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Abstract: An accurate seismic response simulation of civil structures requires accounting for the
nonlinear soil response behavior. This, in turn, requires understanding the nonlinear material
behavior of in situ soils under earthquake excitations. System identification methods applied to data
recorded during earthquakes provide an opportunity to identify the nonlinear material properties of
in situ soils. In this study, we use a Bayesian inference framework for nonlinear model updating to
estimate the nonlinear soil properties from recorded downhole array data. For this purpose, a one-
dimensional finite element model of the geotechnical site with nonlinear soil material constitutive
model is updated to estimate the parameters of the soil model as well as the input excitations,
including incident, bedrock, or within motions. The seismic inversion method is first verified by
using several synthetic case studies. It is then validated by using measurements from a centrifuge
test and with data recorded at the Lotung experimental site in Taiwan. The site inversion method
is then applied to the Benicia–Martinez geotechnical array in California, using the seismic data
recorded during the 2014 South Napa earthquake. The results show the promising application of
the proposed seismic inversion approach using Bayesian model updating to identify the nonlinear
material parameters of in situ soil by using recorded downhole array data.

Keywords: nonlinear soil properties; geotechnical arrays; Bayesian estimation; earthquake data;
inverse problem

1. Introduction

The near-surface soil layers are susceptible to nonlinear response behavior under
moderate and strong earthquakes [1]. Although the thickness of nonlinear soil layers can
be negligible compared with the path that seismic waves travel from the source to the
site, they can have a significant contribution to the ground surface response [2]. Therefore,
an accurate seismic response simulation of civil structures requires accounting for the
nonlinear soil response behavior. This, in turn, requires understanding the nonlinear
behavior of the in situ soil under real-life earthquake excitations.

Several analytical and numerical methods exist for site response analysis given the
bedrock or outcrop motions (e.g., [3–5]). Nevertheless, their accuracy inherently depends
on the properties of the soil layers, which are often obtained from lab testing disturbed
samples. This is why the in situ soil behavior can be different from those observed in the
lab. To resolve this problem, several field-testing methods exist to estimate in situ soil
properties. Cross-hole tests (CHT) [6], seismic reflection [7], downhole tests (DHT), seismic
refraction [8], suspension logging [9], and spectral analysis of surface waves (SASWs) [10]
are just a few example methods that are used for measuring shear wave velocity, which
is a key parameter for site response analysis. However, only the small-strain and linear
behavior of soil is captured by these in situ tests [1].
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The process of estimating site properties from recorded ground motions, which is
called seismic inversion or site identification, has been an important topic of research
(e.g., [11,12]). Seismic events can be regarded as in situ dynamic tests carried out by nature.
The data recorded during these events offer opportunities for studying in situ soil behavior.
However, because of the lack of nonlinear identification methods, so far most of the site
identification studies have been limited to linear or equivalent linear properties of soil
layers [13,14]. There are a few studies in which nonlinear soil behavior has been identified,
but their applicability is limited because of the material model simplicity (e.g., [15,16]).
Moreover, in many such studies, the in-depth (within) motions are used as input excitations
with a conventional outcrop approach (absorbing boundary condition), which can be
inaccurate or limiting because of wave reflection effects [17].

In this study, we propose a Bayesian model updating approach for nonlinear finite
element (FE) model updating and site identification using seismic downhole array data.
By considering one-dimensional (1D) site response and having general information such
as soil layering and types, we develop, test, and validate two identification methods
using geotechnical downhole array data: (1) an input-output (IO) identification method
to estimate only the nonlinear soil properties using the measured incident (or within)
motions and site responses and (2) an output-only (OO) identification method to jointly
estimate the nonlinear soil properties and the incident motions by using the measured site
responses. While the core algorithm used in this study is not new and Bayesian methods
have been used for the estimation of soil parameters [18–20], the proposed solutions for
estimating nonlinear soil properties, as well as incident motions from geotechnical data
under various site conditions and instrumentation layouts, are novel. Although a specific
nonlinear constitutive model is used in this study, the proposed approaches can be readily
extended to consider the plausibility of other constitutive models.

2. Proposed Framework
2.1. Problem Definition

Two approaches exist to carry out one-dimensional (1D) dynamic site response anal-
yses, as shown in Figure 1. In the traditional approach (Approach 1), the site is modeled
down to the bedrock depth (half space), where an absorbing boundary condition is modeled
to prevent wave reflections. In this approach, the incident motion must be used as the
input base excitation, which can be theoretically obtained from nearby rock outcrop motion.
The accuracy of this approach depends on two key assumptions: (1) there is no impedance
contrast below the boundary level, and (2) there is a nearby recorded rock outcrop motion.
In the second approach (Approach 2), the domain can be cut at any depth as long as the
so-called within motion (i.e., the measured in-depth motion) is used as the input excitation
with a fixed boundary condition.
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Figure 1. One-dimensional site analysis approaches.

We propose to solve the inverse problem using an output-only sequential Bayesian
estimation approach for nonlinear model updating [21–23], as shown in Figure 2. In
this approach, the 1D FE model of the site is modeled down to the bedrock depth with
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an absorbing boundary condition if the bedrock is not rigid. A soil constitutive model
is chosen, and its parameters are identified, along with the unknown incident motions
through the Bayesian model updating approach, the details of which will be presented in
the next section. In this study, the effects of modeling errors are neglected, so the presence
of any modeling error, e.g., 2D effects, spatial variability, different number of layers, etc.,
could affect the identified nonlinear soil properties.
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Figure 2. Sequential Bayesian estimation method for joint model and input identification (ψ) using
finite element prediction (ŷ) and measured responses (y).

