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Curves in Hydrogen Storage Applications
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Department of Chemistry, University of California, Berkeley, California 94720, USA

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

94720, USA

E-mail: mhg@cchem.berkeley.edu

Abstract

The availability of accurate computational tools for modeling and simulation is vital

to accelerate the discovery of materials capable of storing hydrogen (H2) under given

parameters of pressure swing and temperature. Previously, we compiled the H2Bind275

dataset consisting of equilibrium geometries and assessed the performance of 55 density

functionals over this dataset (Veccham, S. P.; Head-Gordon, M. J. Chem. Theory

Comput., 2020, 16, 4963–4982). As it is crucial for computational tools to accurately

model the entire potential energy curve (PEC), in addition to the equilibrium geometry,

we have extended this dataset with 389 new data points to include two compressed and

three elongated geometries along 78 PECs for H2 binding, forming the H2Bind78×7

dataset. Assessing the performance of 55 density functionals on this significantly larger

and more comprehensive H2Bind78×7 dataset, we have identified the best performing

density functionals for H2 binding applications: PBE0-DH, ωB97X-V, ωB97M-V, and

DSD-PBEPBE-D3(BJ). Addition of Hartree Fock exchange improves the performance
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of density functionals, albeit not uniformly throughout the PEC. We recommend the

usage of ωB97X-V and ωB97M-V density functionals as they give good performance

for both geometries and energies In addition, we have also identified B97M-V and

B97M-rV as the best semi-local density functionals for predicting H2 binding energy

at its equilibrium geometry.

Introduction

Hydrogen (H2) is a favorable substitute for fossil fuels as the only by-product of hydrogen

fuel cell engines is water and the efficiency of a fuel cell is significantly higher than an internal

combustion engine. However, H2 is a light gas with low volumetric and gravimetric energy

densities. This poses a significant hurdle to storage and transportation of H2. Storing H2

reversibly in adsorbed form on porous materials is a promising solution to this problem.1–4

Ideally, such materials should adsorb H2 at high pressure and release it at low pressure

so that the released H2 can be used for operating a fuel cell. Designing materials with this

property, while simultaneously not compromising on high volumetric and gravimetric storage

capacities, is an active area of research.5–7

While multiple porous materials like Metal-Organic Frameworks (MOFs), Covalent Or-

ganic Frameworks (COFs), graphene, and other amorphous materials have been shown to

adsorb H2, none of these materials meet all the target criteria proposed by the U.S. Depart-

ment of Energy for an ideal storage material.6 As experimental synthesis and characterization

of potential H2 storage materials is expensive and time-consuming, computational model-

ing and screening of materials has emerged as a viable alternative to it.8–10 Computational

techniques can be used in two different, potentially complementary ways. First, molecular

modeling can be used to understand the mechanism of H2 binding in different porous mate-

rials and this understanding can be used to systematically tune materials to achieve target

properties.6,11,12 Second, computational techniques can be used to screen materials in a high-

throughput manner to select only a handful of potentially viable materials for synthesis and
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characterization.

The ability of a material to store H2 is characterized by its usable capacity, which is

defined as the amount of H2 stored at the high operating pressure that is released when the

pressure is reduced to the low operating pressure. Optimizing the usable capacity for typical

fixed operating pressures of 5 bar and 100 bar gives an optimal value for the Gibbs free energy

of adsorption (∆Gads). Assuming a correlation between enthalpy and entropy of adsorption

in porous materials gives a range of −15 to −25 kJ/mol for the optimal value for enthalpy

of adsorption (∆Hads).
13–15 The internal energy of binding, which is the largest component

of ∆Hads, can be computed using different quantum chemistry methods, including, but

not limited to, density functional theory (DFT),11,12,16,17 Møller-Plesset perturbation theory

(MP2),18–20 and different variants of coupled-cluster theory.21–23 Each of these methods have

different accuracies and computational costs associated with them.

DFT can provide a reasonable balance between cost and accuracy of computing H2 bind-

ing energy. However, as the exact density functional remains unknown, different density

functional approximations (DFAs), proposed in lieu of the exact density functional, pro-

vide varying accuracies for different chemical systems and/or properties computed.24 In

order to address this problem, we adopted a two-pronged approach.23 (1) We compiled the

H2Bind275 dataset that consists of H2(s) interacting with binding motifs representative of

different porous materials known for H2 adsorption. This dataset consists only of equilibrium

geometries, that is, H2(s) are located at the minimum of the potential energy curve (PEC)

with respect to the binding site. We computed highly accurate reference interaction energies

using coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) extrapolated to

the complete basis set limit for this dataset. (2) We assessed the performance of 55 DFAs

and identified the best performing density functionals for this dataset. In addition, we also

identified inexpensive semi-local density functionals which give very good performance for

low computational cost and are suitable for in silico high-throughput screening purposes.

The H2Bind275 dataset, consisting of 275 data points, provides a balanced representa-
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tion of different H2 binding mechanisms like polarization, charge transfer interaction, and

dispersion.17,25,26 It also captures the chemical diversity of binding motifs that H2 interacts

with in porous frameworks. This dataset assesses the ability of density functionals to repro-

duce H2 binding energies at the minima of the PEC. However, as DFAs are routinely used

for geometry optimizations and molecular dynamics simulations either directly or indirectly

(by generating reference data for training force fields), they should also be able to repro-

duce the entire PEC which would ensure accurate nuclear gradients as required for geometry

optimization and molecular dynamics simulations. A strategy of assessing the performance

of DFAs for PECs has been previously employed for other non-covalent interaction energy

datasets like S22, S66, and A24. The S22x5 dataset27 was created from the S22 dataset28

by including geometries that are shortened and elongated along a well-defined interaction

coordinate. Similarly, the S66x829 and A21x1230 extended datasets were created from the

S66 and A24 datasets.31

In order to address this issue for H2 storage, we have extended the H2Bind275 dataset

to include geometries that are located at five different points on 78 separate PECs, not just

the minimum. This extended dataset, hereafter referred to as the H2Bind78×7 dataset, was

generated by shortening and stretching the distance between H2 and the binding motif. The

reference interaction energies were computed using CCSD(T) extrapolated to the complete

basis set (CBS) limit using the same strategy outlined in Ref. 23. The performance of 55

DFAs were assessed using regularized relative errors metrics by appropriately weighing the

error coming from different points on the PECs. We have analyzed the performance of these

DFAs for the extended dataset by comparing and contrasting it with the performance of the

original equilibrium H2Bind275 dataset.

This paper is organized as follows. The H2Bind78×7 dataset is introduced and the pro-

tocol for computing reference interaction energies is discussed. All the density functionals

chosen for assessment in this work are briefly introduced and classified. The distribution

of the reference interaction energies at different points on the PEC is outlined. The per-
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formance of DFAs for predicting H2 interaction energies across the PEC is discussed and

contrasted with their performance for the previous H2Bind275 dataset. The performance of

DFAs for predicting equilibrium geometries and interaction energies at equilibrium geome-

tries is explored. The best DFAs for predicting H2 binding energies are recommended while

considering their computational cost.

