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Abstract!

! Protein!synthesis!is!the!most!energetically!expensive!process!in!prokaryotes.!!

!Understanding!how!protein!synthesis!is!regulated!is!critical!both!for!decoding!natural!

systems!and!for!engineering!synthetic!protein!synthesis.!Protein!synthesis!in!prokaryotes!

occurs!on!mRNAs!organized!into!operons!consisting!of!discrete!open!reading!frames!

(ORFs)!that!are!differentially!translated!by!as!much!as!100F!fold.!!We!have!applied!

ribosome!profiling,!which!enables!the!quantitative!determination!of!the!rates!of!protein!

synthesis!genomeFwide!in!E.#coli,#to!understand!the!rules!that!guide!these!differential!rates!

of!protein!synthesis.!!We!then!combined!ribosome!profiling!with!DMSFseq,!which!monitors!

mRNA!structure!genomeFwide,!to!monitor!the!relationship!between!mRNA!structure!and!

translation!on!endogenous!messages,!enabling!us!to!understand!the!mRNA!features!that!

instruct!translation!efficiencies.!

!! We!find!precisely!tuned!synthesis!rates!for!a!wide!variety!of!proteins!—members!of!

multiFprotein!complexes!are!made!in!proportion!to!their!stoichiometry,!and!components!of!

functional!modules!are!produced!differentially!according!to!their!hierarchical!role.!

Additionally,!several!principles!of!design!optimization!emerge!from!the!absolute!copy!

number!measurements.!These!include!how!the!distribution!of!levels!of!different!

transcription!factors!is!optimized!to!enable!rapid!responses!and!how!a!metabolic!pathway!

(methionine!biosynthesis)!balances!the!cost!of!enzyme!production!with!the!requirement!

for!its!activity.!!

! Structural!probing!of!mRNAs!reveals!that!operon!mRNAs!are!organized!into!

structural!domains!divided!by!ORF!boundaries.!This!modular!mRNA!structure,!rather!than!

ShineFDalgarno!strength,!specifies!ORF!translation!efficiency.!Upon!cold!shock,!mRNA!
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structure!increases!and!translation!decreases,!but!both!are!restored!by!massive!induction!

of!the!Cold!Shock!Proteins!(Csps).!Csps!modulate!global!mRNA!structure!and!autoregulate!

their!expression!via!an!RNA!element!cued!to!the!cellular!environment,!enabling!mRNA!

structure!surveillance!both!at!cold!and!normal!growth!temperatures.!Operons!and!Csps!are!

present!in!all!bacteria,!suggesting!that!the!organization!of!operonic!mRNA!structure!and!its!

surveillance!system!we!describe!are!universally!used!to!set!and!maintain!translation.!

! Together,!this!work!indicates!protein!synthesis!is!precisely!controlled!in!

prokaryotes,!and!this!precise!control!requires!mRNA!structures!designed!to!reflect!

synthesis!rates.!!This!lays!the!framework!for!both!future!efforts!to!computationally!

determine!complex!stoichiometry,!and!for!computational!design!of!protein!synthesis!rates.!
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Introduction 

Protein biosynthesis is by far the largest consumer of energy during cellular proliferation; 

translation by ribosomes is estimated to account for ~50% of the energy consumption of a 

rapidly growing bacterial cell, and ~30% of that for a differentiating mammalian cell (Buttgereit 

and Brand, 1995; Russell and Cook, 1995). The tremendous cost associated with protein 

synthesis makes it a key step for regulating diverse cellular functions. Therefore, determining 

how a cell allocates its synthesis capacity for each protein provides foundational information for 

systems biology. 

A fundamental question is whether it is necessary for the cell to exert tight control over 

the synthesis of individual protein components.  For example, the levels of stoichiometric 

components of protein complexes could be established by differential degradation of excess 

subunits (Blikstad et al., 1983; Lehnert and Lodish, 1988), rather than by precise synthesis. 

Moreover, precise control of steady-state protein abundance may not be critical for the 

performance of cellular circuits. The architectures of several signaling and metabolic pathways 

have been shown to be robust against variation in protein levels through post-translational 

feedback (Alon et al., 1999; Barkai and Shilo, 2007; Batchelor and Goulian, 2003; Hart et al., 

2011; Shinar et al., 2007; von Dassow et al., 2000). It remains to be explored whether these post-

translational mechanisms are the dominant strategy for maintaining proper functions, or are 

simply fail-safe mechanisms added on to fine-tuned protein synthesis. More generally, defining 

such design principles is key to both understanding and manipulating quantitative behavior of a 

cell. 
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Efforts to monitor protein synthesis rates at the global level have mainly relied on pulsed 

metabolic labeling followed by two-dimensional gel electrophoresis, or more recently by mass 

spectrometry (Dennis, 1974; Lemaux et al., 1978; Schwanhausser et al., 2009). While relative 

changes in synthesis rates for the same protein are attainable (Selbach et al., 2008), absolute rates 

are more difficult to evaluate. Additionally, the precision of pulsed metabolic labeling is limited 

by requirement for nutrient shifts, which affect instantaneous rates of protein synthesis. 

Alternative methods for expression profiling by determining global mRNA levels (e.g. by high 

density microarrays or RNA-seq) do not report the extensive regulation present at the level of 

translation. These constraints point to a need for a label-free method with unbiased and deep 

coverage of cellular proteins. 

Ribosome profiling—deep-sequencing of ribosome protected mRNA fragments—directly 

captures protein synthesis in natural settings (Ingolia et al., 2009). It is a general tool for 

monitoring expression as well as enabling identification of novel translational events (Brandman 

et al., 2012; Brar et al., 2012; Ingolia et al., 2011; Li et al., 2012; Oh et al., 2011; Stern-Ginossar 

et al., 2012). Here, we exploited the ability of ribosome profiling to provide quantitative 

measurements of absolute protein synthesis rates, covering >96% of cellular proteins synthesized 

in a single experiment. For stable proteins in bacteria, we then estimated and verified absolute 

protein copy numbers.  

This analysis revealed precise tuning of protein synthesis rates at the level of translation, 

including a broadly used “proportional synthesis” strategy in which components of multi-protein 

complexes are synthesized with ratios that quantitatively reflect their subunit stoichiometry. 

Optimized translation rates are also prevalent among members of functional modules—

differential expression pertinent to their functional hierarchy, i.e. when the activity of one 
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member is controlled by the other, was widely observed in our dataset. The protein copy 

numbers inferred from synthesis rates also revealed rules that govern the abundance of 

transcription factors, and allowed quantitative characterization for the methionine biosynthesis 

pathway, for which we identified a bottleneck enzyme whose expression level is optimized for 

maximal growth rate. More broadly, our approach and datasets provide a foundation for 

quantitative understanding of both cellular physiology and precise biological engineering. 

Results 

Genome-wide measurement of absolute protein synthesis rates and protein copy numbers 

 The ribosome profiling approach involves freezing of cellular translation followed by 

digestion of all mRNA regions that are not protected by the ribosome (Ingolia et al., 2012; 

Ingolia et al., 2009). Each ribosome-protected mRNA fragment is then identified by massively 

parallel next-generation sequencing (Ingolia et al., 2012; Ingolia et al., 2009). Because each 

ribosome is producing one protein molecule, the rate of protein synthesis is proportional to the 

ribosome density of a given gene as measured by the footprint density (number of footprint per 

unit length of the gene), provided that all ribosomes complete a full length protein and have 

similar average rates of elongation across genes. Both criteria are broadly met in our dataset. 

During exponential growth in E. coli, there is little drop-off in ribosome density for the vast 

majority of genes (Li et al., 2012; Oh et al., 2011) (Fig 1A). The few genes that display large 

drop-off could represent novel events of translational regulation (Fig. S1A). We have previously 

demonstrated that rare codons are generally translated at similar speed as abundant codons, 

indicating that differences in codon usage between transcripts do not cause differences in the 

average rates of elongation (Ingolia et al., 2011; Li et al., 2012). Moreover, sequence dependent 
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pausing of ribosomes (Li et al., 2012) does not appear to broadly distort the average density of 

ribosomes along a message, as similar ribosome densities are observed in the  first and second 

halves of each gene.  Most genes differ by <30% (standard deviation of the mean, Fig 1A). 

Additionally, correcting for sequence- and position-specific variation in elongation rates has only 

modest effect on average ribosome density (Fig. S1). Together, these results indicate that local 

variations in translation speed do not strongly impact synthesis rates measurements based on 

average ribosome density. 

 To broadly evaluate the rates of protein synthesis, we performed ribosome profiling in E. 

coli grown in different growth conditions with high sequencing depth (90 million fragments per 

sample) using a modified protocol that enables more complete capture of footprints (Methods). 

Within each dataset, synthesis rates were calculated as the average ribosome density in the gene 

body, with correction factors for elevated ribosome density at internal Shine-Dalgarno sequences 

and towards the beginning of open reading frames (Methods). The corrections were small (Fig. 

S1D), but were nonetheless important for the quantitative analysis described below. We 

determined the absolute rates of synthesis (in units of molecules produced per generation) by 

normalizing the average ribosome density for each protein in the proteome by the total amount of 

proteins synthesized during the cell doubling time (Methods). For growth in a rich defined 

medium (Neidhardt et al., 1974), we evaluated 3,041 genes which account for >96% of total 

proteins synthesized. A similar number of genes were evaluated for glucose-supplemented 

minimal media. All of these genes have >128 ribosome footprint fragments sequenced, with an 

error of less than 1.3-fold across biological replicates. The lowest expression rate among these 

genes correspond to ~10 molecules per generation. The complete list of protein synthesis rates 

can be obtained at http://ecoliwiki.net/tools/proteome/ (Table S1). 
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 We validated our results by comparing our data against published measures of specific 

protein copy numbers for E. coli. Because the overwhelming majority of proteins are long-lived 

compared to the cell cycle during exponential growth (Larrabee et al., 1980), the absolute copy 

number of a protein can be estimated as the synthesis rate times generation time (21.5 min in rich 

defined media, see Methods). We compiled a list of 62 proteins that have been quantified 

individually in 21 independent laboratories (Table S2). Although each measurement is associated 

with its own uncertainty, we argue that collectively they represent the current standard for 

quantification. Our results agreed well with these published copy numbers with a Pearson 

correlation coefficient R2 = 0.96 (Fig. 1B). Deviations from the identity line in Fig. 1B likely 

reflect biological phenomenon. For example, the strongest outlier is σ32, the heat shock 

transcription factor that is known to be actively degraded (Grossman et al., 1987).  Our measures 

based on synthesis rates thus provide an upper bound for the protein levels for the small subset of 

proteins that are rapidly degraded. Differences in growth conditions and strain backgrounds 

contribute to other small differences between literature values and our results (see Methods). 

Existing efforts to globally quantify protein abundance in E. coli using mass spectrometry or 

fluorescent reporter show less concordance and dynamic range (Fig. S2). In conclusion, our 

genome-wide synthesis rate measurements and the resulting estimate of protein abundance are 

supported by classic biochemical measurements across 5 orders of magnitude of protein 

abundance. 

Proportional synthesis of multi-protein complexes 

 We next used our measurements to evaluate the extent to which fine-tuned synthesis rates 

are a general feature of cellular physiology, focusing initially on members of stable multiprotein 

complexes with known stoichiometry. The subunits of these complexes require balanced steady 
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state levels, as excess components are often prone to misfolding or aggregation (Tyedmers et al., 

2010). Although quality control mechanisms for removing uncomplexed proteins exist 

(Shemorry et al., 2013), it was unclear whether the stoichiometry balance is generally established 

first at the synthesis level. 

 We first examined the F0F1 ATP synthase complex, which consists of 8 subunits, each 

with different stoichiometry, expressed from a single polycistronic transcript (the "ATP operon"). 

Despite sharing the same message, the ribosome density of each open reading frame is clearly 

distinct (Fig. 2A), and qualitatively agrees with the differential synthesis rates previously 

reported (Brusilow et al., 1982; Quax et al., 2013). Remarkably, the synthesis rates quantitatively 

reflect the stoichiometry of the complex; the ATP operon has evolved to synthesize the 

appropriate ratio of subunit proteins, ranging from 1- to 10-fold.  

 Rather than the ATP operon being a specialized case, we found that tuning of synthesis 

rates to the subunit stoichiometry, or “proportional synthesis”, is a broadly used strategy for 

protein complexes. We systematically assembled a list of stable multi-protein complexes with 

well-characterized stoichiometry in E. coli (Table S3). Of the 64 complexes (comprising 212 

different proteins) that are expressed in our growth conditions, 59 (92%) adhere to proportional 

synthesis. The majority (55%) are synthesized at levels that are indistinguishable from the 

stoichiometry (smaller than the experimental uncertainty of 1.3-fold difference). The ratio of 

synthesis rates exceeds the ratio of stoichiometry by a factor of two in only five complexes (Fig. 

S3D), and these small number of exceptions could suggest dominant control at the level of 

degradation or the existence of dynamic sub-complexes, as in the case of the outer membrane 

protein assembly complex (BAM) (Rigel et al., 2013).  
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Proportional synthesis applies to both cytosolic and membrane proteins. For complexes 

with more than two components, the agreement between synthesis rates and subunit 

stoichiometry is plotted in Fig. 2B and Fig. S3. We also observed very similar synthesis rates for 

complexes with two equimolar subunits (Fig. 2C and Fig. S3A-C).  Notably, proportional 

synthesis is robust against temperature; similar ratios in synthesis rates were observed both at 

37°C and at 10°C (Fig. S4A). Furthermore, both abundant and scarce proteins have evolved strict 

tuning of synthesis rates, as the expression levels of these complexes ranges over four orders of 

magnitude. 

 Proportional synthesis in E. coli is predominantly achieved through translational, rather 

than transcriptional control. The majority of multi-protein complexes encode their subunits on a 

single polycistronic mRNA, with each subunit translated from its own initiation site (47/64 

complexes, Fig. 2B-C and Fig. S3A).  RNA-seq analysis confirms that the mRNA levels of the 

genes in these operons are similar, whereas the different translation efficiency (synthesis rate per 

mRNA) reflects the stoichiometry (Fig. S4BC and Table S4). Moreover, gene order does not 

explain differential synthesis rates (Fig. 2A and 2C and Fig. S4D), consistent with our previous 

observation that translation rates among genes in the same operon are only weakly correlated 

(inset, Fig. 2C) (Oh et al., 2011). Protein synthesis rates are generally determined by the 

frequency of translation initiation (Andersson and Kurland, 1990). However, our current 

understanding of what determines translation initiation rates is highly incomplete as existing 

models for either the strength of ribosome binding site or the Shine-Dalgarno sequence alone do 

not predict proportional synthesis (Fig. 2C) (Salis et al., 2009). Translational auto-regulation 

(Nomura et al., 1984), coupling (Baughman and Nomura, 1983) or specific RNA secondary 

structures (McCarthy and Gualerzi, 1990) are factors that could contribute to precise tuning of 
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synthesis rates. Our discovery of proportional synthesis in polycistronic messages should help 

guide efforts to dissect the molecular mechanism of translation initiation quantitatively, as well 

as aid the precise engineering of synthetic biological networks. 

The use of translational control and polycistronic operons to achieve proportional 

synthesis has important potential advantages. In particular, setting the ratios of subunit 

expression levels exclusively at the translational level greatly simplifies transcriptional 

regulation; the cell needs only to control the overall expression of the complex and not the 

relative amounts within the complex. Additionally, sharing the same polycistronic mRNA 

reduces stochastic imbalance among components of the complex. Because transcription 

originates from a single gene locus and is thus inherently noisy (Li and Xie, 2011), the ratio of 

proteins encoded on different mRNAs would be subject to much higher noise levels (Elowitz et 

al., 2002; Swain, 2004). The use of polycistronic mRNAs circumvents this issue, but 

translational tuning becomes necessary to achieve different expression levels.  

Evidence for proportional synthesis in budding yeast 

We found evidence that the budding yeast S. cerevisiae also exhibits tightly controlled 

synthesis of stably associated protein complexes, as indicated by our analysis of a subset of 

highly characterized complexes (Fig. 3A-B). Genomic duplication events in S. cerevisiae have 

led to numerous paralogous genes, which in some cases can substitute for each other in multi-

protein complexes. Interestingly, we found that proportional synthesis is maintained by tuning 

the synthesis rates for duplicated genes that encode the same subunit. For example, the two �-

tubulin genes together are translated at a similar rate as the single �-tubulin gene (Fig. 3C). 

Similarly, for the COPII Sec23/24 heterodimer, the production rate of Sec23 matches that of 
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Sec24 and its two homologs (Sfb2 and Sfb3) combined (Fig. 3C). A notable exception for 

proportional synthesis is the signal recognition particle, for which four subunits are translated at 

1:1:2:2 ratio and the other two subunits are in excess (Fig. 3A). It has also been shown that 

vertebrates produce uneven amounts of α- versus β-spectrin and immunoglobulin light chains 

versus heavy chains (Blikstad et al., 1983; Lehnert and Lodish, 1988; Shapiro et al., 1966). 

Understanding the rationale behind the unequal synthesis in these exceptions could provide 

insights into their physiological functions. 

Yeasts must employ distinct mechanisms to achieve proportional synthesis, as subunits 

are encoded on different mRNAs in eukaryotes. For example, the dynamics of nuclear 

localization of transcription factors and their affinity to promoter sites could provide independent 

control for complex levels and subunit ratios (Cai et al., 2008). Given the fundamentally 

different molecular mechanisms for prokaryotic and eukaryotic expression, these observations 

argue that proportional synthesis is a result of convergent evolution that maximizes protein 

synthesis efficiency while minimizing the adverse effects of having uncomplexed subunits. 

