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Abstract

Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and 
Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions 
have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on dec-
ades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights 
from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow 
them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have 
shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses 
permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses 
are also the foundation upon which all later ones are built, including everything from land–plant endosymbioses with fungi 
and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped 
this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the ex-
tent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of 
resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. 
However, there are significant differences between endosymbiotic interactions not only in how partners have evolved 
with each other but also in the scope of their influence on biological diversity. These differences are important considerations 
for predicting how endosymbioses will persist and adapt to a changing planet.

Key words: endosymbiosis, prokaryotes, eukaryotes, biodiversity, genome evolution, coevolution.

Significance
Understanding how endosymbiotic interactions have coevolved and shaped life on Earth is critical to developing comprehen-
sive theories and predictions in biology. In this perspective, we compare and contrast how major endosymbioses—starting 
with eukaryogenesis—have influenced biodiversity and the mechanisms that underlie their evolution. We reflect on how 
significant differences between categories of endosymbioses should influence our theories and predictions about their per-
sistence in nature.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
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and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information 
please contact journals.permissions@oup.com.

This Perspective is part of a series of articles celebrating 
40 years since Molecular Biology and Evolution was 
founded. It is accompanied by virtual issues on this topic 

published by Genome Biology and Evolution and 
Molecular Biology and Evolution, which can be found at 
our 40th anniversary website.
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Introduction
The evolution of all life—from prokaryotes to complex 
multicellular eukaryotes—has been shaped by symbiotic 
interactions with the immense microbial diversity that exists 
on the Earth (McFall-Ngai et al. 2013). Such interactions 
generally range from antagonistic to beneficial, placing 
distinctive evolutionary pressures on the interacting part-
ners (Lynch and Hsiao 2019; Drew et al. 2021). In recent 
years, beneficial symbioses—including facultative and obli-
gate interactions—have become much better understood 
as important drivers of biological complexity and diversity 
(Archibald 2014; Douglas 2014; McFall-Ngai 2015; 
Chomicki et al. 2019; Perreau and Moran 2022). These in-
teractions are diverse in terms of the phylogenetic array of 
hosts and microbes involved, the specific services that each 
provides, and the evolutionary mechanisms employed to 
sustain them. While such beneficial symbioses are diffuse 
among biological life, endosymbiotic interactions— 
microbes living inside the cells of a host—are among 
some of the most ancient and complex biological interac-
tions known (Archibald 2015a). They generally arise when 
unexploited resources are available but out of reach for 
potential hosts (Moran 2007). By bridging distant peaks 
between adaptive landscapes, endosymbionts provide 
novel phenotypes to their hosts that unlock environmental 
resources (Fig. 1; Lynch and Hsiao 2019). As a result, 

endosymbionts are often removed from the open environ-
ment and become wholly dependent on their hosts 
(Bennett and Moran 2015; Drew et al. 2021). Thus, endo-
symbioses are paragons of coevolution. They entail the 
complex evolution of integrated genomes, host tissues 
and organs, novel host cells and cell structures, and me-
chanisms of resource exchange and communication be-
tween the domains of life (Keeling 2013; Martin et al. 
2015; Wilson and Duncan 2015).

Over evolutionary time, endosymbioses have become 
ecologically pervasive, playing integral roles in shaping— 
and reshaping again and again—Earth’s biological diver-
sity. One could summarize life on our planet as comprising 
just the prokaryotes and a broad union of organisms de-
rived from endosymbiotic interactions (i.e. anything with 
mitochondria, plastids, and beyond; Yutin et al. 2008; 
Martin et al. 2015; Archibald 2015a; McCutcheon et al. 
2019). As such, there is an intrinsic and even urgent need 
to understand the biology and ecology of these interac-
tions. This knowledge is key to discerning the main origins 
and drivers of biological diversity, as well as to clarifying 
even our most basic biological and evolutionary theories. 
Pursuing such grand research goals requires the application 
of evolutionary principles. This framework elevates ques-
tions of “how endosymbioses function” to “why they func-
tion,” “where they came from,” and “why they even exist 
and persist in nature.” It further provides a predictive 

FIG. 1.—Simplified summary of the major endosymbiotic events that have led to significant leaps in the biological diversity and complexity of life. 
Endosymbionts provide novel phenotypes to their hosts permitting them to leap between adaptive landscapes with new trait axes and peaks. Except for 
the establishment of mitochondria during eukaryogenesis, all other endosymbioses are built on the more ancient ones that preceded them. Arrows track 
the evolutionary progression of these interactions. Peaks and labels illustrate some of the major endosymbiotic events.
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framework to project our understanding well past our con-
temporary moment in the evolution of life on Earth.

