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Abstract

In many organisms, interactions among genes lead to multiple functional states, and changes

to interactions can lead to transitions into new states. These transitions can be related to bifur-

cations (or critical points) in dynamical systems theory. Characterizing these collective transi-

tions is a major challenge for systems biology. Here, we develop a statistical method for

identifying bistability near a continuous transition directly from high-dimensional gene expres-

sion data. We apply the method to data from honey bees, where a known developmental tran-

sition occurs between bees performing tasks in the nest and leaving the nest to forage. Our

method, which makes use of the expected shape of the distribution of gene expression levels

near a transition, successfully identifies the emergence of bistability and links it to genes that

are known to be involved in the behavioral transition. This proof of concept demonstrates that

going beyond correlative analysis to infer the shape of gene expression distributions might be

used more generally to identify collective transitions from gene expression data.

Author summary

A complicated biochemical choreography is responsible for both the behavior of cells that

make up organisms and, at a larger scale, the behavior of cooperating groups like honey

bee colonies. Individuals in these systems often take on specialized roles: cells assume spe-

cific types and bees perform specific tasks. Distinct roles are thought to emerge when dif-

ferences among individuals are amplified. This amplification can create a transition from

continuous variation to a case with two separate types. Identifying how and when these

transitions occur has been challenging. Here, we create a method inspired by statistical

physics to detect this type of collective transition using gene expression data. We demon-

strate it by locating a known transition in honey bees between those that stay in the nest

and those that leave to find food. We also show that the method can handle the type of

large datasets that are now routinely generated in many areas of systems biology.
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1 Introduction

Social insects represent well-known examples of adaptive collective systems, combining the

efforts of many individual actors to produce robust and adaptive aggregate behavior [1]. The

allocation of tasks to individuals and, in some cases, specialization of individuals to particular

tasks, often displays a sophisticated organization that promotes collective success [2]. This dis-

tributed coordination of effort is the result of a complicated process reaching from the level of

gene regulation to social interactions. Mapping out the drivers of this process is a major chal-

lenge in understanding how collective behavior is successfully regulated in social insects, and

connects to open questions more generally across living systems [3, 4].

In honey bees, specialization occurs typically among the worker daughters of a single

queen. The largest distinction among workers is between those that mostly perform tasks

within the nest (brood care, food processing, nest construction and maintenance, and colony

defense) and those that leave the nest to forage. Bees typically begin their lives performing

more in-nest tasks (nest bees), and in about their second to fourth week of life a major transi-

tion occurs in which they switch to foraging outside the nest (foragers) [5, 6]. Individual bees

vary in the age at which they make this nest bee to forager transition, and while the transition

can be reversed in individual bees if the colony’s needs change, few normally do. This temporal

bifurcation leads to an age-related division of labor [7].

The mechanisms behind this behavioral transition include interactions between genes and

other factors expressed within each bee, interactions between bees, and interactions between

bees and their local environment [5, 8–14]. At the individual level, the gene product Vitello-

genin (VG, formerly known as an egg-yolk precursor) and the endocrine factor juvenile hor-

mone (JH), and the interactions between the two, have been well studied [5, 12, 15]. The

interaction takes the shape of a mutually suppressive feedback control system that appears to

be at the core of the bifurcation of behavior between nest activities and foraging. Increasing

levels of VG suppress JH in early life, while lower levels of VG in later life leads to higher titers

of JH that further suppresses VG by inhibiting vg gene expression [5]. The behavior of this

positive feedback control is consistent with the phenomenology of the transition, with either

increases to JH (e.g. resulting from fewer interactions with other foraging bees as well as expo-

sure to a variety of stressors) or decreases to VG (e.g. resulting from reduced food intake or

excessive consumption of physiological nutrient stores during nursing tasks) leading to rein-

forcing feedback and the initiation of foraging. This general picture has recently been refined

by situating VG and JH within larger gene networks involved in target of rapamycin and insu-

lin signaling, ecdysone response, ovarian and neural activation [13]. Still, little is known about

the full spectrum of genes and network dynamics that drive the transition from nest bee to for-

ager and at least temporarily “lock” worker honey bees into the different roles.

An analogous phenomenon occurs in cell differentiation in multicellular organisms. Here,

genetically identical cells perform distinct roles in the larger organism. Distinct cell types are

“locked in” by regulatory interactions typically understood at the level of gene transcription.

The dynamics of these interactions are thought to produce separate attractor states with differ-

ent gene expression patterns that correspond to distinct cell types [16, 17].

In the language of dynamical systems, transitions among separate attractors are understood

as arising from bifurcations that change the number of attractor states or from noise-induced

hopping among co-existing attractors. In the cellular differentiation literature, statistical tools

have been developed for use with gene expression data to identify transitions that create new

attractor states [17–20]. These studies have shown that multiple cases of cell state change are

consistent with dynamics that pass through or near a continuous bifurcation, also known as a

critical transition. This type of bifurcation is known to result from positive feedback loops in
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many biochemical networks [21, 22]. Such a bifurcation can be identified by monitoring for

increased correlated fluctuations in gene expression before the transition [17, 18] or by testing

for evidence of bimodality in gene expression after the transition [19, 20]. More generally,

such critical transitions are theorized to be ubiquitous across biology as mechanisms for con-

trolling collective behavior [3, 4, 23–26].

In honey bees, studies linking gene expression to behavior have tended to focus on search-

ing for individual genes whose expression correlates with behavior [14, 27, 28]. This contrasts

with a collective-scale view of multiple interacting genes across multiple individuals that we

anticipate will be necessary to find evidence of critical transitions.

In this study, we analyze gene expression data across an ensemble of individual honey bees

and across a series of developmental timepoints to examine genetic-scale indicators of the

transition from in-nest tasks to foraging. We develop a method for identifying critical transi-

tions based on the Landau theory of phase transitions in statistical physics and the theory of

bifurcations in dynamical systems. At each timepoint, using measurements of gene expression

across multiple bees, we are able not only to estimate mean expression values and their co-vari-

ance, but to infer the shape of the distribution of expression values. This shape can be expected

to begin as unimodal as bees initially emerge from pupation, with gene expression values fluc-

tuating around a common mean. As the adult bees develop, increased variation in behavior

could be connected to continuous variation in gene expression, or at some point expression

values could split into two well-defined groups (e.g. nest bees and foragers) corresponding to

discontinuous variation. Such a transition would be indicated by a change from unimodality

to bimodality in the distribution of expression values, which our method explicitly identifies.

