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Abstract

How does implicit learning interact with the availability of
explicit information? In a recent series of experiments,
Curran & Keele (1992) demonstrated that sequence learning
in a choice reaction setting involves at least two different
processes, that result in differing availability of the acquired
knowledge to conscious inspection, and that are differentially
affected by the availability of attentional resources. In this
paper, I propose a new information-processing model of
sequence leamning and explore how well it can account for
these data. The model is based on the Simple Recurrent
Network (Elman, 1990; Cleeremans & McClelland, 1991,
Cleeremans, 1993), which it extends by allowing additional
information to modulate processing. The model implements
the notion that awareness of sequence structure changes the
task from one of anticipating the next event based on
temporal context to one of retrieving the next event from
short-term memory. This latter process is sensitive to the
availability of attentional resources. When the latter are
available, performance is enhanced. However, reliance on
representations that depend on attentional resources also
results in serious performance degradation when these
representations become less reliable, as when a secondary
task is performed concurrently with the sequence learning
task.

Introduction

In recent years, sequence learning in choice reaction
settings has elicited considerable interest as a vehicle to
study implicit information processing (e.g., Cleeremans
& McClelland, 1991; Lewicki, Hill, & Bizot, 1988;
Nissen and Bullemer, 1987; Perruchet, & Amorim,
1992). In such tasks, subjects are presented with a
visuo-spatial choice reaction task, but, unknown to
them, the sequence of successive stimuli is structured,
so that the uncertainty about the next event may be
reduced based on the constraints set by previous
events. Typically, subjects exhibit detailed sensitivity
about these sequential constraints, yet their explicit
knowledge of the sequence remains very limited. This
kind of outcome, where detectable performance
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improvements are not accompanied by correlated
improvements in explicit, reportable knowledge, is
referred to as implicit learning (Reber, 1989). Implicit
learning contrasts with explicit learning (exhibited for
instance by subjects engaged in problem-solving
behavior), in which processing is usually goal-directed
and fully available to conscious inspection. This notion
of two “modes of learning” has led many to formulate
dichotomous theories of cognition in which implicit
and explicit processing are generally thought to be
complementary (in the sense of one mode being most
efficient in the exact conditions where the other is least
efficient) and independent (see Hayes and Broadbent,
1988, Reber, 1989, for examples).

However, it seems reasonable to assume that
learning in general is never purely implicit or purely
explicit. On the contrary, it is likely that most tasks that
have been dubbed “implicit” do in fact involve—to
various degrees—explicit strategies and knowledge.
Goal-directed, intentional processing cannot simply be
“turned off”. Many recent studies (Curran & Keele,
1993; Perruchet & Amorim, 1992, Howard, Mutter, &
Howard, 1992) have begun to explore the effects of
various factors relevant to the implicit/explicit
distinction on performance in implicit learning tasks.
These factors are maybe best described as
characteristics of explicit learning, that is, (1)
awareness of the material, (2) intentionality, and (3)
sensitivity to the availability of attentional resources.
The picture that emerges from these studies is far too
complex to be discussed in detail here, but in a
nutshell, all three factors may facilitate or interfere
with performance in implicit learning tasks, depending
on other factors such as stimulus salience or material
complexity. Thus, there seems to be reasonable
empirical grounds for distinguishing between learning
processes that are differentially affected by the
variables listed above.

Taking such an implicit/explicit dichotomy for
granted, if only in a purely functional sense, one may
have different theories about the nature of the
representations and mechanisms that produce this
dichotomy. Three positions have been expressed in the
implicit learning literature. First, some authors (e.g.,
Perruchet & Amorim, 1992) argue that performance in
implicit learning tasks does not necessarily reflect the
operation of an independent implicit learning system.
Rather, performance would be mostly based on explicit
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processing, but the resulting knowledge is fragmented
enough that verbal reports probing for general
information are unlikely to reveal the extent of
subjects’ knowledge. Other authors (e.g., Knowlton,
Ramus & Squire, 1992) assume that implicit and
explicit learning are supported by different memory
systems, and that these systems are completely
independent from each other. Implicit and explicit
learning would thus proceed in parallel, but without
interacting. They produce different kinds of
knowledge, and are most likely to operate efficiently in
contrasted settings. Finally, there may be an
intermediate position where one assumes that implicit
and explicit processing indeed rely on distinct memory
systems, but in which some interactions between the
two systems are allowed, and in which some
processing resources are shared.