The broad use of proportional synthesis has important implications for the effect of 

aneuploidy. Most genes do not possess feedback mechanisms for controlling their expression 

levels (Springer et al., 2010). Thus a sudden changes in gene dosage would lead to a large 

imbalance of subunits (Papp et al., 2003). Because cells normally do not face large imbalances in 

the synthesis rate of multiprotein complexes, aneuploidy would lead to a strong challenge to the 

protein folding and chaperone networks, consistent with the findings of Amon and co-workers 

that general proteotoxic stress is a hallmark of aneuploidy (Oromendia et al., 2012; Torres et al., 

2008). 
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Taken together, our findings argue that the relative expression of members of 

multiprotein complexes is primarily determined at the synthesis level, and that targeted 

degradation of excess subunits is a secondary layer of control. Indeed components of 

multiprotein assemblies whose uncomplexed subunits have been shown to be degraded, 

including the ribosomal L8 complex and the SecYEG translocon in E. coli and Fas1/2 in S. 

cerevisiae, also show proportional synthesis (Akiyama et al., 1996; Petersen, 1990; Schuller et al., 

1992).  

Hierarchical expression of functional modules 

 Stable protein complexes are only one of a wide range of functional modules that are 

organized into operons in bacteria, leading us to ask whether translational control also sets 

expression of other types of functional modules. Because our genome-wide ribosome profiling 

dataset covers many different modules in the same functional class, we can use our data to 

identify common expression patterns strategies that are selected through evolution.  Our studies 

of several different modules identified a 2nd pattern:  hierarchical expression, in which 

components are differentially expressed according to their hierarchical role. 

 Bacterial toxin-antitoxin modules (TA) are widely utilized two-gene systems that control 

cellular survival (Yamaguchi et al., 2011). The role of antitoxin is to bind to and inhibit its 

cognate toxin. E. coli contains at least 12 type II TA systems, each consisting of a toxin protein 

and an antitoxin protein in a bicistronic operon (Yamaguchi et al., 2011). For every well-

characterized type II TA system, we found that the antitoxin is synthesized at a much higher rate 

than the toxin (Fig. 4A), which would allow E. coli to produce sufficient amount of antitoxin to 

avoid triggering cell death or growth arrest during unstressed growth. The hierarchical 



!

! 12 

expression between antitoxin and toxin is irrespective of their relative order in the operon (Fig. 

4A). Because most toxins target global translation, the translational control observed for 

hierarchical expression of TA modules may provide insight into how the system switches to a 

toxin-dominated state via translational feedback—a central question in antibiotic persistence 

(Gerdes and Maisonneuve, 2012). 

 s/anti-s modules are conceptually similar to TA modules. Both are usually encoded in the 

same operon, and anti-s inhibits the transcriptional activity of the s by direct binding. 

Interestingly, anti-s's, like antitoxins, are produced in excess compared to s's (Fig. 4B). In both 

cases, the uncomplexed antagonists (antitoxins and anti-s's) are also subject to regulated 

degradation (Ades et al., 1999; Yamaguchi et al., 2011). Thus the hierarchical expression would 

not be evident by measuring protein levels, even though cells ensure an excess of inhibitor 

during synthesis.  

 Translationally controlled hierarchical expression appears to be common for a diverse 

range of functional modules. ATP-binding cassette (ABC) transporters, are comprised of core 

transmembrane proteins and corresponding substrate-binding periplasmic proteins. Whereas the 

core membrane complex components follow the proportional synthesis principle elucidated 

above (Fig. 2B-C), we found that the periplasmic binding proteins are always in large excess 

(Fig. 4D), suggesting that substrate binding is slower than transport across the membrane. Two-

component signaling systems, consisting of a histidine kinase (HK) and its substrate, a response 

regulator (RR), also exhibit hierarchical translation. For each of the 26 two-component systems 

in E. coli, the substrate is synthesized at a much higher level than the kinase (Fig. 4C). Using 

mathematical modeling and experimental validation, it has been demonstrated that large excess 

of RR relative to HK promotes robustness against variations in RR and HK levels (Batchelor and 
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Goulian, 2003; Shinar et al., 2007). Here we show that this strategy is universally employed for 

all two-component systems.  

 Taken together, these results show that hierarchical expression within operons is a key 

design principle for many diverse functional modules. As illustrated in the four examples above, 

the same hierarchy of expression levels is repetitively used for the same type of module, pointing 

to a common quantitative property that is critical for the execution of each task. The examples 

here are certainly an incomplete list; more quantitative design principles could be uncovered by 

identifying commonalities among similar systems in such genome-wide datasets. 

Bacterial proteome composition 

 Because the large majority of proteins are stable in E. coli (Larrabee et al., 1980), our 

protein synthesis rate data provides a comprehensive view of proteome composition, allowing us 

to probe how cells allocate resources (Fig. 5). By far the largest fraction of the protein synthesis 

capacity is dedicated to making the machinery needed for further translation (41% for growth in 

rich media and 21% in minimal media), whereas transcription-related proteins account for only 

5%. This disparity illustrates the importance of understanding the translational control systems 

that allow cells to allocate their translational capacity. The ability to monitor the partitioning of 

protein synthesis capacity under different conditions will provide a critical tool for quantitative 

characterization of cellular physiology. 

 The expression level of every protein in the cell is subject to two opposing constraints: 

the requirement of its function and the cost associated with having an excess that consumes 

limited resources, such as protein synthesis capacity, quality control machineries, and space 

(Dekel and Alon, 2005). Our dataset opens up the possibility of broadly investigating how these 
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competing constraints govern protein expression levels. We select two specific cellular functions 

(transcription factors and methionine biosynthesis) for further study. 

Copy numbers of transcription factors reveal their mode of action 

 The bacterial chromosome is densely covered with transcription factors (TFs) that bind 

DNA both specifically and non-specifically (Li et al., 2009). The crowded space on DNA 

imposes constraints on the abundance of TFs, as overcrowding by non-specifically associated 

DNA-binding proteins could drastically reduce the overall binding kinetics (Hammar et al., 2012; 

Li et al., 2009). Thus, although higher concentrations of any given TF would allow it to find its 

cognate DNA sites more rapidly (von Hippel, 2007), too many TFs in total would mask binding 

sites. Based on our protein abundance estimates, we found that the average distance between 

DNA-binding proteins is only ~36 basepairs on the E. coli chromosome (assuming most DNA-

binding proteins are associated with DNA nonspecifically and randomly distributed throughout 

the genome, see Extended Experimental Procedures), which is close to the theoretically optimal 

density for rapid binding (Li et al., 2009). How cells allocate the limited space on DNA to 

maximize rapid regulation by each TF remained obscure.  

Our data indicates that the ~200 well-characterized TFs in E. coli show a wide variation 

in level—more than 60% of the TFs are found to have an upper bound of fewer than 100 

monomers per genome equivalent (Fig. 6A-B). A low copy number for a TF implies a slow 

association rate to DNA, which could lead to slow transcriptional responses (Winter et al., 1981). 

For example, single-molecule imaging in vivo previously revealed that it takes six minutes for 

one Lac repressor to find a single binding site in a cell (Elf et al., 2007). Compared to the cell 

doubling time, which can be as short as 20 minutes, the binding kinetics for a low copy number 
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TF would make it difficult to achieve timely regulation. This can be circumvented with the use 

of TFs that are always bound to their target but whose ability to recruit RNA polymerase 

depends on the presence of ligands, as the kinetics of regulation would be determined by 

diffusion of the small ligand rather than by diffusion of the bulky and far less abundant protein. 

We therefore hypothesize that the low copy number TFs have evolved to bind to DNA 

independent of their activity.  

 To test this hypothesis, we mined the literature for the biochemical properties of 102 TFs 

in E. coli (Table S5). We found that abundant TFs bind to DNA only in response to ligands (Fig. 

6C). By contrast, the large majority of low abundance TFs bind to the target sites independent of 

the corresponding ligands (Fig. 6C). Therefore, cells optimize the limited space on DNA and the 

need for rapid regulation by requiring that TFs with low abundance always bind to their target 

sites. This mode of DNA binding for low copy number TFs also supports the model that TFs 

have evolved to occupy their target sites in native environments (Savageau, 1977; Shinar et al., 

2006). This class of TFs can be exploited to build transcriptional circuits with fast response time 

without incurring extra synthesis cost and nonspecific interactions.  A potential downside, 

however, is increased gene expression noise due to stochastic TF dissociation. 

Precise control of enzyme production required for methionine biosynthesis 

 The expression of metabolic enzymes similarly faces two constraints: the requirement for 

function and the cost of synthesis. Metabolic control analysis suggests that enzymes are 

generally made in excess amounts, such that small changes in the level for each enzyme have 

moderate effects on the output (Fell, 1997). On the other hand, the pools of bacterial enzymes in 

related metabolic pathways are strictly dependent of growth rates (You et al., 2013), arguing for 
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precise control of expression based on cellular need. Thus, the principal determinant of 

expression remained obscure. Here, we show that our quantification of the proteome composition 

makes it possible to globally analyze the relationship between the levels of metabolic enzymes 

and their actual reaction fluxes. 

 We focused on the well-characterized L-methionine biosynthetic pathway for E. coli 

grown in media devoid of methionine (Met). We first calculated the cellular demand for this 

pathway (31,000 s-1 Met per cell), i.e. the rate of Met consumption by protein synthesis, by 

summing up the absolute rates of protein synthesis we determined for each protein times the 

number of methionine residues in that protein. The other major pathway that consumes Met, 

which is the synthesis of S-adenosyl-L-methionine, was estimated to contribute to a small 

fraction of the overall flux (Feist et al., 2007) (see also Methods). We then compared the rate of 

Met consumption with the maximum velocity (Vmax) for its biosynthetic pathway. For each 

reaction in the pathway, we calculated Vmax by multiplying the enzyme abundance we 

determined by its published turnover number (kcat) (Schomburg et al., 2002). The maximum 

velocity varies by more than one order of magnitude among the reactions in Met biosynthesis, 

suggesting that most reactions do not operate at saturating substrate concentration. The last step 

that is catalyzed by MetE has among the smallest Vmax (Fig. 7A), suggesting that it may be a 

bottleneck in this pathway. Remarkably, we found that the maximal Met production rate allowed 

by MetE (Vmax = 34,000 s-1 per cell) matches the Met consumption rate. Therefore, under these 

growth conditions, MetE catalyzed conversion of L-homocysteine to L-methionine is a 

bottleneck step that operates at maximal velocity with saturating substrate concentration. 

 Given that methionine biosynthesis by MetE is limiting the overall rate of protein 

synthesis, why do cells not simply make more MetE protein? MetE is a large and slow enzyme, 
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whose production consumes ~8% of the total protein synthesis capacity in media devoid of 

methionine. We investigated whether the cost of increasing MetE production further would 

outweigh its benefit. To do so, we constructed a simple analytical model for the effect of MetE 

expression on growth rate (Fig. 7B, Methods). The model considers the cost and benefit of MetE 

synthesis independently, and allows us to evaluate the level of synthesis where the tradeoff 

between cost and benefit is optimized. The benefit of producing MetE arises from our 

observation that it is a bottleneck for the methionine supply for protein synthesis. Hence, 

devoting more protein synthesis capacity to MetE increases growth rate linearly (Methods). The 

cost of producing excess proteins, independent of their function, comes from competition for 

ribosomes—an effect that has been widely studied for E. coli (Dekel and Alon, 2005; Dong et al., 

1995; Scott et al., 2010). To evaluate this cost, we used the well validated numerical relationship 

described by Scott and Hwa (Scott et al., 2010).  

These two constraints predict that the fastest growth rate, a 28 min doubling time, is 

achieved at an optimal MetE level of 7% of protein synthesis capacity (Fig. 7B). Remarkably, 

these predictions were in close agreement with the actual values observed for cells lacking 

methionine:  27 min doubling time and 8% of protein synthesis capacity devoted to MetE. We 

verified experimentally that both decrease and increase in MetE production lead to slower 

growth (Fig. S5). Therefore, the expression of the key enzyme MetE is accurately tuned to allow 

the highest possible growth rate. Furthermore, the cost of expressing MetE is the main 

determinant for the slower growth rate when Met is limiting. 

Our quantitative analysis of the Met pathway revealed a bottleneck step and its 

relationship to fitness. The same approach should be applicable for a broad range of cellular and 

engineered metabolic pathways, for which the control points are still largely unknown. In 
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addition, the global analysis of maximum reaction velocity (Vmax) can be used in concert with 

flux balance analysis (Price et al., 2004; Schuetz et al., 2012) to identify possible routes of 

metabolic flux at a given condition. More broadly, the global quantification of absolute enzyme 

concentration provides a transformative tool for studying cellular metabolism. 

Discussion 

 We illustrate here the capacity to measure absolute synthesis rates for cellular proteins 

and its utility for deciphering the logic behind the design principles of biological networks. We 

identify the rules underlying the observed synthesis rates for many distinct classes of proteins. 

These include proportional synthesis for multi-protein complexes and hierarchical expression for 

common functional modules, both of which are made possible by finely tuned rates of translation 

initiation. We anticipate that there are many more principles embedded in this and similar 

datasets which will both elucidate the regime in which biochemical reactions operate, and 

provide a foundation for rational design of synthetic biological systems.  

 Our genome-wide dataset on protein synthesis rates also allows in-depth analysis of how 

cells optimize the use of limited resources. Specifically, these data revealed strategies for 

allocating limited space on DNA and limited protein synthesis capacity—transcription factors 

can be kept at low abundances without kinetic penalties by pre-binding to target sites, and the 

synthesis rate of a key enzyme that limits metabolic flux in the methionine biosynthetic pathway 

is optimized to achieve a maximal growth rate. Limited resources of various kinds pose constant 

challenges to all cells. Our approach reveals how the translational capacity of a cell is allocated 

in the face of these challenges, greatly expanding our ability to perform systems level analyses 

that were previously limited to selected proteins and pathways. 
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 While our studies illustrate the role of precisely tuned protein synthesis rates in bacteria, 

our knowledge of how this translational control is achieved remains highly limited. 

Understanding the control of translation initiation is both of fundamental importance and a 

prerequisite for quantitative design in synthetic biology.  Yet our current approaches for 

predicting translation rates, based on strength of Shine-Dalgarno site and computed RNA 

structure (Salis et al., 2009), fail to accurately account for the observed differences in translation 

initiation rates (Fig. S6). Empirical measures of mRNA structures as they exist in the cell, in 

combination with our measures of translation efficiency (Table S4), could be a key tool in 

addressing this deficiency. 

 Although we focus on bacterial cells in this work, our approach to globally measure 

absolute protein synthesis rates has broader applicability. Any species that is amenable to 

ribosome profiling and has an annotated genome can be subject to this line of investigation; the 

growing list currently includes both gram-negative and gram-positive bacteria, budding yeast, 

nematodes, fruit fly, zebra fish, and mammals. For eukaryotes and multi-cellular organisms, our 

approach will likely reveal a distinct set of principles and constraints for optimizing the 

allocation of biosynthetic capacities. Furthermore, the breakdown of these principles under stress 

conditions, such as aneuploidy and temperature and chemical shock, will provide critical insight 

into the modes of failure and their rescue mechanisms. 

 

 

References 



!

! 20 

Ades, S.E., Connolly, L.E., Alba, B.M., and Gross, C.A. (1999). The Escherichia coli sigma(E)-
dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-
sigma factor. Genes Dev 13, 2449-2461. 

Akiyama, Y., Kihara, A., Tokuda, H., and Ito, K. (1996). FtsH (HflB) is an ATP-dependent 
protease selectively acting on SecY and some other membrane proteins. J Biol Chem 271, 
31196-31201. 

Alon, U., Surette, M.G., Barkai, N., and Leibler, S. (1999). Robustness in bacterial chemotaxis. 
Nature 397, 168-171. 

Andersson, S.G., and Kurland, C.G. (1990). Codon preferences in free-living microorganisms. 
Microbiol Rev 54, 198-210. 

Barkai, N., and Shilo, B.Z. (2007). Variability and robustness in biomolecular systems. Mol Cell 
28, 755-760. 

Batchelor, E., and Goulian, M. (2003). Robustness and the cycle of phosphorylation and 
dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100, 691-
696. 

Baughman, G., and Nomura, M. (1983). Localization of the target site for translational regulation 
of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell 34, 
979-988. 

Blikstad, I., Nelson, W.J., Moon, R.T., and Lazarides, E. (1983). Synthesis and assembly of 
spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and 
beta spectrin. Cell 32, 1081-1091. 

Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C.C., Li, G.W., Zhou, S., 
King, D., Shen, P.S., Weibezahn, J., et al. (2012). A ribosome-bound quality control complex 
triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042-1054. 

Brar, G.A., Yassour, M., Friedman, N., Regev, A., Ingolia, N.T., and Weissman, J.S. (2012). 
High-resolution view of the yeast meiotic program revealed by ribosome profiling. Science 335, 
552-557. 

Brusilow, W.S., Klionsky, D.J., and Simoni, R.D. (1982). Differential polypeptide synthesis of 
the proton-translocating ATPase of Escherichia coli. J Bacteriol 151, 1363-1371. 

Buttgereit, F., and Brand, M.D. (1995). A hierarchy of ATP-consuming processes in mammalian 
cells. Biochem J 312 ( Pt 1), 163-167. 

Cai, L., Dalal, C.K., and Elowitz, M.B. (2008). Frequency-modulated nuclear localization bursts 
coordinate gene regulation. Nature 455, 485-490. 

Dekel, E., and Alon, U. (2005). Optimality and evolutionary tuning of the expression level of a 
protein. Nature 436, 588-592. 