Computational details

H2Bind78×7 dataset

Table 1: Number of geometries and data points by chemical categories for the H2Bind78×7
dataset

s-block ions salts organic ligands transition metals total
geometries 19 13 5 41 78

data points at PEC minimum 38 26 10 82 156
data points not at PEC minimum 95 65 25 2041 389

H2Bind78×7 133 91 35 286 545

The H2Bind275 dataset consists of 275 H2 interaction energies but only 86 unique ge-

ometries as many of them have multiple H2s. For example, the geometry of CaCl2−(H2)4

has four hydrogen molecules bound to CaCl2 contributing four data points to the H2Bind275

dataset. The H2Bind78×7 dataset was generated by starting from a subset of the original

H2Bind275 dataset. This subset was created by choosing only 78 unique geometries and

computing their interaction energies adiabatically using the method outlined in Ref. 23. All

of these geometries are located on the PEC at their respective minima. The adiabatic in-

teraction energy, which relaxes the geometries of the binding motif and H2, was chosen as it

is closest to experimentally measurable values. For each minimum geometry, five additional

geometries were generated by compressing and elongating the distance between the binding

motif and the center of mass of H2 (denoted by req). For geometries containing multiple

H2s bound to a single binding moiety, compressed and elongated geometries were generated

1One data point excluded due to convergence issues
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for only one of the H2s. This step was necessary in order to maintain low redundancy in

the dataset and make its size manageable. In addition to this, the interaction energy at the

minimum of the PEC was also computed using vertical interaction energy method. In total,

this dataset contains 78 adiabatic and 78 vertical interaction energies (a total of 156 data

points) located at the PEC minimum.

In this work, two compressed geometries (0.75req and 0.9req) and three elongated ge-

ometries (1.1req, 1.25req, and 1.5req) were considered. These distances were chosen as they

are representative of the PEC in both the compressed and elongated regimes. In a porous

material, H2 interacts with not only its primary binding site but also has secondary interac-

tions with other components of the framework. The binding distances of H2 to its secondary

interaction sites of the porous material are often longer than their corresponding equilibrium

distances. As a consequence of this, when modeling H2 in a porous material, the elongated

portion of the PEC is sampled more than the compressed part. Additionally, the compressed

portion of the PEC is usually significantly higher in energy (repulsive if compressed enough),

and is sampled less often in a molecular dynamics or Monte Carlo simulation. Hence, DFAs

should be able to reproduce the elongated portion of the PEC more faithfully than the

compressed portion. We have included more data points in the elongated regime than the

compressed regime in order to underscore its relative importance. As shown in Table 1,

the number of non-equilibrium data points is roughly 2.5 times the number of data points

at equilibrium. In total, counting both the equilibrium and non-equilibrium data points,

this H2Bind78×7 dataset consists of 545 H2 interaction energies with representative binding

motifs.

This dataset, like the H2Bind275 dataset, can also be divided into categories based on the

chemical nature of the binding motif as shown in Table 2: (1) s-block ions: consisting of group

1 and group 2 bare metal cations with unscreened charge binding one or multiple H2s, (2)

salts: consisting of small inorganic salts like AlF3, CaCl2, and MgF2 binding one or multiple

H2s, (3) organic ligands: comprising of small aliphatic and aromatic molecules binding one
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Table 2: All 78 geometries in the H2Bind78×7 dataset categorized by chemical identity of
the binding motif.

s-block ions salts organic ligands transition metals
Li+−(H2)n, AlF3−H2 benzene−H2 MX−H2, X=H, F, Cl; M=Cu, Ag, Au

n = 1, 2, 3, 4, 5, 6 CaF2−(H2)n, phenol−H2 CoF3−H2

Na+−(H2)n, n = 1, 2, 3, 4 pyrrole−H2 Cu(OMe)−H2

n = 1, 2, 3 CaCl2−(H2)n, butene−H2 CuCN−H2

Mg2+−(H2)n, n = 1, 2, 3, 4 tetrazole−H2 Sc+−(H2)n, V+−(H2)n, n = 3, 4
n = 1, 2, 3, 4 MgF2−(H2)n, Ti+−(H2)n, n = 2, 4
Ca2+−(H2)n, n = 1, 2, 3, 4 Cr+−(H2)n, Mn+−(H2)n, n = 1, 2, 3, 4

n = 1, 2, 3, 4, 5, 6 Fe+−(H2)n, n = 1, 2, 3, 4
Co+−(H2)n, Ni+−(H2)n, n = 1, 2

Cu+−(H2)n, n = 1, 2, 3
Zn+−(H2)n, n = 1, 2, 3, 4

H2, (4) transition metals: including small transition metal complexes and 3d transition

metal cations binding one or multiple H2s. Each of these categories is also representative

of various mechanisms of H2 binding found in porous materials. For example, H2 in the

organic ligands category is mostly dispersion-bound. The s-block metals category binds H2

using a combination of electrostatic and forward charge transfer (H2→ metal) interactions.17

This dataset captures both chemical and mechanistic diversity encountered in H2 binding

to porous materials. For a detailed discussion about different chemical categories in this

dataset, we refer readers to Ref. 23.

Reference Binding Energies

Calculation of accurate reference interaction energies is an important task in compiling a

dataset. Reference interaction energies were computed using coupled-cluster theory with

singles, doubles, and perturbative triples (CCSD(T))32 extrapolated to the complete basis

set limit. Inspired by the success of composite extrapolation methods33–36 for computing

highly accurate reference values, we have developed our own composite extrapolation method
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using focal point analysis37,38 for computing accurate reference H2 binding energies:

Eref = EHF/5Z + EMP2/QZ→5Z + δECCSD(T)/TZ + δEcore
MP2/TZ (1)

δECCSD(T)/TZ = ECCSD(T)/TZ − EMP2/TZ (2)

δEcore
MP2/TZ = Ecore=0

MP2/TZ − Ecore=n
MP2/TZ (3)

Here, Eref is the reference energy computed using the composite method, EHF/5Z is the

Hartree Fock energy computed using a basis set of quintuple-zeta (5Z) quality, EMP2/QZ→5Z

is the MP2 correlation energy extrapolated to the complete basis set limit with the 2-point

extrapolation formula39 using correlation energies computed with quadruple-zeta (QZ) and

quintuple-zeta quality basis sets, and δECCSD(T)/TZ is the difference between the CCSD(T)

and MP2 correlation energies computed with a triple-zeta quality basis set. δEcore
MP2/TZ is the

core-valence contribution to the correlation energy computed as the difference between MP2

correlation energies with (Ecore=n
MP2/TZ) and without (Ecore=0

MP2/TZ) the frozen-core approximation.