In this paper, I would like to explore how one may
start thinking about these issues by proposing a new
information-processing model of learning of sequential
material in choice reaction settings. The model is based
on the simple recurrent network (SRN) connectionist
architecture first proposed by Elman (1990), and
subsequently applied to implicit learning phenomena
by Cleeremans and McClelland (1991). By contrast
with the SRN and other models of sequence
processing, this model uses different sources of
knowledge to produce its responses. Thus, it
instantiates the third theoretical position described
above. To start exploring how well this kind of model
is able to account for relevant sequence-learning data, I
compared its performance with that of human subjects
in three experiments conducted by Curran and Keele
(1993). In the next section, I describe these
experiments and provide an empirical context for the
simulation work described in the rest of this article.

The Curran and Keele Studies

Curran and Keele (1993) conducted four experiments
that explore how implicit and explicit learning interact
in a sequence-learning task. For lack of space, and
because Experiment 4 is somewhat different from the
others, I will not discuss it in this paper. In the first
three experiments, subjects were exposed to a four-
choice reaction time task divided in blocks of 120 trials
each. Curran and Keele manipulated three factors.
First, the material could either be random or sequential.
When sequential, the target’s movement followed a
repeating sequence of length six (e.g., 1-2-3-2-4-3).
Positive differences between RTs elicited by random
blocks and RTs elicited by sequential blocks would
indicate that subjects are learning about the sequence.
Second, an attention-demanding secondary task could
either be present or absent. When present, either a low-
pitched or a high-pitched tone appeared between any
two RT trials. Subjects were to count the number of
high-pitched tones and report their count at the end of
the block. Third, subjects could either receive typical
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implicit learning instructions (“incidental subjects”), or
could be told that the material would sometimes follow
a sequence, and that knowing the sequence would be
helpful in carrying out the main RT task (“intentional
subjects”). These latter subjects were also given a
minute to study the actual sequence.

All three experiments started with 2 blocks of
practice on random material in dual-task conditions. In
Experiment 1 (see Figure 2, top panel), a group of
intentional subjects and a group of incidental subjects
were first exposed to 4 single-task, sequential blocks.
Next, they received one block of random material
followed by another sequential block, again in single-
task conditions. Learning was assessed by averaging
performance on the last two sequential blocks and by
subtracting this average from performance on the
intermediate random block. In a second, dual-task,
phase of the experiment, subjects were exposed to 2
blocks of random material, followed by one block of
sequential material and a final block of random
material. Learning in this second phase was again
assessed by computing the RT difference between the
two random blocks and the intermediate sequential
block. Based on awareness reports obtained after the
first, single-task phase of the experiment, incidental
subjects were classified as “More aware” or “Less
aware” according to how much knowledge of the
sequence they were able to report. The results showed
that all three groups of subjects differed in their
performance on the first, single-task, phase. Intentional
subjects exhibited the largest facilitation, followed by
“More aware” and “Less aware” subjects. However,
these differences disappeared in the second, dual-task
phase, with all three groups exhibiting comparable and
small facilitation effects on the sequence material.
Thus, large between-groups performance differences
that can be attributed to intentionality and awareness
disappear when attentional resources are no longer
available. Lack of attentional resources blocks the
expression of explicit knowledge.

In Experiment 2 (see Figure 3, top panel), a group of
intentional subjects and a group of incidental subjects
were first exposed to 8 sequential blocks. Further,
incidental subjects were learning under dual-task
conditions, whereas intentional subjects were learning
under single-task conditions. All subjects then
transferred to a second phase identical with that used in
Experiment 1. Both groups showed a small sequence
learning effect in this second phase, but failed to differ,
despite the fact that intentional subjects exhibited
considerably more sequence learning than incidental
subjects in the first phase of the experiment. Here, then,
the lack of attentional resources is shown to block the
acquisition of explicit knowledge.

