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Abstract

Electric fields underlie all reactions and impact reactivity by interacting with the dipoles and net 

charges of transition states, products, and reactants to modify the free energy landscape. However, 

they are rarely given deliberate consideration in synthetic design to rationally control reactivity. 

This Perspective discusses the commonalities of electric field effects across multiple platforms, 

from enzymes to molecular catalysts, and identifies practical challenges to applying them in 

synthetic molecular systems to mediate reactivity.
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Electric fields are believed to be key factors in the superior reactivity and selectivity of 

enzymatic active sites1-8 and some zeolites.9-11 More broadly, electrostatic interactions 

have been used to rationalize wide ranging reactivity—from enzymatic preorganization 

and ion-pairing in organocatalysis, to rate enhancement or selectivity control at transition 

metal complexes. Electric fields in this context stem from either positioned charges, 

dipoles, or induced dipoles. Modeling these types of interactions are not new. However, 

renewed interest in using electric fields as “smart reagents” in chemistry12 highlights the 

few experimental examples where electric fields are deliberately used as a tool to control 

reactivity. Electrostatic catalysis places a reacting molecule in an environment that stabilizes 

the transition state’s dipole moment or net charge.3

The electric field is defined as the interaction experienced at a given point in space due to 

the summation of charges, dipoles, and induced dipoles of all other atoms in the system. In 

most frameworks for modeling, the electric fields experienced by a molecule encompasses 

the intermolecular field created by other atoms or molecules, but the field created by its own 

atoms is excluded. Electrostatic interactions are defined as interactions between molecules 

due to their permanent charges and dipoles.3 Intrinsic electric fields (such as those in 

enzymes and zeolites) or applied electric fields (such as those at surfaces, using external 

applied fields, or STM tips) can be described similarly, with the magnitude of the field 

dependent on where the field is sampled.13

An oriented electrostatic field of appropriate magnitude can direct chemical interactions, 

reactivity, and catalysis by manipulating activation energies as a function of molecular 

orientation. Quantum mechanical studies indicate electric fields between 1 and 10 V/nm 

can adjust activation barriers in the gas phase by several kcal/mol, modifying reaction 

rates by several orders of magnitude at room temperature.13 The electric field alters the 

energy landscape by (1) stabilizing/destabilizing intermediates/transition states which can 

result in accelerating or prohibiting a reaction pathway and (2) tuning thermodynamic 

parameters (redox potential, pKa, bond energy, ground state stabilization or destabilization, 

etc.). Judicious orientation of an electric field in relation to reacting partners can result in 

rate enhancement/inhibition,14-17 changes in mechanism,18-20 and improved regio- or stereo-

selectivity.21,22 Figure 1 illustrates an example of rate acceleration through stabilization of a 

transition state by comparing the relative free energies for a reaction in the absence (black 

trace) and presence (blue trace) of an electric field. For a reaction with a dipolar transition 

state and a nonpolar reactant, application of an oriented electrostatic field lowers the free 

energy of the transition state and product relative to the reactants.

Computational modeling and theoretical investigations have been used to understand the 

principles governing electric field effects on catalysis.13,23-25 These computational studies, 

as well as experimental examples, have been discussed in a recently published book26 and 

reviews.5,13,25,27,28 Most experimental studies of controlled electric fields on reactivity have 

focused on using applied biases29 such as charged surfaces30,31 or STM tips32-35 to generate 
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fields with magnitudes ranging from 3 to 50 V/nm.13,27,28 These elegant studies quantify 

the impact electric fields can have on reaction energies and product selectivity. However, 

the scalability of these techniques is limited; the reactivity enabled through applied biases is 

confined to single molecules or electrode surfaces. The magnitude of the electric field also 

diminishes rapidly with the distance from the external source because of ion and/or solvent 

screening. Applied biases are also susceptible to dielectric breakdown at high magnitudes, 

resulting in electron transfer. Additionally, the orientation of the reacting components in 

relation to the direction of the electric field must be precisely controlled, even when 

adsorbed on a surface. Exact control of field orientation and magnitude with respect to 

the reactants is a general challenge with external fields. These factors complicate drawing 

direct parallels to enzymatic systems or use as a large-scale synthetic tool. Because of these 

challenges, molecular systems may provide an opportunity to control field orientation with 

respect to reacting partners due to binding at the reactive center prior to catalysis.