Building an evolutionary framework into endosymbiosis 
research necessitates developing a baseline understanding 
of the diversity, origins, and evolutionary processes under-
lying these interactions. Over the past 40 years, researchers 
publishing in the journals, Molecular Biology and Evolution 
(MBE), and later Genome Biology and Evolution (GBE), 
have tackled these questions and greatly expanded our 
knowledge of endosymbioses. What we have learned is pro-
found and voluminous. We take readers through this litera-
ture, tackling two basic questions: How have endosymbioses 
shaped life? And how do endosymbioses evolve?

A Primer on How Endosymbioses Shaped Biological 
Diversity

With ever more sophisticated molecular tools and technolo-
gies, researchers publishing in MBE and GBE have traced 
the evolution of endosymbioses up and down the tree of 
life. Early phylogenetic approaches permitted the identifica-
tion of endosymbiotic partners for many systems and the 
development of hypotheses about the origin and evolution-
ary processes shaping these interactions (Moran 1996; Peek 
et al. 1998; Spaulding and von Dohlen 1998; Pisani et al. 
2007). But the greatest accelerant of our understanding 
of endosymbioses—particularly since few endosymbiotic 
microbes can be cultured—is the advent of next-generation 
molecular sequencing (McFall-Ngai 2015). These technolo-
gies cheaply expanded the ability to collect complete mo-
lecular information for all symbiotic partners (genomes, 
transcriptomes, proteomes, epigenomes, etc.) across popu-
lations, species, and groups (Brown et al. 2015; Chong 
et al. 2019; Shinzato et al. 2021; Sun et al. 2021; Gould 
et al. 2022). Research employing these approaches has 
yielded novel and refined theories of how endosymbioses 
function and evolve (e.g. McCutcheon and Moran 2010; 
Sloan et al. 2014; Shapiro et al. 2016; Yang et al. 2020; 
Ip et al. 2021). Along the way, we have learned that endo-
symbionts appear to come from almost everywhere and do 
almost everything. They provide an array of metabolic and 
physiological services to their hosts, including the exponen-
tial upscaling of cellular energy and the bridging of nutri-
tional deficits on land and in the sea (Lane and Martin 
2010; Hansen and Moran 2014; Sogin et al. 2021). From 
eukaryogenesis to the ability of insects to feed on plants, 
endosymbiosis has been a perpetual driver of biological 
complexity and diversity (Fig. 1; Archibald 2014; Mills 
et al. 2022).

The Original Endosymbioses

The first known endosymbiosis of major biological signifi-
cance occurred ~1.8 billion years ago when Asgard ar-
chaean formed an obligate endosymbiotic relationship 

with an alphaproteobacterium (Sagan 1967; Fitzpatrick 
et al. 2006; Pisani et al. 2007; Yutin et al. 2008; Williams 
et al. 2013; Raval et al. 2023). This relationship gave rise 
to the mitochondria (also mitosomes and hydrogenosomes) 
and eukaryotes writ large. The precise origins and steps in 
the coevolutionary integration of the endosymbiotic inter-
action have been long debated (Thiergart et al. 2012; 
Williams and Embley 2014; Geiger et al. 2023). (Note: 1.8 
billion years of Earth’s history is an immense amount 
of time and space for evolution to scramble its tracks—a 
common theme in endosymbiosis research.) Nevertheless, 
recent theory suggests that mitochondria arose in anaerobic 
conditions through the dependence of methanogenic ar-
chaea on H2 provided by an alphaproteobacterial ancestor 
(Martin and Müller 1998; Mills et al. 2022). The permanent 
establishment of this alphaproteobacterium into the mito-
chondria greatly expanded the cellular energy budgets of 
single-celled and multicellular eukaryotes, further assuming 
roles in cell cycle regulation, signaling, apoptosis, etc. (Gray 
et al. 1999; McBride et al. 2006; Roger et al. 2017). The 
benefit of abundant and localized energy vis-à-vis the mito-
chondria was a necessary preadaptation for establishing all 
other endosymbioses that have followed. The mitochon-
dria, by transferring genes to the nuclear genome, also pro-
vided genetic toolkits for integrating and sustaining later 
endosymbioses in more complex hosts (e.g. nutritional en-
dosymbioses in some insects; reviewed by Mao et al. 2018).

