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Combining Explanation Types for Learning by

Understanding Instructional Examples

Michael Redmond
School of Information and Computer Science
Georgia Institute of Technology

Abstract
Learning from instruction is a powerful technique for improving problem solving. It is most
effective when there is cooperation between the instructor and the student. In one cooperative
scenario, the instructor presents examples and partial explanations of them, based on the per-
ceived needs of the student. An active student will predict the instructor’s actions and then
try to explain the differences from the predictions. This focuses the learning, making it more
efficient. We expand the concept of explanation beyond the provably correct explanations of
explanation-based learning to include other methods of explanation used by human students.
The explanations can use deductions from causal domain knowledge, plausible inferences from
the instructor’s actions, previous cases of problem solving, and induction. They involve the goal
being pursued and the action taken in support of the goal. The explanations result in improved
diagnosis and improved future explanation. This combination of explanation techniques leads
to more opportunities to learn. We present examples of these ideas from the system we have

implemented in the domain of automobile diagnosis.

INTRODUCTION

People learn much of what they know from instruction. Presentation of examples can be an im-
portant part of instruction. LeFevre and Dixon [1986] found that students prefer examples to
written text in learning a procedural task. Reder, Charney and Morgan [1986] found that instruc-
tion that included examples was more effective. What is it that makes examples effective teaching
instruments?

One characteristic that makes them effective is that active students that try to explain the examples

learn through the process of explanation. Lancaster and Kolodner [1988] and Chi, Bassok, Lewis,

Reimann, and Glaser [in press] have both observed this in protocol studies. This has been our focus
learning from understanding how a teacher solves an example problem.

Figure 1 summarizes the general process. Essentially, the instructor presents the problem, and
appropriate actions or solutions. The student uses various types of knowledge to predict the
instructor’s actions, and then to understand or explain why the instructor’s action or solution
is appropriate.

The student is testing her ability to diagnose when she predicts what the instructor will do. The
same techniques she would use if she were actually diagnosing are used to set up the prediction.
In this way, when an opportunity to learn occurs, what is learned will be useful when the student
actually goes about diagnosing. The example helps focus the learning.

We have constructed a system that creates explanations using deductions from causal domain
knowledge, plausible inferences from the instructor’s actions, previous cases of problem solving,
and induction. The explanations involve the goal being pursued and the action taken in support
of the goal. The explanations result in improved diagnosis and improved future explanation. This
combination of explanation techniques leads to more opportunities to learn. This paper discusses
the different types of explanations, and how they improve future problem solving and explanation.

The instructor states the problem description.

The student attempts to generate an appropriate action for the problem and current context.
The instructor generates a correct action or solution for the problem and current context.
The student then attempts to explain this action, learning if possible.

Al Sl

Continue with step 2 if the problem is not solved.

Figure 1: General Algorithm.
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EXPLANATION

In our approach, explanation follows prediction and observation. The first step, therelore, is to
compare the prediction with the expert’s problem solving. This includes whether the instructor
appears to be pursuing the predicted goal, and whether pursuit of the goal leads to the predicted
action.

A correct prediction is essentially a successful explanation. I'urther explanation is required where
the prediction isn’t met. There can be many different ways of explaining differences. In this paper
we discuss explanations involving:

Inferring the instructor’s current goal, and when necessary learning a new goal.

Inferring the place of the current goal and actions in the diagnosis episode.
Adjusting the saliency of features for future case retrieval.
Trying to causally explain actions.

We have also begun to deal with a few other types of explanation that we will not discuss here.
For example, explaining differences in implementation detail may rely on differences in car models,
available tools, or in the current state of the car.

The types of explanations we make use of overlap with the types of explanations observed by Chi
et al [in press]. They observed explanations that:

1. Refine or expand the conditions of an action

2. Explicate or infer different consequences of an action
3. Determine a goal or purpose for an action

4. Give meaning to a set of quantitative expressions.

Their first type of explanation is not a type that we have explored as yet. Our causal chaining ex-
planation type corresponds to their second type, and our inferring the instructor’s goal explanation
tvpe corresponds to their third type. Their fourth type is not applicable to our domain, though
really it is a more specific version of inferring a goal. At a different level, Chi et al [in press] note
explanations relating example actions to domain principles and to other example actions. Causal
chaining can be seen as relating the observed actions to the domain principles. Inferring the place
of the current goal and actions in the current diagnosis episode is one part of relating actions to
each other.