The goal of this Perspective is to highlight specific examples of electric field effects 

in enzymes, organic reactions, and transition-metal-catalyzed systems. By using select 

examples and drawing common themes between different catalytic platforms, we aim to 

show how these commonalities can be used to design platforms with specific electrostatic 

interactions to achieve reaction control.

ELECTRIC FIELD EFFECTS IN ENZYMES

The efficiency of enzymatic catalysis has long served as a source of inspiration for synthetic 

chemists. Elucidating the different factors that govern the catalytic power of enzymes is a 

key step in designing synthetic catalysts that rival the activity of enzymes, from selective C–

H activation36 to energy-efficient CO2 reduction.37,38 The overall protein architecture forms 

microenvironments which exploit a variety of electrostatic interactions and preorganization 

to aid in catalysis.1-8 These interactions include hydrogen-bonding networks, proximal 

Lewis acidic metals or charged functionalities, and the hydrophobicity or hydrophilicity 

of local active site residues.39-44

Warshel pioneered the term electrostatic preorganization as a way to describe the enzymatic 

environment that favors the transition state rather than the reactants, thus lowering the free 

energy barrier.44 Experimental evidence for this electrostatic environment in an enzyme 

was confirmed by Boxer using vibrational Stark spectroscopy45 on ketosteroid isomerase 

(KSI).46 Specifically, an inhibitor containing a vibrational probe (carbonyl group) was 

placed in the active site. KSI strongly activates the C═O stretch, where the carbonyl 

stretching frequency is used as a probe for the electric field. The electric field induced by 

the protein scaffold on the active site was then found to linearly correlate with the activation 

free energy of the reaction, providing direct experimental evidence for electrostatic rate 

enhancement.47

In a computational example on the enzyme histone deacetylase 8 (HDAC8), evidence to 

support the underlying importance of electrostatic preorganization was investigated through 

the electron charge density.48 Zinc-dependent HDAC8 catalyzes the deacetylation of a 

histone lysine and plays a vital role in post-translational modification during the biosynthesis 
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of proteins.49 Deacetylation proceeds through formation of an oxyanion intermediate bound 

to zinc (Figure 2A).15,40,50 Crystallographic studies of the HDAC8 active site also revealed 

a K+ ion buried into the interior of the protein (Figure 2B), approximately 7 Å from the 

zinc; however, the role of potassium is not understood.51,52 Computational studies of the 

zinc-dependent HDAC8 suggest that K+ plays a role in increasing substrate binding at the 

central zinc ion and that absence of the K+ ion causes deactivation of the enzyme. Therefore, 

the distal K+ may serve to enhance the electrostatic preorganization at the active site.

In addition to nonredox active metal cations, the electrostatic environment at active sites can 

also be modulated by charged residues. The active site of chorismite mutase, a metabolic 

enzyme that catalyzes the rearrangement of chorismite to prephenate, includes a cationic 

arginine. Replacement of the arginine with neutral citrulline maintains the precise substrate 

orientation and geometry of the wildtype enzyme but incurs a penalty in catalytic activity.53 

Another example is the formate dehydrogenase (FDH) enzyme. The active site of all known 

FDHs contain an arginine residue in the secondary coordination sphere.54 This arginine has 

been proposed to interact with the negatively charged formate substrate to facilitate C–H 

bond cleavage.55

These three examples serve to highlight the multidimensional roles that electrostatic 

interactions serve in enzymes. However, there is significant difficulty in strategically 

pinpointing which individual effects are essential to enzymatic activity, and would thus 

be critical to emulate within synthetic systems.

ELECTROSTATIC VERSUS LEWIS ACIDITY EFFECTS

While charged metal ions such as alkali and alkaline earth metals leave an electrostatic 

footprint, they can also serve as Lewis acids. The difference is that in the former case, 

they are modifying the energy landscape through a noncovalent interaction, and in the latter 

with a through-bond orbital-overlap interaction. Cation replacement studies are useful for 

evaluating the relevant electrostatic versus Lewis acidic contributions. For example, the 

oxygen-evolving complex (OEC) of the photosystem II enzyme (PSII) features a Mn4CaO5 

core in the active site.56 Studies aimed at understanding the role of the Ca2+ ion in 

PSII found that displacement with all dicationic alkaline earth metals led to significantly 

diminished activity with the exception of Sr2+, which has similar Lewis acidity to the 

Ca2+ ion.57 These studies indicate the Ca2+ ion primarily functions as a Lewis acid; if it 

were mostly providing an electrostatic effect, replacement with any dication would result in 

similar activity. However, it is worth noting that in cation replacement studies, different ionic 

radii of alkali and alkaline earth metals may also result in electrostatic perturbations based 

on changes in distance or geometry to the active site.