The abovementioned joint input-parameter estimation solution is prone to identifiabil-
ity issues and estimation uncertainties, especially if there are several unknown parameters,
such as a layered site with unknown incident motion or limited in-depth recorded data. In
addition, the computational cost significantly increases when the number of parameters
increases. To resolve this issue, we classify five problem cases, as schematically shown
in Figure 3, according to the bedrock condition, the domain complexity, and the sensor
locations. The simplest case is the one with a few soil layers (simple domain), multiple
in-depth measurements, a rigid bedrock, and a sensor at the bedrock (Figure 3a). In this
case, we use the input-output (IO) version of the Bayesian model updating approach to
estimate only the soil material parameters. If the domain has several soil layers (complex
domain), but there is still a sensor at the bedrock, and the bedrock is rigid (Figure 3b),
then the IO identification is still the best solution strategy. If the domain is simple, but
there is no sensor at the bedrock (Figure 3c), then the output-only (OO) version of the
Bayesian model updating approach can be used. The same strategy can be used for a
simple domain with a nonrigid half space if there is a sensor at the nonrigid bedrock
(Figure 3d). For more-complex cases (Figure 3e,f), we propose a two-step identification
method. In the two-step method, the domain is assumed fixed at the deepest instrumented
point, and the IO identification method is used to estimate the material parameters. Then,
in the second step, the OO identification method is employed to estimate the remaining
parameters (e.g., layers between half space and the deepest instrumented level) and the
incident motions at the bedrock.
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the input-output and output-only identification methods, respectively.

2.2. Bayesian Model Updating

In this section, the Bayesian finite element model updating formulation is presented
for the general case of joint parameter-input estimation (OO identification method), while
it can be easily reduced to the parameter-only estimation (IO identification method).

Figure 4 (left) shows a generic site with m soil layers on top of an elastic (nonrigid) half
space (bedrock). The seismic excitation is vertically propagating upward, and the absolute
acceleration response of the site is measured at multiple points, which are not necessarily
at the layer boundaries. The finite element model of this site is shown in Figure 4 (right),
in which the Lysmer–Kuhlemeyer [24] dashpot is used to represent radiation damping
provided by a semi-infinite nonrigid half space, and the seismic excitation is applied using
a horizontal force time history calculated as the multiplication of the incident velocity
motion and dashpot’s coefficient [25].
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The nonlinear response of the FE model at each time step, i and ŷi, can be obtained as

ŷi = hi(θ, f1:i) (1)

where θ = [θ1, . . . , θnθ
] is the model parameter vector containing nθ parameters (e.g.,

parameters of the material constitutive models) characterizing the FE model, f1:i is the time
history of the applied force, and hi(.) is the response function encapsulating the dynamic
of the model from the beginning to time step i. The difference between this predicted
response, ŷi, and the measured response, yi, can be represented by a noise model as

vi(θ, f1:i) = yi − ŷi(θ, f1:i) (2)

where vi ∈ Rny×1 or the simulation error contains modeling, parameter, and measurement
uncertainties. In this study, we neglect the effects of the modeling uncertainty and try to
find the estimates of the unknown parameter vector, i.e., ψi =

[
θT , f1:i

T]T , to minimize
this simulation error. To do so, the simulation error is ideally modeled as an independent
and stationary zero-mean Gaussian white noise process. Herein, we employ a sequential
estimation approach for model updating. In this approach, the time domain is divided into
successive overlapping windows, which will be called the estimation windows hereinafter,
and the model updating problem is iteratively solved at each window to estimate the
unknown parameter vector, and then it moves to the next window.

Assume that the m-th estimation window with length tl = tm
2 − tm

1 spans from tm
1 to

tm
2 . At this estimation window, the unknown parameter vector is defined as a nψ × 1 vector

ψm =
[
θT , fm

tm
1 :tm

2

T
]T

, where ψm ∈ R(nθ+tl)×1 and can be estimated by using a parameter-
only Kalman filtering method (e.g., [26]). In this approach the evolution of the parameter
vector is characterized through a random walk [27], i.e.,

ψm,k+1 = ψm,k + γm,k (3)

Corresponding to the state equation above; a measurement equation can be defined as

ytm
1 :tm

2
= ŷtm

1 :tm
2 ,k+1(ψm,k+1) + vtm

1 :tm
2 ,k+1 (4)

where γm,k ∼ N(0, Q), vtm
1 :tm

2 ,k+1 ∼ N
(

0,
~
R
)

, and
~
R ∈ R(tl×ny)×(tl×ny) constitute a block

diagonal matrix, whose block diagonals are the simulation error covariance matrix R.
Here, Q, which is referred to as the process noise covariance matrix in Kalman filtering
literature [27], is a diagonal matrix with small positive diagonal entries relative to the
elements of matrix P+

ψ,m,k. At each estimation window, the estimation process is iteratively
repeated, as depicted by the iteration number k, and the mean and covariance of the
parameter vector are updated on the basis of the misfit between the measured and estimated
time history responses.