In the following sections we will discuss in more detail how explanation of instruction is done, and
how it improves the system through what is learned.

INFERRING INSTRUCTOR'S GOAL

Since the instructor’s goal is usually not explicitly stated, it must be inferred from her actions.
Different goals result in different types of actions being done. The instructor’s goal must be inferred
so that it can be compared to the predicted goal. The process is focused by the student’s prediction
of the instructor’s goal. The predicted goal is the first goal considered as a possibility. If the
instructor’s actions are consistent with that goal then it is inferred that that is the goal being used.
Otherwise, the goal must be inferred bottom up, with all possible goals being possible. This means
that if the student gets lost in the example, she can find actions that make sense and get back to
following along from there, and salvage something from the instructional episode.

(test (low ~fast-idle-speed))

(do (remove ~air-cleaner))

(do (disconnect “radiator-fan))

(de (connect “tachometer “engine))

(do (plug ~vacuum-advance-hose))

(use (c-4812-2c))

(do (connect c¢-4812-2c “choke-cam-follower-pin))

(do (release “throttle-lever))

(ask ((rpm “engine-system) nil) “tachometer (reply 1600))

Figure 2: Instructor’s Actions. The instructor’s actions, entered into the system either interactively or by batch
in a variable, are predicate forms specifying the type of action, and the action.
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Some possible goals in a diagnostic domain include generating a hypothesis, testing a hypothesis,
interpreting a test, fixing a fault, verifying a complaint, and clarifying a complaint. Figure 2
shows a portion of the instructor’s actions in a given example. The complaint had been that the
engine stalls, and the instructor has just hypothesized that the fast idle speed is set too low. This
hypothesis must be tested. The instructor says that she is going to test whether the fast idle speed is
low. Then she removes the air cleaner. She disconnects the radiator fan and connects a tachometer,
and otherwise prepares for the test. Then using a specific tool specified in a reference book, she
carries out the test, reading the value from the tachometer and comparing it to the specifications.

The process of inferring the instructor’s goal uses knowledge about the goals stored in their repre-
sentation. Some goals require particular types of actions. Some action types are inappropriate for
some goals. Some action types can occur multiple times in the pursuit of a particular goal, some
can only occur once. To give one example of the type of inference involved, testing a hypothesis
must include an ask type action in order for results to be obtained. When it is determined that
the predicted goal was not pursued, the other known goals are considered. Once the system knows
what goal is being pursued, then the same explaining is done as if the goal had been correctly
predicted. The student can recover and resume following the instructor.

If none of the diagnosis-specific goals are appropriate a more general goal can be considered, which
could result in a diagnosis-specific specialization of the goal being learned. Figure 3 shows an an-
notated run of our system CELIA (Cases and Explanations in Learning: an Integrated Approach),
reasoning as a student would, realizing that it needs to learn a new goal. For this run of the

-.\.I-ext Task
G-PREDICT-EXPERTS-ACTION

Next predicted goal

G-REPLACE-FIX

Mentally Simulating strategy S-RETRIEVE-MEMORY.PIECE for goal G-REPLACE-FIX
retrieve a piece from memory now

Matches fragments (pieces) -

(GEN-REPLACE-FIX-LOW-IDLE 7.6000004)
(GEN-REPLACE-FIX-THERM-COIL-CHOKE 5.6)
(GEN-REPLACE-FIX-LEAN-CHOKE 5.6)
(GEN-REPLACE-FIX-TOO-RICH 1.8)

Simulating based on retrieved piece GEN-REPLACE-FIX-LOW-IDLE

The fault has been determined to be: (LOW IDLE-SPEED)

The fix usually done in previous similar experiences was: (INCREASE (POSITION IDLE-SPEED-SCREW))
The method of doing the fix in previous similar experiences was: ...

