, the deep learningmethods are less generalizable
to unseen complexes22.

In this work, we aim to develop a “state-of-the-art” (SOTA),
physics-based virtual screening method and an open-source virtual
screening platform capable of robustly and efficiently screening

multi-billion chemical compound libraries. This is achieved by
improving our prior physics-based Rosetta general force field
(RosettaGenFF)23 for virtual screening, yielding an improved forcefield
named RosettaGenFF-VS. Based on this new force field, we develop
a state-of-the-art virtual screening protocol using Rosetta
GALigandDock23, (hereafter referred to as RosettaVS). In addition, we
adopt a docking protocol from our previous work to allow for sub-
stantial receptor flexibility, enabling us to model flexible sidechains as
well as limited backbone movement in our virtual screening protocol.
This proves critical for certain targets that require the modeling of
induced conformational changes upon ligand binding. We then create
a highly scalable, open-source AI accelerated virtual screening plat-
form (OpenVS) platform integrated with all necessary components for
drug discovery (Fig. 1a). We use the OpenVS platform to screen multi-
billion chemical compound libraries against two unrelated proteins:
KLHDC224,25, a human ubiquitin ligase and the human voltage-gated
sodium channel NaV1.7

26. The whole virtual screening process is fin-
ished within seven days on a local HPC cluster equipped with 3000
CPUs and one RTX2080 GPU for each target. From the initial virtual
screening campaigns, we discover one compound for KLHDC2 and
four compounds for NaV1.7, all exhibiting single-digit µM binding affi-
nity. Using a focused library with our virtual screening platform leads
to the discovery of six more compounds with similar binding affinities
to KLHDC2. Finally, the docked structure of the KLHDC2 complex is
validated by X-ray crystallography, showing remarkable agreement

d

b

a

e

f

Ligand Docking Scores

Model trainingModel inference

Neural network

Ligand
docking

Selecting
molecules Cl

N

N

N

Small molecule library

c

Fig. 1 | Deep learning guided virtual screening approach and the state-of-the-
art ligand docking method. a Overview of the deep learning guided virtual
screening protocol. b Results of the area-under-curve (AUC) of the receiver
operator characteristics (ROC) curve of the DUD benchmark, averaged over three
independent runs (n = 3) and averaged over forty targets (n = 40), 95% confidence
intervals are shown as error bars. cMean ROC enrichments of the DUD benchmark
at 0.5% (empty bar), 1% (patterned bar), and 2% (solid bar) false positive rates,
results are averaged over three independent runs (n = 3) and averaged over forty

targets (n = 40). Results of other methods are obtained from Ref. 80–82, the same
color scheme is used as in subpanel (b). d CASF2016 docking power, the docking
success rates of the top ten methods are shown. e CASF2016 screening power, the
top 1% enrichment factors with a 90% confidence interval of the top ten methods
are shown. f CASF2016 screening power, the success rates of the top ten methods
are shown. The CASF2016 docking power and screening power results of all the
methods can be found in Supplementary Fig. 3–5. Results of other methods are
obtained from Ref. 28. Source data are provided as a Source Data file.
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with the predicted binding pose. This iterative process of exploration,
curation, and testing underscores the robustness of our methodology
and its potential for uncovering promising compounds in large
molecular libraries.

Results
Development of an AI-accelerated virtual screening platform
Our previously developed Rosetta GALigandDock is a ligand docking
method that uses a physics-based force field, RosettaGenFF, that pre-
viously has shown superior performance in ligand docking accuracy23.
This method allows for the accurate modeling of protein-ligand com-
plexes, accommodating full flexibility of receptor side chains and
partial flexibility of the backbone. However, it is not directly applicable
for large-scale virtual screening due to: (a) its inability to accurately
model certain functional groups (as the original method was tested on
hundreds of thousands of compounds rather than the billions in this
study); and (b) its lack of an entropy model for accurate ranking of
different compounds binding to the same target. Moreover, it is pro-
hibitively expensive to dock each individual compound in a multi-
billion chemical compound library using physics-based virtual
screening methods.

To address these issues, we incorporated several enhancements
and rectified several critical issues to facilitate themodeling of billions
of small molecules. Firstly, we have improved RosettaGenFF by
incorporating new atom types and new torsional potentials and
improved the preprocessing script (see “Methods”). Second, we have
developed RosettaGenFF-VS for virtual screening to rank different
ligands binding to the same target, which combines our previous
model’s enthalpy calculations (ΔH) with a new model estimating
entropy changes (ΔS) upon ligand binding (see “Methods” for details).

To enable screening against ultra-large compound libraries, we
employed two strategies. First, we developed a modified docking
protocol, RosettaVS, that implements two high-speed ligand docking
modes: virtual screening express (VSX) is designed for rapid initial
screening, while the virtual screening high-precision (VSH) is a more
accurate method used for final ranking of the top hits from the initial
screen. The key difference between the two modes is the inclusion of
full receptor flexibility in VSH (see “Methods” for further details).

Even with these speedups, docking more than one billion com-
pounds is prohibitively expensive. Building upon recent works4–8, we
developed an open-source virtual screening (OpenVS) platform that
uses active learning techniques to simultaneously train a target-
specific neural networkduring the docking computations to efficiently
triage and select the most promising compounds for expensive
docking calculations. This platform was also designed to be highly
scalable and parallelizable for large-scale virtual screens.

RosettaVS shows state-of-the-art performance on virtual
screening benchmarks
We first used the Comparative Assessment of Scoring Functions 2016
(CASF2016) dataset27,28 to benchmark the performance of
RosettaGenFF-VS. The CASF2016, consisting of 285 diverse protein-
ligand complexes, is a standard benchmark specifically designed for
scoring function evaluation. It provides all smallmolecule structures as
decoys, effectively decoupling the scoring process from the con-
formational sampling process inherent inmolecular docking. We used
the docking power test to benchmark the docking accuracy and the
screening power to benchmark the screening accuracy. Recent
developments of deep learning based score functions have demon-
strated superior performance on these benchmarks16,20,29, however, it
is not clear how generalizable these methods are to unseen com-
pounds and receptors. Moreover, these methods have not employed
stringent train/test splits. Even when a cutoff of 0.6 Tanimoto simi-
larity for ligands and a sequence identity of 30% for proteins were
used, it is likely that the contamination of these validation benchmarks

still occurred. Because of this, our subsequent comparisons will focus
on other physics-based scoring functions, including the top-
performing ones from ref. 28. As shown in Fig. 1d and Supplemen-
tary Fig. 3, RosettaGenFF-VS achieves the leading performance to
accurately distinguish the native binding pose from decoy structures.
Further analysis of binding funnels, which measures the efficiency of
the energy potential in driving the conformational sampling toward
the lowest energy minimum, shows RosettaGenFF-VS’s superior per-
formance across a broad range of ligand RMSDs, suggesting a more
efficient search for the lowest energy minimum compared to other
methods (Supplementary Fig. 7). Next, the screening power test was
conducted to assess the capability of a scoring function to identify true
binders among a multitude of negative small molecules. Two metrics
are used to assess the performance of scoring functions in the
screening power test. The first metric is the enrichment factor (EF)
whichmeasures the ability of the docking calculations to identify early
enrichment of true positives (see “methods” for details) at a given X%
cutoff of all the compounds recovered. The second metric is the suc-
cess rate of placing the best binder among the 1%, 5%, or 10% top-
ranked ligands overall target proteins in the dataset. In Fig. 1e and
Supplementary Fig. 4, the top 1% enrichment factor from
RosettaGenFF-VS (EF1% = 16.72) outperforms the second-best method
(EF1% = 11.9) by a significant margin. Similarly, Fig. 1f and Supplemen-
tary Fig. 5 illustrate that RosettaGenFF-VS excels in identifying the best
binding small molecule within the top 1/5/10% ranking molecules,
surpassing all other methods. Analysis of our method on various
screening power subsets28 shows significant improvements in more
polar, shallower, and smaller protein pockets compared to other
methods (Supplementary Fig. 8). However, in a realistic virtual
screening scenario, the docking method must accurately score the
complex while also effectively sampling the conformations.