!

! 21 

Dennis, P.P. (1974). In vivo stability, maturation and relative differential synthesis rates of 
individual ribosomal proteins in Escherichia coli B/r. J Mol Biol 88, 25-41. 

Dong, H., Nilsson, L., and Kurland, C.G. (1995). Gratuitous overexpression of genes in 
Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177, 1497-1504. 

Elf, J., Li, G.W., and Xie, X.S. (2007). Probing transcription factor dynamics at the single-
molecule level in a living cell. Science 316, 1191-1194. 

Elowitz, M.B., Levine, A.J., Siggia, E.D., and Swain, P.S. (2002). Stochastic gene expression in 
a single cell. Science 297, 1183-1186. 

Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D., Broadbelt, 
L.J., Hatzimanikatis, V., and Palsson, B.O. (2007). A genome-scale metabolic reconstruction for 
Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. 
Mol Syst Biol 3, 121. 

Fell, D. (1997). Understanding the control of metabolism (London, Portland Press). 

Gerdes, K., and Maisonneuve, E. (2012). Bacterial persistence and toxin-antitoxin loci. Annu 
Rev Microbiol 66, 103-123. 

Grossman, A.D., Straus, D.B., Walter, W.A., and Gross, C.A. (1987). Sigma 32 synthesis can 
regulate the synthesis of heat shock proteins in Escherichia coli. Genes Dev 1, 179-184. 

Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E.G., Berg, O.G., and Elf, J. (2012). The lac 
repressor displays facilitated diffusion in living cells. Science 336, 1595-1598. 

Hart, Y., Madar, D., Yuan, J., Bren, A., Mayo, A.E., Rabinowitz, J.D., and Alon, U. (2011). 
Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. Mol Cell 41, 117-
127. 

Hu, J.C., Sherlock, G., Siegele, D.A., Aleksander, S.A., Ball, C.A., Demeter, J., Gouni, S., 
Holland, T.A., Karp, P.D., Lewis, J.E., et al. (2014). PortEco: a resource for exploring bacterial 
biology through high-throughput data and analysis tools. Nucleic Acids Res 42, D677-684. 

Ingolia, N.T., Brar, G.A., Rouskin, S., McGeachy, A.M., and Weissman, J.S. (2012). The 
ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-
protected mRNA fragments. Nat Protoc 7, 1534-1550. 

Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. (2009). Genome-wide 
analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 
218-223. 

Ingolia, N.T., Lareau, L.F., and Weissman, J.S. (2011). Ribosome profiling of mouse embryonic 
stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147, 789-802. 



!

! 22 

Larrabee, K.L., Phillips, J.O., Williams, G.J., and Larrabee, A.R. (1980). The relative rates of 
protein synthesis and degradation in a growing culture of Escherichia coli. J Biol Chem 255, 
4125-4130. 

Lehnert, M.E., and Lodish, H.F. (1988). Unequal synthesis and differential degradation of alpha 
and beta spectrin during murine erythroid differentiation. J Cell Biol 107, 413-426. 

Lemaux, P.G., Herendeen, S.L., Bloch, P.L., and Neidhardt, F.C. (1978). Transient rates of 
synthesis of individual polypeptides in E. coli following temperature shifts. Cell 13, 427-434. 

Li, G.W., Berg, O.G., and Elf, J. (2009). Effects of macromolecular crowding and DNA looping 
on gene regulation kinetics. Nat Phys 5, 294-297. 

Li, G.W., Oh, E., and Weissman, J.S. (2012). The anti-Shine-Dalgarno sequence drives 
translational pausing and codon choice in bacteria. Nature 484, 538-541. 

Li, G.W., and Xie, X.S. (2011). Central dogma at the single-molecule level in living cells. Nature 
475, 308-315. 

McCarthy, J.E., and Gualerzi, C. (1990). Translational control of prokaryotic gene expression. 
Trends Genet 6, 78-85. 

Neidhardt, F.C., Bloch, P.L., and Smith, D.F. (1974). Culture medium for enterobacteria. J 
Bacteriol 119, 736-747. 

Nomura, M., Gourse, R., and Baughman, G. (1984). Regulation of the synthesis of ribosomes 
and ribosomal components. Annu Rev Biochem 53, 75-117. 

Oh, E., Becker, A.H., Sandikci, A., Huber, D., Chaba, R., Gloge, F., Nichols, R.J., Typas, A., 
Gross, C.A., Kramer, G., et al. (2011). Selective ribosome profiling reveals the cotranslational 
chaperone action of trigger factor in vivo. Cell 147, 1295-1308. 

Oromendia, A.B., Dodgson, S.E., and Amon, A. (2012). Aneuploidy causes proteotoxic stress in 
yeast. Genes Dev 26, 2696-2708. 

Papp, B., Pal, C., and Hurst, L.D. (2003). Dosage sensitivity and the evolution of gene families 
in yeast. Nature 424, 194-197. 

Petersen, C. (1990). Escherichia coli ribosomal protein L10 is rapidly degraded when 
synthesized in excess of ribosomal protein L7/L12. J Bacteriol 172, 431-436. 

Price, N.D., Reed, J.L., and Palsson, B.O. (2004). Genome-scale models of microbial cells: 
evaluating the consequences of constraints. Nat Rev Microbiol 2, 886-897. 

Quax, T.E., Wolf, Y.I., Koehorst, J.J., Wurtzel, O., van der Oost, R., Ran, W., Blombach, F., 
Makarova, K.S., Brouns, S.J., Forster, A.C., et al. (2013). Differential translation tunes uneven 
production of operon-encoded proteins. Cell Rep 4, 938-944. 



!

! 23 

Rigel, N.W., Ricci, D.P., and Silhavy, T.J. (2013). Conformation-specific labeling of BamA and 
suppressor analysis suggest a cyclic mechanism for beta-barrel assembly in Escherichia coli. 
Proc Natl Acad Sci U S A 110, 5151-5156. 

Russell, J.B., and Cook, G.M. (1995). Energetics of bacterial growth: balance of anabolic and 
catabolic reactions. Microbiol Rev 59, 48-62. 

Salis, H.M., Mirsky, E.A., and Voigt, C.A. (2009). Automated design of synthetic ribosome 
binding sites to control protein expression. Nat Biotechnol 27, 946-950. 

Savageau, M.A. (1977). Design of molecular control mechanisms and the demand for gene 
expression. Proc Natl Acad Sci U S A 74, 5647-5651. 

Schomburg, I., Chang, A., and Schomburg, D. (2002). BRENDA, enzyme data and metabolic 
information. Nucleic Acids Res 30, 47-49. 

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012). 
Multidimensional optimality of microbial metabolism. Science 336, 601-604. 

Schuller, H.J., Fortsch, B., Rautenstrauss, B., Wolf, D.H., and Schweizer, E. (1992). Differential 
proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a 
balanced ratio of both fatty acid synthetase components. Eur J Biochem 203, 607-614. 

Schwanhausser, B., Gossen, M., Dittmar, G., and Selbach, M. (2009). Global analysis of cellular 
protein translation by pulsed SILAC. Proteomics 9, 205-209. 

Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., and Hwa, T. (2010). Interdependence of 
cell growth and gene expression: origins and consequences. Science 330, 1099-1102. 

Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008). 
Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63. 

Shapiro, A.L., Scharff, M.D., Maizel, J.V., and Uhr, J.W. (1966). Synthesis of excess light 
chains of gamma globulin by rabbit lymph node cells. Nature 211, 243-245. 

Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and 
stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol Cell 50, 540-551. 

Shinar, G., Dekel, E., Tlusty, T., and Alon, U. (2006). Rules for biological regulation based on 
error minimization. Proc Natl Acad Sci U S A 103, 3999-4004. 

Shinar, G., Milo, R., Martinez, M.R., and Alon, U. (2007). Input output robustness in simple 
bacterial signaling systems. Proc Natl Acad Sci U S A 104, 19931-19935. 

Springer, M., Weissman, J.S., and Kirschner, M.W. (2010). A general lack of compensation for 
gene dosage in yeast. Mol Syst Biol 6, 368. 



!

! 24 

Stern-Ginossar, N., Weisburd, B., Michalski, A., Le, V.T., Hein, M.Y., Huang, S.X., Ma, M., 
Shen, B., Qian, S.B., Hengel, H., et al. (2012). Decoding human cytomegalovirus. Science 338, 
1088-1093. 

Swain, P.S. (2004). Efficient attenuation of stochasticity in gene expression through post-
transcriptional control. J Mol Biol 344, 965-976. 

Torres, E.M., Williams, B.R., and Amon, A. (2008). Aneuploidy: cells losing their balance. 
Genetics 179, 737-746. 

Tyedmers, J., Mogk, A., and Bukau, B. (2010). Cellular strategies for controlling protein 
aggregation. Nat Rev Mol Cell Biol 11, 777-788. 

von Dassow, G., Meir, E., Munro, E.M., and Odell, G.M. (2000). The segment polarity network 
is a robust developmental module. Nature 406, 188-192. 

von Hippel, P.H. (2007). From "simple" DNA-protein interactions to the macromolecular 
machines of gene expression. Annu Rev Biophys Biomol Struct 36, 79-105. 

Winter, R.B., Berg, O.G., and von Hippel, P.H. (1981). Diffusion-driven mechanisms of protein 
translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic 
measurements and conclusions. Biochemistry-Us 20, 6961-6977. 

Yamaguchi, Y., Park, J.H., and Inouye, M. (2011). Toxin-antitoxin systems in bacteria and 
archaea. Annu Rev Genet 45, 61-79. 

You, C., Okano, H., Hui, S., Zhang, Z., Kim, M., Gunderson, C.W., Wang, Y.P., Lenz, P., Yan, 
D., and Hwa, T. (2013). Coordination of bacterial proteome with metabolism by cyclic AMP 
signalling. Nature. 

 

 



! 25 

Figure 1. Absolute Quantification of Protein Synthesis Rates 
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Figure 1. Absolute Quantification of Protein Synthesis Rates 

(A) Effect of translational pausing on average ribosome density. Average ribosome density is 

plotted for the first and second half of each gene. The Pearson correlation for genes with at least 

64 reads aligned to both halves (red) is R2 = 0.92. The inset shows the distribution of the fold-

difference between the second and the first halves (N = 2,870, SD = 1.3 fold). 

(B) Agreement between published protein copy numbers and absolute synthesis rates. The copy 

numbers of 62 proteins which have been individually quantified in the literature are plotted 

against the absolute protein synthesis rates (Pearson correlation R2 = 0.96). 
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Figure 2. Proportional Synthesis of Multi-Protein Complexes 
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Figure 2. Proportional Synthesis of Multi-Protein Complexes (continued) 
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Figure 2. Proportional Synthesis of Multi-Protein Complexes 

(A) Translation rates reflecting subunit stoichiometry for the ATP operon. Eight subunits of the 

F0F1 ATP synthase are expressed from a polycistronic mRNA, whose level as measured by 

RNA-seq is shown in blue. Each subunit is associated with different levels of ribosome density 

(green), and the average density is proportional to the subunit stoichiometry (right). 

(B) Proportional synthesis for a diverse range of complexes. Synthesis rates are plotted as a 

function of the subunit stoichiometry for multi-protein complexes whose subunits are encoded in 

the same operon. Complexes with different subunit stoichiometry or more than two subunits are 

included here (also see panel (C)). The dashed line indicates the best-fit that crosses the origin. 

(C) Proportional synthesis for complexes with two equimolar subunits. Each complex is plotted 

for the synthesis rates of the two subunits, with the earlier (later) gene in the operon on the 

horizontal (vertical) axis. 28 equimolar and co-transcribed complexes, covering 4 orders of 

magnitude in expression level, are plotted here. Inset shows the histogram of fold-difference 

between the synthesis rates of the two subunits. Our experimental results are shown in red, and 

the predicted values based on a thermodynamic model considering the sequence surrounding 

translation initiation sites are shown in blue  (Salis et al., 2009). The distribution of the 

differences in translation rates for all other operons is shown in gray. Panels B and C show 

complexes whose subunits are encoded on a single polycistronic operon. 
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 Figure 3. Proportional Synthesis for Complexes in Yeast 
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Figure 3. Proportional Synthesis for Complexes in Yeast (continued) 
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Figure 3. Proportional Synthesis for Complexes in Yeast (continued) 

(A) Proportional synthesis for multi-protein complexes in S. cerevisiae. Synthesis rates are 

plotted as a function of the subunit stoichiometry for complexes with more than two subunits. 

For the signal recognition particle, four subunits (Srp14/21/68/72) are synthesized according to 

their stoichiometry, and the other two are exceptions. 

(B) Proportional synthesis for heterodimeric complexes in S. cerevisiae. Each complex is plotted 

for the synthesis rate of the two subunits.  

(C) Proportional synthesis for complexes with paralogous subunits. For each complex, the 

subunits that can substitute each other are plotted in the same column.  
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Figure 4. Hierarchical Expression for Functional Modules 
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Figure 4. Hierarchical Expression for Functional Modules (continued) 
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Figure 4. Hierarchical Expression for Functional Modules 

(A) Synthesis rates for toxin-antitoxin (TA) modules. E. coli contains 12 type II TA systems that 

are each expressed from a polycistronic mRNA. (The order of genes differs among systems.) The 

anti-toxin protein binds to and inhibits the toxin protein, while repressing its own transcription. 

The synthesis rates for each system are plotted (bottom). Modules with the toxin gene preceding 

the antitoxin gene in the operon is marked by asterisk. 

(B) Synthesis rates for sigma-anti-sigma factors modules. The anti-sigma factor binds to and 

inhibits the sigma factor, preventing transcription from the promoter driven by the corresponding 

sigma factor. The synthesis rates for each systems are plotted (bottom). 

(C) Synthesis rates for two-component signaling systems. Bacterial two-component signaling 

system consists of a membrane-bound histidine kinase and the cognate response regulator. The 

synthesis rates for 26 two-component systems in E. coli are plotted (bottom). 

(D) Synthesis rates for ATP-binding cassette (ABC) transporters. An ABC transporter consists of 

a core membrane transporter, an ATP-binding domain, and the corresponding periplasmic 

binding proteins. The synthesis rates for each transporter are plotted (bottom). 
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Figure 5. Composition of the E. coli Proteome 
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Figure 5. Composition of the E. coli Proteome 

(A) Break down of the proteome by functions. The mass-fraction of the proteome that is devoted 

to specific biological functions is plotted as a pie chart. The copy numbers were estimated for E. 

coli grown in rich defined medium (Methods). 

(B) Ten proteins with the largest mass-fraction in the proteome. The color used for each protein 

corresponds to the biological function indicated in A. 
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Figure 6. Abundance of Transcription Factors (TFs) 
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Figure 6. Abundance of Transcription Factors (TFs) 

(A) Cumulative distribution of abundance for transcriptional activators, repressors, and dual 

regulators. The cumulative distribution for each class of TF is plotted as a function of the copy 

number per genome equivalent. 

(B) Cumulative distribution of abundance for autoregulators. The cumulative distributions for 

positive- and negative-autoregulators are plotted as a function of the copy number per genome 

equivalent. 

(C) Ligand dependence of target binding. Among TFs whose abundance fall into a given range, 

the fraction that binds to the target site in a ligand-dependent way is shown in blue, and the 

fraction that binds to the target site independent of ligands is shown in green. The number of 

transcription factors analyzed is indicated above each bin. 
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Figure 7. Quantitative Analysis of the Methionine Biosynthesis Pathway 
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Figure 7. Quantitative Analysis of the Methionine Biosynthesis Pathway 

(A) Maximal reaction rates for the intermediate steps. For each step of the pathway, the maximal 

reaction rate (Vmax), inferred from the enzyme abundance in vivo and the turnover number 

measured in vitro, is shown as the width of the blue bar, unless no in vitro data were available. 

The last step that is catalyzed by the enzyme MetE has Vmax = 34,000 Met/s/cell, whereas the 

flux of methionine into protein synthesis is 31,000 Met/s/cell. The scatter plot on the right shows 

up-regulation of these enzymes in media without methionine. 

(B) Model predicting the optimal MetE level. In a model that considers the cost and benefit of 

MetE expression, the maximal growth rate is plotted as a function of the mass fraction of MetE 

in the proteome. The cost due to competition with new ribosome synthesis is shown in red, and 

the benefit from increased methionine flux is shown in blue. The maximal growth rate is highest 

(28 min) when the mass fraction of MetE is ~7%. This prediction agrees with experimental 

results. 
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Figure S1. Adjustment to ribosome density based on sequence- and position-specific 

variation in translation elongation rates. 
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Figure S1. Adjustment to ribosome density based on sequence- and position-specific 

variation in translation elongation rates. (continued) 
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Figure S1. Adjustment to ribosome density based on sequence- and position-specific 

variation in translation elongation rates. 

(A) Atypical genes with large drop-off in ribosome occupancy. For selenoproteins, e.g. FdoG, 

we observed reduced ribosome occupancy after the selenocysteine codon. Only the region after 

the selenocysteine codon was used to calculate the average ribosome density. Abrupt decrease in 

ribosome occupancy on a few other genes, such as copA, could indicate novel translational 

events. 

(B) Correction for elevated ribosome occupancy towards the beginning of open reading frames. 

The slight increase in occupancy (blue) was modeled as an exponential function (red). The fitting 

parameters were used to adjust the position-dependent ribosome occupancy. 

(C) Correction for translational pausing induced by internal Shine-Dalgarno-sequences. The 

average ribosome occupancy downstream from a hexanucleotide sequence is plotted against its 

affinity to the anti-Shine-Dalgarno sequence. The observed relationship (left) was fitted with a 

linear function (red). The fitting parameters were used to adjust the sequence-dependent 

ribosome occupancy, so that the result is independent of the strength of Shine-Dalgarno 

sequences (right). 