Our method is designed to work with high-dimension-low-sample-size data as is common in

transcriptomic data; it does not require prior knowledge of important genes; and it is formu-

lated using a Bayesian interpretation to provide precise statistical meaning with respect to

model selection and transition identification. We use our method to answer the questions of

whether and when the bees’ transition to foraging is visible in gene expression data, whether it

is consistent with a continuous bifurcation transition, and which genes are most associated

with such a transition.

2 Results

We examined gene expression profiles of Nsamples = 16 bees at 5 developmental timepoints,

from 1 to 15 days old, spanning the transition in behavioral development from all bees remain-

ing in the nest to some bees leaving the nest to forage. To critically test the concepts of our sta-

tistical model, we focused on a set of genes Ngenes = 91 that we expected to be involved in

distinguishing the nest bee and forager behavioral phenotypes through their actions on and

with VG, a known determinant of foraging onset. Some of these genes have known correla-

tions with VG production and with each other, while others were suspected of being involved

through their action in common gene networks. Additional genes were selected because they

are located within the genetic map confidence limits of known quantitative trait loci (QTL)

shown to have effects on ovaries, VG production, and foraging behavior [29], or involved in

stress or immune-associated pathways that have been correlated with the behavioral transition

before [30]. We predicted that the expression of sets of genes affecting foraging should diverge

from their expression in nest bees leaving a detectable bimodal distribution of gene expression

representing the bifurcation.

We tested for bimodality consistent with a continuous transition using a Bayesian analysis.

In particular, we compared the goodness-of-fit of a unimodal Gaussian distribution with the

form of bimodal distribution expected near a continuous transition (see Methods). We were
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able to perform this test with low sample sizes (Nsamples <Ngenes) because bistability is expected

to begin along the dimension with the largest variance (the first principal component; see

Methods section “Dynamical model of gene interactions”), and we could thus focus on identi-

fying bimodality along this single dimension.

We first demonstrate proof of the principle that this method can successfully infer a transi-

tion to bistability in simulated data from a simple model of noisy gene regulatory dynamics

with Ngenes = 91. Fig 1 displays the fraction of simulations in which evidence of a transition

was successfully identified as a function of the strength of interactions that induce a transition.

While a larger number of samples can identify the transition earlier (Nsamples = 100; red

points), even with the smaller number of samples that we have here (Nsamples = 16; orange

points), we expect to be able to identify such a transition once the bimodality is more

pronounced.

Applying this analysis to the honey bee expression data, we find a transition into two dis-

tinct groups that is statistically visible at age 10 days and more apparent at age 15 days (Fig 2).

Specifically, a Bayesian Information Criterion comparing the unimodal Gaussian distribution

to the bimodal distribution expected near a transition strongly favors bimodality at these later

ages (Fig 2B; see Methods for more details). In Fig 3, we plot for these two ages the gene

expression data and inferred transition distribution along the bistable dimension (correspond-

ing to the first principal component; see Methods). The data and the inferred distribution in

Fig 1. The method successfully identifies the transition state in simulated data. As interaction strength α increases

in a simple dynamical model of gene regulation (see Eq (19) in the Methods), gene expression levels projected along

the first principal component transition from a unimodal to a bimodal distribution (three insets show simulated data

as blue histograms and the best-fit distributions as red curves). A statistical comparison between a Gaussian

distribution and the distribution shape expected near a continuous transition reliably identifies the transition state

once the bimodality is sufficiently pronounced (red and orange points). Increasing the number of data samples allows

identifying the transition state when bimodality is less pronounced (compare red and orange points). Error bars

indicate estimated standard deviation of the mean given 100 simulations.

https://doi.org/10.1371/journal.pcbi.1010704.g001
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this dimension are characterized by bees that fall roughly into two clusters, with a few bees that

are transitional between the two clusters.

Different genes contribute differentially to defining the bistability. Sorting by the fraction s
of each gene’s variance that lies along the bistable dimension highlights those genes whose

expression values give the most information about the side of the bistability on which each bee

lies (Fig 4 and Table 1). In Fig 4, we also display the measured expression levels of the most

informative genes, with datapoints from each bee colored according to their positions along

the bistable dimension. Comparison with known gene expression patterns suggests that purple

points correspond to bees predisposed to in-nest behavior, and orange points to those predis-

posed to foraging behavior [5, 31].

3 Comparison to other potential methods for identifying a

transition

A family of related methods for detecting bimodality would correspond to fitting bimodal dis-

tributions of different shapes along the first principal component. One simple choice would be

a mixture model that combines two Gaussian distributions. We compare our derived “Lan-

dau” distribution to this Gaussian mixture distribution (fitting the location of each Gaussian, a

common width, and their relative weight, producing 2 extra degrees of freedom compared to

the single Gaussian model). In Fig 5, we demonstrate using simulated data that this

Fig 2. In honey bees, both the variance of gene expression and the strength of evidence for bistability grow over

developmental time. A: The standard deviation of gene expression along the principal component increases during

development. Error bars show standard errors (Nsamples = 16). B: The Bayesian Information Criterion measure ΔBIC

quantifies the strength of evidence in favor of the bistable transition distribution as compared to a unimodal Gaussian,

with positive values favoring bistability (blue circles; see Methods Eq (16)). We interpret ΔBIC values larger than 6

(horizontal dashed line) as strong evidence for bistability. We also compute ΔBIC that compares a Gaussian mixture

(n = 2) with the unimodal Gaussian, which identifies weaker evidence for bimodality (orange Xs; see section 3).

https://doi.org/10.1371/journal.pcbi.1010704.g002

Fig 3. Bistability along the first principal component. Gene expression data from 16 bees at age 10 days and 15 days

projected along the first principal component (colored circles; log-transformed data). Colors correspond to distance

along this dimension, with orange chosen to represent the low vg state indicative of foragers. The fit Landau

distribution is shown in blue.

https://doi.org/10.1371/journal.pcbi.1010704.g003
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distribution performs significantly worse in detecting the transition to bimodality and in fit-

ting the distribution of gene expression values. Comparing the best fit of the two distributions

to 50,000 samples from the model close to the transition (Fig 5B), the Landau distribution is a

notably better approximation to the sampled data than the Gaussian mixture model. Even for

this large number of samples, the Landau distribution is not statistically distinguishable from

the sampled data (KS statistic = 4.2 × 10−3, p = 0.33), while the Gaussian mixture distribution,

with one more parameter than the Landau model, is significantly different (KS statistic = 0.017,

p< 10−10). Furthermore, the orange points in Fig 2B show that the Gaussian mixture model is

not as statistically favored as the Landau model in fitting our experimental data.