To this end, we further evaluated the virtual screening perfor-
mance of VSX and VSH mode from RosettaVS protocol on the Direc-
tory of Useful Decoys (DUD) dataset30. The DUD dataset consists of 40
pharmaceutical-relevant protein targets with over 100,000 small
molecules. Two commonmetrics, AUC and ROC enrichment, are used
to quantify the virtual screening performance. The receiver operating
characteristic (ROC) curve has been widely used to evaluate virtual
screening performance where the aim is to distinguish between active
and decoy compounds. The area under the ROC curve (AUC) assesses
the overall performanceof amethod to differentiate actives vs decoys.
ROCenrichment, which addresses a fewdeficiencies of the enrichment
factor31, measures the true positive enrichment at a given X% false
positive rate. The early enrichment is a critical factor in large-scale
virtual screens, as the limitations of current experimental throughput
typically allow for the synthesis and experimental testing of only
dozens to hundreds of compounds. The results, in terms of AUC and
ROC enrichment, position RosettaVS as the leading virtual screening
method (Fig. 1b, c and Supplementary Fig. 9). Notably, RosettaVS
outperforms the second-bestmethod by a factor of two (0.5/1.0% ROC
enrichment), achieving state-of-the-art performance in early ROC
enrichment, further highlighting the effectiveness of RosettaVS. Fur-
thermore, VSH mode slightly outperforms VSX mode due to the cap-
ability of modeling the conformational changes of the pocket
sidechains induced by the ligand(see “Methods”).

Discovery of small molecule hits to KLHDC2 ubiquitin ligase
In order to showcase the effectiveness of our newly developed
method, we embarked on a large-scale virtual screening against the
humanKLHDC2ubiquitin ligase24,25, whichhas not yet been linkedwith
any known drug-like small molecule binder. As a substrate receptor
subunit of the CUL2-RBX1 E3 complex, KLHDC2 features a KELCH-
repeat propeller domain, which can recognize the di-glycine C-end
degron of its substrates with a nanomolar affinity. We set out to
identify compounds that can anchor to the diglycine-binding site of
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KLHDC2, which has recently been suggested as a promising PROTACs
E3 platform for targeted protein degradation32,33.

We used the OpenVS platform and VSX mode in RosettaVS to
screen the Enamine-REAL library against the target protein structure,
which contains ~ 5.5 billion purchasable small molecules with an 80%
synthesis success rate (see “Methods”-Workflow of AI accelerated vir-
tual screening). As shown in Supplementary Fig. 11, the protocol dis-
covers better compounds with higher predicted binding affinity after
each docking iteration. The predicted binding affinity for the top 0.1
percentile significantly improved from − 6.81 kcal/mol in the first
iteration to − 12.43 kcal/mol in the final iteration. We stopped the vir-
tual screeningwhen it reached themaximum tenth iteration, especially
since no new global minimum structures were identified beyond the
eighth iteration. Subsequently, we re-docked the top-ranked
50,000 small molecules from the virtual screening using VSH mode
in RosettaVS, allowing for flexibility in the receptor structure during
docking. The entire computation was completed within a week on a
local HPC cluster equipped with 3000 CPUs and one RTX2080 GPU.
Approximately 6 million compounds (0.11%) from the Enamine REAL
library were subjected to docking.

We took the top-ranked 1000 compounds and filtered out
compounds with low predicted solubility, unsatisfied hydrogen
bonds in the bound conformation, and followed by similarity clus-
tering to reduce the redundancy in ligand structures. A total of 54
molecules that passed the filtering and clustering were manually
examined for favorable interactions and geometries in PyMol34.
Finally, 37 compounds were chosen for chemical synthesis. Out of
these, 29 compounds were successfully synthesized (Supplementary
Fig. 13) and characterized in an AlphaLISA competition assay, in
which each compound was tested for its ability to compete with a
diglycine-containing SelK C-end degron peptide for binding
KLHDC2. While several compounds showed detectable activity in
displacing the degron peptide, compound 29 (C29) stood out with
the best IC50 of ~ 3 μM (Fig. 2a, c). This single digit μM IC50 was
further confirmed in a competition assay using BioLayer Inter-
ferometry (Supplementary Fig. 14).

To reveal the binding mode of compound 29, we soaked the
crystals of apo KLHDC2 with the compound and determined the
structure of the KLHDC2-C29 complex at 2.0 Å resolution35. Consistent
with its activity in displacing the diglycine peptide, compound 29
binds to the degron-binding pocket with its distal carboxyl group
interacting with two critical arginine residues (Arg236 and Arg241) and
a serine residue (Ser269) in KLHDC2 that are involved in recognizing
the extreme C-terminus of the degron24 (Fig. 3). The triazole moiety
next to the carboxyl group of the compound is nestled among three
aromatic residues (Tyr163, Trp191, and Trp270) and stabilized by a
NH…Nhydrogenbond. The interaction of the compoundwith the E3 is
further strengthened by a hydrogen bond formed between Lys147 and
the central carbonyl group of the small molecule as well as direct
packing of the tert-butylphenyl group to the auxiliary chamber of the
degron-binding pocket24. In contrast to the twoendsof the compound,
the dimethyl-sulfide linker in themiddle of the compound shows poor
electron density, indicating higher structural flexibility (Fig. 2e).
Overall, the binding mode of compound 29 is highly similar to that of
the diglycine C-end degron with a binding pose closely matching the
prediction (Fig. 2f).

Following our initial hit, we broadened our exploration to the
ZINC22 library36, which houses approximately 4.1 billion small mole-
cules in ready-to-dock 3D format. It’s noteworthy that a substantial
fraction of ZINC22 originates from the Enamine REAL library. We
performed a substructure search of the acetyl-amino-methyl-triazole-
acetic acid backbone (2D structure highlighted in red in Fig. 2a, b)
against the ZINC22 library and identified ~ 381,567 compounds. These
compounds are docked using GALigandDock flexible docking mode,
and 21 compounds were picked by manually examining the top 100

structures that passed all the filters mentioned above. These com-
pounds were synthesized (Supplementary Fig. 15), and their activities
were tested in the AlphaLISA-based competition assay with compound
C29 as a positive control. Remarkably, six additional hits showed single
digit μM IC50, further validating the effectiveness of our method
(Fig. 2b, d). Future optimizationwill be needed to improve the potency
of these compounds to reach the nanomolar range. To test the relia-
bility of our screening procedure, we reran a portion of our compu-
tational experiment and rediscovered the confirmed best-hit
compound C2.8. (see “Methods” for details)

Discovery of small molecule antagonists to NaV1.7 VSD4
To evaluate the wider applicability of our virtual screening protocol,
we examined its effectiveness on the human voltage-gated sodium
channel, hNaV1.7. Specifically, we targeted voltage-sensing domain IV
(VSD4), which is involved in NaV channel fast inactivation37–40 and
contains a receptor site for small molecules that stabilize an inacti-
vated state of the channel26,41,42. We used the same virtual screening
protocol to screen the target against the ZINC22 library (~ 4.1 billion
compounds). Similar to the KLHDC2 screen, new compounds with
better predicted binding affinities were discovered after each iteration
and the predicted binding affinity for the top 0.1 percentile improved
from − 10.8 kcal/mol in the first iteration to − 18.2 kcal/mol in the final
iteration. The virtual screeningwas stopped after the seventh iteration,
where the top predicted binding affinities reached convergence
(Supplementary Fig. 12). The top-ranked 100,000 small molecules
from the virtual screening were re-docked using VSH mode in Roset-
taVS to account for the flexibility in the receptor structure. Approxi-
mately 4.5 million compounds (0.11%) from the ZINC22 library were
subjected to docking.