Relatively soon after eukaryogenesis (∼1.5 billion years 
ago), an ancestor to the Archaeplastida (algae and plants) es-
tablished another significant endosymbiosis with a cyanobac-
terium (Yoon et al. 2004; Rogozin et al. 2009; Keeling 2013). 
This relationship led to the primary establishment and evolu-
tion of chloroplasts, eukaryotic photosynthesis, massive in-
creases in global primary productivity, and the literal 
greening of Earth (Moreira et al. 2000; McFadden 2001). 
Mitochondria were a necessary partner for this event. It pro-
vided the fundamental bioenergetic framework to leverage 
solar energy and the protection of chloroplasts during cellular 
stress conditions and in the darkness of night (Hoefnagel et al. 
1998; Lane and Martin 2010; Mills et al. 2022). In return, the 
chloroplast endosymbiont provided a ready food source and 
metabolic support to its mitochondrial partner (e.g. sugars 
and oxygen; Raghavendra and Padmasree 2003; Oikawa 
et al. 2021). As a result, some mitochondrial and chloroplast 
metabolic activities are linked and coregulated by their hosts 
(Zhang and Glaser 2002; Zhao et al. 2020; He et al. 2023). 
Some of their essential functions are even supported by the 
same dual-targeted genes (e.g. essential t-RNA synthesis; 
Peeters and Small 2001; Carrie et al. 2009; Yogev and Pines 
2011). Thus, mitochondria and chloroplasts are, perhaps, 
the first dual endosymbiosis—a relatively common feature 
of later endosymbioses of plants and invertebrate animals.

The ability to photosynthesize is such an important 
adaptive eukaryotic trait that ancestrally nonphototrophic 
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eukaryotes (ancestors to euglenids, apicomplexans, crypto-
monads, etc.) have repeatedly stolen the ability (Yoon et al. 
2005; Baurain et al. 2010; Dagan et al. 2013; Keeling 
2013). Over evolutionary time, and through the process of 
secondary endosymbiosis, nonphotosynthetic eukaryotic 
hosts have intracellularly acquired archaeplastid endosym-
bionts many times and sometimes repeatedly (e.g. tertiary 
endosymbiosis; Douglas 1998; Keeling 2013). However, 
the arrangement for the interned photosynthetic eukaryote 
is less than ideal. The secondary host essentially dissolves 
the archaeplastid and absorbs necessary genes into its gen-
ome to sustain their stolen plastid (Archibald 2015b; 
Ponce-Toledo et al. 2019). Endosymbioses derived from sec-
ondary, tertiary, etc. origins have led to key biological diver-
sity with Earth-changing outcomes (Dorrell and Howe 
2015). For example, Symbiodinium dinoflagellates, the prod-
uct of a red algal secondary endosymbiosis, are themselves 
endosymbionts of a wide range of marine invertebrates (jelly-
fish, anemones, nudibranchs, etc.; LaJeunesse et al. 2018; Liu 
et al. 2018). Notably, Symbiodinium in corals enabled the 
massive diversification of marine reef systems, which are 
among the most diverse, important, and threatened ecosys-
tems on the planet (Plaisance et al. 2011; Levin et al. 2016).

The Later Endosymbioses That Shaped Plant and Animal 
Diversity

Beyond the serial establishment of mitochondria power-
houses and chloroplast primary productivity, disparate eu-
karyotic lineages have continued acquiring additional 
endosymbionts. These “later” endosymbioses provided key 
adaptive advantages to their hosts that generally include 
novel metabolisms and enhanced access to environmental 
resources (Moran 2007; Archibald 2014). They have oc-
curred in everything from single-celled eukaryotes (e.g. 
Paulinella; Marin et al. 2005; Nowack et al. 2008, 2011) to 
more biologically complex plants and invertebrate animals 
(e.g. Fabaceae leguminous plants, some marine deep-sea 
vent invertebrate animals, and hemipteran plant-feeding in-
sects; Sloan et al. 2014; Manzano-Marín et al. 2015; 
Warshan et al. 2018; Ip et al. 2021). The importance of these 
endosymbioses in shaping biodiversity is now well in view.