Another related technique, explored in the context of cell differentiation in Ref. [17], looks

for signatures of a continuous transition before the split to bimodality, related to increased var-

iance in the expression of particular genes. The method is simpler than ours in that it only

requires measuring pairwise correlations among genes and bees, and does not explicitly mea-

sure the shape of the distribution of expression values. The method has the advantage of explic-

itly incorporating the increase in variance one expects to find when an existing attractor is

destabilized, which can help to distinguish the case of attractor destabilization from the case of

hopping between co-existing attractors. Applied to our data, a relative increase of the resulting

“transition index” at days 10 and 15 (see Fig 6) is also suggestive of a transition state, but only

when limited to genes that we identify as most informative through our measure s. We note

that the original formulation of this measure did not assume that the most important genes

were known a priori [17], though this seems to be necessary to identify the transition when

Fig 4. Individual genes associated with the bistability. A handful of individual genes or gene products have a large

proportion s of their variance along the bistable dimension. Here we highlight all genes with s> 2/3. Orange and

purple colors correspond to bees on two sides of the bistability, with orange chosen to represent the low vg state that is

indicative of foragers. In the column “up/down reg.”, we indicate whether the gene is up or down regulated in the

orange state as compared to the purple state. Expression data for these genes are shown with the same colors for

individual bees as in Fig 3, along with the marginalized fit distribution in blue (log-transformed data, with scale bar

corresponding to an expression ratio of 10).

https://doi.org/10.1371/journal.pcbi.1010704.g004
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applied to our data. Though our method is somewhat more computationally involved, it is

able to identify individual genes that are related to transition states, infer the shape of the tran-

sition distribution, and produce a statistically interpretable measure (ΔBIC) of the likelihood

of bistability given the data.

Finally, we compare with a method that attempts to identify transitions before they happen

based on “state-transition-based local network entropy” (SNE) [18]. The method is based on

Fig 5. Fitting to the Landau probability density function performs better than a mixture of two Gaussians. In tests

with simulated data, the Landau method (A) identifies the transition state sooner (at smaller μ, when the bistable states

are closer to one another; shown here fitting 100 samples), and (B) fits the transition distribution much more closely

(shown here fitting 50,000 samples at μ = 0.0158; simulated data in blue histogram compared to best fits of Landau

distribution and Gaussian mixture distribution shown as solid curves). Error bars in (A) indicate estimated standard

deviation of the mean given 100 simulations.

https://doi.org/10.1371/journal.pcbi.1010704.g005

Table 1. Genes whose variance in expression is most aligned with the transition dimension. Here we list the top 20 genes, at age 10 and 15 days, ordered according to s,
the fraction of the gene’s variance that lies along the bistable dimension (see Methods Eq (17)).

Day 10 Day 15

gene s gene s
hex 110 0.93 vg 0.95

ilp1 0.83 hex 110 0.89

MRJP-3 0.79 P110 0.80

Hex70a 0.78 transferrin 1 0.80

Def2 0.75 LOC409966 0.77

Malvolio 0.74 Hex70a 0.77

vg 0.74 JHE 0.75

P110 0.72 VG protein 0.69

LOC409966 0.71 ilp1 0.69

PRM1 0.71 Def2 0.68

SVP NR2F1 0.69 PRM1 0.65

AGO2 0.61 TOR 0.64

Hymenoptaecin 0.59 Hymenoptaecin 0.62

SmG 0.58 Malvolio 0.59

TOR 0.54 TYR1 0.58

OA1 or OAR 0.54 E74 0.45

VG protein 0.53 Kr-h1 0.44

USP (RXR) 0.53 cad 0.42

AKHR 0.53 InR1 0.39

Kr-h1 0.52 AGO2 0.35

https://doi.org/10.1371/journal.pcbi.1010704.t001
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identifying correlated fluctuations over time (looking for large changes in SNE within subsets

of genes), and requires knowledge of the network of gene interactions to restrict the computa-

tion of network entropy to local gene subsets. We do not have such an interaction network in

the honey bee case, so we instead compare our method by applying it to a dataset already ana-

lyzed by the SNE method [18]. These data track the transition in humans from healthy liver

function to advanced stages of liver cancer (hepatocellular carcinoma, HCC) [32], with gene

expression profiles including tens of thousands of genes from multiple tissue samples in

healthy controls and in 7 progressive stages of disease. The SNE approach found evidence for a

pre-critical state in the “very early HCC” stage [18]. While SNE looks for fluctuations indica-

tive of a transition to bistability that is imminent but has not yet happened, our approach is

designed to identify bistability as soon as possible after the transition has occurred. We there-

fore expect our method to identify bistability at the same stage or soon after the stage identified

by SNE. When we apply our Landau approach to the data (Fig 7), we indeed find strong and

growing evidence of bistability starting at the “early HCC” stage.

4 Discussion

We show that expression data from 91 genes, taken from 16 honey bee workers sampled at 5

different time intervals that span the first 15 days of life, demonstrate bimodality within time

intervals that becomes more pronounced with age. We hypothesize that the observed bimodal

distributions of gene expression correspond to known temporal dynamics of behavior. Days

10 to 15 correspond to a known developmental time point at which individual bees transition

or prepare to transition from in-nest activities to foraging [6]. Days 10 and 15 demonstrate the

strongest evidence for bimodality, suggesting that the two modes represent the transitioning of

bees from those that engage in nest activities into those that forage.