Next Task
G-OBSERVE-EXPERTS-ACTION

Expert’s next action wxsx®= NOTE - test if engine is cold when it stalls s==%==

(TEST (TEMPERATURE ENGINE-SYSTEM (WHEN (S5TALLS ENGINE-SYSTEM)) COLD))

Expert's next action

(DO (DRIVE CAR) UNTIL (STALLS ENGINE-SYSTEM))

Expert’s next action w===x= NOTE - read engine temperature gauge when car stalls ¥*===x
N engine is cold when it stalls B |

(ASK ((TEMPERATURE ENGINE-SYSTEM) NIL) ENGINE-TEMP-GAUGE (REPLY (COLD)}))

Next Task
G-EXPLAIN-DIFFERENCE

Comparing instructors actions to predicted actions
wwmemmmennes He's using a different goal than expected www=swmnnw

memmmmmmenn® don't know the goal being used or know it incorrectly =====xwamxn

He's probably pursuing a specialization of the goal: G-TEST-DECISION
wuumenunesa® Create that specialization ®**=mesmwEs

NEW GOAL: G-DIAG-TEST-DECISION
“w=* Add new goal to tables *=**

modify goal-action table

modify feature-saliency table

modify goal hierarchy

modify goal-slot table

modify slot-action table

modify zlot-context table

reacting to observing learned goal G-DIAG-TEST-DECISION
making new case piece ... CASE-DIAG-TEST-DECISION-1

Figure 3: Realizing the need to Learn a Goal.
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program we removed knowledge of the goal G-TEST-HYPOTHESIS from the student. This is
equivalent to the novice student observed by Lancaster and Kolodner [1987], who came up with a
reasonable hypothesis, then proceeded directly to trying to fix it without testing to see if it was a
correct hypothesis. The example picks up after the instructor has made the hypothesis that the
idle speed is low. The student retrieves a case piece suggesting the repair to do as a prediction
of the instructor’s actions. The instructor, however, correctly tests the hypothesis. These actions
do not match expected action types for carrying out a repair, and in fact are not consistent with
action types expected for any of the student’s known diagnostic goals. It does, however, on further
inspection, fit with expectations for a more general, cross-domain goal, of testing a decision. This
enables learning a new diagnostic goal which will be a specialization of the more general goal.

There seems to be a difference between the goals that Chi et al [in press] talk about being inferred
and the goals that our system infers. Specifically, if one looks at a goal as a goal type plus a
parameter, our main effort is in inferring the goal type. The goal type would be our goal, for
example, G-REPLACE-FIX, and the parameter would be the specific instantiation, for example
(INCREASE (POSITION IDLE-SPEED-SCREW)). The parameter comes pretty ea,sﬂy for our
svstem due to the input representation. Chi et al Bm press| observed students trying to infer fully
instantiated goals where the parameter could be less than obvious. However, the key point is that
the student must understand what goal is being pursued in each part of the example as part of
explaining the example. Future work can be directed towards inferring the parameter from less
well-tailored input.

INFERRING PLACE IN CURRENT DIAGNOSIS

Inferring the place of the current goal and actions in the diagnosis episode is another step toward
understanding observed problem solving. It is not only important in understanding what the
instructor is doing, it is also necessary for saving the episode in a useful form as a case for case-
based reasoning (CBR) [Kolodner and Simpson 1984]. A case will be more useful in the future if
it reflects the problem solving done in the episode.

The instructor in most cases diagnoses hierarchically. People doing diagnosis don’t hop around
between unrelated hypotheses. The experienced mechanic considers a system as a potential source
of the problem, then narrows the hypothesis down until a replaceable or fixable unit is determined
to be malfunctioning. To a naive observer the hierarchy is not seen, the instructor’s actions are
sequential, a straight line instead of a tree. The rank novice observed by Lancaster and Kolodner

| Case Header - Car runs rough

N\ e
| Hyp - Not Connected Spark Plug | Hyp - Mnl!unclion‘Fuel System Hyp - Malfunction Distributer
£
[ Test - Not Connected Spark Flug I / [ Test - Malfunction Distributor |
L Hyp - Leak Fuel System ] I Hyp - Clegged Fuel Lines Hyp - Clogged Fuel Filter
2
| L Test - Clogged Fuel Lines ] I Test - Clogged Fuel Filter —I

| Test - Leak Fuel System

Diagnosis Actions (in order presented)

1. Hyp - Hot Connected Spark Plug 7. Test - Leak Fuel System (Heg.)

2. Test Not Connected Spark Plug (Heg.) 8. Test - Clogged Fuel Lines (Neg.)

3. Hyp - Malfunction Fuel System 9. Hyp - Clogged Fuel Filter (restatement)
4. Hyp - Leak Fuel System 10. Test - Clogged Fuel Filter (Neg.)