(D) Effects of the corrections for local variation in translation elongation rates. For each gene, 

the average ribosome density before and after corrections is plotted. The standard deviation for 

the differences is 1.11 fold. 
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Figure S2. Comparison of published quantitative proteomics measurements and 

individually measured protein copy number. 
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Figure S2. Comparison of published quantitative proteomics measurements and 

individually measured protein copy number. 

(A) Proteomics data using absolute protein expression (APEX) profiling based on mass 

spectrometry (Lu et al., 2007). 

(B) Proteomics data using exponentially modifies protein abundance index (emPAI) based on 

mass spectrometry (Ishihama et al., 2008). 

(C) Proteomics data using intensity-based absolute quantification (iBAQ) based on mass 

spectrometry (Arike et al., 2012). We note that the data in (A-C) were obtained using label-free 

quantification. Current development in other absolute quantification methods using isotopic 

labeling and synthetic peptides as standards could provide improvements in accuracy and 

coverage (Hanke et al., 2008; Picotti et al., 2009). 

(D) Proteomics data using a YFP-fusion library (Taniguchi et al., 2010). The library was 

constructed for ~25% of the genome. The measurements were performed at a lower growth rate 

(150 minutes per doubling) compared to other reports, which gave rise to lower protein 

abundance in general. 
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Figure S3. Proportional synthesis for other multi-protein complexes 
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Figure S3. Proportional synthesis for other multi-protein complexes. 

(A) Proportional synthesis for complexes whose members are encoded in the same operon. 

Complexes not included in Fig. 2B are shown here. The synthesis rate for each pair of subunits 

in the complex is plotted, with the identity of the complex indicated by the color code. The size 

of the symbol reflects the ratio of stoichiometry between the pair. Each pair is plotted twice with 

different order. 

(B) Proportional synthesis for complexes whose members are encoded in more than one operon. 

The size of symbols is the same as in (A). Inset shows synthesis rates for ribosomal proteins. For 

some of the ribosomal protein with equal stoichiometry, proportional synthesis may be achieved 

by a combination of translational coupling and auto-regulation. 

(C) Proportional synthesis for ribosomal proteins. All proteins, except RplL (L7/L12), have the 

stoichiometry of one per ribosome. 

(D) Exceptions to proportional synthesis. Five complexes do not follow proportional synthesis 

out of 64 complexes. The synthesis rates relative to the stoichiometry are plotted here. Subunits 

of the maltose transporter and the BAM complex are translated from different mRNA, whereas 

the other three complexes are translated from the same polycistronic mRNA. 
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Figure S4. Proportional synthesis at 10oC, mRNA levels, and gene order 
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Figure S4. Proportional synthesis at 10oC, mRNA levels, and gene order 

(A) Proportional synthesis at 10oC. Synthesis rates relative to stoichiometry are plotted for 

complexes expressed from the same operon. Experiment was performed at 50 hours after shifting 

the culture to 10oC. The dashed line indicates the best-fit that crosses the origin. 

(B) mRNA levels for multi-protein complexes. The average transcript level for each gene is 

plotted against the stoichiometry in the complex. The dashed lines indicate the average transcript 

levels. Complexes with subunits expressed from the same polycistronic operon with uneven 

stoichiometry are shown here. Small variation in mRNA level could be due to alternative 

transcription start site or differential degradation. Overall, the mRNA levels are similar across 

different subunit and are not proportional to the stoichiometry. 

(C) Translation efficiency for multi-protein complexes. The rate of protein synthesis per mRNA, 

as measured by protein synthesis rates (from ribosome profiling) divided by mRNA levels (from 

mRNA-seq), is plotted against the stoichiometry in the complex. The dashed line indicates the 

best-fit that crosses the origin. In combination with (B), the difference in protein production is 

mainly determined at the translational level. 

(D) Gene order and ratio of translation rates. For the complexes analyzed in this work, the 

relative stoichiometry between the gene products and their order in the operon is shown in the 

histogram. The preceding gene product has similar likelihood to have higher and lower 

stoichiometry relative to the following gene product. 

 

Figure S5. Predicted strength of ribosome binding sites and observed translation efficiency. 
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Figure S5. Predicted strength of ribosome binding sites and observed translation efficiency. 

Prediction using the sequence near the translational start site was based on the model established 

by Salis et al. (Salis et al., 2009). Translation efficiency was estimated from the ribosome 

footprint density relative to the mRNA level. The small degree of correlation is mostly explained 

by the predicted secondary structure of mRNA, and not by the strength of Shine-Dalgarno 

sequences. 
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Figure S6. Effect of MetE level on growth rate. 
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Figure S6. Effect of MetE level on growth rate. 

(A) Effect of MetE knockdown. The growth rate relative to control is plotted as a function of 

MetE level. The transcription of metE is reduced using CRISPRi knockdown. Both growth rates 

and levels of metE mRNA are relative to control experiment with sgRNA targeting RFP instead 

of metE. (x-error bars: standard deviation of the mean, N=3, y-error bars: standard error) 

(B) Effect of MetE overexpression. The growth rate relative to control is plotted as a function of 

MetE level. The transcription of ectopic metE is induced using a tetracycline-inducible promoter. 

Both growth rates and levels of metE mRNA are relative to control experiments with empty 

vector. (x-error bars: standard deviation of the mean, N=3, y-error bars: standard error) 
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Extended Experimental Procedures 

Strain and growth conditions 

 E. coli K-12 strain MG1655 was used for this study. All cultures were based on MOPS 

media with 0.2% glucose (Teknova), with either full supplement (Neidhardt et al., 1974), full 

supplement without L-methionine, or no supplement. . An overnight liquid culture was diluted 

400-fold into 200 ml fresh media. The culture was kept in a 2.8-liter flask at 37°C with aeration 

(180 rpm) until OD600 reached 0.3. For the experiment at 10°C, the culture in M9 complete 

media with 0.2% glucose and amino acids except L-methionine was transferred from 37°C to 

10°C with continuous shaking when OD600 reached 0.12. Cells were harvested 50 hours later 

when OD600 reached 0.43. The doubling time at 37°C is 21.5±0.4 minutes in fully supplemented 

MOPS media, 26.5±1.1 minutes in the methionine dropout medium, and 56.3±0.5 minutes in 

minimal medium. The results presented in this work are based on MOPS complete media unless 

otherwise mentioned. 

Ribosome profiling 

 Bacterial ribosome profiling was performed as described in detail previously (Li et al., 

2012; Oh et al., 2011) with the following modifications. 200 ml of cell culture was rapidly 

filtered at 37°C by passing through a nitrocellulose filter with 220 nm pore size (GE MicronSep). 

Cell pellets were rapidly collected using a pre-warmed metal table crumber, flash frozen in liquid 

nitrogen, and combined with 650 µl of frozen droplets of lysis buffer (10 mM MgCl2, 100 mM 

NH4Cl, 20 mM Tris pH 8.0, 0.1% NP-40, 0.4% Triton X-100, 100 U/ml DNase I, 0.5 U/µl 

Superase-In, 1 mM chloramphenicol). Cells and lysis buffer were pulverized in 10 ml canisters 

(Retsch) pre-chilled in liquid nitrogen using Qiagen TissueLyser II (5 cycles of 3 minutes at 15 
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Hz). Pulverized lysate was thawed on ice and clarified by centrifugation at 20,000 rcf for 10 

minutes at 4°C. 5 mM CaCl2 was added to the clarified lysate containing 0.5 mg of RNA which 

was then digested with 750 U of micrococcal nuclease (Roche) at 25oC for 1 hr. The reaction 

was quenched by adding EGTA to 6 mM and moved on ice.  

 The monosome fraction, following nuclease digestion to create footprints, was collected 

using sucrose gradient and hot-phenol extraction. Ribosome-protected mRNA fragments were 

isolated by size excision on a denaturing polyacrylamide gel (15%, TBE-Urea, Invitrogen). 

Fragments with size ranging from 15 to 45 nucleotides were excised from the gel. The 3' end of 

footprints was dephosphorylated using 20 units of T4 polynucleotide kinase (New England 

Biolabs) at 37°C for one hour. Five picomoles of footprints were ligated to 1 µg of 5' adenylated 

and 3'-end blocked DNA oligo (/5rApp/CTGTAGGCACCATCAAT/3ddc, Integrated DNA 

Technologies) using truncated T4 RNA ligase 2 K277Q at 37°C for 2.5 hours. The ligated 

product was purified by size excision on a 10% TBE-Urea polyacrylamide gel (Invitrogen). 

cDNA was generated by reverse transcription using Superscript III (Invitrogen) at 50°C for 30 

minutes with primer o225-Link1 

(5phos/GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCCGTATCATT/iSp18

/CACTCA/iSp18/CAAGCAGAAGACGGCATACGAATTGATGGTGCCTACAG), and 

isolated by size excision on a 10% TBE-Urea polyacrylamide gel (Invitrogen).  

 Single-stranded cDNA was circularized using CircLigase (Epicentre) at 60°C for 2 hours. 

Ribosomal RNA fragments were removed using biotin-linked DNA oligos 

(5Biosg/TCATCTCCGGGGGTAGAGCACTGTTTCG,5Biosg/GGCTAAACCATGCACCGAA

GCTGCGGCAG,5Biosg/AAGGCTGAGGCGTGATGACGAGGCACT,5Biosg/CGGTGCTGA

AGCAACAAATGCCCTGCTT) and MyOne Streptavidin C1 Dynabeads (Invitrogen). After 
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being purified using isopropanol precipitation, the remaining cDNA was amplified using Phusion 

DNA polymerase (Finnzymes) with o231 primer (CAAGCAGAAGACGGCATACGA) and 

indexing primers 

(AATGATACGGCGACCACCGAGATCGGAAGAGCACACGTCTGAACTCCAGTCACNN

NNNNCGACAGGTTCAGAGTTC). After 8-10 rounds of PCR amplification, the product was 

selected by size excision on a 8% TB polyacrylamide gel (Invitrogen). 

 Sequencing was performed on an Illumina HiSeq 2000. Bowtie v. 0.12.0 was used for 

sequence alignment to the reference genomes NC_000913.fna obtained from NCBI Reference 

Sequence Bank. The footprint reads with size between 20 to 42 nucleotides in length were 

mapped to the genome using the center-weighted approach; for each footprint read, the center 

residues that are at least 10 nucleotides away from either ends were given the same score, which 

is weighted by the length of the fragment. The dataset is deposited inthe Gene Expression 

Omnibus (GEO) under accession number GSE53767.  

 Ribosome profiling data for S. cerevisiae S288C was obtained from Brandman et al. 

(Brandman et al., 2012). For paralogous genes in Figure 3C, we used regions with at least one 

nucleotide difference within a 28-nucleotide window to calculate the synthesis rates.  

mRNA sequencing 

 Pulverized cell lysate described in the previous section was collected and RNA was 

extracted using hot phenol extraction. Ribosomal RNA was removed by subtractive 

hybridization using MICROBExpress (Ambion). Small RNAs were removed using MEGAclear 

purification kit (Ambion). The remaining mRNA was fragmented using alkaline hydrolysis (50 

µl of 44 mM NaHCO3, 6 mM Na2CO3, 1 mM EDTA) at 95°C for 23 minutes. RNA was 
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immediately precipitated. Fragment size between 20-40 nucleotides were selected on a 

denaturing polyacrylamide gel (15%, TBE-UREA, Invitrogen). These fragments were then 

ligated and converted to DNA as described in the previous section. 

 To estimate the abundance of mRNA levels, we calculated the number of sequencing 

reads mapped to a gene, divided by the length of the gene to yield the number of reads 

corresponding to the message per thousand bases of message per million sequencing reads 

(RPKM). Translation efficiency was calculated by dividing the protein synthesis rate by the 

estimate for mRNA level. Table S5 lists mRNA level and translation efficiency in arbitrary units. 

Average ribosome density and correction for translation elongation rate 

 Average ribosome density was calculated for reads mapped to the gene excluding the first 

and last five codons to remove effects of translation initiation and termination. A number of 

genes with unconventional translational events were treated differently, as described below. (1) 

For genes with translational frameshift (prfB and dnaX), only the density after the frameshift 

event was used. The dnaX gene uses ~50% frameshift to code for two stable proteins—the larger 

tau subunit and the smaller gamma subunit. The density for the tau subunit was subtracted from 

the density before the frameshift to give the density for the gamma subunit. (2) For 

selenoproteins (FdhF, FdoG, FdnG), we observe higher ribosome density before the codon for 

selenocysteine, suggesting that most ribosomes terminates at the selenocysteine codon, which is 

also a stop codon recognized by release factor 2. Only the density after the selenocysteine codon 

was used in our calculation. (3) For proteins translated without a stop codon, such as the 

alternative ribosome rescue factor (ArfA), only the density before the end of the transcript was 

considered. (4) For proteins translated with a known ribosome stalling site (SecM and TnaC), the 
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ribosome density around the stalling site was not included in the average.  (5) For proteins with 

nearly identical coding sequences, such as TufA and TufB, GadA and GadB, YnaE and YdfK, 

LdrA and LdrC, YbfD and YhhI, TfaR and TfaQ, RzoD and RzoR, PinR and PinQ, we 

considered the pair as the same protein and calculated the average ribosome density together. 

 To test whether the overall measure of ribosome density for the entire gene averages out 

local variation in elongation rates and sequencing biases, we compared the density for the first 

half and second half of the gene. Genes with at least 20 codons and 64 reads in either halves are 

included in the analysis. The result is shown in Fig. 1A. The lack of bias towards the first half 

confirms the finding that there is little drop-off in ribosome density for most genes (Li et al., 

2012; Oh et al., 2011). Genes with special translational events, as discussed above, were 

excluded from this analysis. 

 These small effects can be further corrected using the knowledge of the sequence features 

that drive variations in elongation rates. We first considered the elevated density observed for the 

first 50-100 codons (Oh et al., 2011). For each gene, we calculated the local ribosome density as 

a function of length, which was measured as the average ribosome density in a window of 50 

codons relative to that in the first 50 codons. The median values of this function among all genes, 

except those with unconventional translation events and those with less than 128 reads mapped, 

were fitted with an exponential decay function with an offset. The fitting result was independent 

of the window size. The resulting function was used to adjust the ribosome density for all genes, 

similar to the method used by Ingolia et al. (Ingolia et al., 2009), to remove the elevated density 

at the beginning of open reading frames. 
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 We next correct for the elevated density due to ribosome pausing. We have previously 

reported that interactions between mRNA and the 16S rRNA cause ribosome pausing at internal 

Shine-Dalgarno (SD) sequences (Li et al., 2012). We have also found that the affinity between a 

hexanucleotide sequence and the ribosomal anti-Shine-Dalgarno (aSD) site strongly predicts the 

duration of ribosome pausing (Li et al., 2012). Here we used this information to correct for the 

effect of ribosome pausing. We fitted a linear function for the average ribosome occupancy 

downstream from a hexanucleotide sequence with respect to its affinity to the aSD site. This 

function is then used to adjust the ribosome occupancy at each position in each gene; at each 

position, the measured occupancy was divided by the expected pause duration based on the 

strongest hexanucleotide sequence at 6-11 bases upstream. The adjusted ribosome occupancy is 

no longer correlated with the SD-aSD interaction. 

 Finally, we remove the residual variations that are not accounted for using 90% 

Winsorization (Tukey, 1962). Namely, the top and bottom 5% of the ribosome occupancy for 

each gene were removed from the calculation for average ribosome density. The results before 

and after all three corrections listed here are shown in Fig. S1. These corrections together only 

have moderate effects, as the difference between uncorrected and corrected density is typically 

below 18% (standard deviation of the mean). 

Total protein measurement and the conversion to absolute synthesis rates 

 Ribosome profiling and the analyses above allow direct comparison of the relative 

synthesis rates among proteins. To obtain the absolute synthesis rate, we normalized the results 

by the total weight of proteins synthesized per cell cycle. Because the majority of the proteins in 
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E. coli are long-lived compared to the generation time during rapid growth, the total weight of 

proteins synthesized per cell cycle can be approximated as the total weight of proteins per cell.  

 To measure the total weight of proteins per cell, we grew cells in the same way as those 

used for ribosome profiling experiments. When OD600 reached the same level, we counted the 

number of cells per unit volume by serial dilution and plating on LB-agar plates. At the same 

time, 1 ml of culture harvested using centrifugation for 30 seconds. After removing 950 µl 

supernatant, cells were resuspended and added to 950 µl ice-cold PBS with 0.017% deoxycholate 

and on ice for 5 minutes. We then added 113 µl of 100% trichloroacetic acid and incubate on ice 

overnight. Protein precipitation was collected by centrifugation at 20,000 rcf for 15 minutes at 

4°C. The amount of proteins was quantified using the Lowry method with Peterson’s 

modification (Sigma-Aldrich). To establish a standard curve, serial dilution of bovine serum 

albumin was made in the same culture media, and precipitated in the same way. The total weight 

of protein per cell (P) is calculated as the amount of protein per OD600 per ml of culture divided 

by the number of cells per OD600 per ml of culture. We measured 680 fg of protein per cell for 

culture in MOPS complete media, 450 fg per cell in MOPS complete media without methionine, 

and 238 fg per cell in MOPS glucose minimal media. These results on protein content and the 

corresponding estimate for the number of ribosomes (Table S1) at various growth rates are 

consistent with the estimate by Bremer and Dennis (REF).  