We first clustered the top 100,000 ranked small molecules, then
applied filters on the top 1000 cluster representative molecules. A
total of 160 molecules that passed the clustering and filtering were
examined manually. To ensure the chemical novelty of our selection,
we specifically excluded molecules that contain the known arylsulfo-
namide warhead or structurally resemble antihistamines or beta-
receptor blockers. Finally, ten molecules with Tanimoto similarities of
less than 0.33 to the known inhibitors of NaV1.7 from the ChEMBL
database43,44 were selected for synthesis. Of these, nine were success-
fully synthesized (Supplementary Fig. 16), and their activities were
measured using the whole-cell patch-clamp electrophysiology assay
on hNaV1.7 channel stably expressed in HEK-293 cells as described in
Methods. Compound Z8739902234 demonstrated the highest
potencywith IC50 = 1.3μM for NaV1.7 in an inactivated state-dependent
manner (Fig. 4 and Supplementary Fig. 18). IC50 values of better than
10μM were observed for four compounds, translating to a hit rate of
44.4% (Supplementary Fig. 17). Notably, compound Z8739902234 is
state dependent (Supplementary Fig. 18, left panel) and has moderate
selectivity for hNaV1.7 versus hNaV1.5 and hERG channels (Supple-
mentary Fig. 18, right panel).

Discussion
In this work, we presented a state-of-the-art physics-based virtual
screening method integrated into a comprehensive scalable platform
that uses active learning for large-scale virtual screens and lead dis-
covery. Our approach led to the discovery of seven binders to a new E3
ligase, KLHDC2, and four binders to the human voltage-gated sodium
channel NaV1.7 VSD4.

The superior performance of RosettaGenFF-VS and RosettaVS on
the CASF2016 and DUD benchmarks, respectively, establishes it as a
leading physics-based method for ligand docking and virtual screen-
ing. The notable performance of RosettaVS comes from two major
advances. Firstly, the combination of high docking accuracy and
sampling efficiency allows the virtual screening protocol equipped
with RosettaGenFF-VS to find the correct binding minimum of the
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protein-ligand complex more effectively than other methods. Sec-
ondly, unlike most other virtual screening methods that tend to work
well only on more hydrophobic, deeper, and larger protein pockets,
our method also demonstrates high-performance with more polar,
shallower, and smaller pockets, likely due to the better balance of
protein-ligand versus intra-ligand molecular energies achieved by
RosettaGenFF-VS.

Although our methodology outperforms existing approaches in
all aspects, we believe there is room for further improvement. The
surge in the application of artificial intelligence across various scien-
tific domains, including protein structure prediction45,46, drug
discovery47,48, and materials design49, has been a notable trend in
recent years. Future enhancements to our protocol will likely involve
the integration of GPU acceleration and deep learning models, e.g.,

Acceptor 
GST-KLHDC2

Donor
Biotin-SelK 
12aa degron

IC50( M)

121
377

488
2048
2071
124

C17
C18

C1
C2
C4
C6

[405-589]
[1358-3271]
[1615-2713]

[95-161]
[103-141]
[309-460]

95% CI ( M)Compound

C29 2.9 [2.6-3.2]%
 M

ax
im

um
 A

LU

100

50

Log [Compound] µM 
Control -2 0 2 4

0

AlphaLISA

IC50( M)

3.4
4.1

10
6.2
1.1
3.3

C2.19
C2.20

C2.4
C2.6
C2.8
C2.16

[8.9-11]
[5.5-7.1]
[0.97-1.2]
[2.8-3.9]
[3.0-3.8]
[3.3-5.0]

95% CI ( M)Compound

ULA
mu

mixa
M

%

100

50

Log [Compound] µM 
Control -2 0 2 4

0
-4

Acceptor 
GST-KLHDC2

Donor
Biotin-SelK 
12aa degron

AlphaLISA

C1 C6C2 C4

C17

C2.4 C2.6 C2.8

C2.20C2.19C2.16

C29

N
H
N

O

N

NN
N

a

b

c

e f

d

C18

N N

N
N

O

N
O

N

N
H

O

N
N

O

N

N
O

O

N
H

N
N

N
O

NN
HS

HN
OHN

O

N N
N

O
O

N

O O

O

N
N

N

OH

O
H
N

O

S

NN
NHO

O

N

O

S

Cl

N N
N OH

O

N

O

S NN

NHO

O

HN

O

N
H

O

S

NN
N

HO

O

O

S

O
NN

NHO

O

N

O

S N
NN

HO O

N
H

O
S N

S

Experimental KLHDC2
Experimental C29
Predicted KLHDC2
Predicted C29

Experimental C29
Experimental KLHDC2

Article https://doi.org/10.1038/s41467-024-52061-7

Nature Communications |         (2024) 15:7761 5

www.nature.com/naturecommunications


using GPU to accelerate ligand docking10 or using generative AI for
efficient pose generation50,51. Other potential improvements include
refining the surrogate active learning models for better guidance of
chemical-space exploration and incorporating a generalizable deep
learning-based score function for improved discrimination of true
binders. Another improvement to our approach is to enable the use of
known non-small molecule binders, such as macrocycles or antibody
loops, as template structures to guide small molecule virtual screen-
ing.We anticipate that further developments of structure-based virtual
screening combined with deep learning techniques will significantly
improve the accuracy and efficiency of virtual screening campaigns.

Methods
Computational methods
The computational methods are organized into three primary sec-
tions. The first section focuses on the development of the Rosetta
general forcefield for virtual screening (RosettaGenFF-VS) and the
Rosetta virtual screening protocol (RosettaVS). The second section
presents the benchmarks of RosettaGenFF-VS and RosettaVS. The final
section provides detailed information about the AI-accelerated virtual
screening protocol.

Development of RosettaGenFF-VS and RosettaVS
In this section, we present detailed information about the develop-
ments of the entropy models used to augment Rosetta's general for-
cefield to enable the ranking of different ligands binding to the same
target and theRosetta virtual screening protocolswedevelopedwithin
Rosetta GALigandDock.