We propose that the sets of genes defining these bimodal structures are working together in

networks with bistability associated with the distinct behavioral states [5, 15, 33]. The gene net-

works have two stable states that are driven by the JH/VG positive feedback control system.

The JH/VG feedback system drives gene expression that sculpts the physiological and

Fig 6. Existing “transition index” measure also suggests a transition when focused on particular genes. The

transition index defined in Ref. [17] requires selecting a set of genes that are known a priori to be involved in a

transition. Applying this measure to our data and restricting to genes identified by our method, the largest values occur

at age 10 and 15 (red circles). This corroborates our method, which does not require selecting specific genes, yet locates

a transition at a similar time. In contrast, when including data from all 91 genes (pink squares), the signal in the

transition index is washed out.

https://doi.org/10.1371/journal.pcbi.1010704.g006
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behavioral changes in worker behavior. The resulting switch is steep as a consequence of the

feedback mechanisms affecting blood titers of VG and JH. During the nest stage, blood levels

of VG initially increase but eventually decline due to dynamics including depletion (its use in

brood food production) and/or suppression of synthesis due to reduced food intake/availabil-

ity, disease or stress. As VG levels decline, JH titer increases, driving the production of VG

even lower. This positive feedback is behind the steep switch and a route to the transition of

the bee into the forager state. Note that VG may directly affect expression levels of other genes

via DNA-binding capability [34]. There is also a JH and VG independent pathway to the for-

ager state, but its initiator(s) is unknown [5, 35].

The transition is affected by the external environment through feeding activities and stress-

ors: Feeding more larvae can result in more rapid VG depletion and an earlier onset of forag-

ing. Workers in colonies that have stored insufficient pollen, the source of protein, initiate

foraging earlier in life, presumably due to a deficiency in VG levels. Workers in colonies with

fewer foragers accelerate the onset of foraging, presumably by having a reduction of some

unknown inhibitor passed from foragers to younger bees [36] or by the lack of nutrients to

support colony growth. Similarly, pathogens that reduce VG production by, for instance,

reducing nutrient uptake over the gut or consumption of resources in immune activation lead

to earlier foraging onset [37].

Given this context, our list of genes that align most strongly with with the gene network

bistability (Fig 4 and Table 1) is one of “usual suspects.” Most of the genes listed have known

involvement in lipid and lipoprotein synthesis and metabolism, are lipoproteins found in the

hemolymph or hypopharyngeal glands of nest bees involved directly in larval and adult nutri-

tion, regulate the JH/VG switch between nest bees and foragers, or are known “immunity

genes” involved in responses to pathogenic organisms. This result is also an outcome of our

initial selection of the 91 genes, which in essence focused on “usual suspects” to provide a

strong basis for testing our statistical methodology.

More specifically, VG, major royal jelly protein 3 (MRJP-3), and the hexamerins (hex 100

and Hex70a) are lipoproteins that are metabolized prior to the onset of the foraging state. Ele-

ments of the insulin signaling pathway include insulin like peptide 1 (ilp1), its receptor (InR1),

Fig 7. Applying the Landau method to hepatocellular carcinoma data demonstrates its relationship with methods

that rely on the increase of correlated fluctuations. (A) Combining control samples from healthy livers with samples

from various stages of liver cancer (data from Ref. [32]), we find increasingly strong evidence of bimodality starting at

the “early HCC” stage. The SNE approach, designed to find evidence of transitions before they happen, identified

critical fluctuations at the “very early HCC” stage [18]. (B) Along the bistable dimension, increasingly separate clusters

of gene expression are visible. The ground-truth group membership of each sample is indicated by color: purple for

control samples and orange for disease samples.

https://doi.org/10.1371/journal.pcbi.1010704.g007
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and P110. Insulin-like signaling (IIIS) acting in the fat body has been shown to be involved in

VG production and the transition from nest bee to forager. The target of rapamysin (TOR)

pathway cross-talks with IIS signaling in the regulation of JH, while at least TOR is influencing

VG levels more directly presumably by communicating nutritional context information to the

VG production system [38], which is highly nutrient sensitive [39]. Transferrin 1, hymenop-

taecin, argonaute 2 (AGO2), and defensin-2 (Def2) are genes associated with immunity. Their

role may be one of adjusting to the change in pathogenic challenges that take place when a bee

transitions from the protected nest environment to foraging. Malvolio is a manganese trans-

porter that affects sucrose sensitivity, and through its effect on mn2+ in the brain presumably

influences neuromodulators involved in the onset of foraging. Octopamine (OA) is involved

in the onset of foraging and increases sensory motor responses involved in foraging; OAR is

its receptor.

The pattern we reveal for juvenile hormone esterase (JHE), strongly correlated with bist-

ability in bees of age 15 days, might be particularly novel and intriguing. JHE provides oppor-

tunity to metabolize JH inside cells, and this action may block cellular responses to bursts in

circulating (blood) JH titers. We show that JHE transcript levels decrease in the low vg state

indicative of foragers, thereby making these individuals potentially more sensitive to JH. Such

sensitivity would add to the positive feedback control system of VG and JH, which secures that

transitioning individuals stay committed to their new behavioral role.

What causes this split into two groups? The correlation of these genes and the bistability

can be explained in multiple ways. The transition could be controlled by an internal temporal

program, or “physiological clock”, running independently within individual bees [40]. Alter-

natively, the bifurcation could arise solely via external positive feedback, with amplification of

individual differences in foraging thresholds through interactions with the nest, the environ-

ment, and other bees, similar to that seen in other examples of division of labor [9]. Perhaps

most likely is a combination of these two mechanisms: internal dynamics that create a steep

switch between nest bees and foragers, with the timing of this switch greatly influenced by the

environment [5, 14]. The toy model of gene interactions that we use to test the statistical infer-

ence is one way to represent dynamical mechanisms that can amplify differences in gene

expression to create distinct types, which could be further amplified at the behavioral scale.

Our statistical method of Bayesian model selection for identifying bistability is designed to

impose the least structure possible to explain the data: we start from the simplest possible prob-

ability distribution (Gaussian) and compare this to the case in which we add the lowest order

correction term consistent with a transition. This simple representation is useful when we

have limited data (in this case, 16 bees per timepoint). In future cases with more data, more

precise versions may be fruitful, including those that test whether expression data are consis-

tent with a continuous or discontinuous transition.