5. Hyp - Clogged Fuel Lines 11. Hyp - Malfunction Distributor

6. Hyp - Clogged Fuel Filter 12. Test - Malfunction Distributor

Figure 4: Inferred Diagnosis Structure.
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[1987] did not diagnose hierarchically, but the other students, even the one with just six months
more experience, did. The ability to diagnose hierarchically requires knowledge of the hierarchy
involved. A system cannot rely on a given pattern of actions from the instructor, but must actually
explain or understand what is going on. Figure 4 demonstrates this with an example diagnosis
sequence. The top part of Figure 4 shows the structure of the instructor’s actions which are shown
in the bottom part of Figure 4.

Note that a test does not necessarily follow the hypothesis it relates to. Another complication is
that there are at least two different reasons that a hypothesis can directly follow another hypothesis

it is a refinement as with the ‘fuel system leak’ hypothesis following ‘malfunction fuel system’, or
it is another possibility at the same level, such as with the ‘clogged fuel lines’ hypothesis directly
following the ‘leak fuel system’ hypothesis. Also note that there is no ‘syntactic’ cue that the
‘clogged fuel filter’ hypothesis is a refinement of the ‘malfunction fuel system’ hypothesis and that
the ‘malfunction distributor’ hypothesis is not.

Knowledge is necessary to understand the hierarchy being used. Causal knowledge and structural
relationships from the model are both useful for this process. A hypothesis can go under a previous
hypothesis in the hierarchy if it causes the previous hypothesis, if the component involved is part
of the previous component, or if the predicate is more refined.

Chi et al [in press] noted that one type of explanation is relating an action to another action.
This process is one way of doing that. It is basically a linking of an action to the action that it
follows from, which may not be the most recent previous action. The heuristics we use are geared
for diagnosis. They were drawn from task analysis of Lancaster and Kolodner’s [1987] protocols.
They are the set that were necessary to establish the relationships between actions that we saw in
the instructor’s examples. We don’t have any indication whether human students use heuristics
such as these to recognize the relationships. Further analysis is required in order to come up with
heuristics that would prove useful across domain types, such as for design or planning.

A partial list of heuristics used by our system to explain the instructor’s actions in terms of hierar-
chical diagnosis is shown in Figure 5. The default expectation is that a hypothesis or test will be
related to what immediately preceded it. Hlowever, as has been noted, this isn’t always the case,
and the third, fourth, and fifth heuristics are controls on that. The new action must actually

1. Try to put new hypothesis under most recent previous hypothesis or test.
2. Try to put new test under most recent previous hypothesis.
3. New hypothesis can go under a previous hypothesis if
e its component is below the previous hypothesis's component in partonomy,

e if the component is the same and the new predicate is more specific,
o if the new hypothesis could cause the previous hypothesized fault

4. New hypothesis can go under a previous test if
e the test showed results indicating abnormal function and

e the hypothesis is more refined than the test result (component is below the test's component in partonomy or if
the component is the same and the predicate is more specific, or if the hypothesis could cause the test result)

5. New test can go under a previous hypothesis if

¢ the tested component is the same or below the hypothesis's component in partonomy and the test predicate is
the same or more refined than the predicate in the hypothesis,

¢ no component in the test is higher than any component in the hypothesis in partonomy
¢ or if the tested clause could be a result of the hypothesis”)

6. Don't add anything directly under a hypothesis that has already been tested
7. Don’t add anything under a test whose results indicated normal function, this should be followed by backtracking
8. Don't add a new test directly under a hypothesis that already has subhypotheses