The diversity and success of land plants are attributable, 
in part, to endosymbiotic interactions with arbuscular 
mycorrhizae (AM; Parniske 2008; Bonfante and Genre 
2010) and nitrogen-fixing cyanobacteria and rhizobia bac-
teria (Kiers et al. 2003; Warshan et al. 2018). Up to 80% of 
land plant species engage in endosymbiosis with the an-
cient Glomeromycota AM (Bennett and Groten 2022). By 
extending plants’ abilities to scavenge essential nutrients 
from soils (e.g. nitrogen, phosphorous, and minerals; 
Parniske 2008), endosymbiosis with AM provided a key 
adaptive advantage for plants in the terrestrial environ-
ment. This relationship was also likely an important factor 

in the early success of land plants as they established on 
Earth’s barren landscapes >450 million years ago (Delaux 
and Schornack 2021). In contrast, endosymbioses between 
land plants and bacteria are comparatively restricted, pos-
sibly because plant cell structures and physiology limit intra-
cellular invasion by microbes (Geurts et al. 2016; Delaux 
and Schornack 2021). Nevertheless, endosymbiotic bac-
teria in plants have contributed to the ecological success 
and diversification of several important plant groups. 
Nitrogen-fixing cyanobacterial endosymbioses have 
independently evolved in a range of hosts that include 
Gunnera, some liverworts, cycads, and ferns (Rikkinen 
2017; Warshan et al. 2018; Delaux and Schornack 2021). 
Similarly, root-nodulating rhizobial endosymbioses have 
led to the diversification of the ecologically and agricultur-
ally important group of plant orders that includes Fabales, 
Cucurbitales, and Rosales (Markmann and Parniske 2009).

Invertebrate animals have been particularly successful at 
establishing additional endosymbioses. In an evolutionary 
framework, these exceedingly diverse interactions permit-
ted hosts to thrive in totally unsuitable environments, often 
leading to global-scale adaptive species radiations (Moran 
2007). For example, a wide diversity of marine invertebrates 
(e.g. some clam, mussel, and snail species) ally with chemo-
synthetic bacterial endosymbionts for CO2 fixation into 
consumable biomass and sugars (Ozawa et al. 2017; 
Sogin et al. 2020; de Oliveira et al. 2022). These endosym-
bioses permit their hosts to dominate some of the most ex-
treme and energy-limited environments on Earth, including 
oceanic sediments and deep-sea thermal vents (Sogin et al. 
2021). But this diversity of endosymbioses in invertebrate 
animals is just the tip of the iceberg.

Far more diverse groups of invertebrate animals, includ-
ing some nematodes and insects, owe their origins to endo-
symbioses (Jiggins et al. 2002; Brown et al. 2015; Chong 
et al. 2019). In particular, insect endosymbioses have re-
ceived intense attention in recent years. Insects have been 
dubbed a “fairly land” of endosymbiosis and for good rea-
son (Buchner 1965). These endosymbiotic interactions are 
responsible for at least 20% of insect species diversity 
(>1 million species) and underlie their terrestrial dominance 
(Douglas 2011). Origination events are generally ancient 
(e.g. tens to hundreds of millions of years old; Bennett 
and Moran 2013; Patiño-Navarrete et al. 2013) and are 
too numerous to summarize (e.g. at least ∼50 independent 
origins in the order Hemiptera, alone; Bennett and Moran 
2015; Sudakaran et al. 2017). The principal role of insect 
endosymbionts is to provide nutrition lacking in host diets 
(Hansen and Moran 2014). For example, plant sap-feeding 
insects in the hemipteran order (cicadas, leafhoppers, 
aphids, whiteflies, etc.) have acquired a diverse array of bac-
teria to provide essential amino acids lacking in their plant 
phloem and xylem diets (Sloan and Moran 2013; 
Santos-Garcia et al. 2014; Mao et al. 2017; Garber et al. 
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2021). Similar nutritional interactions are known from a broad 
diversity of insect groups, including ants, cockroaches, and 
tsetse flies to name just a few (Williams and Wernegreen 
2012; Medina Munoz et al. 2017; Kinjo et al. 2018). Insects 
often take these interactions much further by acquiring mul-
tiple endosymbiotic bacteria and fungi that have completely 
different origins and that make distinct contributions to their 
endosymbioses (McCutcheon and Moran 2010; Weglarz 
et al. 2018). They are also actively evolving ever-novel endo-
symbioses with environmental bacteria (Oakeson et al. 
2014), leading to the routine replacement of ancient endo-
symbionts with younger ones (Sudakaran et al. 2017).