Experiment 3 (see Figure 3, bottom panel) assessed
whether the small sequence learning effects observed
in the dual-task phases of Experiments 1 and 2 may be
an artifact resulting from reactions times being near the
ceiling. A single group of incidental subjects was first
exposed, under dual-task conditions, to 8 blocks of



sequential material followed by one random and one
sequential block. Next, subjects transferred to a second,
single-task phase consisting of two random blocks, one
sequence block, and a final random block. If the
acquisition of explicit knowledge is blocked by the lack
of attentional resources in the first phase of the
experiment, one would expect equivalent, implicit,
sequence learning in both phases, at least until explicit
knowledge has had time to develop in the single-task
phase. The results confirmed the hypothesis.

What kind of mechanism may account for these
effects? I address this question in the next section.

The DSRN model

The Dual SRN (DSRN, for lack of a better name)
model is based on the simple recurrent network (SRN)
introduced by Elman (1990). The SRN (see Figure 1,
boxed area) is able to predict successive elements of
sequences presented one element at a time. Thus, on
each time step, the network receives element t of a
sequence as input, and is trained (using the back-
propagation algorithm) to produce element t+1 on its
output units. To perform this prediction task, the SRN
has a three-layers architecture. Fixed recurrent
connections from the hidden units to a pool of context
units enable the network to develop a representation of
its own past activity, and to become gradually sensitive
to the temporal constraints set by previous elements of
a sequence in predicting the next one (see Servan-
Schreiber, Cleeremans & McClelland, 1991; for a
detailed analysis of learning.). Cleeremans and
McClelland (1991) showed how the SRN could be used
as a model of human implicit learning of sequential
material in choice reaction settings. We considered the
activations of the SRN’s output units to represent
response strength, and assumed that human subjects
prepare implicitly for the next element. With these
assumptions in place, the SRN model is able to account
in substantial detail for the results of several sequence-
learning experiments, such as those reported by
Cleeremans (1993), by Lewicki, Hill, and Bizot (1988),
and by Cohen, Ivry, and Keele (1990). The model
implements a series of principles central to implicit
learning performance, such as elementary, gradual,
associative learning, processing that is local and results
in fragmentary knowledge, and sensitivity to context
information.

As it stands, however, the SRN model is incapable
of accounting for the effects reported by Curran and
Keele (1993), essentially because its architecture does
not allow different sources of knowledge about
sequence structure to influence processing. In the
following sections, I describe how the SRN was
extended to incorporate mechanisms relevant to
implementation of three assumptions about (1) the
effects of explicit knowledge, (2) the effects of
intentionality and awareness, and (3) the effects of
attentional demands.
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Effects of explicit knowledge

The central assumption upon which the DSRN model is
based is that subjects who are aware of the sequence
(either because they have memorized it before the task,
or because they have managed to memorize it while
performing the task) use their explicit memory of the
sequence to tell themselves what the next stimulus will
be. Thus, awareness of sequence structure changes the
task from one of (implicitly) anticipating the next event
based on temporal context to one of (explicitly)
retrieving the next event from short-term memory. In
the model, this is implemented by augmenting the basic
SRN with an additional pool of input units that hold a
representation of the next element of the sequence. The
SRN has therefore two different ways of producing the
next element. It can either develop its own
representation of the temporal context, by learning how
to represent successive elements as an activation vector
over its context units, or it can act essentially as an
encoder on the information in the pool of input units
representing the next element.

How are these representations of the next element
learned? Essentially, some other part of the system has
to produce these representations. In the case of human
subjects, this information is presumably stored and
retrieved from short-term memory, using mechanisms
that are outside the scope of this model. For modeling
purposes, I assumed that these representations are
produced by a buffer network (see Figure 1).
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Figure 1. The DSRN model. An SRN and a buffer network
are both assigned the task of predicting the next element of a
sequence presented one element at a time. The SRN may use
information coming from its own mechanisms for
maintaining the temporal context (direct pathway) to produce
the next element, or it may base its performance on
information produced by the buffer network (indirect
pathway). Gray-colored connections represent copy
operations with the indicated time delay, and are not subject
to modification by back-propagation. See the text for
additional details.