Entropy estimation. In a virtual screening task, the entropic con-
tribution to binding free energy caused by “freezing” ligand torsions
and rigid-body DOFs upon binding is approximated. The contribution
from the receptor is not considered. The entropy change uponbinding

takes the following form:

ΔS=w1ΔSrb +w2ΔStorsion ð1Þ
The entropy change from ligand rigid body degrees of freedom

(ΔSrb) is approximated as a function of molecular mass (m)52. The
entropy change from ligand torsions (ΔStorsion) is directly estimated
from its entropy in the unbound state, assuming that absolute
entropy in the bound state is negligible. To estimate the probability
distribution of each rotatable torsion value at an unbound state,
conformations from every 3000 steps of ligand-only Monte Carlo
(MC) simulation using RosettaGenFF at room temperature (300K)
are collected. Then the probability distribution is converted into
entropy as:

ΔStorsion =RT
X

i

X

j

ð�pij logpijÞ ð2Þ

where R is the gas constant, T is 300K, and pij is the probability of a
given torsion angle i being in bin j (with 60° bin size). Because we
assume ligand torsions are independent, the net entropy loss from
ligand torsions is simply the sum of these factors of overall rotatable
torsions. This scheme effectively captures the pre-organization effects
of ligand torsion angles at their unbound state, therefore addressing
shortcomings in simpler algorithms that treat these angles as fully free
when unbound. The optimal weights for ΔSrb and ΔStorsion were
obtained using a grid search to maximize the AUROC of a non-
overlapping subset of DUD-E set53 (see SI, ‘Subset of DUD-E’ for more
details). The weights (w1, w2) considered in this search were {(0,0),
(0,1), (1,0), (1,1), (0,2), (2,0), (2,1), (1,2), (2,2)}. The optimal weights
obtained (2.0 and 1.0 for rigid-body and torsion angles, respectively)
did not varymuch fromanaive guessof uniformweights (1.0 for both).
Compared to the uncorrected results, including entropy estimation
improved the AUROC metric by 3% and had a negligible effect on

Fig. 2 | Deep learning accelerated virtual screening finds KLHDC2 binders. a 7
out of 29 initial synthesized and assayed compounds from the initial virtual
screening. b 6 out of 21 synthesized and assayed compounds from the focused
screening. Seven compounds in total show low micromolar binding affinity (indi-
cated by the boxes). The substructure highlighted in red is used for focused library
generation. cAlphaLISAassay and the IC50 valuesof the seven compounds from the
initial screening. The statistics were calculated based on three technical replicates
(n = 3) for each concentration of the compounds in the 12-point titration curves.
Data are presented asmean values +/− SD. d AlphaLISA assay and the IC50 values of

the six compounds from the focused screening. The statistics were calculated
based on three technical replicates (n = 3) for each concentration of the com-
pounds in the 12-point titration curves. Data are presented as mean values +/− SD.
eClose-up view of C29 bound to KLHDC2 together with itsmFo-DFcmap calculated
before the compound was built into the model and contoured at 1.5 σ.
f Comparison of experimentally resolved and the computationally predicted
binding pose of C29. The high-resolution X-ray crystal structure in yellow is
superimposed on predicted docked pose in magenta.
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between C29 (yellow) and KLHDC2 (blue). Hydrogen bonds are shown as blue
dashed lines. Residues in the pocket that formhydrogen bondswith C29 are shown
as sticks and balls.
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enrichment-based metrics. This is the default entropy estimation
method, thus we termed it “Default Entropy”.

A second entropy estimationmethodwas also implemented. This
method, which we have named “Simple Entropy”, assumes a simpler
formulation compared to the first method. Instead of utilizing MC
simulation, we used the number of rotational bonds to estimate the
torsional entropy of the unbound small molecule. Although this
method overlooks the pre-organization effect of the ligand in its

unbound state, we observed comparable benchmark results using this
simpler approach. The equation for this simpler approach is as follows:

ΔS=w1ΔSrb +w2ΔStorsion =w1 logðmÞ+w2nrotor ð3Þ

The optimal weights were determined using a grid search ranging
from 0.0 to 3.0, with a step size of 0.1. This was done to maximize the
correlation between the predictions and experimental binding
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Fig. 4 | Deep learning accelerated virtual screening finds Nav1.7 binders. a 2D
structures of the best two compounds discovered from the initial virtual screening.
b Concentration-response curves and inactivated-state IC50 values (in µM, mean,
95% CI) for Z8739902234 (1.33, 1.14−1.55) and Z8739905023 (2.30, 2.14−2.46).
c Exemplary current traces show that Z8739902234 and Z8739905023 inhibit the

inactivated state of NaV1.7. dDocked structure of Z8739902234 and Z8739905023.
Ligands are shown in dark magenta, and human NaV1.7 - NavAb channel chimera
VSD4 is shown ingray. Pocket residues that arewithin 4 Åof the ligand are shownas
lines and are labeled. Hydrogen bonds are shown as blue dashed lines.
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affinities derived from a dataset curated from the PDBbind54 refine
dataset. This curated dataset termed the “PDBbind-refine-no-metal”
dataset, was prepared by excluding cases that had metal ions present
in the complex. To prevent data leakage, any case in CASF2016 was
also removed from the “PDBbind-refine-no-metal” dataset. The opti-
mal weights were found to be w1 = 0.0 and w2 =0.4, indicating that
molecular weight does not contribute to the entropy estimation.
Therefore, the final formulation of the “Simple Entropy”
is ΔS=0:4*nrotor .

Binding affinity estimation. Binding affinity is estimated by adding
together the enthalpic and entropic contributions. The enthalpy
changes (ΔH) upon binding is estimated using the following equation:

ΔH = Ecomplex � Eprotein � Eligand ð4Þ

where Ecomplex, Eprotein, Eligand are the Rosetta energy of the complex,
the protein, and the ligand, respectively, from the Rosetta general
force field (RosettaGenFF). RosettaGenFF combines the Rosetta pro-
tein energy model55–57 and generic energy terms for non-protein
molecules, i.e., Lennard-Jones, Coulomb, hydrogen-bond, implicit-
solvation and generic torsion energy. A complete description of
RosettaGenFF can be found in ref. 23 ΔH is essentially the interaction
energy from RosettaGenFF between the protein and the ligand. The
predicted binding affinity is then calculated using the equation:
ΔG=dH � TdS=ΔH +ΔS, where temperature T is implicitly included
in ΔS estimation described above. This estimated binding affinity is
used for ranking different ligands that bind to the same target. It’s
worth noting that the scale of the estimated binding affinity is
arbitrary, and it doesn’t directly correspond to the experimental
binding affinity. We have named this entropy-augmented force field as
the Rosetta general force field for virtual screening (RosettaGenFF-VS).

Rosetta virtual screening (RosettaVS) evaluation mode. The eva-
luation mode in RosettaVS was developed for binding affinity estima-
tion of complex structures. It offers several options for estimating the
binding affinity. It can estimate the binding affinity for the provided
structure, perform local minimization of the ligand alone within the
pocket, or carry out local minimization of the ligand and a set of
pocket residues within a certain cutoff (default is 4.5 Å) of the ligand.
The minimization can be performed with or without coordinate con-
straints. These options allow for a more accurate and tailored
approach to estimate binding affinities without docking the ligands.

Rosetta virtual screening (RosettaVS) screening mode. RosettaVS
leverages the “run mode” in our previously developed GALigandDock
for various tailored tasks. In this work, we have refined and introduced
two runmodes for fast ligand docking with binding affinity estimation
using RosettaGenFF-VS. These are the Virtual Screening eXpress (VSX)
and Virtual Screening High Precision (VSH). The VSX mode treats
protein side chains as rigid and executes five iterations with a gene
pool size of 50. Thismode is designed forquickandefficient screening.
On the other hand, the VSH mode allows for flexible pocket residue
side chains during docking and conducts a two-stage conformational
search on the precomputed energy grid. The first stage up-weighs the
coulombic interactions threefold and runs for five iterations with a
gene pool size of 100. The second stage uses the default weight for
coulombic interactions and also runs for five iterations with a gene
pool size of 100. In terms of runtime, the VSX mode takes ~ 90 to
150 seconds to screen a ligand, while the VSH mode runs about six
times slower. Despite the difference in speed, both modes support
docking multiple ligands in a single batch. This feature significantly
reduces the load on the file system by reading in a single input file for
multiple ligands and outputting a single output file for multiple
ligands. The choice of the batch size can be arbitrary to best utilize the

local computing cluster. For instance,weused abatch size of 50 for the
VSXmode and 5 for the VSH in this study. Detailed settings for running
VSX and VSH are provided in the supplementary information in
RosettaScripts58 XML format.