Evolving Biologically Complex Endosymbioses

A major area of interest in evolutionary biology—and 
Society for Molecular Biology and Evolution (SMBE) 
journals—is the evolutionary processes that shape the es-
tablishment, integration, and long-term persistence of en-
dosymbioses. We have previously described this process 
as an ever-deepening and spiraling “rabbit hole” (Bennett 
and Moran 2015). In this framework, endosymbioses are 
shaped by at least four key factors: (i) the metabolic pur-
pose of the endosymbiosis, (ii) the number of partner endo-
symbionts involved, (iii) the host’s abilities to transmit and 
support their endosymbionts across generations, and (iv) 
the age of the endosymbiosis. The first two factors dictate 
the minimum genetic repertoire endosymbionts must 
retain to fulfill their host-dependent functions (e.g. oxida-
tive phosphorylation pathways in mitochondria and nutri-
tional pathways in invertebrate animal endosymbionts; 
Gray et al. 1999; McCutcheon and Moran 2010). Many 
symbiotic systems further depend on multiple collaborative 
endosymbionts to provide single metabolisms (e.g. chloro-
plast–mitochondrial interactions and dual nutritional endo-
symbioses in insects; Douglas 2016; Gossett et al. 2023; He 
et al. 2023). The third factor dictates how strongly host se-
lection and drift are in shaping endosymbiont evolution and 
the extent to which hosts can support their endosymbionts 
across generations (Jiggins et al. 2002; Salem et al. 2015; 
Leftwich et al. 2020; Perreau and Moran 2022; Romero 
Picazo et al. 2022). The modality in which endosymbionts 
are acquired (i.e. environmental vs. vertical transmission) 
generally plays a large role in how these processes unfold 
over evolutionary time. Finally, as endosymbiotic relation-
ships age, the effects of living in an endosymbiosis become 
more pronounced on the decreasing cellular and metabolic 
integrity of endosymbionts (McCutcheon et al. 2019). 
Hosts, in turn, must continually adapt to sustain their endo-
symbionts (Mao et al. 2018; Perreau and Moran 2022).

Endosymbiont Evolution: Streamlined for Dysfunction

Perhaps one of the most generalizable outcomes of endo-
symbiosis is that the genomes and related cellular 

functionality of endosymbionts are streamlined to fit their 
ecological and symbiotic requirements. In many cases, 
this process leads to the extreme reduction of microbial 
genomes to a mere fraction of those found in their free- 
living relatives (Khachane et al. 2007; McCutcheon and 
Moran 2012). However, the obvious effects of genome 
streamlining are less pronounced in endosymbionts that 
are horizontally acquired, particularly those with life phases 
in the open environment (Bright and Bulgheresi 2010; 
Fisher et al. 2017). For example, while rhizobia bacteria 
and AM contain genes necessary for their endosymbiotic 
interactions, they also tend to have large versatile genomes 
required to cope with complex soil environments (>7 and 
>150 Mb, respectively; Young et al. 2006; Tisserant et al. 
2013).

For vertically transmitted endosymbionts, the evolutionary 
procession shaping their reduced genomes has been relative-
ly well characterized (Khachane et al. 2007; Wernegreen 
2015). Early in the establishment of an endosymbiotic inter-
action, endosymbiont genomes become adaptively stream-
lined to lose redundancy with those of their hosts and 
other endosymbiont partners (Gray et al. 2001; Dale et al. 
2003). Genes encoding redundant biosynthetic activities 
are purged via relaxed selection and eventual excision 
(Bennett and Moran 2015; Wertheim et al. 2015). This pro-
cess occurs even in systems with multiple obligate endosym-
bionts that evolve to perfectly complement each other to 
meet the needs of their hosts (McCutcheon and Moran 
2010; Monnin et al. 2020). However, early on in their estab-
lishment when endosymbiont population size and selection 
are reduced, their genomes can expand with noncoding con-
tent that rapidly obliterates redundant and nonessential 
genes (Koga and Moran 2014; Oakeson et al. 2014). As 
this early upheaval settles, endosymbiont genomes shrink to-
ward essential integrated metabolisms and functions.

A distinct mode of adaptive genome streamlining oc-
curred in mitochondria, plastids, and the chromatophore 
of Paulinella. The ancestors of these endosymbionts trans-
located sizable portions of their genomes to their hosts–– 
a process known as endosymbiotic gene transfer (EGT; 
Dagan et al. 2013; Ku et al. 2015). The advantages of 
EGT are thought to lie in host control of gene expression, 
aiding endosymbiont escape from genetic drift, and econ-
omized energetics of protein production and transport 
(Kelly 2021). The EGT evolutionary process, as well as ex-
treme genome reduction, also occurs in the genomes of pri-
mary archaeplastid algal hosts unfortunate enough to 
become enveloped in secondary endosymbioses with other 
single-celled eukaryotes (Keeling 2010; Uthanumallian 
et al. 2022). A significant evolutionary contrast can be 
made with endosymbionts that are established later in 
multicellular plant and animal hosts. They generally exhibit 
little evolutionarily significant EGT. These endosymbionts 
are rarely in direct contact with germline nuclei and have 

Endosymbioses Have Shaped Biodiversity                                                                                                                          GBE

Genome Biol. Evol. 16(6) https://doi.org/10.1093/gbe/evae112 Advance Access publication 30 May 2024                                         5



limited opportunity for heritable EGT to occur (Nikoh et al. 
2010).