This composite method for computing reference H2 interaction energies ensures that the effect

of higher-order excitations neglected in CCSD(T) are sufficiently small. It also ensures that

the basis set incompleteness errors are small and that both HF and extrapolated correlation

energy components are of complete basis set limit quality. Further details of this scheme can

be found in Ref. 23.

The cc-pVnZ40,41 (n =T, Q, or 5) family of basis sets was used for all the HF and

correlation energy calculations when core electrons were not included in the correlation

calculations. cc-pCVnZ42,43 (n =T, Q, or 5) family of basis sets were employed when some

or all of the core electrons were included in the correlation calculations. For transition metals,

the cc-pwCVnZ44 (n =T, Q, or 5) series of basis sets was used with a neon core excluded in

all correlation energy computations.
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Density Functional Approximations

55 DFAs, including all the commonly used density functionals, were chosen to perform a

thorough assessment. We have also included DFAs that have previously shown very good

performance for a range of non-covalent interaction energy prediction problems represented

by multiple datasets.45 Based on the different quantities DFAs depend on, they are cate-

gorized into rungs of the metaphorical Jacob’s ladder.46 From the first rung of the Jacob’s

ladder, in which DFAs depend only on electron density, SVWN547,48 and SPW9247,49 DFAs

were chosen. From the second rung called Generalized Gradient Approximation (GGA),

12 different DFAs were chosen: the PBE family and its variants (PBE,50 PBE-D3(0),51

RPBE,52 revPBE,53 and revPBE-D3(op)54), BLYP55,56 and BLYP-D3(op)54, dispersion-

corrected variants of B9757 (BLYP-D3(0)51 and BLYP-D3(BJ)58), PW91,59 and GAM.60

From the meta-GGA rung, the different variants of TPSS (TPSS,61 TPSS-D3(BJ),58 and

revTPSS62), SCAN63 and its dispersion-corrected version SCAN-D3(BJ)64, MS265 and MS2-

D3(op),54 the combinatorially-optimized B97M-V66 and B97M-rV67,68 were chosen. In addi-

tion, mBEEF69 and the semi-local Minnesota functionals M06-L70 and MN15-L71 were also

included in the assessment. Rung four DFAs, containing HF exchange, are generally more

accurate than semi-local functionals as they partially alleviate the problem of self-interaction

error. The computation of exact exchange also adds significantly to the computational cost

of hybrid functionals. In this work, global hybrid density functionals like B3LYP72 and

B3LYP-D3(0),58 PBE073 and PBE0-D3(BJ),58 TPSSh74 and TPSSh-D3(BJ),58 the M06

family of density functionals (M06,75 M06-2X,75 M06-2X-D3(0),51 and revM0676), MVSh,77

and SCAN078 which is the hybrid variant of SCAN are included. Range-separated hy-

brids, which are hybrid functionals containing DFT exchange and some HF exchange in the

short-range and only HF exchange in the long range, included in this study are ωB97X-

D,79 ωB97X-D3,80 ωB97X-V,81 ωB97M-V,24 M1182 and its revised version revM11.83 Two

screened exchange density functionals (HSE-HJS84,85 and MN12-SX86), which contain DFT

exchange in the short range and attenuated HF exchange in the long range are also included.
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The computational cost of semi-local functionals scales as O(N3), where N is the number

of basis functions in the system. Rung five of the Jacob’s ladder includes two types of suc-

cessful density functionals: Double hybrid density functionals which contain some fraction

of correlation energy from perturbation theory and density functionals which are based on

the Random Phase Approximation (RPA). These DFAs are characterized by their superior

accuracy and increased computational cost in comparison to semi-local and hybrid DFAs.

In this work, we focus only on double hybrid density functionals and have included seven

double hybrid density functionals in this study: B2PLYP-D3(BJ),87 XYG3,88 XYGJ-OS,89

PBE0-DH,90, PTPSS-D3(0),91 DSD-PBEPBE-D3(BJ),92 and ωB97M(2).93 Double hybrid

density functionals are more expensive with a formal computational scaling of fifth order

with system size.

The def2-QZVPPD94 basis set was used for all DFA calculations with a quadrature

grid of 99 Euler-MacLaurin radial points and 590 Lebedev angular points for integrating the

exchange-correlation contribution. SG-195 integration grid was used for integrating the VV10

component. The choice of core for frozen core approximation and employment of density

fitting approximation for computing MP2 correlation energy in double hybrid density func-

tionals is discussed in Table S1. All the PECs were interpolated using the one-dimensional

Akima interpolator.96 All computations were performed using Q-Chem 5.97

Results and Discussion

H2Bind78×7 dataset

Typically, the coupled cluster reference H2 interaction energy with the binding motif is

strongest at equilibrium, that is at req. This implies that the geometries optimized using

ωB97M-V/def2-TZVPD94 are also close to the CCSD(T)/CBS minima. Fig. 1 shows the

distribution of interaction energies for the entire H2Bind78×7 dataset consisting of 545

data points. The equilibrium and geometries near equilibrium (0.9req, 1.0req, 1.0rverteq , and
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Figure 1: Distribution of coupled-cluster reference interaction energies separated by loca-
tion on the potential energy curve. The reference vertical interaction energy at equilibrium
(1.0rverteq ) is also shown.

11



1.1req) have attractive interaction energies, with most of them smaller than 100 kJ/mol in

magnitude. Geometries that are stretched by 25% (1.25req) are still attractive in nature, but

most interaction energies are smaller than 60 kJ/mol in magnitude. Geometries stretched

by 50% of their equilibrium distance are bound only weakly with a median binding energy

of −6.9 kJ/mol. At the other extreme of the PEC, geometries that are compressed by

25% (0.75req) are mostly repulsive with a median interaction energy of +29.7 kJ/mol. This

geometry was also chosen in order to sample the repulsive part of the PEC and assess how

accurately different density functionals can reproduce it.98

The range of interaction energies covered by each PEC is also very large. The coinage

metal containing species are the strongest binders, as illustrated by the extreme example of

AuF which binds H2 with an interaction energy of−161.8 kJ/mol at equilibrium and interacts

with H2 with an energy of +87.6 kJ/mol (repulsive) at 0.75req, thus spanning an interaction

range of 249.4 kJ/mol. Data points in the organic category have the smallest ranges (average

range is 19 kJ/mol). A typical PEC of H2 interacting with a binding moiety has the shape

of a Morse potential. However, there is considerable variation in the well depth, well width,

and decay in the long range for different chemical species. This variation can provide some

clues into the dominant mechanism of interaction. For example, the AuCl binding motif

interacts with one H2 with an interaction energy of −123.7 kJ/mol at equilibrium which

decays to −21.3 kJ/mol at 1.5req (82.7% decrease). This is a sharp decay in the interaction

energy in comparison to the Mg2+ case. In the Mg2+ interacting with one H2 case, the

interaction energy at equilibrium is −97.8 kJ/mol in comparison to −37.7 kJ/mol at 1.5req

(61.4% decrease). This suggested that the dominant mechanism of interaction in Mg2+ case

is longer-ranged (like permanent electrostatics) than AuCl which is dominated by orbital

controlled short-ranged interactions like charge transfer.
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Table 3: Regularized mean absolute percentage error (RegMAPE) and root mean squared
error (RMSE; in kJ/mol) of all DFAs considered in this work for the entire H2Bind78×7
dataset.