Improvements to the forcefield and docking protocols. We made
several general enhancements to the Rosetta General Forcefield
(RosettaGenFF) and docking protocols to improve performance and
accuracy. New atom types and torsion types were incorporated into
RosettaGenFF to enable better modeling of three and four-membered
rings. We also fixed a few issues with the torsional potential that arose
from incorrect definitions of some torsion types. In addition, we cor-
rected an error that occurred during the optimization of the tautomer
state of histidine in ligand docking. Furthermore, we optimized the
small molecule preprocessing scripts to address known issues and
enhance their robustness. This included accurately handling the atom
typing of aromatic ring nitrogens, protonated nitrogens, and oxime
oxygen atoms, as well as dealing with molecules with collinear struc-
tures and others.

Score function and virtual screening benchmarks
CASF2016 benchmarks. Protein structures from CASF2016 were
preprocessed by relaxing the entire structure with coordinate con-
straints using the Rosetta FastRelax protocol59–61. The ligands in the
CASF2016 dataset were processed using AmberTools 23.0’s
antechamber62 to generate Mol2 files with am1bcc partial charges.
These Mol2 files were then converted into Rosetta params files using
the mol2genparams.py script in Rosetta. Since there was no sampling
process for this dataset, we used the RosettaVS evaluation mode to
assess the score function performance of RosettaGenFF-VS. For the
scoring power test, ligands and pocket side chains were minimized
with coordinate constraints. The binding affinities reported in Sup-
plementary Fig. 2 were estimated using the locally optimized structure
with two different entropy models, namely “Simple entropy” and
“Default entropy”. The results showed that the RosettaGenFF-VS with
the “Simple entropy” model was the leading physics-based score
function for binding affinity prediction. It’s worth noting that
ΔVinaRF20 used machine learning descriptors. For the docking power
test, small molecule decoys were minimized within the pocket using
coordinate constraints. The scores from the locally optimized struc-
ture were then used to calculate docking success. We reported the
performance in Fig. 1d andSupplementary Figs. 3, 7without specifying
the entropy model since the docking power of RosettaGenFF-VS
doesn’t dependon the choiceof the entropymodel. As shown in Fig. 1d
and Supplementary Fig. 3, RosettaGenFF-VS achieved leading perfor-
mance in ligand docking accuracy. We then further examined binding
funnels following the analysis in ref. 28. The purpose of the binding
funnel analysis was to demonstrate the quality of the funnel-like shape
that forms around the lowest energy minimum. Unlike docking accu-
racy, binding funnel analysis measures the efficiency of the energy
potential in driving the conformational sampling toward the lowest
energy minimum. As depicted in Supplementary Fig. 7, RosettaGenFF
exhibited superior binding funnels across a broad range of ligand
RMSDs, suggesting a more efficient search for the lowest energy
minimum compared to other methods. For the screening power test,
decoys were allowed to minimize freely within the pocket, mirroring
real-world virtual screening settings. The predicted binding affinities
from this process were used to calculate both the enrichment factor
and success rate. The results (Fig. 1e, f and Supplementary Figs. 4, 5)
showed that RosettaGenFF-VS achieved state-of-the-art performance
on the screening power test. To further examine the improved per-
formanceon the screening power test, we analyzed the binding affinity
predictionmodels with different entropy estimations on three subsets
based on the excluded volume inside the binding pocket upon binding
(ΔVOL), buried percentage of the solvent-accessible area of the ligand
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upon binding (ΔSAS), and hydrophobic scale of the binding pocket (H-
scale). The result in Supplementary Fig. 8 indicated that both the
binding affinity methods performed equally well or better on almost
every subset compared to other methods. Furthermore, our method
showed notable improvements on target proteins with more polar
(subset H1), shallower (subset S1), and smaller (subset V1) pockets
where other methods generally underperformed. In Fig. 1e and f, we
reported the best performance from RosettaGenFF-VS-Simple as
RosettaGenFF-VS for simplicity. Although our primary comparison is
with other well-established physics-based scoring functions in this
work, to provide a more comprehensive evaluation of the model’s
performance, we have compared our model to several state-of-the-art
deep-learning based scoring functions (see Supplementary Data 1),
where RosettaGenFF-VS fares favorably.

DUD benchmarks. The Directory of Useful Decoys (DUD) dataset was
downloaded from https://dud.docking.org/https://dud.docking.org/.
Receptor structures were prepared by replacing any non-canonical
amino acid in the provided protein pdb file with its corresponding
canonical form, followed by a coordinate constraint relax using the
Rosetta FastRelax protocol. The input complex structures for Roset-
taVS were prepared by randomly placing a ligand molecule inside the
binding pocket in each receptor to indicate the position of the binding
pocket. Small molecule params files were converted from mol2 files
provided by DUD. For Example, the Rosetta scripts XML file and
Rosetta command line can be found in the supplemental information.
The results (Fig. 1b,c) showed that both VSX and VSH modes in
RosettaVS achieved superior performance compared to other virtual
screening methods. On average, the VSH mode showed a slight
improvement in performance compared to the VSX mode. We exam-
ined the cases where the VSH mode improved performance and pre-
sented two examples in Supplementary Fig. 10, highlighting the
importance of modeling flexible sidechains in ligand docking.

AI accelerated virtual screening protocol
Receptor preprocessing. For KLHDC2 virtual screening, the crystal
structure of KLHDC2 in complex with SelK degron peptide (PDB:
6DO3) was downloaded from the Protein Data Bank63. We removed all
solvent molecules and retained one copy of the degron-bound
monomer structure (chains A and B). This monomer complex was
relaxed using the Rosetta FastRelax protocol with coordinate con-
straint. As a final step, we replaced the C-end degron peptide in the
relaxed structure with a random small molecule as an indication of the
binding site. This modified structure was then used as the input to
RosettaVS. For Nav1.7 virtual screening, the cryoEM structure of
humanNaV1.7 - NavAb channel chimera (PDB: 5EK0)26 was downloaded
from the Protein Data Bank. After removing all solvent molecules, we
retained a region of the human NaV1.7 - NavAb channel chimera VSD4
(from M1493 to P1617) that directly interacts with the ligand GX-936
and used it as the receptor structure. This receptor structure was
relaxed with the ligand GX-936 using the Rosetta FastRelax protocol
with coordinate constraints. This resulting relaxed structure was then
used as input to RosettaVS. It’s important to note that GX-936was only
used to indicate the binding site for RosettaVS.

Small molecule preprocessing and library preparation. RosettaVS
ligand docking requires Rosetta params files as input for small mole-
cules and smallmoleculemol2 format is required for the generation of
the params files. The Enamine REAL 2022-q1 library, which contains
~ 5.5 billion SMILES, was downloaded from Enamine (https://enamine.
net/library-synthesis/real-compounds). Using dimorphite-dl64, SMILES
strings were assigned a protonation state at PH = 7.4. These properly
protonated smile strings were then converted to mol2 files with
molecular 3D structure and MMFF94 partial charges using
OpenBabel65. The ZINC22 library, which contains approximately 4.1

billion ready-to-dock small molecule mol2 files, was downloaded from
CartBlanche22 web server (https://cartblanche.docking.org). The
mol2genparams.py script in Rosetta was used to convert the mol2 files
into Rosetta params files for use as input in RosettaVS. To enhance the
efficiency of inference on the entire library, we pre-generated finger-
prints for the entire collection of the molecules, preparing them for
input to the deep learning models. Utilizing RDKit66, we generated
1024-bit Morgan fingerprints67 with a radius of 2.