In this study, an unscented Kalman filtering (UKF) [28] method is used to update the
unknown parameter vector at each iteration. While other methods, such as sampling tech-
niques (e.g., particle filters, Markov chain Monte Carlo) or ensemble-based Kalman filters,
can be used for uncertainty propagation and posterior PDF estimation (see, e.g., [29–33]),
the UKF is employed here to reduce the computational costs, which could be cumbersome
for large-scale problems. To do so, the nonlinear FE model is evaluated in parallel at a set
of 2nψ + 1 deterministically selected realizations of the unknown parameter vector around
the prior mean estimate ψ̂−, which are called sigma points (SPs) and are denoted by ϑ j.
Using these FE evaluations, the mean vector, y, and covariance matrix, P̂yy, of the predicted
responses, and the cross-covariance matrix of ψ and y, P̂ψy, are computed using a weighted
sampling method:
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y =
2nψ+1

∑
j=1

W j
mŷi

(
ϑ j
)

(5)

P̂yy =
2nψ+1

∑
j=1

W j
e

[
ŷi

(
ϑ j
)
− y

][
ŷi

(
ϑ j
)
− y

]T
+ R (6)

P̂ψy =
2nψ+1

∑
j=1

W j
e

[
ϑ j − ψ̂−

][
ŷi

(
ϑ j
)
− y

]T
(7)

where W j
m and W j

e denote weighting coefficients [28]. The UKF prediction-correction
procedure is employed as follows to estimate the posterior parameter mean vector, ψ̂+

m,k+1,
and the covariance matrix, P̂+

ψ,m,k+1, at each iteration as

ψ̂+
m,k+1 = ψ̂−m,k+1 + K

(
ytm

1 :tm
2
− y

)
(8)

P+
ψ,m,k+1 = P−ψ,m,k+1 −K

(
P̂yy +

~
R
)

KT (9)

where ψ̂−m,k+1 = ψ̂+
m,k and P−ψ,m,k+1 = P+

ψ,m,k + Q, and the Kalman gain matrix is calcu-
lated as

K = P̂ψy
(
P̂yy
)−1 (10)

This process continues at each iteration until a convergence, e.g.,
∣∣ψ̂+

m,k+1 − ψ̂+
m,k
∣∣ <

0.02× ψ̂+
m,k−1, is achieved and the estimation process moves to the next window. While

the size of the successive overlapping windows is not critical, it should not be too long or
too short. A long time window contains a significant amount of information, which may
result in divergence if the initial variance of parameters is large. On the other hand, a short
window may not include significant information about the dynamic of the system. More
information about the window-based estimation and the impacts of window length can
be found in [34]. As a general guideline, a time window with an approximate length of
10 cycles of the first mode of the system is a good choice.

2.3. Material Model

Over the past few decades, various nonlinear soil constitutive models have been
devised [35–39]. For example, on the basis of the multisurface concept soil plasticity,
Elgamal and colleagues [39] developed a nonlinear soil model with a nonassociative flow
rule to reproduce the well-known dilatancy effect. This model, in which the yield surface
is defined on the basis of the Drucker–Prager [40], is frequently used in the direct soil-
structure interaction (SSI) simulation problems and is available in OpenSees [41]. This
model approximates the soil behavior within a broad range of strain regimes thanks to
its multiple hierarchical yield surfaces, but a large number of requisite model parameters
renders its calibration process formidable. In addition, the model may exhibit spurious
sensitivities to these parameters. These two major drawbacks can be problematic in solving
inverse problems using real-life data.

Borja and Amies [36] have proposed a model (called BA model hereinafter) with a
simpler structure. This model has only a bounding surface and a vanishing elastic region,
which can be defined by a few parameters and is favorable in calibration/inverse problems.
This model has been successfully employed to reproduce the downhole array motions
recorded at the Lotung site in Taiwan through one-dimensional nonlinear site response
analysis [42]. A brief description of this model and the parameters that need to be adjusted
are presented in the following, and further details can be found in the original reference [36]
and its later extension [43].
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The BA model admits an additive decomposition of the stress into inviscid (frictional),
σinv, and viscous, σvis, parts as

σ = σinv + σvis (11)

where
σinv = Ce : (ε− εp) (12)

σvis = D :
.
ε (13)

in which Ce and D represent elastic stiffness and viscous-damping tensors, respectively; ε
represents the total strain tensor; εp represents the plastic strain tensor; and

.
ε represents

the total strain rate. In Equation (13), “:” denotes the double dot operator. Given this
decomposition, the model can incorporate material-level strain-rate-dependent damping,
which enables a modeler to match complex field-identified damping behavior [44,45].

Borja et al. [46] derived the following consistent tangent moduli to achieve an optimal
rate of numerical convergence:

Cinv
ep =

dσinv
n+1

dεn+1
= K1⊗ 1 + γIdev +

∂γ

∂εn+1
⊗ ∆ε′ (14)

where the fourth-order deviatoric identity tensor is defined as Idev = I− 1
3 1⊗ 1, I and

1 being the fourth- and second-order identify tensors, respectively, and ⊗ is the tensor
product. In Equation (14), K is the bulk modulus and parameter γ is defined as ∆σ′ = γ∆ε′,
where ∆σ′ and ∆ε′ are the deviatoric stress and strain increments, respectively. In this
study, we use element-level stiffness-proportional damping to have more control over
damping in the modeling, which is equivalent to having a viscous-damping tensor:

D = a1 Ce (15)

where a1 is the stiffness-proportional damping coefficient. Therefore, using Equations (11)
and (12) stress increment from viscous-damping contribution can be calculated as

σvis
n+1 =

a1

dt
Ce : dεn+1 (16)

in which dt is the time interval. Consequently, the total consistent tangent stiffness moduli is

Cep = K1⊗ 1 + γIdev +
a1

dt
Ce (17)

in which the effects of the unsymmetric part of the inviscid stiffness ( ∂γ
∂εn+1

⊗∆ε′) is excluded
for the sake of computational efficiency.