Rank DFA RMSE (kJ/mol) DFA RegMAPE (%)
1 PBE0-DH 2.9 PBE0-DH 5.0
2 DSD-PBEPBE-D3(BJ) 3.7 ωB97X-V 5.4
3 ωB97X-V 4.0 ωB97M-V 6.3
4 ωB97X-D 4.1 DSD-PBEPBE-D3(BJ) 6.3
5 PBE0 4.2 XYGJ-OS 6.9
6 MVSh 4.3 ωB97M(2) 7.4
7 HSE-HJS 4.3 PBE0 7.6
8 ωB97M-V 4.5 HSE-HJS 7.6
9 XYGJ-OS 4.6 B2PLYP-D3(BJ) 8.2
10 ωB97X-D3 4.8 XYG3 8.5
11 XYG3 4.8 ωB97X-D 9.0
12 PTPSS-D3(0) 4.9 B97M-rV 9.0
13 ωB97M(2) 5.1 B97M-V 9.1
14 PBE0-D3(BJ) 5.2 SCAN0 9.1
15 MN15 5.7 PTPSS-D3(0) 9.3
16 B2PLYP-D3(BJ) 5.8 ωB97X-D3 9.8
17 SCAN0 5.8 MVSh 10.2
18 TPSSh 6.0 TPSSh 11.3
19 revM11 6.3 PBE0-D3(BJ) 11.5
20 mBEEF 6.7 M11 12.0
21 revM06 6.9 revTPSS 12.0
22 B3LYP 7.4 revM06 12.4
23 revTPSS 7.5 TPSS 13.6
24 B3LYP-D3(0) 7.5 TPSSh-D3(BJ) 13.8
25 B97M-V 7.6 B3LYP-D3(0) 14.0
26 B97M-rV 7.6 oTPSS-D3(BJ) 14.6
27 TPSS 7.7 TPSS-D3(BJ) 14.7
28 oTPSS-D3(BJ) 7.8 MN15 15.3
29 TPSSh-D3(BJ) 8.0 PBE 15.3
30 MN15-L 8.0 revM11 15.3
31 revPBE-D3(op) 8.5 BLYP-D3(op) 15.4
32 TPSS-D3(BJ) 8.5 B3LYP 15.5
33 revPBE 9.1 SCAN 15.6
34 MN12-SX 9.2 MN12-SX 16.2
35 RPBE 9.3 SCAN-D3(BJ) 16.3
36 M11 9.4 M06 16.9
37 B97-D3(BJ) 9.7 revPBE-D3(op) 17.0
38 BLYP-D3(op) 9.8 PW91 17.4
39 M06 9.9 MS2 17.4
40 BLYP 10.1 mBEEF 17.4
41 PBE 10.3 BP86-D3(BJ) 18.4
42 M06-L 10.5 M06-2X 19.3
43 BP86-D3(BJ) 10.9 M06-2X-D3(0) 19.8
44 B97-D3(0) 11.0 MN15-L 19.8
45 PBE-D3(0) 11.0 PBE-D3(0) 20.1
46 PW91 11.2 MS2-D3(op) 20.3
47 GAM 11.8 M06-L 20.7
48 MS2 12.1 RPBE 20.9
49 MS2-D3(op) 12.4 BLYP 22.1
50 SCAN 12.9 revPBE 23.4
51 SCAN-D3(BJ) 13.2 B97-D3(BJ) 24.2
52 M06-2X 13.4 GAM 24.7
53 M06-2X-D3(0) 13.4 B97-D3(0) 28.3
54 SPW92 32.6 SPW92 63.0
55 SVWN5 32.7 SVWN5 63.0
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Performance of Density Functional Approximations on PECs

We will discuss the performance of DFAs using multiple error metrics. Each of these met-

rics gives different weights to different aspects of the dataset. First, we will discuss the

performance of DFAs using the root mean square error (RMSE) metric which gives equal

importance to all data points in the H2Bind78×7 dataset. The RMSE of all 55 DFAs as-

sessed in this work is shown in Table 3. The non-empirical double hybrid functional with

just two fixed parameters, PBE0-DH, gives the least RMSE of 2.9 kJ/mol. The second best

DFA is another double hybrid DSD-PBEPBE-D3(BJ) with an RMSE of 3.7 kJ/mol. In com-

parison to the earlier H2Bind275 dataset where DSD-PBEPBE-D3(BJ) was ranked fourth,

it performs relatively better for the H2Bind78×7 dataset moving up by two places.23 This is

closely followed by ωB97X-V and ωB97X-D, both of which show a similar RMSEs of 4.0 and

4.1 kJ/mol respectively. Another trend seen in the H2Bind275 dataset that is transferable

to the H2Bind78×7 dataset is that the best performing DFA in each rung of the Jacob’s

ladder performs better than the best performing functional in rung directly below it. The

least RMSE DFA in each rung also remains the same: SPW92 for LDA, revPBE-D3(op) for

GGAs, mBEEF for meta-GGAs, ωB97X-V in the hybrids rung, and PBE0-DH in the double

hybrids rung. The ranking of ωB97M-V deteriorates in the extended dataset in comparison

to the previous H2Bind275 dataset. Another interesting observation is the improvement in

the ranking of the MN15 density functional which is ranked 15th in the H2Bind78×7 dataset

with an RMSE of 5.7 kJ/mol (MN15 was ranked 25th with an RMSE of 6.3 kJ/mol in the

H2Bind275 dataset). The relative performance of B97M-V and B97M-rV (ranked 25th and

26th) in the H2Bind78×7 dataset remains comparable to their performance in the H2Bind275

dataset. We also note that commonly used density functionals like M06-2X and M06-2X-

D3(0) and the recently developed density functionals like SCAN and SCAN-D3(BJ) show

very large RMSEs.