The task of this network is identical with that of the
SRN: To predict what the next element of a sequence
will be. To do this, the buffer network has several pools
of input units, each corresponding to the sequence
element that occurred on a particular time step.
Information shifts down the buffer as each new element
is presented. The buffer network is trained concurrently
with the SRN, but independently so: Error information
is not back-propagated from the SRN to the buffer
network.

In short, the model consists of two main processing
pathways: A direct pathway, that involves connections
from the “current element” and “context” pools of
input units to the SRN’s hidden units, and an indirect
pathway involving the entire buffer network as well as
connections from the “next element” pool of input units
to the SRN’s hidden units. Processing will tend to be
distributed among these two pathways as a function of
the reliability of the information flowing through each
of them. For instance, if the information coming
through the indirect pathway is unreliable, the model
will tend to rely more on information coming from the
direct pathway.

Effects of awareness and intentionality

“Intentional” subjects in Curran and Keele’s
experiments were exposed to the sequence before
starting the experiment. Subjects were told that the
movement of the target would often follow a pattern,
and were then given one minute to study the pattern. I
assumed that the effects of this exposure to the
stimulus material are (1) to store the sequence in
memory, and (2) to bias subjects into using this
knowledge during the task. To implement these
assumptions in the model, the indirect pathway was
trained before the actual task started. The buffer
network was trained as if performing the actual
experiment. In the SRN, the only trainable connections
were (1) the connections from the “next event” pool of
input units to the hidden units, and (2) the connections
from the hidden units to the output units. The effects of
this pre-training are to bias the SRN to use the
information produced by the buffer network, at the
expense of information coming from the direct
pathway. It may seem inconsistent to assume that mere
exposure to the sequence results in learning in some
connections of the SRN, but this assumption is backed
by recent data by Howard, Mutter, and Howard (1992),
who showed that observation results in as good
subsequent choice RT performance than actually
performing the task.

Subjects may also become spontaneously aware of
the sequence to varying degrees, depending
presumably on factors such as individual differences in
the allocation of attentional resources and short-term
memory capacity. In the model, I again assumed that
such differences could be represented by the degree to
which the SRN’s hidden units are sensitive to
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information coming from the indirect pathway. The
model was thus pre-trained in the manner described
above, but on random material. This has the effect of
strengthening the indirect pathway without giving the
network information about the actual sequence.

Effects of attentional demands

Cleeremans and McClelland (1991) showed how
attentional effects in sequence learning could be
simulated by interfering with processing, by means of
adding normally distributed random noise to a
network’s hidden units. Because of its auditory nature,
the tone-counting task used in these experiments is
likely to interfere more with the storage and retrieval of
traces in short-term memory than with response
execution or other processes. To represent this
asymmetry in the simulations, noise was added to the
net input of both networks’ hidden units, but to a larger
extent in the buffer network than in the SRN.

Simulations

Method and parameters

Each set of simulated results was obtained by
averaging the performance of ten identical networks
performing the task. Sequence elements were
represented in a localist way in all input and output
modules. Each network was initialized with a different
set of random weights, with the constraint that initial
weights be the same in different conditions of each
simulated experiment. The networks were trained
concurrently for exactly the same number of trials as
human subjects in Curran and Keele’s corresponding
experiments. For simplicity, traces represented in the
buffer were not decayed. The values of parameters that
remained constant across all experiments were as
follows: slow learning rate = 0.25, fast learning rate =
0.45, activation decay = 0.5, fast weight decay = 0.5. In
cases where the simulated condition involved the
secondary task, normally distributed random noise was
added to the net input of the SRN’s hidden units (¢ =
2) and to the net input of the buffer network’s hidden
units (6 = 8). The values for these parameters were
obtained by searching the parameter space by hand.
The search, if extensive, was thus not exhaustive, and it
cannot be excluded that other parameters would
produce better results. However, these values are well
in the range of those used in previous successful
simulations of similar data (see Cleeremans, in press).
During training, the activation of the SRN’s output
units was recorded. After training of a set of networks
was completed, the responses corresponding to the
stimuli that were actually presented were transformed
into Luce ratios and averaged over the ten replications



of each simulation, to yield a single data point for each
block in every condition. These averages were then
subtracted from one (because stronger prediction
responses correspond to faster reaction times). To
facilitate comparison between human and simulated
data sets, both were then transformed into standard
scores with respect to the entire distribution, i.e., over
all three experiments.