Likewise, synthetic catalytic systems often exhibit accelerated rates with Lewis acidic metal 

cation additives or cocatalysts.58-67 The Lewis acidic and electrostatic contributions can be 

decoupled by comparing the relative activity with other additives that are either charged 

or Lewis acidic, but not both. For example, additives such as noncationic borates can be 

used to isolate the effect of Lewis acidity. Additionally, quaternary ammonium salts (such 
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as tetraethylammonium) can be used to introduce a local cationic charge that lacks Lewis 

acidity.63,64

SYNTHETIC SYSTEMS

Various synthetic constructs have been used to generate oriented fields of specific 

magnitudes across homogeneous active sites. These synthetic systems have the potential 

to mimic the electrostatic character found in enzymatic active sites.

For example, supramolecular hosts can mimic electrostatic aspects of enzymatic active 

site cavities (Figure 3A). Multiple parameters, including overall charge, cavity size, and 

the degree of solvent exclusion can be controlled through synthetic design.68,69 Prominent 

examples of charged supramolecular hosts and catalysts that invoke electrostatic effects for 

their reactivity include Ward and co-workers’ Co8L12
16+ cube,70 and Fujita and co-workers’ 

Pd6L4
12+ octahedron.71 Electrostatic effects in a variety of supramolecular complexes have 

been examined experimentally72,73 and with computational studies.74,75

Electrostatic interactions have been used extensively to elicit reactivity control in 

organocatalysis.76-82 For reactions with proposed transition state structures that are more 

dipolar than their starting materials or products, it rationally follows that use of electrostatic 

stabilization would enhance catalysis. Electrostatic interactions have been employed in 

asymmetric catalysis83-91 and for site-selective catalysis.92,93

Ion pair formation (Figure 3B, the interaction of positively and negatively charged species) 

occurs to lower the Gibbs free energy (as opposed to ion solvation). Promoting ion-pairing 

interactions requires that ion–solvent interactions are minimized. In fact, use of highly polar 

solvents can incur a large energetic penalty to ion-pairing due to solvent reorganization. To 

minimize this energetic penalty, solvents of relatively low dielectric constant are often used, 

which can present solubility challenges when cationic/anionic charges are used to generate 

the electric field. In the early 1990s, Wilcox and co-workers demonstrated the electrostatic 

acceleration of chemical reactions in nonpolar solvents using intramolecular salt effects.94-98 

Ion-pairing in transition metal complexes99 has been used to achieve regioselectivity either 

through directed substrate–ligand interactions,100-102 steric adjustment,103 or energetic 

differentiation of transition states.104-106 Cation-π interactions have also been utilized to 

increase the acidity of select C–H bonds; however, this is more of an inductive effect, 

allowing for site-selective bond activation.107,108

Transition metal complexes that incorporate crown ethers to bind cations or have ammonium 

or sulfonate functionalities in the ligand have emerged as a powerful strategy for accessing 

tunable electrostatic interactions. These platforms have the potential to provide a predictable, 

directional, and consistent electric field at each reactive site (Figure 3C,D). However, as 

discussed below, the accessible magnitudes may be limited depending on solvation.

Most efforts toward ligand-based cation encapsulation in transition metal complexes have 

focused on applications toward phase transfer and ion sensing109 or switchable catalysis.110 

There are fewer studies specifically investigating cation encapsulation for electrostatic 

effects. In order for a cation to impart an electric field at a local reaction site, the cation 
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must be located in close proximity.111-119 Otherwise, solvent or other ions in solution will 

reorient to mitigate the field. Further, solvent reorganization must be minimized in order for 

the electric field exerted by the cation to affect any transition state stabilization.