The reference interaction energies in the H2Bind78×7 dataset span a very large range:

from −189.0 to 92.1 kJ/mol. However, for H2 storage applications between 5 and 100 bar,

14



PB
E

BL
YP

-D
3(

op
)

re
vP

BE
-D

3(
op

)
PW

91
BP

86
-D

3(
BJ

)
PB

E-
D

3(
0)

R
PB

E
BL

YP
re

vP
BE

B9
7-

D
3(

BJ
)

G
AM

B9
7-

D
3(

0)

B9
7M

-rV
B9

7M
-V

re
vT

PS
S

TP
SS

oT
PS

S-
D

3(
BJ

)
TP

SS
-D

3(
BJ

)
SC

AN
SC

AN
-D

3(
BJ

)
M

S2
m

BE
EF

M
N

15
-L

M
S2

-D
3(

op
)

M
06

-L

B9
7X

-V
PB

E0
H

SE
-H

JS
B9

7X
-D

B9
7X

-D
3

PB
E0

-D
3(

BJ
)

B3
LY

P-
D

3(
0)

B3
LY

P

B9
7M

-V
SC

AN
0

M
VS

h
TP

SS
h

M
11

re
vM

06
TP

SS
h-

D
3(

BJ
)

M
N

15
re

vM
11

M
N

12
-S

X
M

06
M

06
-2

X
M

06
-2

X-
D

3(
0)

PB
E0

-D
H

D
SD

-P
BE

PB
E-

D
3(

BJ
)

XY
G

JO
S

B9
7M

(2
)

B2
PL

YP
-D

3(
BJ

)
XY

G
3

PT
PS

S-
D

3(
0)0%

5%

10%

15%

20%

25%

30%

R
eg

M
AP

E

GGA meta-GGA Hybrid GGA Hybrid meta-GGA Double hybrid

5%

8%

10%

12%

15%

Figure 2: Performance of density functional approximations for the H2Bind78×7 dataset
assessed using regularized mean absolute percentage error (RegMAPE). The LDA density
functionals, SPW92 and SVWN5, are not included in this figure and show a large RegMAPE
of 63.0%.
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interaction energies in the −15 to −25 kJ/mol range would be ideal.13–15 A good error metric

should give more weight to data points in this range by considering the following aspects:

1. The H2Bind78×7 dataset contains many model binding motifs, each of them binding

H2 with different interaction energies at their corresponding equilibrium geometry.

Binding motifs that bind H2 with an interaction energy in the range of −15 to −25

kJ/mol should have larger weights.

2. Each binding motif contributes six data points: two compressed data points, three

elongated data points, and one data point at equilibrium. Equilibrium geometries

should be given larger weight than the non-equilibrium ones.

The regularized mean absolute percentage error (RegMAPE) was formulated in Ref. 23 in

order to satisfy requirement (1). RegMAPE uses percentage error in the −15 to −25 kJ/mol

range, regularized percentage error (in order to avoid small denominators) for interaction

energies weaker than −15 kJ/mol, and absolute error for interaction energies stronger than

−25 kJ/mol. The error metrics in neighboring ranges are also smoothly interpolated. For the

same amount of error, as percentage error is much larger in magnitude than absolute error,

the RegMAPE error metric is able to satisfy criterion (1). For example, an error of 5 kJ/mol

for a reference interaction energy of 100 kJ/mol will contribute 5 units to the total error

while the same error for a reference interaction energy of 20 kJ/mol will contribute 25 units

to the total error. For a given binding motif, the equilibrium geometry should be given more

weight as it represents the H2 interaction with the primary binding site: the main lever to

tune while designing binding sites. As non-equilibrium geometries are higher in energy, they

would be encountered less frequently in a molecular dynamics or Monte Carlo simulation.

Hence, lower weight for non-equilibrium geometries is achieved by using the equilibrium

regularization value for non-equilibrium geometries as well. As the equilibrium geometry

always has a stronger interaction energy, the regularized value of its reference interaction

energy, Ẽ(req), will be larger in magnitude in comparison to the regularized values of non-
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equilibrium interaction energies (Ẽ(αreq), α 6= 1.0). The large magnitude of the denominator

will give a smaller weight to the errors of non-equilibrium geometries in comparison to the

equilibrium one. RegMAPE for equilibrium and non-equilibrium geometries as defined in

Eq. (4) satisfies requirement (2).

∆E(αreq) =
EDFA(αreq)− Eref(αreq)

Ẽ(req)
, α ∈ {0.75, 0.9, 1.0, 1.1, 1.25, 1.5} (4)

where ∆E(αreq) is the RegMAPE, EDFA(αreq) and Eref(αreq) are the DFA and reference

interaction energies at αreq geometry, and Ẽ(req) is the regularized interaction energy for

the equilibrium geometry. As the vertical interaction energy is located at the minimum of

the PEC, the error in this data point is regularized using the vertical reference interaction

energy.

The performance of DFAs assessed by the RegMAPE error metric is shown in Fig. 2 and

Table (3). While there are some similarities in the relative ordering of density functionals for

RegMAPE and RMSE error metrics, there are also noteworthy differences. Again, PBE0-DH

shows the best performance with the least RegMAPE of 5.0%. It is followed by the ωB97X-V

and ωB97M-V density functionals which have RegMAPEs of 5.4% and 6.3% respectively. The

DSD-PBEPBE-D3(BJ) density functional, which was the best performing density functional

in the H2Bind275 dataset with RegMAPE of 4.9%, is the fourth best performing DFA for

the H2Bind78×7 dataset. The small decline in the performance of DSD-PBEPBE-D3(BJ)

can be attributed to its poor performance for the non-equilibrium geometries as shown in

Table S2. Another noteworthy decline in performance is that of the B97M-V and B97M-rV

functionals. These functionals were the best performing semi-local density functionals in the

H2Bind275 dataset (ranked 5th and 6th), and were recommended as inexpensive alternatives

to the best performing and expensive density functionals.23 However, their performance in

the current H2Bind78×7 dataset deteriorates with B97M-rV and B97M-V yielding errors

of 9.0% and 9.1% (ranked 14th and 15th) respectively. While this reflects their lacklustre
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performance for the non-equilibrium geometries, they still remain the best performing semi-

local functionals. The next best performing semi-local density functional, revTPSS, is ranked

21st and shows a RegMAPE of 12.0%. The performance of PBE0 and B2PLYP-D3(BJ) DFAs

shows significant improvement relative to their performance in the H2Bind275 dataset with

both density functionals entering the top 10 category for the H2Bind78×7 dataset.

0.75req 0.9req 1.0req 1.0rvert
eq 1.1req 1.25req 1.5req

H2 distance from binding site

2.5

5.0

7.5

10.0
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m
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PBE-D3(0)
B3LYP
B3LYP-D3(0)

Figure 3: Effect of addition of empirical dispersion corrections on the RMSE of overbinding
(PBE) and underbinding (B3LYP) density functionals at different points on the potential
energy curve.