Active learning model. We implemented an active learning model
using a simple fingerprint-based feed-forward neural network (FFN)
for training target-specific classificationmodels of binders versus non-
binders. The choice of the FFN was made to reduce the cost of the
surrogate model, and the model architecture and hyperparameter
search are subject to future improvements. Themodel takes a 1024-bit
fingerprint vector as input and outputs a single value representing the
probability of a molecule being a binder. The FFN model consists of
two densely connected hidden layers, each containing 3000 nodes.
These layers are followedby batch normalization and a dropout rate of
0.5 to prevent overfitting. The final layer is linear and is followed by a
sigmoid activation layer, which compresses the output values between
0 and 1, thereby representing the probability of a molecule being a
binder. With precomputed fingerprints, the inference of one million
molecules using this model will take, on average, around 110 s using a
single CPU (Intel Xeon E5-2695 v3 @ 2.30GHz), or around 11 s on
average using an RTX2080 GPU. The model performance was mon-
itored throughout the active learning process, and the final model for
KLHDC2 has anAUC of 0.886, and the finalmodel for the Nav1.7 target
has an AUC of 0.927 on an independent test set, which shows the final
ML model is indeed a good binary classifier for each target.

OpenVS platform. We developed an open-source platform, OpenVS,
to streamline the entire AI-accelerated virtual screening process. A key
feature of this platform was its ability to enable the parallelization of
the virtual screen and reduce the load on the file system. This was
achieved by batching multiple ligands into a single virtual screen job
through themulti-ligand docking feature in the RosettaVS protocol. By
docking N ligands in a single job, the number of input and output files
was effectively reduced by a factor of N, significantly decreasing the
load on the file system. In addition, batchingmultiple ligands together
also reduced the input and output (I/O) loadon the system since fewer
jobs were required to run in parallel. The platform used the SLURM
workload manager (https://slurm.schedmd.com) and GNU parallel68

for high parallelization of virtual screens, exhibiting linear scaling of
virtual screening time relative to the number of CPUs and nodes uti-
lized. Furthermore, this platform could be easily adapted to support
other job schedulers, making it a versatile tool for various computa-
tional environments.

Workflow of AI accelerated virtual screening. In this work, we uti-
lized active learning techniques to guide the exploration of the vast
chemical space. The greedy strategy was used to select new com-
pounds for each iteration to augment the training dataset without
using any explicit uncertainty information to reduce the computa-
tional cost and inference time. In principle, uncertainty estimation can
be obtained using Monte Carlo (MC) dropout69 by running model
inference multiple times with activated dropout layers within the
current framework. The concreteworkflow is described as follows.Our
first stepwas to create a specialized subset, referred to as the druglike-
centroid library, from the ZINC1570 3d druglike database containing
~ 493.6 million molecules. The creation of this subset involved clus-
tering similarmolecules from the ZINC15 3Ddruglike database, using a
cutoff of 0.6 Tanimoto similarity. From each cluster, the smallest
molecule was selected and added to the library, serving as the
centroid of the cluster. This process resulted in the formation of the
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druglike-centroid library, which includes around 13 million molecules.
The purpose of creating the druglike-centroid library was to ensure
that the model was exposed to a wide range of chemical space during
the initial iteration. For the first iteration, 0.5 million and 1 million
molecules were randomly selected as the training and testing datasets,
respectively, from the druglike-centroid library. We used the VSX
mode in RosettaVS to dock these molecules to the target pocket.
Morgan fingerprints using a radius of 2 and 1024 bits were generated
for all the molecules as the input to the deep learning model.
We selected a predicted binding affinity (dG) cutoff corresponding to
the top N% of the molecules in the testing set, for each iteration. This
cutoff was used to assign binders (<= dG_cutoff) or non-binders
(> dG_cutoff) labels to the docked molecules. We used ten log spaces
between 10% to0.01% to set the topN% for each iteration. For example,
the first iteration had N%= 10%, the second iteration had N%=4.64%,
and the tenth iteration had N%=0.01%. The model was trained as a
target-specific binary classifier to predict whether a molecule is a
binder or not. We computed the cross-entropy loss on the testing set
for each epoch and used early stopping to prevent the model from
overfitting to the training set. We used the model to predict the entire
Enamine REAL 2022-q1 library (~ 5.5 billion compounds) or ZINC22
library (~ 4.1 billion compounds). From these predictions, we selected
the top-ranked 0.25 million and an additional 0.25 million randomly
selectedmolecules for the next iteration docking. In the next iteration,
the newly selected 0.5 million molecules were docked to the pocket
using VSXmode. These0.5millionmolecules, combinedwith previous
molecules in the training set, were used to train a newmodel. A tighter
dG cutoff was selected corresponding to the current iteration’s topN%
in the testing dataset. After training a newmodel, we used it to predict
the entire library again and selected another 0.5 million molecules for
the next iteration. We repeated this process until the maximum
number of iterations (ten iterations) was reached or the predicted
binding affinities of top-ranked molecules converged. The top-ranked
50,000 or 100,000 molecules from the virtual screening were re-
docked using VSH mode to account for the flexibility of the receptor.
(See Supplementary Fig. 1 for the flowchart of this protocol.)

Filters for selecting promising compounds. We computed the log
octanol/water value of the partition coefficient of the compound
(cLogP), the number of unsatisfied hydrogen bonds (Nunsats) at the
interface between the protein and ligand, and the number of torsion
angle outliers (N_unusual_torsion) fromCSD torsion geometry analysis
using RDKit, Rosetta71, and CSD72 python package respectively. For the
KLHDC2 virtual screen, docked poses with cLogP > 3.5 Nunsats > 1
were discarded. Similarly, for the NaV1.7 virtual screen, docked poses
with cLogP > 3.5, Nunsats > 1, and N_unusual_torsion > 1 were dis-
carded. These filters helped us in reducing the false positives and
refine our selection of compounds for final experimental validation.

Filtering and clustering. To reduce the redundancy of the molecules
selected for experimental validation, we clustered the top-ranking
molecules from both screens based on Tanimoto similarity. For the
KLHDC2 virtual screen, we took the top-ranked 1000 compounds and
filtered out compounds with low predicted solubility (removing 93
compounds) and unsatisfied hydrogen bonds in the bound con-
formation (removing 754 compounds), yielding 153 compounds. We
then applied clustering with a Tanimoto similarity cutoff of 0.6 to
remove similar molecules, which resulted in 54 clusters, each repre-
sented by the member with the best binding affinity. These 54 cluster
representative molecules were then subjected to manual inspections.
For the NaV1.7 screen, we clustered the top 100,000 molecules with a
cutoff of 0.6 Tanimoto similarity. This resulted in 16820 clusters, each
represented by the member with the best predicted binding affinity.
The top 1000 ranked cluster representative molecules were subjected
to the filtering process where we removed molecules with low

predicted solubility (removing 183 compounds), unsatisfied hydrogen
bonds in the bound conformation (removing 139 compounds), and
torsion angle outliers (removing 520 compounds) in Cambridge
Structural Database (CSD)72. A total of 160 molecules passed the fil-
tering were examined manually. The filters for unsatisfied hydrogen
bonds and torsion angle outliers are the two that removed the most
molecules. Although the current energy model achieves state-of-the-
art performance, our filters suggest that these conformations are
‘under penalized’ by the current energy model, indicating an oppor-
tunity for improvement in the scoring function.