To obtain the absolute synthesis rates, we first used the corrected ribosome density of 

each protein relative to that of all proteins to estimate its mass fraction in the proteome: !

! ! ! ! ! !! = !"!!"!
!"!!"!!

, 

where !i, MWi, RDi, are the mass fraction, molecular weight, and ribosome density of protein i, 
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respectively. The synthesis rate for protein i (ki) is given by  

     !! = !!!
!"!

= !"!!
!"!!"!!

, 

where ki has the unit of molecules per generation. One generation is 21.5±0.4 minutes in fully 

supplemented MOPS media. For stable proteins, ki is also the copy number. The results are listed 

in Table S1. 

Literature mining for published protein copy numbers 

 We validated our results by comparing with a list of protein copy numbers that have been 

individually characterized using classic assays. To compile such a list, we combined a 

community-based approach and computer-aided search. We consulted bacteriologists for 

relevant publications to their knowledge. We also utilized search engines such as PubMed and 

Google with relevant keywords. To obtain an unbiased list, every publication we could identify 

that measured specific protein abundance in E. coli was included. Results from other high-

throughput studies were excluded in order to avoid bias toward any one method.  

 The published quantification used various strain backgrounds, growth media, temperature, 

and growth phases. If the same protein has been reported for multiple conditions, we chose the 

values that were measured in the condition closest to ours (MG1655, MOPS complete media 

with 0.2% glucose, 37°C, and exponential phase growth). Because most of the published 

quantification was based on cells with slower growth rates and lower cell mass, the protein copy 

numbers are in general slightly lower than our estimates in rich media. For copy numbers that 

were reported as molecules per genome equivalent, we multiplied the number by four to 

approximate our growth condition. The detailed protein information, strain background, media, 

temperature, growth phase, and PubMed ID for the original publication were listed in Table S2.  
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Systematic analysis of complex stoichiometry 

 To our knowledge, there is no curated database for multi-protein complexes and their 

stoichiometry. We systematically created a list based on the references available in the Ecocyc 

Database (Keseler et al., 2013). We first obtained a list of proteins that have been annotated as 

either 'subunit' or ‘component’. We then inspected the literature to confirm whether each protein 

is a stoichiometric component of a larger complex. Because we set out to analyze the synthesis 

rates for obligate members of stable complexes, several criteria were used for the selection. (1) 

The subunit has no additional roles outside the complex that have been reported. Several 

ribosomal proteins do not meet this criterion (even though their synthesis rates are closely 

matched) because the free proteins function separately in translational repression or ribosome 

assembly. (2) The complex is formed in the default state, rather than as a response to signals. For 

example, the DNA repair enzyme uvrABC is excluded because the assembly depends on 

damaged DNA. (3) The stoichiometry of the complex has been well documented. We identified 

62 multi-protein complexes that meet these criteria and are expressed in our dataset (more than 

128 sequenced reads per protein). The gene names and the corresponding stoichiometry is listed 

in Table S3. For the budding yeast S. cerevisiae, we performed a small-scale analysis on multi-

protein complexes using the same criteria.   

 Among the 64 complexes in E. coli, 47 have all the components encoded in the same 

operon, and their synthesis rates are shown in Fig. 2. The operon structure is based on the 

experimentally validated annotation in Ecocyc, and confirmed by our RNA-seq data. The rest of 

the complexes have members expressed from at least two different mRNAs, and their synthesis 

rates are shown in Fig. S3. The exceptions to proportional synthesis are also shown in Fig. S3C. 



!64 

Predicted translation rates using RBS calculator 

 To calculate the predicted translation rates based on the model established by Salis et al. 

(Salis et al., 2009), we used the RBS Calculator downloaded from github.com/hsalis/Ribosome-

Binding-Site-Calculator-v1.0. For each gene, we used the nucleotide sequence from 35 bases 

upstream to 35 bases downstream from the translation start site as the input, and obtained the 

predicted strength of ribosome binding site, as well as predicted Shine-Dalgarno sequence and 

mRNA accessibility. For complexes with two equimolar subunits that are expressed from the 

same operon, the predicted fold-difference between the translation rates is !!!(∆!!!∆!!), where β 

= 0.45 and ∆!!and ∆!! are the predicted strength of ribosome binding sites for gene 1 and gene 

2, respectively. 

DNA-binding properties of transcription factors 

 To test our hypothesis that low abundance transcription factors (TFs) always bind to their 

cognate sites independent of ligands, we mined the literature to determine the mode of DNA 

binding of TFs and compared with our results on TF copy numbers. E. coli has >400 annotated 

TFs, most of which are putative with little biochemical characterization. To focus on well-

characterized TFs, we based our analysis on TFs that have been shown to regulate their own 

transcription. For each of these 102 TFs, we first identified the ligand that binds directly to 

regulate the activity of the TF. We then searched for evidence for whether the binding of ligands 

alter the ability to bind to the cognate DNA binding sites. TFs that do not have known ligands 

are not included in Fig. 6. Table S4 lists the ligands, mode of DNA binding, and the PubMed ID 

for the reference that showed whether DNA-binding is affected by ligands. 
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 To estimate the average spacing between DNA-binding proteins on the chromosome, we 

divided the length of the E. coli chromosome by the total amount of proteins (per genome 

equivalent) that are annotated with DNA binding activity. Proteins whose main function is not 

associated with DNA binding, such as alanyl-tRNA synthetase, are not considered in the 

calculation. The total number of DNA-binding proteins is divided by two because most of them 

bind to DNA as dimers. A large fraction of these proteins consists of nucleoid-associated 

proteins and the RNA polymerase (~70%). In this estimation, we assumed that the vast majority 

of these proteins are nonspecifically associated with DNA in vivo. Indeed, the concentrations for 

nucleoid-associated proteins and the RNA polymerase are higher than the reported nonspecific 

dissociation constants (Li et al., 2009), indicating that they are bound to the chromosome. This 

estimation gives ~56 basepairs center-to-center distance between neighboring DNA-binding 

proteins. The average spacing between adjacent proteins is 36 basepairs if the average footprint 

size on DNA is assumed to be 20 basepairs (Li et al., 2009). 

Quantitative analysis of the methionine biosynthesis pathway 

 The description of the pathway and the corresponding enzymes were obtained from the 

Ecocyc Database (Keseler et al., 2013). The methionine synthesis pathway acquires the 

backbone of the amino acid from aspartate, and sulfur from cysteine. Although both aspartate 

and cysteine are supplied in our media, we noticed that the enzyme involved in cysteine 

biosynthesis were also induced. We also noticed that cysteine codons, in addition to the 

methionine codon, have slightly elevated ribosome occupancy, suggesting an insufficient pool of 

cysteine in the cell. Therefore, we also included the sulfur assimilation pathway from sulfate in 

the analysis.  
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 Several reactions in the pathway can be catalyzed by more than one enzyme. For example, 

for the last step of pathway, E. coli has two homocysteine transmethylase: cobalamin-dependent 

MetH and cobalamin-independent MetE. In our methionine drop-out MOPS media, MetH 

expression was not induced compared to the level in the complete media, and was 0.6% of the 

level of MetE. Further, cells with MetE knockdown are unable to grow in media without 

methionine (see below), suggesting that MetH is not contributing significantly to methionine 

biosynthesis in this condition. Therefore, we only included MetE and not MetH in the analysis. 

Similarly for other reactions, we only included enzymes that were up-regulated. 

 In addition to providing building blocks for protein synthesis, L-methionine is also 

converted to S-adenosyl-L-methionine (SAM). In eukaryotes, the demand for SAM is high due 

to its involvement in the synthesis of phosphatidylcholine (PC), which is a major component of 

the cell membrane (Giovanelli et al., 1985; Hirata and Axelrod, 1978). However, this demand is 

nonexistent in E. coli because it does not carry enzymes that synthesize PC (Sohlenkamp et al., 

2003), and its lipid composition lacks PC (Oursel et al., 2007). The other pathways that utilize 

SAM were estimated to account for a small fraction of the methionine synthesis rate (0.4%) 

(Feist et al., 2007). We therefore consider protein synthesis as the major consumption for L-

methionine. 

 The turnover number (kcat) for each enzyme was obtained from the BRENDA database 

and the references therein (Schomburg et al., 2002). The only enzyme whose turnover number 

has not been reported for E. coli is sulfate adenylyltransferase (CysND). We instead used the 

measurement for a different proteobacteria, Thiobacillus denitrificans. The maximal reaction 

velocity (Vmax) for each step was calculated as the product of kcat and our estimate on the enzyme 
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copy number. Because we provide an upper bound of the copy number, the maximal reaction 

velocity is also an upper bound of the actual flux. 

 The smallest Vmax was found for two reactions in the pathway, catalyzed by MetE and 

CysH, respectively. Whereas the Vmax for MetE matches the methionine consumption rate, the 

Vmax by CysH is even smaller, raising the possibilities that either (1) there is an alternative for 

sulfur assimilation that has not been characterized, or (2) the reported kcat for CysH in vitro is 

lower than that in vivo. To distinguish between these possibilities, we first tested whether a 

cysH-null strain (from the KEIO collection) can grow on various sulfur sources. The cysH-null 

strain was unable to grow in media with sulfate as the only sulfur source, but was able to grow 

when supplemented with 40 mM MOPS (3-morpholinopropane-1-sulfonic acid). Therefore, E. 

coli has an alternative pathway for sulfur assimilation from MOPS, which could explain the extra 

flux needed in our MOPS-based media.  

 We then tested which genes are responsible for this uncharacterized pathway, by 

constructing double-deletion strains with cysH and either genes that are up-regulated in the Met 

drop-out media, or enzymes that are known to utilize other types of sulfonic acids. We found that 

the ability to grow on MOPS was lost when both cysH and tauD, which encodes a taurine 

dioxygenase, were deleted. Therefore, TauD is an essential enzyme for this alternative pathway. 

However, for wildtype cells in the Met drop-out media, TauD is not up-regulated and is only 

expressed at a very low level (<50 copies/cell), suggesting that this novel pathway is not active 

in this condition. Therefore, it is likely that CysH is still the main pathway for cysteine 

biosynthesis, and that the published kcat for CysH in vitro does not reflect the actual turnover 

number in vivo. 
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Analytical model for optimal level of MetE expression 

 To understand why cells produce the measured level of MetE when it is limiting 

methionine and protein synthesis, we modeled the growth rate as a function of the amount of 

MetE synthesized. The model takes into account the cost and benefit of MetE synthesis 

separately. The cost function is based on previous observations that synthesis of excess proteins 

competes with that of other proteins (Scott et al., 2010). As a result of decreased amount of 

ribosomes that are necessary for auto-catalysis, growth rate decreases. The work by Hwa and co-

workers established the relationship between the growth rate and the mass fraction of excess 

proteins (Scott et al., 2010). Here we used a modified version for the methionine biosynthetic 

pathway, and express the predicted growth rate (!) as a function of the mass fraction of MetE in 

the proteome (!!):  

     ! = !! 1− !!/!!!!
!!

, 

where !! = 1.93 hr-1 is the growth rate in methionine-supplemented media, !! = 0.48 is the 

phenomenological parameter obtained by Scott et al, !!/! = 0.045 is the mass fraction of all 

enzymes except MetE in the methionine and cysteine biosynthesis pathways. We chose to fix 

!!/! while varying !! because these other enzymes appear to be made in excess capacity. This 

cost function is plotted in red in Fig. 7. 

 The benefit function is based on our observation that the rate of Met synthesis at maximal 

MetE activity is equal to the rate of Met consumption by protein synthesis:  

     !!!!"# = !!"#!!!! , 

where !! ,!! are the numbers of MetE and translating ribosomes, respectively. !!"# , !! are the 

turnover number of MetE and translation elongation rate, respectively. !!"# is the fraction of 
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translated codons that encodes methionine. We can re-write this equation in terms of the growth 

rate ! and the mass fraction of MetE !!. To do so, we first notice that, when the majority of 

proteins are long-lived compared to the cell doubling time, the mass fraction of MetE is 

equivalent to the fraction of translating ribosomes making MetE, which is given by 

     !! =
!!"!! !!!!!
!!

, 

where !!"!  is the translation initiation rate of MetE and !!!! is the time it takes to synthesize MetE 

(!! is the length of MetE polypeptide). The translation initiation rate of MetE is proportional to 

the amount of MetE in a cell: 

     !! = !!"!
! , 

Using these relations, the production/consumption equation becomes 

     ! = !!"#
!!"#!!

!!. 

Notice that this relationship is only dependent on well-established parameters: the published 

turnover number (!!"#=0.12 s-1), the fraction of Met codons (2.7%), and the length of MetE (753 

amino acids). This benefit function is plotted in blue in Fig. 7. 

 Combining the cost and benefit functions, we predict that the maximal growth rate can be 

achieved when the mass fraction of MetE is  

     !! =
!!!!!/!
!! !!"#!!

!!"#!!!!
= 0.069. 

And the maximal growth rate is  

     ! = !!"#
!!"#!!

!!!!!/!
!! !!"#!!

!!"#!!!!
= 1.47 hr-1, 
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which corresponds to a doubling time of 28 min. These predictions match what we observed for 

cells grown in the Met drop-out media. 

MetE repression and overexpression 

 To test the prediction that the MetE level is optimized in wildtype cells to maximize 

growth rate in media without methionine, we constructed strains with either MetE repression or 

overexpression and measured the effect on growth rate. For repression, we used the recently 

described CRISPRi system, which uses a DNA binding protein , dCas9 to block transcription 

elongation (Qi et al., 2013). With a short guide RNA (sgRNA), dCas9 represses transcription 

with high sequence specificity in E. coli. We designed a sgRNA with a short guide region (18 

nucleotides) targeting +182-198 bases of the metE gene on the nontemplate strand. The sgRNA 

is expressed from a tetracycline-inducible promoter on plasmid pJW1423, which is derived from 

pgRNA-bacteria (Addgene #44251) (Qi et al., 2013). To compare the effect on growth rate at 

various induction levels, we used a control sgRNA targeting RFP, which is absent in the cell, 

expressed from pgRNA-bacteria (Qi et al., 2013). Tetracycline repressor (TetR) and dCas9 are 

expressed from pdCas9-bacteria (Addgene #44249) (Qi et al., 2013). The dCas9 and sgRNA 

plasmids were simultaneously transformed into MG1655 and selected under chloramphenicol 

and carbenicillin. 

 Full induction of the sgRNA targeting MetE inhibits cell growth in media lacking 

methionine, likely due to impaired methionine biosynthesis. This result also indicates that the 

other methionine synthase, MetH, is not functional in this growth condition. To test whether 

even modest reduction in MetE level affects growth as our model predicts, we measured growth 

rates with either uninduced basal expression level, or induced with 10 nM anhydrotetracycline. 
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Overnight culture in methionine dropout media without anhydrotetracycline was diluted 1:1000 

into 20 ml fresh media. The culture was kept at 37°C in waterbath shaker, and OD600 was 

measured until it reaches 0.4. The effect of knockdown is confirmed by qPCR (see below). The 

results are plotted in Fig. S6. 

 For overexpression, ectopic MetE was expressed from a tetracycline-inducible promoter 

(plasmid pJW1424) in MG1655. Because the endogenous metE transcript is regulated by sRNA, 

which could limit the ability to over-produce MetE proteins (Boysen et al., 2010), we replaced 

the native 5’ UTR with a synthetic sequence. Due to this difference in 5’ UTR, the induction of 

MetE protein levels may not be proportional to the changes in its mRNA levels. We measured 

growth rates at 37°C with either 432 nM or 4.32 µM anhydrotetracycline. The effect of the 

overexpression is confirmed by qPCR. 

 While these results provide strong qualitative agreement with our model (Fig. S6), we 

caution that quantitative measurements are much more difficult due to the lack of non-

perturbative tools for fine-tuning protein expression. Both the knockdown and overexpression 

systems we used requires accessory proteins, whose expression itself affects growth. Therefore, 

we are careful to compare the effect of metE level on growth rate should be relative to controls in 

the presence of these accessory proteins, and not to the wildtype for which our quantitative 

model is based upon.  

Quantitative PCR for metE mRNA levels 

 RNA was extracted following the RNAsnap protocol (Stead et al., 2012). 1 ml of culture 

at OD600 =0.3 was pelleted by centrifugation for 30 seconds. The pellet was added to 100 µl of 

RNA extraction solution (95% formamide, 1% beta-mercaptoethanol, 500 mM EDTA, 0.026% 
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SDS), and incubated at 95°C for 7 minutes. After centrifugation at 21 kg for 5 minutes, the 

supernatant was transferred to new tubes with 150 µl Tris buffer, 25 µl sodium acetate, and 825 

µl ethanol. RNA was precipitated by incubating at -80 °C for >1 hour, centrifugation at 4°C for 

30 minutes, and the pellet was washed by 250 µl ice-cold 100% ethanol and resuspended in 500 

µl Tris buffer pH 7. Remaining debris was removed by centrifugation and RNA was precipitated 

again and resuspended in 20 µl.  

 10 µg RNA in 20 µl was treated with 2 µl DNAse I (100U/ml, Roche) in supplied buffer 

at 37°C for 30 min, followed by 75°C for 10 min. RNA was purified using Zymo Clean and 

Concentrate Columns. cDNA was generated using M-MuLV reverse transcriptase (NEB) with 

random hexamers. Quantitative PCR was performed in triplicates using DyNAmo HS CYBR 

Green qPCR kit (Thermo) on Roche LightCycler. Standard curves were generated using 

concentrated cDNA samples. Primers targeting cyoA cDNA was used for normalization. 