Other general trends also hold for DFAs assessed with the RegMAPE error metric. The

best DFA of each rung of the Jacob’s ladder outperforms the best DFA from the rung

below it. The best performing meta-GGA functional is B97M-rV with a RegMAPE of

9.0% and the best GGA is PBE with a RegMAPE of 15.3%. The effect of addition of

empirical dispersion correction can also be assessed using the mean signed error (MSE) and

RegMAPE metrics. Addition of dispersion correction improves the performance only if the

parent density functional has a systematic underbinding problem (characterized by a positive

value of MSE). For example, B3LYP has an MSE of 2.7 kJ/mol and a RegMAPE of 15.5%

and is systematically underbinding H2(s). Addition of a dispersion correction to B3LYP

leads to the B3LYP-D3(0) functional which overcomes this underbinding problem. B3LYP-
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D3(0) slightly overbinds with an MSE of −0.8 kJ/mol, but shows an improved RegMAPE of

14.0%. Addition of DFT-D corrections also improves the performance of other underbinding

DFAs like revPBE and BLYP. However, addition of these corrections to parent DFAs that

are already overbinding exacerbates the overbinding issue leading to poorer performance as

exemplified by PBE, PBE0, TPSS, SCAN, and MS2 functionals. Remarkably, PBE without

any dispersion correction is the best performing GGA. As empirical dispersion correction

is distance dependent, it is interesting to see its effect at different points on the PEC. For

overbinding functionals, addition of dispersion correction worsens their performance across

the PEC as exemplified by the PEC of PBE and PBE-D3(0) in Fig. 3. The difference between

the RMSEs of PBE and PBE-D3(0) increases with increasing distance of H2 with the binding

site as dispersion corrections are usually damped in the short range. Dispersion corrections

improve the performance of underbinding functionals in the short range. However, in the long

range, dispersion corrections overestimate its magnitude, causing BLYP, B3LYP, and revPBE

to overbind in the elongated regime. We also note that semi-local functionals without any

empirical dispersion corrections like PBE, while providing the smallest RegMAPE among

GGAs, rely on fortuitous error cancellation and might potentially not be transferable to

larger, dispersion-bound systems outside the dataset. MSEs and RMSEs of all the DFAs

containing dispersion corrections and their corresponding parent functionals is shown in

Table S3.

Addition of HF exact exchange is essential to ameliorate the effect of self interaction

error in density functionals. Comparing DFAs belonging to the same family, addition of HF

exchange improves the performance of semi-local functionals for the H2Bind78×7 dataset.

PBE0, which contains 25% HF exchange, is ranked the 7th with a RegMAPE of 7.6%. In

contrast, the PBE functional is ranked 29th with a RegMAPE for 15.3%, more than two times

that of PBE0. HF exchange is a short-range effect and addition of HF exchange improves

the performance of density functionals in the short range as shown in Fig. 4. While the

hybrid functional performs better than its semi-local counterpart throughout the PEC, its
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Figure 4: Performance of density functionals of the same family with and without Hartree
Fock exchange at different points on the potential energy curve.

effect is more pronounced in the compressed region than the elongated region. The SCAN

and SCAN0 functionals show RMSEs of 21.6 and 9.5 kJ/mol (a difference of 12.2 kJ/mol) at

0.75req of the PEC. Their RMSEs at 1.5req is 3.9 and 2.1 kJ/mol, with the hybrid functional

improving on the semi-local one by only 1.8 kJ/mol.

The RegMAPE error metric gives larger weights to data points whose reference inter-

action energies are in the interesting range for H2 storage. Further, it gives more weight

to the equilibrium data point than non-equilibrium data points. The relative weights of

data points on the PES can be further tuned in order to assess the origin of errors of dif-

ferent DFAs. Elongated geometries are encountered more often than compressed geometries

in porous material capable of storing H2. Compressed geometries are also much higher in

energy (geometries compressed by 25% are almost always repulsive) and are encountered

less often in simulations. This would suggest retuning the weights of the regularized errors

by giving larger weights to equilibrium and elongated regions of the PEC. The weighted
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RegMAPE (denoted as wRegMAPE or ∆Ew) is defined as:

∆Ew =
∑
i

wi∆E(αireq)

7
s.t.

∑
i

wi = 7 (5)

where ∆E(αireq) is the RegMAPE at the point αireq defined in Eq. (4). Ensuring that

the weights sum up to 7 would enable an apples-to-apples comparison of wRegMAPE and

RegMAPE. In the case of RegMAPE, wi = 1, for all values of i. Reducing the weights

of the compressed geometries with the scheme shown in Table 4, the wRegMAPE can be

computed using Eq. (5). This wRegMAPE metric, shown in Table 5, gives more weight to the

elongated geometries. As the vertical interaction is computed its respective PEC minimum,

the 1.0rverteq data point is assigned a weight equal to that of the adiabatic interaction energy

at PEC minimum.

Table 4: Weights for different points on the adiabatic PEC and vertical interaction energy for
calculating the weighted regularized mean absolute percentage error (wRegMAPE) metric.

PEC location 0.75req 0.9req 1.0req 1.0rverteq 1.1req 1.25req 1.5req
Weight (wi) 0.75 0.91 1.07 1.07 1.07 1.07 1.07

Comparing the magnitude of the wRegMAPE (Table 5) of different DFAs to their cor-

responding RegMAPE (Table 3), we can notice that the wRegMAPEs are slightly smaller.

Smaller wRegMAPEs suggest that density functionals perform better for the equilibrium and

elongated geometries in comparison to the compressed ones. However, the relative ordering

of density functionals remains more or less the same. The top five best performing DFAs

(PBE0-DH, ωB97X-V, ωB97M-V, DSD-PBEPBE-D3(BJ), and XYGJ-OS) according to the

RegMAPE metric are also the five best performing functionals according to the wRegMAPE

metric. We see that the recently parametrized ωB97M(2) double hybrid density functional,

which uses ωB97M-V orbitals, is ranked sixth with wRegMAPE of 7.0%.
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Table 5: Weighted regularized mean absolute percentage error (wRegMAPE) for selected
density functional approximations.

Rank DFA wRegMAPE (%)
1 PBE0-DH 4.8
2 ωB97X-V 5.2
3 DSD-PBEPBE-D3(BJ) 5.9
4 ωB97M-V 6.0
5 XYGJ-OS 6.5
6 ωB97M(2) 7.0
7 PBE0 7.4
8 HSE-HJS 7.4
9 XYG3 7.9
10 B2PLYP-D3(BJ) 8.0
11 B97M-rV 8.4
12 B97M-V 8.4
13 ωB97X-D 8.5
14 SCAN0 8.7
15 PTPSS-D3(0) 9.1
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Figure 5: Weights of different chemical species as a function of their reference adiabatic
interaction energy at equilibrium.
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Performance of Density Functional Approximation for Geometries

All the equilibrium geometries for this dataset were obtained by geometry optimization using

the ωB97M-V density functional in the def2-TZVPD basis set.94 With the exception of two

chemical systems (AlF3−H2 and Ti+−(H2)2), the CCSD(T)/CBS equilibrium geometry of

all other chemical systems coincides (up to sampling precision) with the ωB97M-V/def2-

TZVPD equilibrium geometry. This further validates the choice of equilibrium geometries

for the H2Bind78×7 dataset.