Existing methods for identifying critical transitions from gene expression data have largely

focused on the increase of correlated variability near a transition, and before the transition

induces a split into two clusters [17, 18, 41]. In contrast, and similarly to Ref. [19], the method

we develop here goes beyond pairwise correlation and looks for a characteristic shape of bimo-

dality during and after this split. Our method remains statistically robust, working in the

regime of “high dimension low sample size” [42] that is common in gene expression studies.

In the hepatocellular carcinoma example (Fig 7), we show that the method is able to handle

large datasets with tens of thousands of genes. The method has no free parameters, unlike

many clustering methods, and it is interpretable in a Bayesian analysis to quantify the evidence

favoring bistability.

An advantage to our approach is the ability to include a large number of genes that may or

may not be related to a transition and then identify those individual genes that are most
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informative about the transition. Previous approaches to identifying transition states from

transcriptomic data have also attempted this, though they have some limitations. One

approach that analyzes critical fluctuations of gene expression across time has been used to

identify genes involved in a transition [18] but requires detailed knowledge of protein interac-

tion networks. Second, the transition index approach that we compare to in Section 3 has been

shown, when applied to other datasets, to be robust to including large numbers of genes that

may or may not be closely related to a given transition [17]. Yet this does not appear to be the

case for our data, in which the transition is only detectable by the transition index measure

once less informative genes have been filtered out (Fig 6).

We expect that our approach could be useful for interpreting the dynamics of gene expres-

sion in other organisms and perhaps even more generally across systems biology. First, in the

development of multicellular organisms, the divergence of progenitor cells into differentiated

cells can also be well-represented using bifurcation theory [17, 19, 43, 44]. Current approaches

for identifying cell types from gene expression data typically separate the data into distinct

types using clustering methods (e.g. [19, 42, 45]). While a clustering approach is suitable for

cases in which cell types are highly distinguishable, clustering will break down as cell types

become less distinguishable near a continuous transition. Our method, in contrast, is designed

to work near the transition point. This type of analysis could be used, for instance, to use gene

expression data to more precisely define the time in development at which one cell type

becomes two.

Other collective decisions, such as in neural systems, are thought to arise from continuous

bifurcations as well [46], and our method could be used directly on activity data to identify the

individual components (e.g. neurons) that may drive these transitions.

More generally, the method could be useful whenever there is variability among individual

samples that may undergo a continuous transition into separate types, and it is particularly

valuable for interpreting high-dimensional datasets. Any type of -omics data could be used for

the analysis, given two basic requirements. First, there must be sufficient separation of time-

scales that an equilibrium approximation is sensible, with fast dynamics that are roughly equil-

ibrated over the slower timescale of the transition to bistability. Second, the data must include

a sufficient number of sampled individuals at each timepoint (a minimum of roughly 10) in

order for the bistable Landau distribution to be statistically distinguishable from a simpler

Gaussian distribution.

If our method fails to detect a transition, this indicates either that there is no transition to

bistability or that there is a transition of a type that cannot be well-described by the Landau

distribution. Further work will be necessary to distinguish possible cases that could evade

detection in this way. As a start, we highlight three assumptions in our derivation (set out

more precisely in sections 5.3 and 5.4) that may not be met by some biological systems and

therefore may lead to transitions that would not be well-described by our method. First, we

assume a symmetric transition, with no bias toward either of the bistable types. Such a bias

could be better represented by a more complicated distribution, but would require more

parameters and therefore more data to reliably infer. Second, our derivation assumes continu-

ous time and continuous variables, whereas some regulatory systems (with, for instance, bursty

dynamics or highly nonlinear saturating functions) may not easily conform to this. Finally, we

assume that the interaction network is sufficiently dense for a Landau-type mean-field theory

to be a good approximation. In spatially organized low-dimensional systems studied in statisti-

cal physics, correlated fluctuations are known to cause mean-field models to become invalid

[47], such that the expansion in Eqs (5) and (6) is not justified. This could potentially lead to a

transition with a different form than we derive. On the other hand, mean-field theory is

known to work well even in relatively small spatial dimensions (e.g. 4 or larger for the well-
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known Ising model), when connectivity becomes sufficiently dense. Due to the prevalence of

feedback and relatively dense connectivity of biological networks, we are optimistic that mean-

field theory represents a good approximation.

To summarize, in the context of animal behavior, our results add a new layer to under-

standing how the strategy of task specialization plays out in biological collectives. Even when

individuals share the same genetic code and environment, their traits can diverge into sepa-

rate tracks. Similarly to differentiation in multicellular organisms, this divergence is visible

both at the scale of functional characteristics and at the scale of gene expression. Further-

more, the simplest model of critical bifurcation provides a good description of how this

divergence occurs. The generality of this phenomenology suggests that such critical transi-

tions may be a common mechanism within biology, making use of the emergent properties

of strongly interacting dynamical networks to generate reproducible diversity. Further work

is needed to detail how those networks are successfully constructed and regulated in an evo-

lutionary context.

5 Materials and methods

5.1 Gene expression data

The bee collection was conducted during March 18th to April 7th, 2016. Five strong wild type

colonies were chosen as sources of newly emerging bees. Two small nuclear colonies with 9

frames in each were used as recipient colonies that had similar supplies of pollen and honey,

and similar numbers of brood and adult bees. The emerging frames from source colonies were

put into incubator (37˚C) and about 200 newly emerged bees were collected, marked in a

color on the bee thoraxes and distributed evenly to the recipient colonies. This procedure was

repeated for three consecutive days. About 600 newly emerged bees were introduced in the

recipient colonies from March 19th to March 21st, 2016. Ten each of 1 day old, 3 day old, 5

day old, 10 day old and 15 day old bees from each recipient colony were collected in the follow-

ing days. Therefore, there were total 20 sample bees for further experiment from two recipient

colonies for each age. RNA was extracted from 16 randomly selected bees of each age using

TRIZOL method. The quality of RNA was measured by Nanodrop and 260/280 was between

1.85–2.00, indicating good quality of RNA. RNA samples were sent to the University of Ari-

zona Core lab for Nanostring analysis, a method to quantify the copy of RNA for the target

genes.