The advantages of the BA model are clear: (1) it is a thermodynamically consistent
model based on the bounding surface plasticity framework with well-defined parameters;
(2) if calibrated correctly, the model can accurately predict soil behavior under multiaxial
stress states; and (3) the number of parameters required to be set in the BA model is
limited. These characteristics make the BA model an appealing choice for model-calibration
applications. This study will not go into details here, for the sake of brevity (details can be
found in [36]), but the relationship between the common G/Gmax (strain-dependent shear
modulus to maximum/elastic shear modulus) curve and the parameters of the model is as
follows:

G
Gmax

= 1− 3
2τ0

∫ 2τ0

0

[
h
(

Su + τ0 − τ

τ

)m
+ H0

]−1

dτ (18)

where G = τ0/γ0 represents the secant shear stiffness (τ0 is the stress at the maximum
strain γ0), Su represents the simple shear test soil strength, τ represents shear stress,
and parameters h, m, and H0 control the hardening behavior. As seen, there are only six
parameters to completely define the soil model: Gmax, Su, h, m, H0, and a1. The contribution
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of H0 is usually insignificant for typical soils, and in this study, it is assumed to be zero [43].
Therefore, in this paper, we consider only five parameters in the Bayesian model updating
studies. Note that in some cases, a few of these parameters cannot be identifiable, because
of the less sensitivity of the site response to those parameters. Although such parameters
can be predetected for IO cases through sensitivity/identifiability analyses, we keep them
in the list of updating parameters in all synthetic and real-life examples. The BA model has
been successfully implemented in OpenSees and extensively verified and validated [47].

3. Verification Studies

Four problems are devised to verify the proposed methods, which cover most of the
cases presented in Figure 3. Figure 5 (left) shows the profile of the studied site, which
consists of four layers numbered from bottom to top (L1 to L4). This 47 m site is on top
of an elastic half space. A 1D plane-strain FE model of the site is prepared in OpenSees
using quad element types. The model mesh size is 1 m in the vertical direction, which
can resolve frequencies of up to 40 Hz. In all case studies of this paper, the width of the
elements is set to be the minimum vertical element size in the soil column. The half space
at the bottom of the model is replaced by horizontal and vertical dashpots with coefficients
ch = ρVs and cv = ρVp, respectively, in which ρ is the mass density of the half space and
Vs and Vp are, respectively, the shear and compressional wave velocity of the half space.
Moreover, the parameters defining the nonlinear BA model of all four layers are shown
in this figure. The nonlinear model is solved using a Newton method and integrated in
time using the Hilber–Hughes–Taylor (HHT) [48] time integration method to find the site
response at instrumented locations shown as S1 to S4. The effect of pore water pressure is
neglected, and all analyses are carried out in the total stress state.
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Figure 5. Soil profile used for the verification case studies (left) and horizontal and vertical incident
motions (right).

It is assumed that the measurements are collected using four accelerometers, as shown
by red triangles in Figure 5 (left), which record the response of the site under two vertically
propagating shear and compressional excitations shown in red and green, respectively. The
vertical and north–south velocity motions recorded during the 2014 South Napa earthquake
at 35 m depth at the CSMIP (California Strong Motion Instrumentation Program) [49] station
#68323 are used as incident excitations. Both components are magnified by a factor of
10 to ensure that the site behaves nonlinearly, which results in an input excitation with
a horizontal peak acceleration of 0.14 g. Figure 5 (right) shows the scaled vertical and
horizontal accelerations of these two input excitations.

The verification case studies consist of simulation and estimation stages. In the simula-
tion stage, the seismic responses of the nonlinear site are simulated at the instrumentation
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locations using the model parameters set at their baseline (or true) values indicated in
Figure 5 (left). Random noises with 5% RMS (root mean squares) noise-to-signal ratio are
added to the simulated responses to mimic measurement data. In the estimation stage,
the measurement data are used for site identification or joint site and incident motion
identification, as explained for each case below.

3.1. Case 1: Unknown Complex Domain with Known Incident Motion

In the first case study, it is assumed that the incident motion is available, such as
through outcrop measurements. So the IO identification method is employed to estimate
five unknown parameters (G0, Su, h, m, a1) for each of the four layers (i.e., a total of
5 × 4 = 20 unknown parameters to be estimated). For this purpose, all the measurements
of S1 to S4 are used as measured responses. Note that only horizontal measurements are
used in this study, and although the vertical incident motion was used to simulate the site
response, the vertical measurements are not used for the estimation. This case represents
problems (a) and (b) of Figure 3. A 30% initial error in the model parameters is assumed
with respect to their corresponding baseline (true) parameter values. The initial coefficient
of variation (COV) for each parameter is selected as 10%. The filter parameters are set as
R = 1× 10−5 m2/s4 Iny×ny , Q = 1× 10−14 Inθ×nθ

, and the estimation window length (tl)
is 1 s, which includes 100 time steps, and a 30% overlap is considered between successive
estimation windows.