In order to assess the error in prediction of equilibrium geometry in a manner that

is sensitive for H2 storage purposes, we have devised a weighting scheme that gives larger

weights to more relevant data points. Data points with reference adiabatic interaction energy

at equilibrium (Eref(1.0req)) in the range of −15 to −25 kJ/mol are given a weight of 5.0.

Equilibrium interaction energies stronger than −25 kJ/mol are assigned a weight of 1.0.

These weights were chosen to reflect the relative importance of these data points in the

RegMAPE metric. In the RegMAPE metric, a density functional yielding an error of 1

kJ/mol in the strong binding regime contributes 1 unit to the total error as absolute error

metric is used in this regime. A DFA with an error of the 1 kJ/mol in the middle of the

favorable regime for H2 storage (that is at −20 kJ/mol) contributes 5 units to the total

error as percentage error metric is used. The RegMAPE metric assigns a weight that is

5 times larger to the species in the favorable regime in comparison to the strong binders,

thus justifying the weights of 5.0 and 1.0 in Fig. (5). The weak binders with equilibrium

interaction energies weaker than −15 kJ/mol are mostly comprised of the organic ligands.

These species are ubiquitously found in porous materials capable of adsorbing H2 (like MOFs)

and form secondary binding sites for H2. As this regime is not as important as the favorable

one, it is assigned a weight of 4.0. This weighting scheme is used to form the weighted mean

signed error (wMSE) and weighted mean unsigned error (wMAE) metrics in Fig. (5). The

reference adiabatic interaction energy at equilibrium decides the weight of the corresponding

PEC. As the vertical interaction energy does not lie on the adiabatic PEC, those data points
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were not included in the analyses in this section.
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Figure 6: Weighted mean absolute error (wMAE) and weighted mean signed error (wMSE)
of equilibrium H2 distances predicted by different DFAs.

Most DFAs predict longer equilibrium binding motif – H2 distances which is shown as a

positive value of wMSE in Fig. 6. With the exception of the LDA density functionals, we see

that all other density functionals which predict shorter equilibrium H2 distances have a very

small negative wMSE (> −0.15Å). The double hybrid density functional B2PLYP-D3(BJ)

gives the best performance for predicting equilibrium geometry with a wMAE of 0.08Å. It

is closely followed by the recently parametrized double hybrid ωB97M(2) density functional

with a wMAE of 0.09Å. Both of these DFAs perform much better for equilibrium geometries

in comparison to their performance for PECs. It is also rather surprising to note the less

good performance of PBE0-DH (wMAE of 0.13Å), which is the best performing DFA for

binding energies according to RMSE and RegMAPE. On the other hand, PBE0-D3(BJ)

gives good geometries (ranked 3rd with wMAE of 0.10 Å) but its performance for PECs is

mediocre (ranked 19th with a RegMAPE of 11.5%). However, other top performing DFAs

in the energetics category like XYGJ-OS, ωB97M-V, and ωB97X-V also perform well for
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geometries giving low wMAEs of 0.10 Å, 0.11 Å, and 0.11Å respectively. In particular,

ωB97X-V shows no systematic error with virtually zero wMSE. It is also interesting to note

the good performance of some semi-local density functionals like mBEEF and B97M-rV

which give very low errors despite having no HF exchange. In light of these observations,

and given the enhanced computational cost of double hybrid DFA nuclear gradients,99 one

can use hybrid DFAs like PBE0-D3(BJ) or ωB97M-V to perform a geometry optimization

and then use the optimized geometry to perform a single point interaction energy calculation

using a hybrid or double hybrid functional.

Another noticeable tread is the performance of DFAs upon the addition of some form of

empirical dispersion correction. Addition of empirical dispersion corrections to DFAs reduces

their errors for equilibrium H2 distance prediction when the parent functional overestimates

it. For example, the addition of the D3(op) correction to revPBE decreases its wMSE from

0.68Å to 0.09Å (concurrently decreasing wMAE from 0.74Å to 0.23Å). The performance of

the commonly used density functional B3LYP and M06-2X is quite poor with large wMSE

and wMAEs.

Typically, DFAs are used to optimize geometries of complexes containing an H2 bound

to a binding motif. After the geometry optimization has converged to a minimum on the

potential energy surface, the binding energy of H2 is computed as the difference between

the energy of the complex at the minimum of the potential energy surface and energies of

the binding motif and H2 in isolation. Alternatively, DFAs can also be used in molecular

dynamics and Monte Carlo simulations either directly100 or indirectly (as reference energies

for parametrizing force fields).101–104 In these typical use cases, error in equilibrium binding

energy can be attributed to two sources: (1) Inaccurate prediction of equilibrium geometry

(2) Incorrect prediction of binding energy for the equilibrium geometry. Using DFAs for mod-

eling H2 binding materials, the DFA equilibrium geometry is typically used for computing

the equilibrium binding energy.

We can assess the effect of relaxing the geometry along the PEC (defined by each DFA),
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Table 6: Performance of density functional approximations (DFAs) for predicting H2 binding
energy at equilibrium geometry. The adiabatic regularized mean absolute percentage error
(RegMAPEad) for 15 best performing DFAs and some commonly used DFAs are shown.

Rank DFA RegMAPEad

1 ωB97X-V 4.7
2 DSD-PBEPBE-D3(BJ) 4.7
3 PBE0-DH 5.3
4 ωB97M-V 6.0
5 XYGJ-OS 7.1
6 B97M-rV 7.2
7 B97M-V 7.2
8 ωB97M(2) 7.4
9 ωB97X-D 7.8
10 XYG3 7.9
11 B2PLYP-D3(BJ) 8.3
12 PBE0 8.4
13 HSE-HJS 8.4
14 ωB97X-D3 9.5
15 SCAN0 9.7
28 B3LYP 15.7
30 PBE 16.3
31 SCAN 16.4
33 revPBE-D3(op) 17.3
42 mBEEF 19.9
48 M06-2X 22.3
51 B97-D3(BJ) 24.4
52 GAM 26.5
53 B97-D3(0) 29.4
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the interaction coordinate of H2 with the binding site. Geometry optimization along this

coordinate can either improve or deteriorate the performance of density functionals. The

performance of selected density functionals for predicting the minimum energy geometry on

its PEC and the H2 binding energy for this geometry assessed by the RegMAPE error metric

is shown in Table 6 (the complete table showing the performance of all 55 DFAs is included

in Table S4).