Results

Figure 2 shows human (top) and simulated (bottom)
data for Experiment 1. Both human and simulated
subjects exhibit large performance differences in the
single-task phase (up to block 8). These differences,
that result from different degrees of explicit knowledge
of the sequence in the different groups, vanish in the
second, dual-task phase.
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Figure 2. Human (top) and simulated (bottom) performance
in Experiment 1 of Curran and Keele (1993). Letters
following block numbers on X axis indicate type of material
(Random or Sequence).
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This pattern of results also obtains in the simulation
because networks that were most sensitive to
information coming from the indirect pathway suffer
most when this information becomes unreliable
because of the noise. An analysis of the quality of the
information produced by the buffer network in each
group revealed differences in the expected directions.
The simulations are far from perfect, however. One
major discrepancy with the data concerns the size of
the effects in the “Intentional” and “More aware”
groups. Although the fit can be improved by choosing
different parameters and by limiting the standard score
transformation to a single experiment, “More aware”
networks tended to systematically resemble “Less
aware” networks more than “Intentional” networks.
Figure 3 (top) shows results for both human and
simulated subjects in Experiment 2. Here, intentional
subjects learn under single-task conditions, and
incidental subjects learn under dual-task conditions.
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Figure 3. Human and simulated performance in Experiments
2 (top) and 3 (bottom) of Curran and Keele (1993). Letters
following block numbers on X axis indicate material
(Random or Sequence). Int:: Intentional subjects; Inc:
Incidental subjects; Sin: Single-task condition; Dual: Dual-
task condition.



Both groups transfer to a dual task-phase, where the
large initial differences between the groups again
disappear. Similar effects are exhibited by the model.
Finally, the results from Experiment 3, shown in the
bottom panel of Figure 3, indicate that incidental
subjects who first learn under dual-task conditions and
then transfer to a single-task phase exhibit aboul the
same facilitation in both phases. The model tends to
exhibit a slightly larger effect in single- than in dual-
task conditions, but this was not systematic over
different sets of parameters. The large discrepancy
between the simulation and human data in early
training blocks (also present to a lesser extent in the
other simulations) results from unspecific practice
effects that the model fails to simulate (see
Cleeremans, 1993). Over all three experiments, the
model accounts for about 75% of the variance in the
data using a linear fit (r2 = 0.743), and for about 88%
when using an exponential fit (r2 = 0.876) that better
reflects the somewhat curvilinear relationship between
the model’s responses and human RTs. Other factors,
such as unspecific practice effects and strategic
adjustments resulting from subject’s adaptation to their
own changes in performance, are not represented in the
model and would all tend to lower the fit even if the
model was in fact perfect in simulating sequence
learning.

Discussion

In this article, I introduced a new model of sequence
processing that implements the notion that learning of
sequential material in choice reaction tasks may tap on
two different sources of knowledge: Knowledge based
on the temporal context established by previous
elements of the sequence, and knowledge based on an
encoding of the next element in some other part of the
system. The model was found to be able to account for
the major effects reported by Curran and Keele (1993).
Their experimental data suggest (1) that explicit
knowledge may facilitate implicit learning, (2) that
subjects will tend to develop and use explicit
knowledge of the material whenever possible, and (3)
that both acquisition and expression of such knowledge
depend on the availability of attentional resources.
Other factors may also be involved. One such factor is
sequence complexity. For instance, in sharp contrast
with the simple repeating six-elements sequences used
here, Cleeremans and McClelland (1991) used
probabilistic material that was generated from a noisy
finite-state grammar. Memorizing this kind of material
is impossible, because it is not based on the repetition
of a specific pattern. Thus, although some simple
patterns tended to recur, subjects could presumably not
use an explicit trace of the sequence to tell themselves
what the next element would be, and indeed exhibited
very little explicit knowledge of the sequence. This
outcome is predicted by the DSRN model, because
there would little benefit of using information coming
from the indirect pathway (relative to information
coming from the direct pathway) when the material is
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probabilistic in nature. Further research will explore the
impact of such factors on the relationship between
explicit and implicit performance in sequence learning
situations.
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