Figure 5: Heuristics for inferring the structure of a diagnosis.
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be related to the previous one, by being more specific or causally related. For example, in Figure
4, the hypothesis ‘leak fuel system’is more specific than the hypothesis ‘malfunction fuel system’
because the predicate is more specific and the involved component is the same. The hypothesis
‘clogged fuel lines’ is more specific than the hypothesis ‘malfunction fuel system’ because fuel lines
is below fuel system in the partonomy in memory. However the hypothesis ‘malfunction distributor’
did not qualify on either count so it had to go in a different place. The third way to satisfy heuristic
3 is for the later hypothesis to be causally related to the previous hypothesis. The necessity of this
is shown by an example. If the hypothesis ‘clogged spark plug gap’ follows the hypothesis ‘no spark
from spark plug’it would not be placed beneath it because ‘clogged’ is a different predicate than ‘no
spark’, and isn’t more refined. This could easily be a different problem. llowever, causal knowledge
allows linking the one to the other so that the system knows, as a person would, that ‘clogged spark
plug gap’is a refinement of the hypothesis ‘no spark from spark plug’.

If the action cannot go after the most recent action then the system must search for its proper place.
Many of the other heuristics are limitations on this process, either avoiding potential incorrect
placements, or cutting off search that will prove to be unfruitful.

For example, Heuristic 7 allows cutting off search when the instructor would be backtracking.
If in Figure 4 the malfunction fuel system hypothesis had been followed by a test that showed
normal function for the fuel system, then future hypotheses from the instructor should involve
other hypotheses that aren’t refinements of a fuel system malfunction, and the system can avoid
wasted effort by not trying to see if they fit under that hypothesis.

Once the structure of the observed diagnosis has been determined, the case can be stored in memory
for use in future problem solving and explanation. The case is stored in pieces so that the particular
pieces can be accessed as necessary, and so the representation is flexible enough to handle diagnosis
that doesn’t have a set pattern of hypotheses and tests. There are pieces for each instance of each
goal pursued in the episode. That is, for each hypothesis made, for each test of a hypothesis, for
each interpretation of a test, for each fix attempted, there will be a piece. These pieces are linked
together to preserve the structure of the case, as inferred in this step. This allows a future diagnosis
using the current case to follow the links as long as the findings are the same. The diagnostician
following such a hierarchically organized case will diagnose hierarchically rather than haphazardly
like a novice. The case pieces, once correctly linked, are stored beneath general knowledge in the
model for the car, under related components.

ADJUSTING THE SALIENCE OF FEATURES

Another important explanation type is adjusting the saliency of features for future case retrieval.
It may not seem like adjusting the saliency of features is really explanation. However, when two or
more hypotheses are both correct hypotheses, in that they can both cause the observed symptom,
causal EBL-like explanations do not provide a way of distinguishing between them. The instructor
chooses one of the hypotheses to pursue first. The student predicts a particular hypothesis will be
pursued first. If the student’s prediction is made based on case based reasoning, then the hypothesis
predicted first depends on the matching function. Retrieval of previous cases involves searching for
a case or generalization piece which served the goal currently being pursued. The retrieved case
piece is selected from the candidate pieces based on a comparison of the feature values of the current
problem solving context with the feature values of the problem solving context at the time of the
previous case pieces. So adjusting the matching function by adjusting the importance of features
in the problem solving context will lead to the prediction being correct in the future. This is an
implicit way of explaining the choice between the hypotheses without having reason to say that
one is more likely than the other. The intuition is that such weighting of competitive hypotheses in
diagnosis is generally inductive, the mechanic doesn’t know for a fact that x fails more often than
y, statistics aren’t readily available or used, nor can such preference be explained deductively. The
weighting is inductive from experience, and from instruction. There is no evidence of this type of
explanation in Lancaster and Kolodner’s and Chi et al’s observations. However, it isn’t the sort of
thing that would be amenable to study through protocols.