We and others have synthesized transition metal complexes with a macrocyclic N2O2 Schiff 

base ligand and an incorporated crown ether (Figure 4).120-123 The electric field experienced 

at the redox active metal site by cation Mn+ manifests itself through significant shifts in the 

redox potential of up to 600 mV, which corresponds to static electric fields greater than 1 

V/nm at the transition metal.120,124 The sizable shift in redox potential is notable because 

the measurements are made in solutions containing ~100 fold excess of electrolyte. The 

rigid positioning of the cation and molecular architecture results in an electric field that 

is not significantly quenched by solvation or the presence of ions in high concentrations. 

The Schiff base ligand also contains two imine bonds (–C═N–), which are convenient 

reporters of the field using vibrational spectroscopy, as evidenced by the Stark shift observed 

in the complexes.120 The changes in reduction potential are largely due to the electrostatic 

contributions that lower the overall energy of the molecular orbitals, which contrasts with 

modifying reduction potentials using ligand inductive effects.123 As a result, the addition 

of the cation leads to unusual reactivity—from disrupting the redox-dependent activity 

of an aerobic C–H oxidation reaction,121 to an inverse free energy relationship for an 

N–N bond formation reaction (vide infra).122 These changes in reactivity would not be 

accessible if the reduction potential were tuned using electron-withdrawing and -donating 

functionalities. Inductive ligand effects alter the ligand field at the metal, modifying the d-

orbital splitting. In contrast, the electrostatic potential from the cations shifts the metal-based 

orbitals relatively uniformly, resulting in unique redox-based reactivity.123

Figure 5 illustrates examples of different synthetic transition metal complexes incorporating 

electrostatic interactions. Agapie and co-workers reported modifications in reduction 

potential for MnxOy clusters that incorporate nonredox active Lewis acidic heterometal 

cations. In these systems, the changes in reduction potential correlate with both charge 

and heterometal Lewis acidity, indicating both electrostatic and inductive effects are 

involved.125,126

Flexible crown-encapsulated cations can influence or tune reactivity, even if they impart 

a smaller electrostatic effect at the metal. Gilbertson and co-workers found that an 

iron pyridinediimine complex with a tethered Na+-encapsulated-crown led to accelerated 

reduction of nitrite to nitric oxide.127 In this complex, the cation does not significantly shift 

the ligand-based reduction potential of the iron complex; instead of directly impacting the 

iron center, the cation preferentially engages in an electrostatic interaction with the substrate, 

NO2
−, for reduction to NO.

Installation of charged functionalities is another synthetic modification to introduce 

electric fields at active sites. For example, ammonium functionalities on the periphery 

of iron porphyrin complexes results in accelerated electrocatalytic CO2 reduction activity 

due to electrostatic stabilization of a carboxylate intermediate.128 Proximal ammonium 

functionalities have also been used to accelerate electrocatalytic oxygen reduction in 

cobalt and iron porphyrins. For the former, computational studies indicate the cationic 

Léonard et al. Page 6

ACS Catal. Author manuscript; available in PMC 2022 October 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



functionalities stabilize anionic intermediates.129 In the latter example, the proximal cations 

play a complex role in pre-equilibria substrate binding due to through-space electrostatic and 

inductive contributions.130,131 Additionally, Groves and co-workers reported Fe porphyrin 

complexes with cationic porphyrins that were exceptionally active for C–H activation.132,133 

A subsequent computational study by Shaik and co-workers indicated that the electric field 

generated by the cationic functionalities selectively destabilized the reactants more than the 

transition states, leading to the accelerated rate.134

Ligand-based electrostatic effects are also expected to impact thermodynamic properties 

related to hydrogen atom transfer reactions. Tolman and co-workers have explored the effect 

of cationic (ammonium) and anionic (sulfonate) ligand functionalities on copper hydroxide 

species. Although the charged functionalities impact the reduction potentials and pKa, the 

bond dissociation energies remained relatively constant. However, the kinetic reactivity 

toward hydrogen atom transfer varies, with cation pairing to the sulfonate functionality, 

complicating direct attribution to electrostatic effects.135

McCrory and co-workers recently demonstrated the use of an N-methylpyridinium 

functionality on a cobalt pyridyldiimine complex to tune the reduction potential of CO2 

reduction catalysis.136 Incorporation of the charged pyridinium group resulted in higher 

catalyst activity and a lower overpotential. In another example, Wiedner and co-workers 

demonstrated enhanced rates and selectivity for MeOH production from CO2 using a 

Ru(triphos) hydrogenation catalyst that incorporates a cationic tetraalkylammonium in the 