Figure 6 shows the history of the estimated parameters (normalized by their corre-
sponding true values) at every estimation iteration. As seen in this figure, most of the
parameters quickly converge to the true values. There are some errors in the identified
parameters of the second layer, which is expected because its contribution to the response
of the site is small because of its limited thickness compared with the other layers. Specifi-
cally, the Rayleigh damping parameter (a1) of this layer has little effect on the measured
responses. In support of this statement, see Figure 7, which shows a comparison between
measured (simulated) acceleration responses at four instrumented levels with the corre-
sponding predictions obtained using the final estimated parameters. As seen, the predicted
responses are identical to the measured (simulated) responses in both time and frequency
domains. As a quantitative measure, the relative root mean square errors (RRMSEs) of the
predicted signals are also calculated, in Equation (19), and shown on each plot.

RRMSE(%) =

√
∑N

i=1(ŷi − yi)
2√

∑N
i=1 yi

2
× 100 (19)
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In this equation, ŷi and yi represent, respectively, predicted and measured (simulated)
responses at time instant i, and N represents the total number of time samples. As seen, the
RRMSE values are very small, showing the accuracy of the estimated model. Throughout
this paper, all time-domain comparisons are supplied with the RRMSE values. For synthetic
examples, an RRMSE value greater than 10% is considered large [21], while in real-life
cases, RRMSE values of up to 50% can still be considered small [50]. Table 1 presents the
final estimation error for all 20 parameters. As already observed in Figure 6, this table
shows that all parameters are identified with high accuracy, except those of the second
layer, especially the Rayleigh damping parameter.
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Table 1. The initial and final error of estimation parameters for Case Study 1.

Layer Parameter Initial Error (%) Final Error (%)

1

G0 +30 0.04
Su +30 −1.86
h +30 1.97
m +30 −1.16
a1 +30 1.04

2

G0 +30 −4.72
Su +30 7.64
h +30 10.91
m +30 −1.09
a1 +30 49.02

3

G0 +30 0.24
Su +30 −0.42
h +30 −0.19
m +30 0.02
a1 +30 0.32

4

G0 +30 −1.40
Su +30 −2.15
h +30 4.08
m +30 0.35
a1 +30 2.72

3.2. Case 2: Known Complex Domain with Unknown Incident Motion

In the second case study, it is assumed that the site is fully known, and the OO
identification method is employed to back-calculate the horizontal incident motion by
using the measurements at S1 to S4. This case is not directly representing the problems of
Figure 3, but it shows the capability of the method for input estimation. Since the Bayesian
model updating is prone to estimating spurious low-frequency input excitations [51], the
velocity responses at the instrumented locations (S1 to S4) are also used, along with the
acceleration responses, as measurements. A constant initial standard deviation of 0.1% m/s
is assumed for all the unknown discrete values of the incident motion, which is used
to construct the P̂ f 0 matrix in Table 1. All the other filtering parameters are similar to
the previous case study. Figure 8 shows the comparison between the exact (or baseline)
incident motion and the estimated motion. As seen and quantitatively shown by the
RRMSE value, the estimated motion is almost identical to the exact one, which verifies the
OO identification method.
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3.3. Case 3: Unknown Simple Domain with Unknown Incident Motion

In the third case study, which represents problems (c) and (d) of Figure 3, the joint esti-
mation of input and parameters is investigated. Here a joint input-parameter estimation (i.e.,
OO identification) is carried out for the simple domain. The domain is a uniform soil layer
with the same thickness (47 m) as the total thickness of the complex domain with the base-
line (true) values selected as ρ = 1850 kg

m3 , G0 = 1.3× 108 Pa, ν = 0.48, Su = 1.19× 105 Pa,
h = 8.19× 107 Pa, m = 0.97, H0 = 0, a0 = 0, and a1 = 0.005. The measurements at S1
to S4 are used for site identification, and the incident motion is unknown. Here the OO
identification method is employed to estimate five model parameters (G0, Su, h, m, and
a1), where we assumed that the other parameters are fixed at their baseline values, and to
estimate the horizontal incident motion by using measurements at S1 to S4. Other details
are similar to the previous case studies. Figure 9 shows the history of parameter estimation
(estimated parameters normalized by their corresponding true values) at every estimation
iteration. As seen in this figure, G0, h, and m converge to the true values, and there is
a small error in Su and a large error in the estimation of a1. The comparison between
the estimated and exact (baseline) input excitation as well as measured and predicted
acceleration responses shown respectively in Figures 10 and 11 confirm that the response
of the system is likely not sensitive to the incorrect estimation of Su and a1. Final errors in
the estimated parameters are reported in Table 2.

Table 2. The initial and final error of estimation parameters for Case Study 3.

Layer Parameter Initial Error (%) Final Error (%)

1

G0 +30 0.56
Su +30 5.80
h +30 −1.92
m +30 0.71
a1 +30 17.33

Sensors 2022, 22, x FOR PEER REVIEW 13 of 26 
 

 

the response of the system is likely not sensitive to the incorrect estimation of 𝑆𝑢 and 𝑎1. 

Final errors in the estimated parameters are reported in Table 2. 

Table 2. The initial and final error of estimation parameters for Case Study 3. 

Layer Parameter Initial Error (%) Final Error (%) 

1 

𝐺0 +30 0.56 

𝑆𝑢 +30 5.80 

h +30 −1.92 

𝑚 +30 0.71 

𝑎1 +30 17.33 

 

Figure 9. Identified parameters in Case Study 3 (normalized by the corresponding true values). 

 

Figure 10. Comparison between the true incident motion and the estimated incident motion in 

Case Study 3. 

Figure 9. Identified parameters in Case Study 3 (normalized by the corresponding true values).