Relative metE levels were compared to controls (empty vector for overexpression and sgRNA 

targeting RFP for repression). 
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Introduction 

Protein synthesis is the most energetically costly process in bacteria, consuming ~ 50% of 

cellular energy (Russell and Cook, 1995).  To optimize cellular efficiency, the rate of synthesis 

of each protein is carefully controlled. The bacterial strategy to achieve this control entails 

organizing open reading frames (ORFs) into operons so that mRNA level for genes with related 

functions are co-regulated (Jacob and Monod, 1961). Fine-grained control of protein synthesis 

rate is then achieved by tuning translation efficiency (TE) of each ORF, with efficiency of 

adjacent ORFs varying by as much as 100-fold (Li et al., 2014). Thus, optimal energy utilization 

depends on the ability to reliably drive ORF-specific translation efficiencies. Understanding the 

rules that govern how mRNA sequence features drive these specific translation efficiencies is 

important for decoding genomes and for designing synthetic ORFs. 

The role of cis elements proximal to the ribosome-binding site in setting and maintaining 

translation efficiencies on E. coli ORFs has been extensively studied. Translation initiation 

minimally requires an accessible Shine-Dalgarno (SD) sequence upstream from the initiation 

codon (Steitz and Jakes, 1975).  Consequently, highly stable structures in direct proximity to the 

initiation codon diminish translation efficiency (de Smit and van Duin, 1990; Hall et al., 1982; 

Lodish, 1970).  Rare codons that disfavor structure are enriched in positions immediately 

following the translation start site (Bentele et al., 2013; Eyre-Walker and Bulmer, 1993; Scharff 

et al., 2011), and mutational analysis of these early codons in synthetic reporters has shown that 

changes in protein expression can be explained by changes to predicted RNA structure at the 

translation start (Goodman et al., 2013; Kudla et al., 2009; Salis et al., 2009). However, 

biophysical models based on structural prediction around the start codon are only weakly 
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predictive of relative translation efficiencies of messages that differ in sequence beyond the early 

coding region (Kosuri et al., 2013) or on endogenous messages (Li et al., 2014).  

mRNA structural elements extending past the ribosome binding site into ORF bodies 

(Wikström et al., 1992) or into 5’ untranslated leaders (Borujeni et al., 2013; Marzi et al., 2007) 

can both inhibit and enable translation initiation, raising the possibility that cis features in mRNA 

sequence beyond the ribosome binding site may play a role in setting the translational efficiency 

of each ORF. Using recently developed global technologies (Ingolia et al., 2009; Li et al., 2014; 

Oh et al., 2011; Rouskin et al., 2014), we simultaneously probed the in vivo structure and 

translation of endogenous messages in E. coli.  We find that mRNA structure of operons is 

organized around open reading frames, and is strongly correlated with translation efficiency.  

We then used cold temperature stress, anticipated to drive an increase in RNA structure, 

to determine whether E. coli can sense and repair changes to mRNA structure.  We find that cold 

shock drives a global increase in mRNA structure with concomitant defects in translation 

initiation and that the immediate cold recovery program alters the structure of each mRNA in a 

gene-specific manner. We find that this program is dependent on induction of the Csp RNA 

binding proteins (Goldstein et al., 1990; Jiang et al., 1997) to modulate mRNA structure 

globally, and RNase R to degrade stabilized mRNA. Finally, Csps autoregulate their expression 

by modulating their 5' UTRs structure, and this structural transition is cued to the global structure 

in the cell, enabling appropriate transcript structure in all conditions. 
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Results 

 

Development of global structure determination in E. coli  

 New genomic technologies enable the determination of RNA structure in vivo on a global 

scale (Ding et al., 2014; Rouskin et al., 2014; Wan et al., 2014). We monitored global in vivo 

RNA structure with DMS (dimethyl sulfate)-seq (Rouskin et al., 2014), which uses next 

generation sequencing to determine chemical accessibility of RNA to DMS, a reagent that reacts 

with unpaired adenosine and cytosine nucleotides (Inoue and Cech, 1985) (Figure 1A). DMS-

seq, adapted here to E. coli, is highly reproducible (Figure S1A) and in strong agreement both 

with the E. coli ribosome crystal structure (Figure 1B), and a mutationally-verified E. coli 

mRNA structure (Figure 1C) (Wikström et al., 1992).  We quantified the degree of secondary 

structure on each open reading frame using the Gini index metric, which measures the variability 

in reactivity of residues in the region being examined (Rouskin et al., 2014). A low Gini index 

indicates an even distribution of DMS-seq reads, and occurs when a region of the mRNA is 

unstructured. A high Gini index occurs when a subset of residues is strongly protected from 

DMS reactivity, and indicates a high degree of structure (Figure S1B-D).  We found that the 

degree of RNA secondary structure varied greatly between ORFs: some are nearly as structured 

as rRNA, whereas some are close to the denatured state (Figure 1D).  

 

mRNA structure is organized around open reading frames and specifies TE 

Despite the variability in the degree of secondary structure among ORFs, the degree of 

structure within a given ORF is well correlated (Figure 2A). This relationship holds even when 

controlling for GC content (Figure S2A).  Structural correlation does not extend to adjacent 
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ORFs on the same mRNA (Figure 2B), suggesting that the structures are a property of the ORFs 

rather than of the polycistronic transcript. 

We next asked whether structure is correlated with translation efficiency, which we 

quantified by combining ribosome density obtained from ribosome profiling with total mRNA 

measured by mRNAseq (Ingolia et al., 2009; Li et al., 2014; Oh et al., 2011).  Indeed, better-

translated ORFs have lower structure, and the difference in the degree of folding between 

adjacent ORFs is highly predictive of their relative levels of translation (Figure 2B, S1D).  

Notably, ORF pairs with overlapping stop and start codons show as much variability in their 

relative translation as non-overlapping ORF pairs (Figure 2C).  We next expanded our analysis 

beyond operons to all ORFs, and found that structure is strongly correlated to TE on all 

endogenous open reading frames (ρ = 0.76, Figure 2E). These results indicate that ORF-specific 

RNA structure specifies differential translation between genes in the same operon. 

  Bacterial operons are densely packed with ORFs, and the majority of adjacent ORFs 

(62%) are separated by only 25nt or less (Figure 2D).   It is therefore important to examine how 

structure changes at ORF boundaries. At translational start sites, the local degree of folding 

correlates with the TE only downstream from the start site and rapidly diminishes upstream of 

the start site, whereas structure upstream of the start site is correlated with the TE of the 

upstream ORF (Figure 2F). Thus, structure undergoes a sharp transition at ORF boundaries and 

polycistronic mRNAs consist of distinct structural domains.  

 

mRNA sequence drives the organization of mRNA structure around open reading frames 

 We evaluated whether the ORF-centric structures of mRNAs in vivo arises as an intrinsic 

property of sequence by using DMS-seq to determine the structure of mRNAs refolded in vitro at 
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37°C. In vitro RNA structure was correlated with in vivo TE (ρ = 0.48, Figure 2G, S2B-C), 

whereas control samples without DMS modification was not correlated (ρ  = .05, Figure S2D).  

This correlation persists through windows that do not include the translation start site (Figure 

2H).  The correlation between in vivo TE and structure was also maintained after addition of the 

translation initiation inhibitor kasugamycin at 10°C, where longer mRNA half-life permits this 

measurement (see below). Importantly, in vitro refolded mRNAs possess a sharp structural 

boundary between adjacent ORFs similar to that observed on in vivo mRNA (Figure 2H).  

Computationally predicted ORF-length structures also retained a strong correlation to translation 

efficiency (ρ  = 0.48, Fig S2E-F).  As the correlation of in vivo mRNA structures with TE is 

stronger than the correlation to structures determined in vitro or computationally, the 

contribution of the ribosome to mRNA folding, as well as differences in folding environment 

(e.g. salt, molecular crowding) and pathway (lack of vectorial folding) contribute to the eventual 

in vivo structure.  Notably, the strength of the Shine-Dalgarno sequence does not have predictive 

power on TE, even after controlling for structure as measured by Gini (Figure S2G).  In toto, 

these analyses indicate that the linear sequences of bacterial mRNAs encode not only open 

reading frames, but also the blueprint for ORF-wide secondary structures that specifies levels of 

translation. 

 Whereas ORFs are marked by start and stop codons, the signatures that define structural 

domains have remained elusive. To understand how structural boundaries might be set up by the 

linear sequence, we computationally predicted the structure of mRNA extending -250 to +250 nt 

from the translation start at the boundary of adjacent ORF pairs. Because folding algorithms 

often predict a large ensemble of possible folds for a long stretch of RNA, we used the DMS-seq 

data (both in vivo and in vitro) to constrain the predictions by forcing positions that were highly 



!

! 81 

DMS-modified to be unpaired in the predicted structures.  We then examined the propensity for 

each position to interact with each other position.  Consistent with previous studies, we found a 

lack of structure in the immediate vicinity of the start sites for most ORFs (Figure S2H). 

Downstream from this structure-free zone (25-50 nt), endogenous mRNA has a high propensity 

to base pair with regions further downstream, i.e. pairing within the same ORF (Figure 2I). 

Conversely, nucleotides located 25-50nt upstream of the start site have a strong preference to 

interact with regions further upstream in the preceding ORF (Figure 2I). Importantly, these 

results are similar for both in vivo and in vitro probed RNA.  Therefore, a sequence-driven sharp 

transition in the directionality of pairing around start sites can provide a mechanism for 

organizing structure around ORFs. 

 

Cold shock increases mRNA structure and drives a global ribosome run-off  

 Given the importance of structure in setting translational efficiency, we asked whether 

the cell is able to monitor and repair the structure of its mRNAs.  Cold shock (shift to 10˚C) is 

expected to increase mRNA structure, and therefore provides an avenue to determine whether 

such a system exists.   

 Upon shift to cold, protein synthesis dramatically decreases and cell growth stops, 

resuming after a ~6 hr lag (Friedman et al., 1971; Ng et al., 1962). Existing evidence suggested 

that cold shock inhibits translation initiation, as polysomes decrease and monosomes increase 

(Friedman et al., 1969; Jones and Inouye, 1996). Additionally, at 5°C, a temperature at which 

ribosomes dissociate, it was observed in vivo that ribosomes on a specific RNA phage-encoded 

transcript complete one round of translation following cold shock but do not initiate new rounds 

(Friedman et al., 1971). 
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 With ribosome profiling experiments, we identified an immediate global reduction in 

translation initiation after shift to 10°C, as ribosome density is depleted from the 5' end of all 

genes (Figure 3A). Gradual run-off of ribosomes that had initiated translation at 37˚C is reflected 

in a gradual decrease in 35S-methionine incorporation, plateauing at 30 min after cold shock 

when the run-off observed by ribosome profiling is presumably complete. At that point, 35S-

methionine incorporation indicates a 200-fold reduction in translation initiation (Figure 3B).  

Concomitant DMS-seq measurements indicated a large, gene-specific increase in mRNA 

structure across the transcriptome relative to 37°C (Figure 3C), with structure remaining 

correlated with TE (Figure S3A).  Similar to 37°C, the mRNA structure probed in vitro is 

correlated with TE in vivo at 10°C (Figure S3D). Furthermore, we removed the contribution of 

translation on structure in vivo by treating cells with the translation initiation inhibitor 

kasugamycin, and observed the same trend (Figure S3C). Taken together, these results indicate 

that cold shock induces a global and sequence-dependent increase in mRNA structure that leads 

to reduction in protein synthesis. 

 After the initial shock, total protein synthesis increases ~4-fold during cold recovery prior 

to resumption of growth (Figure 3B). We tested whether remodeling mRNA structures drives 

this increase by comparing global mRNA structure and TE at 6 hr vs. 30 min after cold shock.  

Notably, this enabled comparison of TE and structure for the same set of mRNAs in the same 

environmental condition, revealing the effect of internal changes within the cell. Structure and 

TE remain correlated (Figure S3B), and their dramatic global changes are also correlated (Figure 

3D).  This result indicates a recovery program that drives a decrease in the mRNA structure of 

specific genes to permit their TE to increase.  
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RNase R and Csps mediate initial recovery by restoring mRNA degradation and structure  

 A number of proteins are induced by cold shock (Goldstein et al., 1990; Jones et al., 

1987), including most prominently 4 of the 9 structurally homologous Cold shock proteins 

(CspA-I) (Wang et al., 1999) that have been implicated in modulating mRNA structure (Jiang et 

al., 1997; Phadtare et al., 2004).  However, there was limited understanding of which factors 

drive recovery of protein synthesis during the 6 hrs following cold shock. We identified actuators 

of the recovery circuit by examining gene deletion phenotypes of the 53 proteins whose 

measured synthesis rates indicate a copy number increase of ≥ 2-fold during the 6 hr recovery 

period (Extended Data Table 1). Only single gene deletions of rnr (RNase R), an exonuclease 

that degrades damaged rRNA (Basturea et al., 2011; Cheng and Deutscher, 2003) and processes 

tmRNA (Awano et al., 2010; Cairrão et al., 2003), and cspA reduced protein synthesis during 

recovery (Figure 4A). Together, Csps and RNase R constitute 40% of total protein synthesis at 3 

hours after cold shock (Figure 4B), supporting their dominant role in initial recovery.  

 We determined the RNA targets of RNase R by sequencing total RNA immediately prior 

to and 2hr after addition of the transcriptional inhibitor rifampicin at 10°C in WT and ∆rnr 

strains. In a WT strain, mRNA decreases from 5.2% to 2.3% of total RNA during this 2hr 

window, indicating a half-life of ~2 hr at 10°C (Figure 4C) but a ∆rnr strain exhibits a minimal 

decrease in mRNA level.  Moreover, mRNA accumulates to 9.8% of total RNA at 8hr after cold 

shock in ∆rnr cells, whereas WT cells maintain mRNA as 4.2% of total RNA (Figure 4D).  

Thus, mRNA degradation requires RNase R during cold recovery. 

  We next examined the role of CspA and its homologues in early recovery.  Csps promote 

read-through of a transcriptional terminator in the metY-rpsO operon through its nucleic acid 

binding activity (Bae et al., 2000; Phadtare, 2002), and a quadruple deletion Csp strain (cspA and 
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its homologues cspB, cspG, and cspE) is unable to grow at low temperature (Xia et al., 2001).  

However, the role of Csps in facilitating growth at cold temperature has remained elusive. We 

found that the quadruple Csp mutant (∆cspABEG) did not recover protein synthesis during the 6-

hr immediate recovery period (Figure 4A).  Because Csps bind and melt nucleic acid structures 

in vitro (Jiang et al., 1997; Phadtare and Severinov, 2005), we tested whether they promote 

translation recovery via direct, genome-wide modulation of mRNA structure. Indeed, ∆cspABEG 

cells remained trapped in the state observed immediately following cold shock in which all 

mRNAs were highly-structured and poorly-translated (Figure S4A). The most structured mRNAs 

in a ∆cspABEG strain had the greatest defect in recovery of TE relative to their TE’s in the WT 

strain (Figure 4E, S4), indicating that Csps drive the alteration of mRNA secondary structure and 

translation efficiency that accompanies cold recovery.  

 The Csps are well-expressed at 37°C (Brandi et al., 1999; Li et al., 2014; Taniguchi et al., 

2010), and we therefore tested whether they also play a role in maintaining TE at normal growth 

temperature. A quintuple ∆cspABCEG strain (additionally deleted for cspC, the homologue that 

is well-expressed at 37°C), has a 10% growth defect at 37°C indicating that Csps are required for 

optimal growth. TE measurements in the ∆cspABCEG strain indicate that the TEs of the best-

translated ORFs in WT (≥ top 10%), which requires less structure, exhibited an ~10% decrease 

in TE without Csps, whereas the remainder are only marginally influenced (Figure 4F).  Thus, 

Csp expression is crucial for achieving high TEs at 37˚C, just as it is at 10˚C. 

 

Cold recovery is regulated by Csp autoregulation of their own mRNA structures  

 Csp expression increases dramatically upon cold shock, and then declines during cold 

recovery. Cold induction is known to involve csp message stabilization, with cspA mRNA 
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shifting from a rapidly degraded state at 37°C (T½= 10-20”) (Fang et al., 1997) to a stable state at 

10°C (Giuliodori et al., 2010; Hankins et al., 2007; Yamanaka et al., 1999).  CspA message 

stability is regulated through its long 5’UTR, a thermosensor that was shown to undergo a 

change in structural conformation when shifted from 37˚C to 10˚C (Giuliodori et al., 2010).  A 

conserved element at the 5’ end of the cspA UTR, the "cold box," is especially critical to 

regulation of message stability (Xia et al., 2002).  At 37°C, the cold box forms a helix at the 5' 

end of the message, whereas at 10°C it pairs with a downstream region within the UTR, an 

interaction that presumably stabilizes the message (Giuliodori et al., 2010). Using a standard 

minimal free energy structural prediction constrained by DMS-seq data (Hofacker, 2003) to 

model the structure changes upon cold shock, we validated that cold box interactions are altered 

on cspA upon cold shock in vivo (Figure S5). 