ligand backbone.137 In this example, it is unclear whether the cationic group imparts an 

inducive effect on the electronic structure of the proposed intermediate dihydrogen complex, 

lowering its energy, or whether there is through-space stabilization from an internal electric 

field. The above examples all use cationic functionalities to mediate reactivity by selectively 

stabilizing reactants or intermediates. However, anionic trifluoroborate groups used in Ni 

complexes by Anderson and co-workers have also demonstrated accelerated C–F oxidation 

activity.138

Other studies have investigated how electrostatic effects specifically impact the electronic 

structure of transition metal compounds.139 Tomson and co-workers investigated a series of 

tetradentate tris(phosphinimine) Cu(I) complexes that incorporated cationic charges within 

the secondary coordination sphere.140 The electrostatic field from the cationic charges 

results in a modified d-orbital manifold at the metal and significant changes to the Cu(II/I) 

reduction potential.

Electrostatic effects can also inhibit undesired reaction pathways, such as catalyst 

deactivation. Catalyst deactivation by bimolecular processes or formation of clusters is 

a common phenomenon in various catalytic systems.141 To counter these unproductive 

pathways, catalysts often use increased steric bulk or site-isolation techniques.141 However, 

electrostatic effects can be used to prevent dimerization or oligomerization without the 

necessity of any support material. Manganese(VI) nitrido complexes supported by Schiff 

base ligands can bimolecularly couple upon oxidation to generate N2.142 Incorporation 

of cationic charges into the salen framework results in anodic shifts in the Mn(VI/V) 

reduction potential. Despite an increase in oxidation potential, the rate of bimolecular N–N 
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bond formation slowed with increasing charge, resulting in an inverse linear free energy 

relationship.122 These results illustrate the significant effect charge can play in inhibiting 

bimolecular reactivity.

OUTLOOK AND CONCLUSIONS

Harnessing the catalytic power of enzymes has enormous potential in developing more 

robust and efficient synthetic catalysts. As reaction chemists have not yet been able to 

replicate enzymatic activity or specificity for most reactions, a better understanding for 

controlling the electric field in reaction microenvironments is necessary. We discuss various 

synthetic strategies for using oriented electrostatic fields at scalable, homogeneous reaction 

sites. Microenvironments can be emulated through the construction of supramolecular 

pores. Precise substrate positioning can be achieved through ion-pair interactions. Local, 

directional electric fields can be generated through incorporation of cationic metals or 

charged functional groups. Direct application of these noncovalent interactions and their 

impact on reactivity and molecular properties will inturn lead to better quantitative 

descriptions of each approach. We hope that a more deliberate approach toward using 

electric fields will lead to a more comprehensive understanding of how they facilitate the 

formation and cleavage of chemical bonds, as well as electron transfer by manipulating 

activation barriers and intermediate energies.
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Figure 1. 
Potential impact of electrostatics on reaction energetics.
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Figure 2. 
A. Proton shuttle mechanism for HDAC8. B. Depiction of the active site of HDAC8 from 

a computational study. The system consists of the central Zn2+ ion (gray sphere), substrate 

(orange), K+ ion (purple sphere), and local residues. Reproduced with permission from ref 

39. Copyright 2016 American Chemical Society.
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Figure 3. 
Types of electrostatic interactions at transition metal complexes: A. Supramolecular host, B. 

Ion-pair interaction, C. Bound cation, D. Charged functional group. M = transition metal; L 

= ligand; D = ion-pair donor; A = ion-pair acceptor; R± = R′3N+, R′3B−, or Mn+ = nonredox 

active metal.
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Figure 4. 
Electrostatic potential maps of Fe(II) in a salen framework without (top) or with (bottom) a 

proximal K+ cation. S = CH3CN. Reproduced with permission from ref 123. Copyright 2019 

The Royal Society of Chemistry.
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Figure 5. 
Reported homogeneous transition metal complexes with charged functionalities that 

contribute to changes in electronic structure or reactivity. Left, top-to-bottom: Agapie (refs 

125 and 126), Gilbertson (ref 127), Mayer (ref 130 and 131), Groves (refs 132 and 133), 

Shaik (ref 134), McCrory (ref 136); Right, top-to-bottom: Tomson (ref 140), Savéant (ref 

128), Warren (ref 129), Tolman (ref 135), Wiedner (ref 137).
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