Sensors 2022, 22, x FOR PEER REVIEW 13 of 26 
 

 

the response of the system is likely not sensitive to the incorrect estimation of 𝑆𝑢 and 𝑎1. 

Final errors in the estimated parameters are reported in Table 2. 

Table 2. The initial and final error of estimation parameters for Case Study 3. 

Layer Parameter Initial Error (%) Final Error (%) 

1 

𝐺0 +30 0.56 

𝑆𝑢 +30 5.80 

h +30 −1.92 

𝑚 +30 0.71 

𝑎1 +30 17.33 

 

Figure 9. Identified parameters in Case Study 3 (normalized by the corresponding true values). 

 

Figure 10. Comparison between the true incident motion and the estimated incident motion in 

Case Study 3. 
Figure 10. Comparison between the true incident motion and the estimated incident motion in Case
Study 3.



Sensors 2022, 22, 9848 13 of 25Sensors 2022, 22, x FOR PEER REVIEW 14 of 26 
 

 

 

Figure 11. Time- and frequency-domain comparison between the measured and predicted acceler-

ation responses in Case Study 3. 

3.4. Case 4: Unknown Complex Domain with Unknown Incident Motion 

The last case study is the most challenging one, in which the site is complex and con-

tains many unknown parameters and an unknown incident motion, thus representing 

problems of Figure 3e,f. For this case, the identification method in its OO mode would not 

be useful. So a two-step identification method is used. In the first step, the domain is as-

sumed to be fixed at the lowest instrumented level (S4) and the measured within motion 

(S4) is used as the input excitation to identify the 20 site parameters (four layers and five 

parameters per layer, as in Case Study 1). In the second step, the identified domain is used, 

and the horizontal component of the incident motion is estimated by setting the 20 site 

Figure 11. Time- and frequency-domain comparison between the measured and predicted accelera-
tion responses in Case Study 3.

3.4. Case 4: Unknown Complex Domain with Unknown Incident Motion

The last case study is the most challenging one, in which the site is complex and
contains many unknown parameters and an unknown incident motion, thus representing
problems of Figure 3e,f. For this case, the identification method in its OO mode would
not be useful. So a two-step identification method is used. In the first step, the domain is
assumed to be fixed at the lowest instrumented level (S4) and the measured within motion
(S4) is used as the input excitation to identify the 20 site parameters (four layers and five
parameters per layer, as in Case Study 1). In the second step, the identified domain is
used, and the horizontal component of the incident motion is estimated by setting the
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20 site parameters at their estimated values. All the other details are similar to the previous
case studies.

Figure 12 shows the history of the estimated parameters (normalized by their corre-
sponding true values) at every estimation iteration through the first step of the IO identi-
fication method. As seen, the results are quite similar to those obtained in Case Study 1.
Figure 13 shows that the predicted responses at sensors S1 to S3 well match the measured
responses (RRMSE values are very small). A comparison between the initial error and
the final error of all 20 estimated parameters is shown in Table 3, which is quite similar to
Table 1.
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Table 3. The initial error and final error of estimation parameters for Case Study 4.

Layer Parameter Initial Error (%) Final Error (%)

1

G0 +30 −1.41
Su +30 −1.17
h +30 −0.52
m +30 −3.63
a1 +30 −7.73

2

G0 +30 3.48
Su +30 19.69
h +30 22.09
m +30 12.4
a1 +30 24.59

3

G0 +30 −0.21
Su +30 −1.06
h +30 −1.32
m +30 −1.53
a1 +30 −0.35

4

G0 +30 −1.86
Su +30 −0.51
h +30 3.54
m +30 0.55
a1 +30 −12.09

Now, having identified the nonlinear parameters of all layers, the second step of
the identification is carried out in the OO mode to estimate only the incident motion. In
this step, the horizontal recording at S4 is included in the measurements. In addition, to
reduce low-frequency error, both acceleration and velocity signals at the measurement
locations are included in the measurements. Figure 14 shows the comparison between the
exact (baseline) incident motion and the estimated incident motion. As seen, the estimated
excitation is almost identical to the true incident velocity motion, with an RRMSE value of
6%. This case study verified the two-step identification approach.
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4. Validation Studies
4.1. Centrifuge Test Data

Centrifuge tests can provide precious data for validation studies because parameters
of the domain and input excitations can be accurately measured. Here, we use data from
a centrifuge test series on buried culvert structures. The test configurations are shown
in Figure 15. The container is a flexible shear beam that is filled with dense dry Ottawa
sand. Further details on these tests can be found in [52]. Several earthquake motions
have been used to excite the base of the container under 21 g of centrifugal acceleration.
Herein, the data from the free-field column (far from the structure) under the east–west
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component of the ground motion recorded in Santa Monica City Hall during the 1994
Northridge earthquake is used for a case study. The objective is to estimate the soil material
parameters and the input excitation by using an OO model updating method for joint
input-parameter estimation given that the domain is simple and has a limited number of
unknown parameters.
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mentation and (left) the FE model (all dimensions are in cm).