 During cold recovery, csp message is destabilized in a process dependent on Csp protein 

activity (Bae et al., 1997).  The mechanistic basis for this destabilization was not known.  We 

found that the long 5’ UTRs of Csps were among the most dramatically changing mRNA 

structures during recovery (Figure S6A-B), suggesting that changes in the UTR structure might 

be responsible for the csp message destabilization.  Indeed, during recovery, the 5' UTR shifts to 

a structure in which the cold box is in a helix with the 5' end of the message, similar to the 

structure observed for the 37˚C state, as illustrated for cspB (Figure 5A-B). The ability of the Csp 

transcript structure to shift as a function of time at 10°C indicates that the Csp UTR structure 

senses the state of the cell in addition to sensing temperature.  Importantly, these structural 

transitions do not occur in a ∆cspABEG strain, which lacks the Csp ORFs but retains their 

5’UTRs (Figure 5C-D), but the CspB 5'UTR does change structure in a ∆cspBG strain, where the 

CspB ORF is deleted and recovery is driven by CspA expression (Figure S6C). These results 
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indicate that the structural change of the 5’UTR during recovery is not dependent on the 

sequence of the ORF but requires Csp protein expression at cold temperature. Since the Csps are 

known to interact with their 5' UTRs (Jiang et al., 1997), we propose that Csps remodel their 

own 5' UTRs, thereby tying their own regulation to their role of structure surveillance in the cell. 
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Discussion   
  

By determining the relationship between mRNA structure and translation efficiency at a 

genome scale, we discovered that operons are comprised of ORF-centric mRNA structures that 

contribute to translation efficiency both under steady state conditions and following perturbation.  

We consider the implications of these findings for operon function (Figure 6A) and then discuss 

the self-regulating structure surveillance system that maintains appropriate mRNA structure 

(Figure 6B).  

 Operons are the fundamental unit of bacterial gene expression.  They enable common 

transcriptional control of genes with related functions while achieving appropriate protein 

expression by regulating translational efficiency. We show here that bacteria regulate TE with 

ORF–centric structures that both drive and insulate the TE of each protein.  A blueprint for ORF-

centric mRNA structures is encoded in the mRNA sequence itself, including the propensity for 

in-ORF basepairing, but is likely reinforced by the activity of ribosomes and Csps. 

 The necessity for achieving discrete TEs for close-packed ORFs may have driven the 

evolution of this strategy.  The translation termination codon of most ORFs is separated by less 

than 25nt of untranslated mRNA from the start site of the downstream ORF, yet the TE’s of 

these adjacent ORFs can vary as much as 100-fold.  If an mRNA structure were to span the 

boundary between a highly translated and a poorly translated ORF, the abundant ribosomes of 

the highly translated ORF would have potential to transiently open the structure of the poorly-

translated ORF and increase the accessibility of its start site. ORF-centric mRNA structures with 

predominantly intra-ORF base pairing may prevent the upstream ORF from influencing the 

downstream ORF's structure and translation efficiency, effectively insulating each ORF from its 

neighbors. RNA polymerase pausing is enriched at translation start sites (Larson et al., 2014) and 
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may reinforce ORF-centric structural insulation by allowing ORFs to fold independently. For 

~15% of operonic ORFs, this insulation is broken as the stop codon of the upstream ORF 

overlaps the downstream ORF.  These ORFs have been hypothesized to be “translationally 

coupled” through diffusion of the upstream ribosome to the downstream start site (Aksoy et al., 

1984; Oppenheim and Yanofsky, 1980; Schümperli et al., 1982; Yates and Nomura, 1981).  As 

the TE’s of such ORF pairs vary as much as other ORF pairs, overlap does not cause all 

ribosomes to reinitiate on the downstream ORF, but may enable upstream ribosomes to influence 

downstream ORF translation by unwinding mRNA structure.  

 We find Shine-Dalgarno (SD) strength to be unpredictive of translation efficiency, even 

after removing the contribution of mRNA structure to TE. This observation is in contrast with 

the common belief that a stronger SD site indicates stronger translation. Although the presence 

of SD sites is critical for translation initiation in E. coli (Steitz and Jakes, 1975), the role of their 

quantitative strength for endogenous transcripts has not been defined prior to this work. Large-

scale studies using synthetic libraries noted the difficulty in predicting TE from SD strength, 

which can be mitigated by actively reducing RNA structures (Mutalik et al., 2013). Our results 

suggest that cells face the same challenge and rely on RNA structure rather than SD sites to tune 

the level of translation. This conclusion favors the 'standby model' of translation initiation in 

which the 30S subunit quickly binds to regions near the initiation site and waits for the opening 

of the SD and start codon (Adhin and van Duin, 1990; de Smit and van Duin, 2003). In this 

scenario, the major role of the SD is to capture ribosomes diffusing from standby sites and to 

ensure that the correct start codon is selected rather than to set translation efficiency. 

  The length-scale of the relationship between mRNA structure and TE is also in line with 

the standby model of translation initiation. High translation efficiency may require an open 
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structure over long distances to capture a large pool of non-specifically bound ribosomes, 

whereas the stable structures of poorly translated ORFs may form inhibitory structures that 

prevent this binding over a large region thereby inhibiting translation.  Poorly-translated ORF 

structures may additionally be necessary to protect the ORFs from premature endonucleolytic 

cleavage on the frequent occasions when they are bare of ribosomes.      

 When the cell is subjected to cold shock, mRNA structure increases with a concomitant 

decrease in translation initiation. Cold recovery consists of a highly correlated ORF-specific 

decrease in mRNA structure and recovery of translation. Only the Csps and RNaseR are 

necessary for this recovery. Notably, other proteins important for long term growth at 10˚C (e.g. 

DeaD [alias CsdA] (Jones et al., 1996), RbfA (Jones and Inouye, 1996) and PNPase (Luttinger et 

al., 1996)), do not affect initial recovery of protein synthesis.  Thus, the cell has an initial 

emergency system to restore mRNA structure and degradation, comprised of only two proteins, 

and a long-term program to sustain growth in the cold. 

 Our data, together with existing data, support a model in which Csps perform mRNA 

structure surveillance (Figure 6B).  The Csps are RNA binding proteins that also bind their own 

5’UTRs (Jiang et al., 1997). Their peak abundance is estimated at  ~ 2 * 106/cell, (Xia et al., 

2001),  which is consistent with Csp-mRNA interaction over the entire length of open reading 

frames (~107 nt of total mRNA / cell).  We suggest that at early times, after cold shock, Csps are 

predominantly engaged in interacting with cellular mRNA, and do not perturb the long range 

pairing of the cold box element in the Csp 5’UTR triggered by cold temperature.  As recovery 

proceeds and Csp concentration increases, Csps bind their 5’UTRs, triggering the switch in 

pairing of the cold box element to the 5’ helix and promoting message degradation.  In this 

circuit, the cell sets Csp expression by monitoring the free level of Csps, determined by the 
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extent to which Csps are required to globally remodel mRNA structure. This circuit explains 

why RNase R deletion, which increases the amount of mRNA to be remodeled, delays recovery 

as more Csps must be produced to attain the appropriate Csp/mRNA level required for 

resumption of the 10˚C translational program.  This regulatory system closely resembles that of 

the bacteriophage T4 Gene32 protein (gp-32) autoregulatory circuit.  Gp-32 is a single-strand 

DNA binding protein, and its production is translationally controlled to maintain a constant 

amount of free gp-32 in the face of changing amounts of ss-DNA (von Hippel et al., 1982; 

McPheeters et al., 1988; Shamoo et al., 1993). 

The Csp RNA surveillance system is likely utilized in a wide variety of conditions and in 

most bacteria. We show here that Csps are important for growth and proper TE at 37˚C. Other 

perturbations, including stationary phase and sublethal antibiotic exposure modulate Csp 

expression (Brandi et al., 1999; VanBogelen and Neidhardt, 1990), suggesting that many 

environmental changes drive changes in mRNA structure and hence Csp expression. Csps span 

the gram-negative/positive divide, and Csps in B. subtilis exhibit strikingly similar properties to 

those in E. coli—high abundance during normal growth (Eymann et al., 2004) and induction 

during cold shock (Willimsky et al., 1992).  Thus, it is likely that the Csp RNA surveillance 

system arose early in evolution and was then maintained throughout the bacterial world.  Csp 

orthologues have been identified in all domains (Graumann et al., 1997; Karlson et al., 2002), 

and ectopic expression of bacterial Csps in maize enhances growth at cold and in water-limited 

conditions (Castiglioni et al., 2008), indicating that the mechanism through which they modulate 

protein synthesis is likely broadly relevant. 

 The relationship between structure and translation efficiency that we identify is a 

constraint on mRNA sequence beyond codon adaptation (Sharp and Li, 1987).  Further work will 
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identify the relative contributions of these considerations to codon choice, but there are 

immediate implications for synthetic construct design, as optimal codon selection must reflect 

both message abundance and translation efficiency. This presents both a challenge and an 

opportunity to efforts to synthesize synthetic operons: synthetic designs must be carried out with 

cognizance of the entire open reading frame sequence.   However, design approaches that 

incorporate appropriate mRNA structures should have the potential to produce finely- tuned 

synthesis rates as are observed on natural operons. 
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Figure 1: DMS-seq effectively probes RNA structures in E. coli 
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Figure 1: DMS-seq effectively probes RNA structures in E. coli 

(A) Schematic for obtaining mRNA structures and translation efficiency using DMS-seq, 

mRNA-seq, and ribosome profiling. 

(B) ROC curve on the DMS signal for A and C bases in the 16S rRNA from in vivo ribosomes 

using the E.coli ribosome crystal structure  (Zhang et al., 2009) as a model. True 

positives are defined as bases that are both unpaired and solvent-accessible, and true 

negatives are bases that are paired. The total number of evaluated bases is 438 As or Cs.  

Signal threshold of 0.2 has 90% agreement with the crystal structure. 

(C) Structural prediction for rimM. The predicted rimM structure is based on a minimum free 

energy prediction constrained by our DMS-seq measurements, using the same 0.2 

threshold used for the 16S rRNA in (B).  The DMS signal across rimM is shown below 

the structure.  The color bar indicates the intensity of the DMS-seq signal at each 

position. 

(D) Histogram of Gini indices on E. coli open reading frames from DMS-seq data obtained in 

vivo at 37°C.  Gini index calculated on 16S rRNA and mean of Gini indices calculated on 

mRNAs heat-denatured at 95°C are indicated. 
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Figure 2: mRNA structure is organized around open reading frames 
 (continued on next page) 
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Figure 2: mRNA structure is organized around open reading frames 
 (continued) 
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Figure 2: mRNA structure is organized around open reading frames 
 
(A) Plot of Gini index calculated on the first half of ORF body vs. the Gini index calculated on 

the second half of ORF body.  Spearman's rank order correlation (ρ) of Gini indices is 

indicated. 

(B) Plot of Gini index calculated on adjacent ORFs in operons.  ρ indicates the correlation 

between Gini indices of adjacent ORFs. Coloring indicates ratio of the translation 

efficiency (TE, ribosome footprint density / mRNA-seq density) of the adjacent ORFs.  

Correlation of Gini and TE is indicated by clustering of red (lower) and blue (upper) dots. 

(C) Histogram of TE ratios for overlapping and non-overlapping open reading frames.  

Overlapping ORFs are ORF pairs for which the annotated stop codon of the upstream 

ORF overlaps or is 3’ of the start codon of the downstream ORF. 

(D) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF body 

against in vivo TE for well-expressed ORFs.  TEs are plotted on a log scale. 

(E) Correlation (Spearman's ρ) between in vivo mRNA structure quantified by Gini index and in 

vivo TE of well-expressed ORFs.  Gini index was calculated for 300 nt windows that scan 

gene bodies, using genes that extend through the 300 nt window being examined. The 

correlation to TE is plotted at the center of each 300nt window. 

(F) Plot of Gini index of in vitro DMS-modified mRNA calculated across the entire ORF body 

against in vivo TE for well-expressed ORFs. 

(G) Correlation (Spearman's ρ) between in vitro mRNA structure quantified by Gini index and in 

vivo TE of well-expressed ORFs, as in (E).   

(H) Cumulative distribution of spacing between ORFs within operons. 
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(I) Plot of directionality of RNA interactions.  mRNA structure at each operonic ORF boundary 

was predicted by calculating either the in vivo or the in vitro DMS-constrained minimum 

free energy structure for a region extending from -250 nt to +250 nt relative to translation 

start site. At each position, the probability of interaction with each other position was 

calculated for each ORF examined.  The average sum probability of interacting with any 

nucleotide in a 100 nt window upstream and in a 100 nt downstream was calculated.  The 

ratio of the downstream interaction probability to the upstream interaction probability is 

plotted at each position. 
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Figure 3: Cold induces a defect in translation instigated by an increase in mRNA structure 
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Figure 3: Cold induces a defect in translation instigated by an increase in mRNA structure 

(A) Meta-gene analysis of ribosome run-off after cold shock.  Ribosome read density at each 

position in the gene was averaged across well-expressed genes for samples prepared at 

the indicated times. Analysis at each position is limited to ORFs that are at least of that 

length. 

(B) Total translation during cold recovery.  Total translation was measured by pulse-labeling 

with 35S-methionine at 37°C and at timepoints following cold shock.  

(C) Histogram of change in Gini index following cold shock.  mRNA was probed with DMS at 

37°C and 25 min after shift to 10°C.  Gini index was calculated for all genes that were 

well-expressed in both conditions. The difference in the Gini index of each gene at 10°C 

vs. its Gini index at 37°C is plotted.   

(D) Plot of the change in Gini index between 30min and 8hr following cold shock  against 

change in translation efficiency during this same time window.  Histograms above each 

axis indicate the distribution of changes in structure and translation efficiency.  During 

recovery, the large majority of genes fall in the upper left quadrant, indicating that their 

structure is decreasing while their translation efficiency is increasing.  
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Figure 4: RNase R and Csps facilitate cold recovery 
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Figure 4: RNase R and Csps facilitate cold recovery 
 
(A) Deleting RNase R and the Csps inhibit cold recovery. Ratio of total translation (35S-

methionine pulse labeling) at 8 hrs versus 30 min following cold shock for WT cells, 

∆rnr and single or multiple csp deletion strains. 

(B) Fraction of ribosome footprint reads that map to cold-induced genes during cold recovery.   

(C) RNA content of cells prior to and following rifampicin treatment at 10°C. Total RNA was 

purified and sequenced immediately prior to and 2hr after rifampicin treatment of WT 

and ∆rnr cells.  The fraction of all sequencing reads that map to mRNA are plotted. 

(D) RNA content of cells following cold shock.  Total RNA was purified at the indicated 

timepoints following shock to 10°C in WT and in ∆rnr cells.  The fraction of all 

sequencing reads that map to mRNA at each timepoint are plotted. 

(E) Comparison of the change in Gini index and translation efficiency of well-expressed mRNAs 

in a cold recovery-inhibited strain (∆cspABEG) vs. a WT strain at 6 hr following 

recovery.  Histograms above each axis indicate the distribution of changes in structure 

and translation efficiency.  The large majority of genes fall in the lower right quadrant, 

indicating that mRNA structure is higher and translation efficiency lower in the csp 

deletion strain relative to the WT strain.   

(F) Distribution of change in translation efficiency in ∆cspABCEG at 37˚C.  Genes were binned 

into 9 groups based on the TE in WT cells, and the distribution of changes in TE in the 

∆cspABCEG strain was calculated for each bin.  For each bin, box center and limits 

indicate the median change and the 25th and 75th percentile changes. 
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Figure 5: Csp expression is controlled by an auto-regulatory feedback loop 
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Figure 5: Csp expression is controlled by an auto-regulatory feedback loop 

Change in structure of the cspB 5’ UTR during cold recovery.  The predicted structure of the 

cspB 5’ UTR was generated by constraining a minimum free-energy prediction with our 

DMS-seq measurements in WT (A, B) and ∆cspABEG (C, D) strains at 30 min and 8hr 

after cold shock. The cold box element is highlighted in the blue box and the long range 

interaction regions is highlighted in a green box. A color bar indicates the intensity of the 

DMS-seq signal at each position. DMS reactive bases (based on the ribosomal ROC 

derived threshold) are in yellow to red. 
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Figure 6: Model of operon structural organization and surveillance 
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Figure 6: Model of operon structural organization and surveillance 

 (A) Operon mRNAs are organized into ORF-centric structures that specify translation efficiency 

of each ORF. 

(B) Cold shock induces a genome-wide increase in mRNA structures and reduction in translation 

efficiency.  A recovery system consisting of Csps and RNase R facilitate recovery by 

unstructuring and degrading structured mRNAs. 
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Figure S1: DMS-seq effectively probes RNA structures in E. coli  
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Figure S1: DMS-seq effectively probes RNA structures in E. coli (continued) 
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Figure S1: DMS-seq effectively probes RNA structures in E. coli 

(A) DMS signal at all positions within well-expressed mRNAs in two biological replicates. 

(B) Schematic representation of the Gini index calculation 

(C) Lorenz curve of DMS-seq data of each gene in the operon represented in D 

(D) mRNA-seq, ribosome profiling, and DMS-seq data for a single operon. 
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Figure S2: mRNA structure is organized around open reading frames 
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Figure S2: mRNA structure is organized around open reading frames (continued) 
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Figure S2: mRNA structure is organized around open reading frames 

(A) Plot of in vivo Gini index calculated on the first half of ORF body against the in vivo Gini 

index calculated on the second half of ORF body restricted to genes with GC content 

between 50% - 53.5%. 

(B) Plot of Gini index calculated on the first half of ORF body against the Gini index calculated 

on the second half of ORF body for samples modified with DMS in vitro.   

(C) Plot of Gini index calculated on adjacent ORFs in operons, calculated from mRNA refolded 

and modified with DMS in vitro.  Coloring indicates ratio in Translation Efficiency. 

(D) Plot of Gini index of unmodified mRNA calculated across the entire ORF body against in 

vivo translation efficiency for well-expressed ORFs. 

(E) Plot of predicted ∆G of computationally folded mRNA calculated across the entire ORF 

body against in vivo translation efficiency for well-expressed ORFs. 