Finally, as vertically transmitted endosymbioses mature— 
particularly those found in invertebrate animals—endosym-
bionts become locked into the endosymbiotic relationship. 
They experience drastically reduced effective population 
sizes and strong intergenerational genetic bottlenecks 
(Moran 1996; Woolfit and Bromham 2003; Vogel and 
Moran 2013; Hendry et al. 2016). Along with the reduction 
in their DNA repair mechanisms, drift and the inability to fix 
errors exaggerate rates of molecular evolution, accumulation 
of deleterious mutations, and extreme base pair compos-
itional biases (e.g. Douglas et al. 2001; Schelkunov et al. 
2015; Waneka et al. 2021). Over time, accumulated muta-
tions cause genes that underlie critical cellular metabolisms 
and functions to be lost, including the independent ability 
to regulate genome expression, synthesize membranes and 
transport metabolites and resources, and even synthesize es-
sential resources required by the host and partner endosym-
bionts (Kuo et al. 2009; Bennett et al. 2016). These 
evolutionary processes take their toll on genome size and 
function, leading to the very smallest known genomes 
carved out of free-living ancestors (i.e. often just tens to hun-
dreds of kilobases; Gray et al. 2001; Bennett and Moran 
2013; Moran and Bennett 2014; Sibbald and Archibald 
2020). They also create extreme situations where host 
lineages and species must adapt to the distinct molecular 
identities and needs of their endosymbionts through genom-
ic compensation or the acquisition of novel partners (Bennett 
et al. 2016; Chong et al. 2019; Forsythe et al. 2021; 
Biot-Pelletier et al. 2023).

Host Evolution: Evolutionary Problem Solvers

Hosts need to overcome a few basic evolutionary chal-
lenges in order to sustain and integrate successful endo-
symbioses with ever-changing partners (Bennett and 
Moran 2015). These challenges generally include a way to 
stably exchange essential metabolic and cellular resources, 
communicate and regulate shared activities, and support 
ongoing endosymbiont genome degradation. The diverse 
ways in which hosts meet these challenges depend on 
the identity of the interacting partners, host anatomy and 
physiology (e.g. plants vs. animals), and the genetic and 
genomic constraints of each partner symbiont.

All endosymbioses depend on evolving a means of re-
source sharing. The sharing of essential metabolites and 
nutrition is critical to the function and maintenance of en-
dosymbioses (e.g. insect dependence on essential amino 
acids; Russell et al. 2014; Spinelli and Haigis 2018). The evo-
lution of exchange mechanisms has been accomplished in 
many ways. The solution depends on the nature of the 
endosymbiosis and whether endosymbionts retain mem-
brane transport systems and other capabilities in their 

genomes. Endosymbionts with larger genomes, for ex-
ample, retain transporters that can handle metabolite ex-
change (Toft and Fares 2008; Hehenberger et al. 2016). 
For ancient endosymbionts that no longer encode some 
or all transporters, hosts contribute them to their mem-
branes and often the entire membrane as well (Price 
et al. 2011; Duncan et al. 2016; Cunningham and Rutter 
2020). But, for unyielding endosymbionts with large inde-
pendent genomes, such as those acquired from the envir-
onment, hosts can either sequester them to elicit and 
absorb excreted metabolites (e.g. root-nodulating rhizo-
bia; Markmann and Parniske 2009) or simply consume 
them (e.g. chemosynthetic systems; Sogin et al. 2021).

Due to their tiny genomes, organelles and many endo-
symbionts also depend on the import of large host nuclear- 
encoded proteins to perform even their most basic cellular 
functions. For example, to share protein resources 
with mitochondria and plastids, eukaryotic hosts have 
evolved—independently—complex import systems (Tim– 
Tom and Tic–Toc, respectively; Soll and Schleiff 2004; 
Wiedemann and Pfanner 2017). In Paulinella—which has 
in many ways independently replayed chloroplast evolu-
tion—protein import re-evolved but the mechanisms ap-
pear to have distinct origins, possibly involving the Golgi 
apparatus (Singer et al. 2017). Similarly, the endosymbionts 
of invertebrate animals with highly degraded genomes also 
depend on protein imports, but the mechanisms are cur-
rently unclear (Nakabachi et al. 2014; Mao et al. 2018). 
Due to their many independent origins of endosymbioses 
in invertebrate animals, the mechanisms responsible for 
protein import across lineages may very well be cobbled to-
gether from distinct genes and cellular machineries.