The method of adjusting the saliency of features is fairly simple. It is based on the idea of making
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Goal - G-GENERATE-HYPOTHESIS
Piece retrieved - (CASE-HYP-CHOKE-THERM 14.280001) Hypothesis (MALFUNCTION CHOKE-THERMOSTAT)
Piece Expert’s with hypothesis = (LOW IDLE-SPEED) - (GEN-HYP-ENGINE-STALLS 11.6)

Feature Student’s piece Piece matching Instructor Feature Importance
CAR-TYPE Partial match Ho Match less important
CAR-OWHER Match Ho Match less important
COMPLAINT Match Match no change
FREQUERCY Partial match Ho Match less important
HOW-LONG Match Partial match less important
OTHER-SYMPT Match MHatch no change
RULED-IN Partial match Match more important
RULED-OUT Partial match Match more important
TESTS-DONE-N-RESULTS Partial match Match more important
FIXES-DONE Partial match Match more important
CURRENT-HYPOTH Match (none) Match (none) no change
PARTICIPANTS Partial match HBo Match less important
LOCATION Match Match no change

WHEN Partial match lo Match less important

Figure 6: Example Blame Assignment.

features that match when the problem solver is successful more important, and features that match
when the problem solver is unsuccessful less important. Since the salience of various features varies
depending on the goal being pursued by the problem solver, separate measures of feature importance
are maintained for different goals. When the student predicts the same action the instructor makes,
the student has been successful. The features of the current problem solving context that matched
the features in the previous case are made slightly more important. When the student predicts
a different action than the instructor, presumably the student has been unsuccessful. The blame
assignment is best made by retrieving another case piece in which the instructor’s action was the
one done. Figure 6 shows how the blame assignment is done on an example incorrect prediction
of a hypothesis. Those features of the current context that more closely match the context of
the newly retrieved case piece than the context of the originally retrieved case piece will be made
more important. Those features of the current context that more closely match the context of the
originally retrieved case piece than the context of the ‘correct’ piece are made less important. Thus
instruction with examples helps deal with the feature saliency problem, by giving feedback on the
correctness of case retrieval, allowing comparison of the matching features.

This will lead to the correct piece being retrieved in the same situation in the future. A combination
of instruction, case retrieval, and induction has been used to improve the performance of the CBR
part of diagnosis.

CAUSAL EXPLANATION OF ACTIONS

Causal explanations of actions enable filling gaps in the causal domain knowledge through the basic
LBUE methods described in Redmond and Martin [1988]. These were an extension of explanation-
based learning (EBL) [DeJong 1983; DeJong and Mooney 1986; Mitchell, Kellar, and Kedar-Cabelli
1986], to allow learning without a complete and consistent domain model. An example will illustrate
the ideas. An instructor may present the student with a malfunctioning car in which the engine
cranks but does not start. She may suggest a hypothesis that the distributor cap is cracked. A
complete causal explanation would be:

(cracked distributor-cap) causes
(contains distributor-cap moisture) causes
(low (input spark-plug electricity)) causes
(not (ignite spark-plug)) causes
(not (combustion cylinder)) causes

(not (start engine))
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If the student can complete the explanation, she can learn that a cracked distributor cap causes
the symptom of the engine cranking but not starting. If the student was missing some knowledge,
it is possible that the knowledge could be inferred as plausible. For example, if the student was
missing the fact that moisture in the distributor cap can cause less electricity to reach the spark
plug, she may still be able to infer that fact based on the partial explanation having been given by
the trusted expert, in conjunction with the partial explanation formed by the student and general
knowledge possessed by the student about water’s effect on electricity.

In addition to enabling filling gaps in the causal domain knowledge, trying to causally explain
actions can make causal explanations available as indices to the new case containing the action.
Hammond and Hurwitz [1988], and Barletta and Mark [1988] both use this approach, which hasn’t
yet been implemented in the current system.

CONCLUSION

Explanation of solved example problems is an effective way of learning. A system has been con-
structed that uses EBL-like deduction, induction, and retrieval of previous cases in creating ex-
planations, improving future diagnoses and future explanations of observed problem solving. The
use of multiple types of explanation of examples follows the lead of the studies by Lancaster and
Kolodner [1987, 1988] and Chi et al [in press]. Their observations suggest further types of explana-
tion that could be exploited in making our system a better student. The exploitation of instruction
turns out to be a powerful way of learning, and integrates several learning techniques.
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