Rescreening against KLHDC2. To further validate the reliability of
RosettaVS for hit discovery, we performed a rescreening experiment
against the KLHDC2 target using the Enamine Screening library. This
library contains around 4.1 million compounds, which are the first
samples of billions of synthesizable compounds. Our confirmed best-
hit compound, C2.8, was included in this screening library. We were
able to rediscover compound C2.8 from this experiment. In fact, it was
among the top 1000 compounds, which is within 0.024% of the
4.1 million compounds, before any filtering. After applying the buried
unsatisfied hydrogen bond filter, we removed any docked complex
that had more than one buried polar atom. Following this, the hit
compoundC2.8was among the top50compounds. The success of this
rescreening experiment shows our virtual screening protocol is both
effective and reliable for hit discovery.

Common chemical properties. We have reported several chemical
properties that are important in small molecule drug discovery,
including the quantitative estimate of drug-likeness (QED)73, the cal-
culated octanol-water partition coefficient (cLogP)74, and synthetic
accessibility (SA)75. As shown in Supplementary Table 2, the com-
pounds ordered for both targets have an average QED above 0.7,
indicating a high degree of drug-likeness. The cLogP values of the
compounds fall within a reasonable range, as it is used as a filter to
remove compounds that are excessively hydrophobic (see ‘Filters for
selecting promising compounds’). The average SA is low, as expected
because all the compounds from Enamine REAL or ZINC22 are highly
synthesizable.

Experimental methods for KLHDC2
Molecular biology and protein purification. For DNA extraction,
E.coli DH5α was grown for 16 hr at 37 °C. For bacmid production,
E.coli DH10Bac was grown for 16 hr at 37 °C. For baculovirus pro-
duction and amplification, Sf9 (LifeTechnologies, B82501) insect
cells were grown for 2–3 days at 26 °C. For protein expression, both
E.coli BL21(DE3) (grown for 16 hr at 18 °C) and HighFive insect cells
(grown for 2–3 at 26 °C, 105 RPM) were used. LB Broth Miller (Fisher
BioReagents) was used for E.coli. Sf9 insect cells were maintained in
Grace’s Insect Medium (Gibco) supplemented with 7% FBS (Gibco)
and 1% Penicillin-Streptomycin (HyClone) solution. Suspension
HighFive(LifeTechnologies, B85502) cells were grown in EXPRESSTM
FIVE SFM(Gibco) supplemented with 5% L-Glutamine 200mM
(HyClone) and 1% Penicillin-Streptomycin (HyClone) solution. Tissue
culture media and supplements were from GIBCO Life Technologies
(Carlsbad, CA, USA). Cells have been authenticated by the vendors.
No further authentication was performed for commercially available
cell lines.

The kelch repeat domain of human KLHDC2 (UniProt: Q9Y2U9,
amino acid 1–362) was subcloned into the pFastBac vector with an
N-terminally fusedglutathione-S-transferase (GST), and aTEV-cleavage
site. A recombinant baculovirus was produced and amplified three
times in Sf9 monolayer cells to produce P4. The P4 virus was used to
infect HighFive suspension insect cell cultures to produce the
recombinant GST-KLHDC2 protein. The cells were harvested 2–3 days
post-infection, re-suspended, and lysed in lysis buffer (20mMTris, pH
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8.0, 200mM NaCl, 5mM DTT) in the presence of protease inhibitors
(1μg/ml Leupeptin, 1μg/ml Pepstatin and 100μM PMSF) using a
microfluidizer. TheGST-KLHDC2proteinwas isolated from the soluble
cell lysate by PierceTM Glutathione Agarose (Thermo Scientific). For
AlphaLISA competition assays, the GST-tagged KLHDC2 was further
purified by Q Sepharose High-Performance resin (GE Healthcare). The
NaCl eluates were subjected to a Superdex-200 size exclusion chro-
matography column (GE Healthcare). All samples were flash-frozen in
liquid nitrogen for storage prior to use. For protein crystallization, the
kelch repeat domain of human KLHDC2 (amino acids 22–362) was
subcloned into the pET vector with an N-terminally fused His-
elongation factor Ts (TSF) and a TEV-cleavage site. The His-TSF-
KLHDC2 protein was overexpressed and purified from BL21 (DE3) E.
coli cells. Bacterial cells transformed with the pET-based expression
plasmid were grown in LB broth to an OD600 of 0.8–1 and induced
with 0.5mM IPTG. Cells were harvested, re-suspended, and lysed in
lysis buffer (20mM Tris, pH 8.0, 200mM NaCl, 20mM imidazole) in
the presence of protease inhibitors (1μgmL–1 leupeptin, 1μgmL–1
pepstatin and 100μM phenylmethylsulfonyl fluoride) using a micro-
fluidizer. The His-TSF-KLHDC2 protein was isolated from the soluble
cell lysate by HisPurTM Ni-NTA Superflow Agarose (Thermo Fisher
Scientific,Waltham,Massachusetts). After TEV cleavage of theHis-TSF,
KLHDC2 was further purified by Mono Q™ 5/50 GL (GE Healthcare,
Chicago, Illinois). The NaCl eluates were subjected to Superdex-200
size-exclusion chromatography (GE Healthcare). Native mass spec-
trometry was used to confirm KLHDC2 in its apo form. The samples
were concentrated by ultrafiltration to 10–22mgmL−1. All samples
were flash-frozen in liquid nitrogen for storage prior to use.

Protein crystallization. The crystals of KLHDC2 in its apo form were
grown at 25 °C by the hanging-drop vapor diffusion method with 2
parts protein sample to 1 part reservoir solution containing 0.03M
MgCl2*6H2O, 0.03MCaCl2*2H2O, 10% (w/v) PEG 20000, 20% (v/v) PEG
MME, 0.1M Tris (base)/ bicine pH 8.5. Crystals of maximal sizes were
obtained and harvested after a few days. Cryoprotection was provided
by the crystallization condition.

Data collection and structure determination. After collecting native
datasets at Advanced Light Source Beamline 8.2.1 (Data collection:
exposure −0.4 sec, energy − 12397.1 keV, wavelength − 1 Å, tempera-
ture − 100K), X-ray diffraction data was automatically processed using
xia2 to run DIALS 3.8. The structures were solved by molecular repla-
cement using the kelch domain of KLHDC2 (PDB:6DO3) with Phaser
from the PHENIX suite of programs package version 1.20.1. All struc-
tural models were manually built, refined, and rebuilt with COOT76

version 0.9.8.91 and PHENIX77 version 1.20.1. PyMOL34 version 2.5.5,
and LIGPLOT78 version 2.0 were used to generate figures. After
refinement, the Ramachandran statistics are as follows : Ramachan-
dran favored - 97.62 %, Ramachandran allowed - 2.38 %, Ramachandran
outliers - 0.00 %, Rotamer outliers - 0.36 %.