Host endosymbiont cell–cell regulation and communica-
tion are essential for the stable long-term integration of 
successful endosymbioses. How this has been evolutionarily 
accomplished across the range of endosymbioses is diverse 
and complex, and much remains to be understood for 
many systems. Nevertheless, some mechanisms have 
been identified in key endosymbioses. In chloroplasts and 
mitochondria, for example, a process of retrograde signal-
ing modulates host genome activities in response to a range 
of organelle functions, metabolite presence and abun-
dances, and accumulation of reactive oxygen species 
(Wang et al. 2020). In plants, both mycorrhizae and rhizo-
bia can use glycan signals to target root cells to establish 
endosymbiotic association and root nodule formation 
(Gough and Cullimore 2011). Plant hosts also excrete fla-
vonoid signals that toggle bacterial expression of specific 
genes important in nodule formation and maintenance 
(Spaink 2000). After establishment, RNA appears to also 
play some regulatory roles in nutrient exchange (Xu et al. 
2018). In marine endosymbioses between corals and algal 
dinoflagellates, a complex array of glycans, reactive oxygen 
species, RNA, and lipids are similarly involved in cell–cell 
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communication and symbiotic regulation (Rosset et al. 
2021). For insects, less is currently known about how they 
regulate and communicate with their diverse nutritional en-
dosymbionts. Some bacterial symbionts with larger gen-
omes maintain complex abilities to monitor and respond 
to their environments in ways that influence their hosts’ 
function. These bacterial capabilities include eukaryote tar-
geting effectors and quorum sensing, which are mechan-
isms for attenuating the host-level fitness costs of 
harboring endosymbionts (Sanchez-Contreras et al. 2007; 
Enomoto et al. 2017; Hinzke et al. 2019). However, in the 
vast majority of ancient insect endosymbioses, these sys-
tems have long been lost. An emergent property of some 
systems is that host-level regulation of endosymbionts 
may be accomplished through nutrition and metabolite 
monitoring and exchange. In pea aphids, for example, me-
tabolite transporters sense and regulate the flow of meta-
bolites in response to essential amino acid concentrations 
(Wilkinson et al. 2007; Duncan et al. 2023).

Finally, maintaining endosymbionts, particularly as they 
age and degrade into complete dependence, requires the 
evolution of a multitude of support mechanisms. This pro-
cess often leads to complex reconfiguration of host gen-
omes. The most extreme is perhaps that of the eukaryotic 
nuclear genome, which is a core patchwork of archaeal, 
mitochondrial endosymbiont, and other prokaryotic genes 
(Ribeiro and Golding 1998; Pisani et al. 2007; Ku et al. 
2015; Brueckner and Martin 2020). Accommodating and 
economizing the early endosymbioses with the mitochon-
dria’s ancestor was accomplished, in part, by absorbing 
and repurposing parts of its genome through EGT (Martin 
et al. 1998). A similar process permitted the capture and es-
tablishment of chloroplasts (Sibbald and Archibald 2020), 
as well as the continued acquisition of plastids through sec-
ondary endosymbioses (Ponce-Toledo et al. 2018).

For the establishment of later endosymbioses, such as 
those in insects, the core toolkit is the eukaryotic genome. 
However, endosymbionts are generally restricted to distinct 
cells and tissues (e.g. bacteriocytes) that undergo evolution-
ary modification into tailored support apparatuses (Buchner 
1965). The gene expression of these cells is reprogrammed 
to differentially express thousands of genes responsible for 
the maintenance and regulation of endosymbionts (e.g. 
Sloan et al. 2014; Luan et al. 2015). These symbiont-sup-
port genes are derived from a range of origins to meet 
the specific needs of particular endosymbionts. For ex-
ample, membrane transporters are typically lost from tiny 
endosymbiont genomes in insects. They often undergo ex-
tensive duplication in the host genome and reassignment 
to the host-endosymbiont interface (Price et al. 2011; 
Duncan et al. 2016). Another source of aid for later endo-
symbioses is the preexisting mitochondrial support genes 
the hosts acquired through ancient EGT. Up to hundreds 
of these genes are either dual-targeted to mitochondria 