(F) in vivo Correlation (Spearman's ρ) between computationally predicted mRNA structure of the 

ORF, quantified by predicted ∆G of minimum free energy structure, and the translation 

efficiency of the ORF. ∆G index was calculated for 300 nt windows that scan gene 

bodies, using genes that extend through the 300 nt window being examined, and is 

plotted at the center of each window. 

(G) Plot of predicted Shine-Dalgarno strength (Salis et al., 2009) against measured translation 

efficiency.  Genes with Gini indices in a tight range (.5 - .52) are indicated in cyan. 

(H) Plot of mean predicted interaction probability across all well-expressed open reading frames. 
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Figure S3: Structure and translation efficiency remain correlated at 10°C 
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Figure S3: Structure and translation efficiency remain correlated at 10°C 

(A) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF body 

against in vivo translation efficiency for well-expressed ORFs, measured 30 min 

following cold shock to 10°C. 

(B) Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF body 

against in vivo translation efficiency for well-expressed ORFs, measured 6hr following 

cold shock to 10°C. 

(C) Plot of Gini index of in vivo DMS-modified mRNA following addition of the translation 

initiation inhibitor against in vivo translation efficiency for well-expressed ORFs.  TE 

was measured 8hr following cold shock, while structure was measured 40 min later 

following addition of kasugamycin. 

(D) Plot of Gini index of in vitro DMS-modified mRNA calculated across the entire ORF body 

against in vivo translation efficiency for well-expressed ORFs.  Translation efficiency 

was measured 30 min following cold shock to 10°C. 
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Figure S4: Csp deletion increases mRNA structure and reduces translation efficiencies 

 

Plot of Gini index of in vivo DMS-modified mRNA calculated across the entire ORF body 

against in vivo translation efficiency for well-expressed ORFs, measured in a ∆cspABEG 

strain at 6 hr following cold shock. 
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Fig S5: CspB UTR structure is modulated by cold shock 
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Fig S5: CspB UTR structure is modulated by cold shock 

Change in structure of the cspA 5’ UTR upon cold shock.  The predicted structure of the cspA 5’ 

UTR was generated by constraining a minimum free-energy prediction with our DMS-

seq measurements taken at 37°C (A) and immediately after shock to 10°C (B). The cold 

box element is highlighted in the blue box and the long range interaction regions is 

highlighted in a green box.  Start codon is indicated by a red box.  A color bar indicates 

the intensity of the DMS-seq signal at each position. DMS reactive bases (based on the 

ribosomal ROC derived threshold) are in yellow to red. 
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Fig S6: CspB UTR structure is modulated during cold recovery 
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Fig S6: CspB UTR structure is modulated during cold recovery (continued) 
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Fig S6: CspB UTR structure is modulated during cold recovery 

(A) Histogram showing change in structure on Csp UTRs during cold recovery relative to other 

mRNAs.  Gini index was calculated for 150 nt windows tiling all expressed mRNAs 6 hr 

vs 30 min after cold shock.  The difference in Gini index between timepoints for each 

window was calculated. 

(B) Plot of raw DMS signal at early and late times after cold shock, scaled relative to the most 

reactive position in the 5’UTR of cspB. Position 1, the 5' end of the cspB message, 

corresponds to nucleotide 1,639,739 in E. coli genome. Regions with large change in 

DMS signal between timepoints are boxed. 

(C) Structure of cspB UTR 8hr after cold shock in ∆cspBG, presented as in Figure 5. 
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Experimental Procedures: 

Strains and growth conditions  E. coli K-12 MG1655 was used as the wild-type strain.  All 

culture experiments were performed in MOPS medium supplemented with 0.2% glucose, all 

amino acids except methionine, vitamins, bases and micronutrients (Teknova).   Cells were 

grown in an overnight liquid culture at 37˚C, diluted to an OD420 = .001 in fresh medium and 

grown  until OD420 reached 0.4 where samples were collected.  For 10°C samples, cultures were 

grown to OD420 = 1.1 at 37˚C and cold shock was performed by mixing 70mL of 37°C culture 

with 130mL of 0°C media, with continued growth of the culture in a 10°C shaker. Multiple 

deletion strains were generated by transduction of FRT-flanked deletion alleles from the Keio 

collection (Baba et al., 2006) followed by marker excision by Flp recombinase (Cherepanov and 

Wackernagel, 1995). 

Ribosome profiling sample capture  The protocol for bacterial ribosome profiling with flash 

freezing was described (Li et al., 2014). Briefly, 200 mLs of cell culture were filtered rapidly and 

the resulting cell pellet was flash-frozen in liquid nitrogen and combined with 650 µl of frozen 

lysis buffer (10 mM MgCl2, 100 mM NH4Cl, 20 mM Tris-HCl pH 8.0, 0.1% Nonidet P40, 0.4% 

Triton X-100, 100 U ml-1 DNase I (Roche), 1 mM chloramphenicol).  Cells were pulverized in 

10-ml canisters pre-chilled in liquid nitrogen. Lysate containing 0.5 mg of RNA was digested for 

1 h with 750 U of micrococcal nuclease (Roche) at 25°C. The ribosome-protected RNA 

fragments were isolated using a sucrose gradient followed by hot acid phenol extraction.  Library 

generation was performed using the previously described strategy (Li et al., 2014) detailed 

below. 

Total mRNA sample capture For experiments performed in parallel with ribosome profiling, 
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total RNA was phenol extracted from the same lysate that was used for ribosome footprinting.  

For experiments performed independently of ribosome profilng experiments, and for total 

mRNA used for in vitro DMS-seq experiments, 4mL of OD420 = 0.4 culture was added to 500µL 

of ice-cold stop solution (475 µL of 100% EtOH and 25µL acid phenol), vortexed, and spun for 

2 min at 8000rpm.  Supernatant was poured off, and the cell pellet was flash frozen in liquid 

nitrogen. Total RNA was then hot acid phenol extracted.  For mRNA-seq experiments, ribosomal 

RNA and small RNA were removed from the total RNA with MICROBExpress (Ambion) or 

Ribozero (Epicenter) and MEGAclear (Ambion), respectively, following the manufacturers' 

protocols. mRNA was randomly fragmented as described (Ingolia et al., 2009).  For total RNA 

sequencing experiments, these subtractions were not performed.  The fragmented mRNA sample 

was converted to a complementary DNA library with the same strategy as for ribosome 

footprints. 

mRNA-seq following rifampicin addition Rifampicin was added to a final concentration of 250 

µg/mL at the designated time.  Total RNA-seq samples were prepared as described for mRNA-

seq samples, except that tRNA and rRNA subtraction was not performed. 

Library generation for ribosome profiling and mRNA seq samples The footprints and 

mRNA fragments were ligated to miRNA cloning linker-1 (IDT) 

5rApp/CTGTAGGCACCATCAAT/3ddC/, using a recombinantly expressed truncated T4 RNA 

ligase 2 K227Q produced in our laboratory. The ligated RNA fragments were reverse transcribed 

using the primer 5'/5Phos/GATCGTCGGACTGTAGAACTCTGAACCTGTCGGTGGTCGCC 

GTATCATT/iSp18/CACTCA/iSp18/CAAGCAGAAGACGGCATACGAATTGATGGTGCCT

ACAG 3'. The resulting cDNA was circularized with CircLigase (Epicentre) and PCR 

amplification was done as described previously (Ingolia et al., 2009). 
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DMS modification For in vivo DMS modification, 15 ml of exponentially growing E. coli were 

incubated with 750 µl DMS.  Incubation was performed for 2 min at 37°C, and for 45 min at 

10°C.  For kasugamycin experiments, kasugamycin was added to a final concentration of 10 

mg/mL after 8 hr at 10°C for 40 min prior to DMS modification.  DMS was quenched by adding 

30 ml 0°C stop solution (30% ß-mercaptoethanol, 25% isoamyl alcohol) after which cells were 

quickly put on ice, collected by centrifugation at 8,000g and 4 °C for 2 min, and washed with 8 

ml 30% BME solution. Cell were then resuspended in 450 µL total RNA lysis buffer (10 mM 

EDTA, 50 mM sodium acetate pH 5.5), and total RNA was purified with hot acid phenol 

(Ambion).  For in vitro DMS modifications, mRNA was collected in the same way as described 

above but from E. coli that were not treated with DMS. 2µg of mRNA was denatured at 95 °C 

for 2 min, cooled on ice and refolded in 90 µL RNA folding buffer (10 mM Tris pH 8.0, 100 mM 

NaCl, 6 mM MgCl2) at 37°C or 10°C for 30 min then incubated in either .2% (95°C) or 4% 

(37°C and 10°C) DMS for 1 min (95°C), 5 min (37°C) or 40 min (10°C). The DMS reaction was 

quenched using 30% BME, 0.3 M sodium acetate pH 5.5, 2 µl GlycoBlue solution and 

precipitated with 1X volume of 100% isopropanol.  

Library generation for DMS-seq samples  Sequencing libraries were prepared as described 

(Rouskin et al., 2014). Specifically, DMS treated mRNA samples were denatured for 2 min at 95 

°C and fragmented at 95 °C for 2 min in 1x RNA fragmentation buffer (Zn2+ based, Ambion). 

The reaction was stopped by adding 1/10 volume of 10X Stop solution (Ambion) and quickly 

placed on ice. The fragmented RNA was run on a 10% TBU (Tris borate urea) gel for 60 min. 

Fragments of 60–70 nucleotides in size were visualized by blue light (Invitrogen) and excised.  

Reverse transcription was performed in a 20 µl volume at 52 °C using Superscript III 

(Invitrogen), and truncated reverse transcription products of 25–45 nucleotides (above the size of 
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the reverse transcription primer) were extracted by gel purification. 

Measurement of total protein synthesis 1µC of Perkin Elmer EasyTag 35S labeled methionine 

(Product # NEG709A) was mixed with 5µL 288 µmol unlabeled methionine and 24 µL media.  

At the time of capture, 900 µL of culture was added to methionine mix, and was labeled on a 

shaker for the time of capture, 1 min at 37°C and 5min at 10°C.  After labeling, 100 µL of 50% 

trichloracetic acid on ice was added to the sample, which was vortexed and placed on ice.  

Samples were left on ice for at least 20 min to allow precipitation.  Samples were then counted 

by running 100µL of sample through a 25mm APFC glass fiber filter (Millipore APFC02500) 

pre-wetted with 750 µL of 5% TCA on a vacuum stand, and washing three times with 750 µL 

5% TCA and three times with 750 µL 100% ethanol.  Filters were then placed in MP Ecolume 

scintillation fluid and counted. 

Sequencing Sequencing was performed on an Illumina HiSeq 2000 system. Sequence alignment 

with Bowtie v. 0.12.0 mapped the footprint data to the reference genomes NC_000913.fna 

obtained from the NCBI Reference Sequence Bank. Sequencing data from mutated strains were 

aligned to appropriately modifed versions of the NC_000913.fna genome. For ribosome footprint 

and mRNA-seq samples, the center residues that were at least 12 nucleotides from either end 

were given a score of 1/N in which N equals the number of positions leftover after discarding the 

5' and 3' ends.. For DMS-seq samples, read counts were assigned to the base immediately 5' of 

the 5' end of each read, which is the base that was DMS-modified. 

Computational prediction of RNA structures For identification of unpaired bases, raw DMS-

seq data was normalized to the most highly reactive residue after removing outliers by 95% 

Winsorisation (all data above the 95th percentile is set to the 95th percentile).  Bases with DMS-
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seq signal greater that 20% of the signal on the most highly reactive residue (after Winsorisation) 

were called "unpaired".  For determination of rimM mRNA structures constrained by DMS-seq 

data, A Viennafold (Hofacker, 2003) minimum free energy model of the indicated region was 

generated, constrained by bases experimentally determined to be unpaired in the indicated 

dataset.  For csp structure predictions, a conservative model was made in which the 20% of bases 

with highest DMS modification in the window were constrained to be unpaired.  Color coding by 

DMS signal was done using VARNA (http://varna.lri.fr/). 

Computing the agreement with ribosomal RNA  The secondary structure models for E. coli 

ribosomal RNAs were downloaded from Comparative RNA Website and Project database 

(http://www.rna.icmb.utexas.edu/DAT/3C/Structure/index.php). The crystal structure model was 

downloaded from Protein Data Bank (http://www.pdb.org, PDB entries 3I1M, 3I1N, 3I1O, and 

3I1P). The solvent-accessible surface area was calculated in PyMOL, and DMS was modeled as 

a sphere with 2.5 A ̊ radius (representing a conservative estimate for accessibility because DMS 

is a flat molecule). Accessible residues were defined as residues with solvent accessibility area of 

greater than 2 A ̊ 2.  Unpaired residues in DMS-seq data were identified as described above.  

True positive bases were defined as bases that are both unpaired in the secondary structure model 

and solvent-accessible in the crystal structure model. True negative bases were defined as bases 

than are paired (A-U or C-G specifically) in the secondary structure model. Accuracy was 

calculated as the number of true positive bases plus the number of true negative bases divided by 

all tested bases. 

Translation efficiency calculation Data analysis was performed with custom scripts written for 

R version 2.15.2 and Python 2.6.6.  Mean ribosome density was calculated as described (Li et al., 
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2014). mRNA density was calculated by calculating the mean density of mRNA reads following 

a Winsorization applied to trim the top and bottom 5% of reads.  For comparisons of translation 

efficiency between timepoints and between strains at 10°C, relative translation efficiencies were 

normalized by relative total protein synthesis, quantified through 35S-methionine incorporation 

as described above. 

Metagene analysis of ribosome run-off and DMS structure  Metagene analysis of ribosome 

run-off was perfomed as done previously (Ingolia et al., 2011).  Codons 600-800, which 

appeared undepleted in all timepoints measured, were used to normalize timepoints. 

Calculation of Gini index on DMS-seq data All Gini indices were calculated using the R 

package "ineq" to calculate Gini over As and Cs in the region specified for each experiement.  

For each DMS-seq sample, Gini indices were calculated only for genes that had greater than an 

average of 15 reads per nucleotide (A or C) across the gene body. Genes for which mRNA-seq 

data was discontinuous (due to an early termination event or an internal promoter, 1% of genes) 

were excluded from the analysis.  Specifically, Gini indices were calculated on mRNA-seq data, 

and a cut-off was created based on two standard deviations from the mean. 

Identification of adjacent open reading frames on operons Adjacent open reading frames in 

annotated operons often have differing levels of mRNA-seq reads, suggesting that they are not 

always on the same mRNA molecule.  To identify adjacent ORFs expressed as a single operon, 

we assessed mRNA-seq data for equivalent mean message level, and for signal continuity, as 

described below.  Equivalent mean message level was assessed by first determining the 

variability in mean mRNA-seq read density within individual ORFs.  There is a single transcript 

that extends over the entire body of the large majority of ORFs, and so the variability in mean 
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read density level in the first half of each ORF was compared to mean read density in the second 

half of each ORF, and the variability in this distribution was used to define a cut-off for ORFs on 

a single message. Adjacent ORFs that fell within a 2σ cut-off in mean level (calculated to be a 

1.5-fold difference in mRNA level) were determined to have equivalent mRNA level, and were 

then assessed for signal continuity.  Signal continuity was assessed by first determining the 

distribution of read density in windows within messages.  Gini index of mRNA signal were 

calculated for all 50nt windows within ORF bodies, and the variability in this distribution was 

again used to define a cut-off for continuous mRNA regions.  Gini index were then calculated for 

50nt windows tiling the region between adjacent open reading frames.  Gene pairs that fell 

within a 2σ cut-off defined by the intra-ORF distribution, were considered to be a pair of 

adjacent ORFs on a single message. 

Directionality of interaction predictions For the determination of directionality of interaction 

at ORF boundaries, sequence from -250 to +250 nt relative to the translation start site was 

extracted for each adjacent pair of ORFs.  A Viennafold (Hofacker, 2003) minimum free energy 

model of each 500nt sequence was then generated, constrained by DMS-seq dataset indicated, 

using DMS constraints as described above.  The predicted probability of each base interacting 

with each other base in each mRNA structure model was then extracted from the Viennafold 

output.  The mean probability of each position interacting with each other position across all 

analyzed messages was then calculated, generating a square matrix of interaction probability 

between all positions in the analyzed region.  For each position between -150 to +150 nt relative 

to the translation start site, the summed probability of that position interacting with any of the 

previous 100 upstream positions was then calculated.  The same calculation was performed for 

the 100 downstream positions.  The ratio between sum upstream interaction and sum 
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downstream interaction probability was then calculated for each position. 

Identification of cold-induced open reading frames Cold-induced ORFs were identified by 

calculating synthesis rates through integrating ribosome profiling with 35S-methionine total 

protein synthesis measurements.  At 37°C and at all timepoints following cold shock, the relative 

synthesis rate of each ORF was determined by multiplying total protein synthesis, measured by 

35S-methionine total incorporation (see above) by the fraction of ribosome footprints mapping to 

that open reading frame.  To calculate 37°C synthesis, the 37°C doubling time (26 min) was 

multiplied by 37°C synthesis rate.  To calculate 10°C synthesis, the accumulated protein at each 

timepoint was multiplied by the window between that and the subsequent timepoint to estimate 

total synthesis within each window between timepoints.  The total synthesis during all windows 

spanning the growth arrest period was then summed, and the ratio of 10°C synthesis to 37°C 

synthesis was calculated.  For the large majority of genes, this ratio was << 1, as the absolute 

total protein synthesis rate was down > 100-fold relative to 37°C. 

SD strength calculation For each open reading frame, SD strength was determined using the 

model established by (Salis et al., 2009).  We used the RBS Calculator established by Salis et al 

downloaded from http://www.github.com/hsalis/Ribosome-Binding-Site-Calculator-v1.0.  
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