94 genes (see S1 Spreadsheet file) were selected based on prior knowledge and the potential

association between these genes, VG production, and social behavior. Genes were selected

from the honey bee Apis mellifera assembly and gene annotation information at NCBI

(https://www.ncbi.nlm.nih.gov). Genes were prioritized using a pragmatic approach similar to

Refs. [48, 49]. In brief, our strategy integrated information on a specific biological process (the

nurse-forager transition) with information on genes that were suggestively, correlatively, or

potentially causally involved. Thus, gene selection relied on a process of extensive literature

review as well as interdisciplinary biological expertise. The gene prioritization was reviewed by

three members of the interdisciplinary team (YW, GVA, and REP) to minimize operator

biases. Four housekeeping genes, actin (GB17681), rp49 (GB10903), GAPDH (LOC410122)

and RPS18 (LOC552726) were used for sample normalization. Finally, the vitellogenin (VG)

protein was measured in the honey bee hemolymph based on the method in Ref. [50].

Geometric means of the housekeeping genes were used to calculate normalization factors to

minimize the noise from individual genes using nSolver software provided by the company.

We use log-transformed values of the raw expression data for all analyses.
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5.2 Conceptual overview of statistical method

The expression of gene products across individual bees is correlated, with correlations arising

from a complex set of dynamics. These dynamics include both direct interactions among mea-

sured genes and common factors of influence external to the measured genes. Changes to

these dynamics (e.g. caused by stronger interactions among genes during certain phases of

development, or shared interactions with a common environment) can lead to increased vari-

ance in gene expression. This additional variance is also correlated, forming patterns consist-

ing of sets of genes with expression that moves in tandem. In the case of a transition into two

distinct types, we expect that this correlated variance will additionally display bimodality. That

is, two separate patterns of gene expression will coexist, with few individuals having gene

expression levels that are a mixture between the two types.

In the following description of methods, we first build a simple model of gene expression

dynamics that displays this characteristic transition to bimodality. We demonstrate that the

separate patterns of gene expression corresponding to this bimodality are given by the

dimension of largest variance (first principal component), as can be extracted from gene

expression data by principal components analysis. We then show that the distribution of

gene expression values along the principal component has a specific shape near the transi-

tion, which we derive. By fitting the observed data to this distribution, we determine whether

gene expression across a population of individuals of the same age displays evidence of a bis-

table transition.

In our simple dynamical model, we think of interactions as capturing dependencies

between gene expression within an individual bee. Neglecting interactions between bees

simplifies the interpretation of the resulting probability distributions, as each sampled bee

represents an independent sample. Yet interactions between bees are known to bias the tran-

sition. The simplest interpretation we could hope for is that these interactions are small, so

that the distribution we observe experimentally is a good approximation for the case of non-

interacting bees. This interpretation more easily explains the fact that bees transition from

in-hive to foraging activities even when they are isolated from others. In the most difficult

case, interactions between bees could be mostly responsible for the feedback that leads to

bistability, with corresponding changes to gene expression within each bee that are driven by

but do not cause the transition. Even in this case, our method provides a way to characterize

the transition phenomenologically in terms of the degree of bistability and the genes that are

associated with it.

5.3 Dynamical model of gene interactions

Near a transition from a system with continuous variation into one displaying distinct types,

one expects the emergence of a bimodal distribution with a particular shape. In this section,

we derive to lowest order the form of this distribution for the case of the dynamics of a densely

connected gene regulatory network.

We start with a general form of dynamics for the (log-transformed) concentrations of the

measured gene products, arranged in the Ngenes-dimensional vector~x:

d~x
dt
¼ Fð~x;~y; tÞ; ð1Þ

where~y consists of other unmeasured variables and t is time. We assume a separation of time-

scales such that, at each developmental timepoint, we are measuring an equilibrium distribu-

tion, which slowly changes as a function of developmental time. This means F depends on the

long developmental time T (on the timescale of days), but the distribution of~x at each t will
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not depend on t defining gene transcription dynamics (on the timescale of seconds):

d~x
dt
¼ FTð~x;~yÞ: ð2Þ

The~x we observe will then be restricted to be near attractors of FT, determined by taking

t!1. Without the ability to measure the dynamics of more complicated attractors on this

fast timescale (limit cycles, strange attractors, etc.), we will focus our attention on stable

fixed point attractors~x∗, where

FTð~x∗;~y∗Þ ¼ 0: ð3Þ

If we were to observe only these fixed point attractors, and for fixed hidden variables~y∗, we

would erase all information about hidden variables and about dynamics at the fast time-

scale. This corresponds to a description of the system we could get if we measured one bee

per developmental timepoint.

We now want to incorporate information about variance in the observed~x coming both

from the effects of hidden variables~y and from other fast-timescale dynamics. When these

effects are small and temporally uncorrelated, we can approximate them as adding uncorre-

lated noise to FT:

d~x
dt
¼ FTð~xÞ þ~x; ð4Þ

where~x is chosen from a multidimensional Gaussian with some fixed covariance. Assuming

this variance is sufficiently small (compared to nonlinearities in FT), the system stays near the

fixed point~x∗. In this case, dynamics can be approximated using a Taylor expansion of FT

around~x∗ (related to the Hartman–Grobman theorem [51])

FTð~xÞ ¼ L d~x þ Oðjd~xj2Þ; ð5Þ

where d~x ¼~x � ~x∗. The assumption that we are at a stable fixed point is equivalent to the

statement that the eigenvalues of the matrix Λ are all negative. The solution of these dynamics

is a multidimensional Gaussian. This corresponds to the analysis performed in Ref. [17],

where the existence of a critical point corresponds to an eigenvalue of Λ becoming close to 0,

such that there is a measurable large variance in d~x along the corresponding eigenvector.