and nutritional endosymbionts, or they have been dupli-
cated and completely reassigned to support only the latter 
(Mao et al. 2018). Occasionally, however, the host genome 
alone cannot close gaps in the metabolic and cellular func-
tions of their endosymbionts. When no other mechanisms 
are available, hosts resort to acquiring genes through hori-
zontal gene transfer from other infecting bacteria (Sloan 
et al. 2014; Bublitz et al. 2019). They may also acquire add-
itional symbionts along with their entire genomes (Deng 
et al. 2023). In essence, hosts pull every evolutionary trick 
they can to meet the needs of their ever-degrading 
endosymbionts.

Conclusion
The fields of molecular evolution—and SMBE journals— 
have tracked decades of scientific discoveries that have re-
vealed the origins, evolution, and global impacts of major 
endosymbiotic events. This knowledge has invited the re-
evaluation of long-held theories, including even the funda-
mental definitions of endosymbioses (i.e. organelles 
derived from endosymbioses vs. all other kinds of endosym-
biotic interactions; see Husnik and Keeling 2019). While the 
classification of endosymbioses is partly a matter of seman-
tics and theory, the evolutionary implications are important 
for understanding how endosymbiotic events have influ-
enced biological diversity and how their interactions will per-
sist and adapt to a changing planet. Our accumulated 
knowledge has revealed that there are indeed important 
categorical distinctions to make between endosymbiotic 
systems. We conclude by reviewing two of the more 
significant ones.

The Important Distinctions between Endosymbioses

The first major distinction between endosymbiotic events is 
their sharply contrasting scales of influence over the evolu-
tion of global biodiversity. At the broadest level, the endo-
symbiotic steps in eukaryogenesis permitted the adaptive 
radiation of single-celled eukaryotes, multicellularity, and 
the eventual evolution of plants and animals (Lane and 
Martin 2010). The early establishment of mitochondria 
and chloroplasts is also the essential foundation upon 
which all other endosymbioses are built. While the later en-
dosymbioses that followed are certainly responsible for the 
global-scale diversification of many organismal groups, 
they are comparatively narrow in their host associations 
and are relatively plastic (Chomicki et al. 2019; Cornwallis 
et al. 2023). Nutritional endosymbioses in invertebrate ani-
mals, for example, have evolved repeatedly between a wide 
range of hosts, microbial partners, and environments 
(Sudakaran et al. 2017; Sogin et al. 2021). Many independ-
ent events have given rise to a wide diversity of host 
lineages over space and time. In contrast, mitochondria 
and chloroplasts are each derived from singular events 
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that enabled the evolution and diversification of everything 
that is not a prokaryote.

The second important distinction between endosymbioses 
is that the physical and cellular relationships between part-
ners differentially influence their long-term evolution. 
Mitochondria, which evolved in single-celled hosts, have pro-
liferated along with nearly every eukaryotic cell, including 
those comprising multicellular organisms. This is not the 
case for most later nutritional endosymbionts in multicellular 
hosts. These endosymbionts generally exist only in highly spe-
cialized organs and cells restricted from most others including 
the germline (Fronk and Sachs 2022). In vertically transmitted 
endosymbioses (e.g. those found in many insects), tissue and 
cellular restrictions put their endosymbionts in the perilous 
situation of having little to no control over their reproductive 
or evolutionary fates. Consequently, the cellular structures 
and genomes of vertically transmitted endosymbionts are 
whittled away to eventual extinction or replacement 
(McCutcheon et al. 2019). For partnerships where endosym-
bionts are acquired from the environment (e.g. plant–rhizo-
bial and deep-sea animal–chemosynthetic bacterial 
endosymbioses), the evolutionary consequences of these as-
sociations may be comparatively less severe on endosymbiont 
genomes and their independent cellular capabilities (Young 
et al. 2006; Sogin et al. 2021).

Taken together, multicellular hosts that established add-
itional endosymbioses long after eukaryogenesis may have 
the latitude to evolve away from endosymbioses acquire 
more partners or swap endosymbionts with better ones 
(Bennett and Moran 2015). They cannot as easily drop their 
dependence on mitochondria and, to a more limited ex-
tent, chloroplasts. These first endosymbionts have ensured 
their essentiality and near immortality among eukaryotic 
cells. Thus, it may be predicted that for as long as eukar-
yotes and photosynthesis persist on Earth, so too will mito-
chondria and chloroplasts. The same cannot be said for 
other kinds of endosymbioses.
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