AlphaLISA luminescence proximity assay. AlphaLISA assays for
determining and measuring protein-protein interactions were per-
formed using an EnSpire reader (PerkinElmer). GST-tagged KLHDC2
was attached to anti-GST AlphaLISA acceptor beads. Synthetic
N-terminal biotinylated 12 aa SelK degron peptide ([Biotin]
HLRGSPPPMAGG[C) (Bio-Synthesis, Inc.) was immobilized to
streptavidin-coated AlphaLISA donor beads. The donor and acceptor
beads were brought into proximity by the interactions between the
SelK peptide and KLHDC2. Excitation of the donor beads by a laser
beam of 680nm promotes the formation of singlet oxygen. When an
acceptor bead is in close proximity, the singlet oxygen reacts with
thioxene derivatives in the acceptor beads and causes the emission of
615 nm photons, which are detected as the binding signal. If the beads
are not in close proximity to each other, the oxygen will return to its

ground state, and the acceptor beads will not emit light. Competition
assays were performed in the presence of numerous compounds,
which were titrated at various concentrations. The experiments were
conductedwith 3.83nMofGST-KLHDC2and5.55 nMbiotinylated 12 aa
SelK peptide in the presence of 5μg/ml donor and acceptor beads in a
buffer of 25mMHEPES, pH 7.5, 100mMNaCl, 1mMTCEP, 0.1% Tween-
20, and 0.05mg/ml Bovine Serum Albumin. The compound con-
centrations used in competition assays ranged from 15 nM to 1.5mM.
The experiments were done in triplicates. IC50 values were determined
using non-linear curve fitting of the dose-response curves generated
with Prism 8 (GraphPad).

Octet Bio-Layer Interferometry measurement. Octet BioLayer
interferometry competition assay monitoring the ability of C29 to
interfere with the binding between the biotinylated 12 aa SelK peptide
andGST-KLHDC2wasmonitoredusing theOctet Red96 (ForteBio, Pall
Life Sciences) following the manufacturer’s procedures. The reaction
was carried out in black 96 well plates maintained at 30 °C. The reac-
tion volumewas200μL in eachwell. TheOctet buffer used throughout
the experiment contained 20mM Tris-HCl, 200mM NaCl, 5mM DTT
and 0.1% BSA, pH 8.0. The Loading buffer contained the Octet buffer
and biotinylated 12 aa SelK peptide, at a final concentration of 200nM.
The Quench buffer contained the Octet buffer and biocytin, at a final
concentration of 0.1mM. The Association buffer contained the Octet
buffer, GST-KLHDC2, at a final concentration of 50nM, and the com-
petitor small molecule - C29 at various final concentrations (30 µM,
10 µM, 3.33 µM, 1.11 µM or 0 µM). Prior to binding analysis, the strep-
tavidin coated optical probes were incubated in Octet buffer for
60 sec, loaded for 96 sec with biotinylated 12 aa SelK peptide (Loading
buffer), quenched for 60 swith biocytin (Quenchbuffer) andbaselined
in Octet buffer for 60 sec. The binding of the analyte GST-KLHDC2 in
the presence or absence of the C29, to the optical probes was mea-
sured simultaneously using instrumental defaults for 225 sec as the
probes were then incubated in Association buffer. The dissociation
was measured for 600 sec while the probes were incubated in Octet
buffer. While not loaded with ligand, the control probes were quen-
ched. There was no binding of analyte and competitor to the unloaded
probes. The data were analyzed by the Octet data analysis software
version 9.0.. The association and dissociation curves were fitted with a
Local Full fit, 1:1 ligand model. The data was plotted using Excel. The
IC50 value was calculated using Prism 8 (GraphPad) from the nonlinear
regression curve fit of the response values vs. log competitor
concentration.

Experimental methods for NaV1.7
Cell cultures and electrophysiology. HEK-293 cells stably expressing
human NaV1.5 and NaV1.7 were obtained from Dr. Chris Lossin (UC
Davis, CA). HEK293 cells stably expressing HERG (hKv11.1) were a gift
from Craig January (University of Wisconsin, Madison). Cells were
cultured in completeDMEMsupplementedwith 10% FBS, 1% penicillin/
streptomycin, andG418. Allmanual whole-cell patch-clamp recordings
were performed at room temperature (22–24 °C) using an EPC-10
amplifier (HEKA Electronik, Lambrecht/Pfalz, Germany) on cells that
were grown to 60–80% confluency, liftedwith TrypLE, and plated onto
poly-l-lysine–coated coverslips. External bath solution contains (in
mM) 160 NaCl, 4.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES (pH 7.4 and
305mOsm) as. Patch pipettes were heat-pulled from soda lime glass
(micro-hematocrit tubes, Kimble Chase, Rochester, NY) and had
resistances of 2–3MΩ when filled with an internal solution. Patch
recordings of NaV1.5 and NaV1.7 channels were done using a cesium
fluoride-based internal solution containing (inmM) 10NaF, 110 CsF, 20
CsCl, 10 HEPES, 2 EGTA, (pH 7.4, 310mOsm). Recordings of HERG
channels were conducted using a potassium fluoride-based internal
solution with added ATP (160mM KF, 2mM MgCl2, 10mM EGTA,
10mM HEPES, 4mM NaATP, pH = 7.2 and 300–320mOsm). Data
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acquisition and analysis were performed with Pulse-PulseFit (HEKA
ElectronikGmbH,Germany), IgorPro (WaveMetrics, Portland,OR), and
Origin 9.0 software (OriginLab Corporation, Northampton, MA). To
investigate specifically the inactivated state block of NaV1.7 andNaV1.5,
holding potentialswere set at the V1/2 ofmaximal inactivation (− 70mV
and − 80mV, respectively) before voltage stepping to − 150mV for
20msec, and then 0mV for 50msec to elicit inward currents. Inhibi-
tion of currents in the resting state was recorded using a holding
potential of − 120mV. Control test currents were monitored for up to
5–10min to ensure that the amplitude and kinetics of the response
were stable. Series resistance was compensated to 80–90% and linear
leak currents and capacitance artifacts were corrected using a P/
4 subtraction method. The pulse interval was 0.1Hz. For all experi-
ments, stock solutions of the drugs were prepared fresh from 10mM
stocks in DMSO and test solutions prepared in external bath solutions
were applied to individual cells into the recording bath. Formeasuring
inhibition, currents were allowed to saturate with repeated pulsing
before addition of subsequent doses. IC50 values were derived from
measurements performed on individual cells that were tested with at
least three or more concentrations of each peptide. For the HEK-239
HERG cells, a 2-step pulse (applied every 10 sec) from − 80mV first to
40mV for 2 sec and then to − 60mV for 4 sec, was used to elicit HERG
currents. The percent reduction of HERG tail current amplitude by the
compounds was determined. The percent of a block of tail current
amplitude by the drugswasdetermined anddata are shown asmean +/
− SD (n = 3–4 per data point).

Compound synthesis. Chemical synthesis for all compounds in this
work was performed by Enamine within 5 weeks with over 90% purity
and used without further purification. Purity of compounds were
assessed based on liquid chromatography–mass spectrometry (LC-
MS). See Supplementary Data 2-3 for purity and LC-MS spectra.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All compounds in this work are available from Enamine. The virtual
screening library, Enamine REAL, and ZINC22, used in this work are
freely available from Enamine [https://enamine.net/] or ZINC22
[https://cartblanche.docking.org/], respectively. The druglike-centroid
library generated in this study is available for download at https://files.
ipd.uw.edu/pub/OpenVS/centroids.tgz [https://files.ipd.uw.edu/pub/
OpenVS/centroids.tgz]. The source data for figures and tables in the
main text and supplementary information are provided in the Sup-
plementary Information/Source Data file. The crystal structure of the
KLHDC2-C29 complex is available from the PDB with accession code:
8UXS. Chemical purity of all the compounds and their LC-MS spectra
are available in Supplementary Data 2-3. Source data are provided in
this paper.

Code availability
RosettaVS is within Rosetta software, which is freely available for non-
commercial research at https://github.com/RosettaCommons/rosetta.
OpenVS code and scripts are available on Zenodo79 and also onGitHub
at https://github.com/gfzhou/OpenVS.
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