We take the next step in the expansion by looking at what happens when all of the above

assumptions hold but we additionally want to treat the super-critical case, when an eigenvalue

of Λ becomes larger than 0. Our goal is to find the form of the simplest possible symmetry

breaking transition that leads to two distinct modes of gene expression. Still assuming the

noise is small means~x stays near the fixed point except along the eigenvector n̂ with eigenvalue

greater than 0. Along that direction, the variance is largest, so this dimension will correspond

to the first principal component. Further, because the dynamics are locally unstable to lowest

order, the behavior along n̂ is no longer determined only by the lowest-order expansion given

in Eq (5). It will instead be determined by the lowest-order term that cures the divergence of

the variance in that direction. (There are other ways the transition could happen such that this

divergence is not cured (or not cured in a way that keeps d~x relatively small). This corresponds,

for instance, to a saddle-node bifurcation, in which the transition would cause the system to

suddenly change to some other distant attractor. That is, there are transitions that would not

be identified by our method. Our method is designed to detect only the simplest symmetric,

continuous transitions.) Next will generally be a term of order jd~xj2, but this still allows a diver-

gence of d~x along either positive or negative n̂. In addition, we restrict our analysis to retain
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the symmetry of FTðd~xÞ ¼ FTð� d~xÞ, so that the system will be equally likely to move in the

positive or negative n̂ direction at the transition, corresponding to a symmetry breaking that is

unbiased. It is also possible to include a bias term that leads to one of the final attractors being

favored over the other [19], but we omit that possibility here to produce the simplest possible

symmetry breaking transition. For these reasons, we assume the second-order term is zero.

The lowest-order term that does cure the divergence is of order jd~xj3; we write

FTð~xÞ ¼ L d~x þ Gðd~x � n̂Þ3n̂ þ Oðjd~x � n̂j4Þ; ð6Þ

with Γ< 0. This corresponds to a so-called “supercritical pitchfork” bifurcation in dynamical

systems theory, where one stable fixed point changes continuously into three fixed points, two

stable separated by one unstable [52, 53]. The resulting two stable fixed points represent two

distinct types of gene expression—phenotypes or “cell fates” in the cell differentiation litera-

ture—into which the single fixed point in gene expression splits. Finally, we note that even

higher-order terms would be necessary if Γ> 0, which corresponds to a subcritical pitchfork

[43], but we again omit that possibility to produce the simplest possible symmetry breaking

transition.

5.4 Form of Landau distribution

We now derive the expected equilibrium distribution under the dynamics given by Eq (4) with

FT as in Eq (6). Writing the noise term more explicitly, we have

dðd~xÞ ¼ ½L d~x þ Gðd~x � n̂Þ3n̂�dt þ s d~Wt; ð7Þ

where σ is a tensor that produces the noise when applied to the standard Ngenes-dimensional

Wiener process ~Wt. The time derivative of pð~xÞ, the distribution of~x over multiple realizations

of this dynamics, is given by the Fokker–Planck equation:

@pð~xÞ
@t
¼ � ~r � L d~x þ Gðd~x � n̂Þ3n̂

� �
p

� �
þ

1

2
r2 ssTpð Þ: ð8Þ

We then obtain equilibrium solutions by setting
@p
@t ¼ 0. Assuming a solution of the form

pLð~xÞ ¼ Z� 1 exp �
1

2
d~x � A � d~xT �

B
4
ðd~x � n̂Þ4

� �

; ð9Þ

we solve for A and B in terms of the dynamical parameters Λ, Γ, and σ:

A ¼ � 2ðssTÞ
� 1
L ð10Þ

B ¼ � 2
h
n̂T � ðssTÞ

� 1
� n̂
i
G: ð11Þ

We call pL from Eq (9) the “Landau distribution” as we expect this shape near any continu-

ous phase transition that can be described by simple Landau theory. In particular, Landau’s

theory of continuous phase transitions describes a Gibbs free energy of the form [54, 55]

FðyÞ � F 0 ¼
a
2

y2 þ
b
4

y4: ð12Þ

Along the bistable dimension n̂, the corresponding equilibrium distribution maps exactly onto

the distribution pLð~xÞ in Eq (9) that we derived from system dynamics near a transition, with

y ¼ d~x � n̂, a ¼ n̂T � A � n̂, b = B, and pLðyÞ / exp � FðyÞ.
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Note that the above derivation assumes that the bistable dimension n̂ is also an eigenvector

of the inverse noise tensor (σσT)−1. This assumption holds in our simulation tests, but would

not hold for aribitrary dynamics, in which case the noise can affect the direction of the lowest-

order bistability displayed by the equilibrium distribution. In this case, we expect that the equi-

librium distribution near the transition will still have the form of Eq (9) (so that our fitting pro-

cedure remains unchanged), but with a modified n̂ that is no longer simply an eigenvector of Λ,

and with an effective Γ that contains information about the shape of FT along that dimension.

5.5 Fitting and model selection

To fit the Landau distribution to data, we rewrite it in terms of more easily managed parame-

ters. We first find the Gaussian approximation corresponding to PCA:

pGð~xÞ / exp �
1

2
ð~x � ~mÞT � J � ð~x � ~mÞ

� �

; ð13Þ

with J equal to the inverse of the data’s covariance matrix S. We then express pLð~xÞ in terms of

parameters c and d that set the shape along the bistable dimension n̂, which we assume to be

the first principal component of the data (the dominant eigenvector of S):

pLð~xÞ ¼ Z� 1 exp
h
� 1

2
ð~x � ~mÞT � J � ð~x � ~mÞ

� c� 1

2
Jnðð~x � ~mÞ � n̂Þ

2

� d
4
J2
n
ðð~x � ~mÞ � n̂Þ4

i
;

ð14Þ

where Jn ¼ n̂T � J � n̂ and the normalization factor Z is given by

Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
N� 1

det J
jcj
2d

s

exp
c2

8d

� �

B; ð15Þ

with B ¼ K1=4
c2

8d

� �
when c> 0, B ¼ pffiffi

2
p I� 1=4

c2

8d

� �
þ I1=4

c2

8d

� �h i
when c< 0, and Iα and Kα are the

modified Bessel functions of the first and second kind, respectively. Note that c and d are

related to A and B in Eq (9) (specifically A ¼ J þ ðc � 1ÞJnn̂n̂T and B ¼ dJ2
n
), the original Gauss-

ian model pG corresponds to c = 1 and d = 0, and bistability corresponds to c< 0 and d> 0.