A 1D FE model of the free-field column is developed in OpenSees using 0.4 m× 0.4 m×
0.4 m brick element, as shown in Figure 15 (left). The model consists of a H = 10.35 m
single layer with a BA material model with the following baseline parameters:

ρ = 1733 kg/m3 (20)

ν = 0.3 (21)

H0 = 0 (22)

a1 = P1 (23)

Vs = 16.91 + P3

( z
H

)P2
(24)

m = P4 (25)

h =

[
0.11 + P5

( z
H

)P6
]

G0 (26)

Su = P7G0 (27)

where z represents the depth varying from zero at the surface to H at the base. Parameters P1
to P7 are considered as updating parameters with nominal values of 0.0032, 0.33, 193, 1.58,
0.47, 4.58, and 0.0015, respectively, which are very similar to the values reported in [53]. The
model is fixed at the base, where a horizontal input excitation is applied. Other modeling
details and assumptions are similar to those described for the verification case studies in
Section 3.

We start the updating process assuming a 50% initial error in the parameter values
with respect to their baseline values reported in [53]. The final errors of the estimated
parameters with respect to their baseline parameter values are shown in Table 4. As seen,
while there are some large differences between estimated values in this study and those
reported in [53], the responses obtained from the updated model here better match the
recorded responses (lower RRMSE values) than do those presented in [53], which are
repeated in Figure 16. In this figure, acceleration responses recorded during the test are
shown in black, and those predicted by the baseline [53] and updated parameters are
shown in red in the left and right columns, respectively. Furthermore, the estimated base
acceleration from the OO identification method is compared with the recorded motion in
both time and frequency domains in Figure 17. The reasonable agreement between the
measured and predicted responses in Figure 16 (right), along with the good agreement
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between the estimated base acceleration and the measured base acceleration, validates the
accuracy of the OO identification method carried out here.

Table 4. The baseline value and initial and final errors of estimation parameters for the centrifuge
experiment case study.

Parameter Baseline Values Initial Error (%) Final Error (%)

P1 0.0032 +50 −1.4%
P2 0.33 +50 +91%
P3 193 (m/s) +50 +50%
P4 1.58 +50 +7%
P5 0.47 +50 +800%
P6 4.56 +50 −33%
P7 0.0015 +50 −13%
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4.2. Seismic Data from Lotung Site

Located in the northeast of Taiwan, the Lotung large-scale seismic test (LSST) site was
established in a seismically active region in 1985 to study seismic soil-structure-interaction
(SSI) effects on nuclear power plants. In addition to the scaled structures constructed by
the Electric Power Research Institute (EPRI) and the Taiwan Power Company [54], the
ground was instrumented at the surface in several locations and at different depths, and
the recorded data from this site have been the subject of many studies [42,55–59]. Among
these studies, Zeghal and Elgamal [12,16] have extensively studied 18 earthquake datasets
recorded between 1985 and 1986 (see Table 1 in [12,16]; data are publicly available at
http://soilquake.net/Downholearray/Lotung/ (accessed on 8 December 2022)). Out of
these 18 events, the respective amplitude resolutions of the signals in several events (Events
5, 6, 8, 9, 10, 15, 17, and 18) are not appropriate for identification studies. In addition,
data on the first three events and Event 13 are not available. From the remaining sets,
those with strong motion recordings are more suitable for the present study to observe soil
nonlinearity. In addition, the source of the earthquake should be far from the site to make
sure the site response is dominated by a 1D response. Given these criteria, Events 7 and 16,
which have also been used by Borja et al. [42,43,59], are the best candidates. In this study,
data from Event 7 are used because one of the sensors malfunctioned during Event 16.

http://soilquake.net/Downholearray/Lotung/
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The Lotung site is modeled using the information provided by Borja et al. [42,59] on
the basis of the BA model. Figure 18 (left) shows the layered FE model of the first 47 m of
the Lotung site, which includes instrumented depths at 0, 6, 11, 17, and 47 m (channels
FA1-5, DHB6, DHB11, DHB17, and DHB47, respectively). The model is fixed at the lowest
instrumented level (within boundary conditions) to be able to use measured data at DHB47
as input excitation for IO identification. The profile of the elastic shear modulus, Gmax, of
the site is shown in Figure 18 (right) [43]. The mass density is approximately 1800 Kg/m3

for the entire 47 m soil profile. According to this soil profile, the FE model includes five
layers, in which the baseline parameters of the BA model for each layer are taken from [43]
as Su = 0.0011Gmax, H0 = 0, h = 0.63Gmax, m = 0.97, ν = 0.48, and a1 = 0.005, where
Gmax,i = 130, 180, 100, and 115 for i = 1 to 4, respectively, and Gmax,5 = 90 + 3.8z, where z
is the soil depth, as shown in Figure 18 (right). Note that because Su and h are functions of
Gmax, their values are different for each layer. The FE modeling details are similar to those
used for the centrifuge case study in Section 4.1, but with the element size of 1 m, through
which frequencies up to 25 Hz can be resolved.
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Figure 18. The FE model of the first 47 m of the Lotung site with a fixed bottom condition (left) and
elastic shear modulus profile (right) (data to create the curve are from [43]).

For this case study, an IO identification method is used to estimate only the parameters
of the soil layers, where we considered the measured excitation at the 47 m depth (sensor
DHB47) as the incident motion. Furthermore, the measurement at 11 m depth (Sensor
DHB11) is excluded from the measurement data used for IO identification and is used for
the cross-validation of the updated model. In total, nine unknown parameters (P1 to P9) are
selected in this study for model updating. Five parameters (P1 to P5) define the maximum
shear modulus (Gmax) of the five soil layers. Four remaining parameters (P6 to P9) define
the other nonlinear properties of soil layers by using their corresponding Gmax, as follows:
Su,i = P6Gmax,i, hi = P7Gmax,i, mi = P8, and a1,i = P9. These parameters and their baseline
values, recommended by Borja et al. [43], are shown in Table 5. It is assumed that ν = 0.48
and H0 = 0 for all layers.
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Table 5. The baseline values and initial and final errors of the parameters for the Lotung case study.