As both the reference and DFA geometries are relaxed along the potential energy curve,

this error metric is adiabatic (ad) in nature as reflected in its subscript (RegMAPEad).

The top five density functionals by the RegMAPEad error metric are also the top five best

performers according to their RegMAPE errors (Table 3), further emphasizing the superior

performance of these DFAs for computing H2 interaction energies. While the top five density

functionals remain the same, it is interesting to note small changes in their order. ωB97X-

V is the best performing DFA with a RegMAPEad of 4.65% which is very closely followed

by DSD-PBEPBE-D3(BJ) with a RegMAPEad of 4.68%. Another noteworthy difference is

the performance of the B97M-rV and the B97M-V functionals which are ranked sixth and

seventh with RegMAPEad of 7.22% and 7.23% respectively. These DFAs were ranked 12th

and 13th with RegMAPE of 9.0% and 9.1%. These functionals show a favorable cancellation

of error in prediction of H2 equilibrium binding energies when the equilibrium geometry is

also optimized using the same functional. As these density functionals also do not have

any HF exchange, they are computationally less expensive making them well-suited for

applications in high-throughput material screening. The rVV10 non-local functional, which

is an approximation67 of the VV10 non-local functional, also allows for efficient evaluation

in a plane wave framework and can be useful for modeling periodic systems like MOFs. A

thorough assessment of the DFA geometry relaxed on the entire potential energy surface, not

just along the one-dimensional PEC, is beyond the scope of this work and we refer interested

readers to Ref. 30 for a detailed discussion of this topic.
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Conclusions

The H2Bind275 dataset published recently23 assesses the performance of density function-

als for predicting the interaction energy of H2 with different model binding motifs at the

equilibrium geometry. In this work, we have assessed the ability of DFAs to predict H2

interaction energies with binding motifs accurately throughout the PEC, not just at equilib-

rium geometry. To that end, we have extended our previous H2Bind275 dataset by adding

two compressed and three elongated geometries along the PEC to form the H2Bind78×7

dataset. The H2Bind78×7 dataset comprises 545 data points at different fixed points along

78 PECs of various model binding motifs with H2. Reference interaction energies for all

data points were computed using CCSD(T) extrapolated to the complete basis set limit.

The performance of 55 DFAs was assessed with the CCSD(T) reference interaction energies

using multiple error metrics. The RMSE metric is democratic and gives equal important to

all the 545 data points. The RegMAPE metric, on the other hand, gives more weight to

binding motifs with interaction energies in the range of −15 to −25 kJ/mol at equilibrium

geometry. For each binding motif, the RegMAPE metric is designed to give more weight to

the equilibrium than non-equilibrium data points as the latter are encountered less often in

modeling and simulation. DFAs are also assessed on the basis of their predicted equilibrium

geometry and binding energy at predicted equilibrium geometry.

The CCSD(T) reference interaction energies for the H2Bind78×7 dataset span a wide

range of attractive and repulsive interaction energies. As repulsive geometries are usually

not included in non-covalent interaction energy datasets, the H2Bind78×7 dataset adds

considerably to the diversity of the available datasets. The non-empirical double hybrid

functional, PBE0-DH, shows the least error (RMSE of 2.9 kJ/mol and RegMAPE of 5.0%)

in predicting H2 binding energy throughout the PEC. The ωB97X-V, ωB97M-V, and DSD-

PBEPBE-D3(BJ) density functionals are also top performers. The semi-local density func-

tionals, B97M-V and B97M-rV, show poorer performance for the H2Bind78×7 dataset, in

comparison to the previous H2Bind275 dataset using the RegMAPE error metric. For the
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H2Bind78×7 dataset, B97M-V and B97M-rV are ranked 13th and 12th respectively with

RegMAPEs of 9.1% and 9.0%. Previously in the H2Bind275 dataset, they were ranked

5th and 6th with RegMAPE of 6.8%. In general, the good performance of the top den-

sity functionals in the H2Bind275 dataset continues for the H2Bind78×7 dataset. Addition

of DFT-D empirical dispersion correction increases the accuracy of underbinding density

functionals like revPBE, BLYP, and B3LYP. This addition also decreases the accuracy of

overbinding parent density functionals like PBE, PBE0, TPSS, SCAN, and MS2. As DFT-

D empirical dispersion corrections are distance dependent, their effect is not felt uniformly

across the PEC. The effect of addition of HF exchange, a short-ranged effect, improves the

performance of density functionals in the compressed regime more than in the elongated

regime of the PEC, thus playing a crucial role in accurately predicting the repulsive wall

of the PEC. The weighted RegMAPE metric gives smaller weights to DFA errors in the

compressed region of the PEC. This metric shows that, in general, DFAs perform better in

the equilibrium and elongated regime than in the compressed region.

Assessment of DFAs for predicting equilibrium geometries reveals that PBE0-DH, which

is the best performer for energies, shows less good performance for geometries. However,

other hybrid functionals like ωB97M-V and ωB97X-V give good performance for both ge-

ometries and energies. Using the adiabatic RegMAPE metric (RegMAPEad) reveals that the

semi-local DFAs, B97M-V and B97M-rV, show very small errors. They benefit significantly

from cancellation between geometry-driven and energy-driven errors. ωB97M-V and ωB97X-

V are the only density functionals that are not double hybrids which consistently show good

performance for all the error metrics (energy and geometry-related) defined in this work. As

these hybrid functionals have significantly lower computational cost in comparison to double

hybrids, we recommend their usage for H2 binding applications.

The H2Bind78×7 dataset, consisting of highly accurate reference interaction energies,

represents a distinctive addition to other non-covalent interaction energy databases. More

than half of this dataset consists of transition metal species which are usually underrepre-
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sented in non-covalent interaction energy datasets. This dataset is composed of complete

PECs, rather than just PEC minimum geometries – only a handful of the non-covalent in-

teraction energy datasets contain this information. Besides, almost all of the PECs in this

dataset sample the repulsive wall. For these reasons, using the H2Bind78×7 dataset in train-

ing or validating DFAs can improve their performance and transferability. This work further

validates the selection of best performing density functionals for the H2Bind275 dataset

using a semi-independent dataset that is about two times larger. The definition and gener-

alization of different error metrics (RegMAPE, wRegMAPE, and RegMAPEad) can be used

for assessment of other similar datasets with well-defined schemes for weighting different

data points. As force field parametrization requires good reference energies throughout the

potential energy surface, the top performing density functionals in this work can be used

for generating them. Random Phase Approximation (RPA) also shows good performance

for dispersion interactions and has been widely used to study molecules, solids, and sur-

faces.105,106 Encouraged by the superior performance of double hybrid density functionals

for the H2Bind275 and H2Bind78×7 dataset, we recommend the assessment of performance

of RPA for H2 interaction energies and PECs.
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