In the case in which Nsamples < Ngenes, the covariance matrix S does not have full rank, and

the above equations can be interpreted by remaining in the subspace with variance. This does

not affect model selection because we only look for bistability along the single dimension with

largest variance (the principal component).

We use the Bayesian Information Criterion (BIC) to determine whether to select the null

distribution pG (Gaussian along all components) or the Landau distribution pL (bimodal along

the principal component). Note that if the number of degrees of freedom for the simple Gauss-

ian is nG, the Landau distribution has nL = nG + 1 (d is the extra parameter; c and μν do not add

any additional freedom because these correspond to degrees of freedom that are also in the

Gaussian model). The difference in BIC values between the two models,

DBIC ¼ � ðnL � nGÞ logNsamples þ 2
XNsamples

i¼1

�

log pLð~xiÞ � log pGð~xiÞ

�

; ð16Þ

produces our criterion for model selection (see Fig 2). We choose a threshold ΔBIC > 6 to

indicate strong evidence in favor of a bistable distribution [56].
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The maximum likelihood mean μ will be the same as the sample mean of the data in all

dimensions except for the bistable dimension, so we vary three parameters in numerically fit-

ting the Landau distribution: c, d, and mn ¼ m � n̂. We constrain d to have a minimum value of

10−3 to avoid numerical issues near d = 0.

For the two cases in which we find strong evidence for bistability, we find the following

best-fit parameter values: On day 10, c = −4.75 and d = 3.19, and on day 15, c = −6.09 and

d = 4.95. (Note that these values were computed with respect to data in which we took the nat-

ural logarithm of the original expression values.)

5.6 Interpreting results with respect to individual genes

In Fig 3, we interpret the bistable dimension n̂ (principal component dimension) in terms of

individual genes by highlighting those genes whose variance lies mostly along n̂. We accom-

plish this using the measure

si ¼
n̂2

i

JnSii
; ð17Þ

a number between 0 and 1 that indicates the proportion of gene i’s variance that lies along n̂.

Genes with largest s are highlighted in Fig 4 and Table 1.

A related measure is the correlation coefficient c between each individual gene’s expression

and the expression projected along n̂. While we know, by construction, that genes more corre-

lated with n̂ will have more of their variance aligned with n̂, the measure c is somewhat more

intuitive in the sense that individual genes with large c by definition provide more information

about where the system is along the bistable dimension. We demonstrate the close relationship

between s and c in Fig 8.

Fig 8. Comparing two measures for the relevance of individual genes to the bistability. The magnitude of the

correlation coefficient |c| between individual genes and the bistable dimension n̂ is closely related to the proportion of

variance s along n̂.

https://doi.org/10.1371/journal.pcbi.1010704.g008
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The distributions for individual gene expression shown in Fig 3 are marginals over the dis-

tribution in Eq 14:

pðxiÞ ¼

Z

pLð~xÞ
Y

j6¼i

dxj

/

Z

Nðxi; mi þ Zðn̂ � îÞ;S
0

iiÞ exp �
c
2

JnZ
2 �

d
4

J2

n
Z4

� �

dZ;

ð18Þ

where S0 is the covariance matrix Smodified to remove variance along the bistable dimension

n̂, N(x, μ, σ2) indicates a normal distribution over random variable x with mean μ and variance

σ2, Jn ¼ n̂T � J � n̂, and we evaluate the final integral over η numerically using Mathematica.

5.7 Simulation data and tests

We create test data using a discrete time simulation of a simple model of gene regulation:

dxi

dt
¼ � xi þ a

X

j

wij tanhðxjÞ þ x; ð19Þ

here assuming the simplest all-to-all network structure for simplicity: wij = 1 for all i and j. We

simulate the dynamics until equilibrium using a simple Euler timestep of Δt = 10−3. We ensure

equilibrium by simulating to time tf = 100: As in Ref. [57], we expect the maximal relaxation

timescale (here with τ and σ effectively 1 and the participation ratio p = Ngenes) tmax �
ffiffiffiffiffiffiffiffiffiffi
Ngenes

p
,

so with Ngenes = 91 our chosen tf> 10 tmax.

In the limit of small noise, the model has a transition to bistability at αcrit = 1/Ngenes, as can

be shown analytically using mean-field theory. These bifurcations can also be found numeri-

cally in non-symmetric, heterogeneous cases, in which two parameters must be tuned (as a

pitchfork bifurcation has codimension 2) [58], though we do not explore this more compli-

cated case here.

We then test our method’s ability to detect the resulting bistability (Fig 1). At each value of

α, we run 100 independent trial simulations with Ngenes = 91 and run the fitting analysis on the

final states from each case. When the difference in BIC exceeds a threshold (here set at

ΔBIC > 6 [56]), we count this as a positive identification of a bistable distribution. In the case

analogous to ours, with Nsamples = 16 (orange points), we see that misidentifications are rare

far below the transition, and identifications become easy sufficiently above the transition. As

expected, with more samples (Nsamples = 100, red points), it is possible to identify the incipient

transition sooner, when the two modes of the distribution remain closer to one another. Note

that the bifurcation point does not change with increasing Nsamples, only our ability to detect

the bistability. Finally, in Fig 9, we test the performance of the method in similar simulated

cases with Ngenes = 10 and 1000, demonstrating the method’s robustness to the number of

measured genes.

5.8 Hepatocellular carcinoma data analysis

Gene expression data from Ref. [32] were accessed via the Gene Expression Omnibus under

accession number GSM155919. Data were downloaded and preprocessed using the online

GEO2R tool, which applied a default log transformation. The resulting measurements corre-

sponded to the activity of 54,675 probe sets in each of 72 samples: 10 control, 10 cirrhosis, 10

low-grade dysplastic, 7 high-grade dysplastic, 8 very early HCC, 10 early HCC, 7 advanced

HCC, and 10 very advanced HCC. For each of the 7 stages of disease, we combined those
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samples with the healthy control samples to look for evidence of bimodality separating healthy

from diseased expression profiles.

Supporting information

S1 Spreadsheet. List of genes used in this study. Includes gene names and, for some genes, a

description of possible biological functions and references to relevant literature.

(XLSX)
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