Parameter Baseline Value Initial Error (%) Final Error (%)

Gmax,1 (MPa) 130 (MPa) +30 −9
Gmax,2 (MPa) 180 (MPa) +30 111
Gmax,3 (MPa) 100 (MPa) +30 43
Gmax,4 (MPa) 115 (MPa) +30 −18

Gmax,5 (MPa) * 25 (MPa) +30 −29
Su,i/Gmax,i 0.0011 +30 −36
hi/Gmax,i 0.63 +30 −39

mi 0.97 +30 −41
a1,i 0.005 +30 36

* Shear modulus of the fifth layer is assumed to linearly increase from this value with a slope of 3.8 GPa/m.

We started model updating with initial values 30% higher than the values recom-
mended by Borja et al. [43]. The estimated final error in model parameter values relative to
the baseline values are reported in Table 5. As this table shows, except for a few parameters,
the results are not too far from the values recommended by Borja et al. [43]. Figure 19
shows a comparison between recorded acceleration responses at four depths and in three
directions and those obtained using the updated model and identified parameters. Given
that this is a real-life case study and there could be various sources of modeling errors, the
level of agreement between the predicted and recorded responses in time and frequency do-
mains is acceptable. In addition, the notable agreement between the recorded and predicted
response at 11 m depth (Sensor DHB11) proves the reliability of the identification results.
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Figure 19. Time-domain (top) and frequency-domain (bottom) comparison between the recorded
and predicted acceleration responses at four depths and in three directions. The recorded responses
at depth 11 m (DHB11) are not used in the model updating and are here retained for cross-validation.
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5. Application to a Blind Site

As a real-life application, the data obtained from CSMIP station #68323, located at
the south end of the Benicia–Martinez bridge in California (latitude 38.0334 N, longitude
122.1170 W), are used. The site is composed of sediments underlain by slightly more-
competent rock. Figure 20a shows the instrumentation layout. As shown in Figure 20b,
the site is instrumented at the surface depth, −11 m, and at the −35 m depth, with triaxial
accelerometers. The idealized version of the Vs profile was taken from [60] and is shown in
Figure 20c, in black. This idealized profile was later refined (simplified) into six layers, as
shown in Figure 20c, in blue. By the time of this study, eight earthquake events had been
recorded at this station, which were all related to small events. The largest event was the
2014 South Napa event, which had a peak ground acceleration of about 0.03 g.
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Figure 20. Benicia–Martinez geotechnical array. Instrumentation layout from CESMD (a), the location
of sensors along the depth of the site (b), and shear wave velocity profile (c).

The Vs profile below 35 m is not known, so we carry out only the IO identification
method, similar to what was conducted for the Lotung site in the previous section. The
FE model includes the aforementioned six layers discretized with 1 m size elements, and
it is fixed at the bottom. Five parameters at each layer (G0, Su, h, m, a1) are considered
as unknown model parameters, which result in 30 updating parameters in total. The
initial values of these parameters are set using similar relationships as the Lotung site,
i.e., Su = 0.0011G0, h = 0.63G0, m = 0.97, and a1 = 0.0002, where G0 is calculated using
the simplified Vs30 profile (Figure 20c) and mass density reported in [60]. Channels 7, 8, and
9 are used as input excitation, whereas Channels 2, 3, 5, and 6 are used as measured (output)
data. Figure 21 shows the comparison between the predicted responses using the updated
model and the recorded signals, which demonstrates the promising performance of the
updated model in both time and frequency domains. The updated shear wave velocity
profile is shown in Figure 20c, in red [60]. These results show that the measured Vs profile
by [60] is relatively accurate, although it is smaller than what we obtained using earthquake
data for the top four layers.
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Figure 21. Time- and frequency-domain comparison between the recorded and estimated acceleration
responses for the South Napa 2014 earthquake.

6. Discussion

The study presented the application of a Bayesian inference method based on un-
scented Kalman filters for nonlinear site identification by using recorded downhole array
seismic data. In this process, the site of interest was modeled using a one-dimensional finite
element model with nonlinear soil material constitutive models. Through the model updat-
ing process, the recorded downhole array data were utilized to estimate the parameters
of the soil model as well as the input excitations (including incident, bedrock, and within
motions). Four site identification problem setups, including simple and complex sites
with various instrumentation scenarios, were considered and discussed in the paper. The
site identification approach was first verified for these different setups using numerically
simulated case studies. Then, two validation case studies were considered. In the first
validation study, the free-field data from a centrifuge test on buried culvert structures were
used in an output-only identification method to estimate jointly the model parameters
and input excitation. The estimated input excitation was in close agreement with the
measured input motion, which validated the proposed method. In the second validation
study, real earthquake data recorded in the well-known Lotung site were used to estimate
nonlinear soil properties in an input-output identification method, i.e., to estimate only
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the soil model parameters. The updated model was able to accurately predict recorded
response motions at various sensor locations, including the one that was not used as a
measurement in the model updating process. Finally, the site inversion approach was
applied to the Benicia–Martinez site in California. Data recorded during the 2014 South
Napa earthquake were used to identify the nonlinear properties of the site idealized in
six layers using an input-output identification method. The results showed a promising
application of the proposed site inversion approach to identify material parameters of the
in situ soil by using recorded downhole array data.
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