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Abstract

Background—Autism Spectrum Disorder (ASD) is behaviorally and biologically heterogeneous 

and likely represents a series of conditions arising from different underlying genetic, metabolic, 

and environmental factors. There are currently no reliable diagnostic biomarkers for ASD. Based 

on evidence that dysregulation of branch chain amino acids (BCAA) may contribute to the 

behavioral characteristics of ASD, we tested whether dysregulation of amino acids (AA) was a 

pervasive phenomenon in individuals with ASD. This is the first paper to report results from the 

Children’s Autism Metabolome Project (CAMP, ClinicalTrials.gov Identifier: NCT02548442), a 

large-scale effort to define autism biomarkers based on metabolomic analyses of blood samples 

from young children.

Methods—Dysregulation of AA metabolism was identified by comparing plasma metabolites 

from 516 children with ASD with those from 164 age-matched typically-developing (TYP) 
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children recruited into CAMP. ASD subjects were stratified into subpopulations based on shared 

metabolic phenotypes associated with BCAA dysregulation.

Results—We identified groups of AAs with positive correlations that were, as a group, 

negatively correlated with BCAA levels in ASD. Imbalances between these two groups of AAs 

identified three ASD associated Amino Acid Dysregulation Metabotypes (AADM). The 

combination of glutamine, glycine, and ornithine AADMs identified a dysregulation in AA/BCAA 

metabolism that is present in 16.7% of the CAMP ASD subjects and is detectable with a 

specificity of 96.3% and a PPV of 93.5%.

Conclusions—Identification and utilization of metabotypes of ASD can lead to actionable 

metabolic tests that support early diagnosis and stratification for targeted therapeutic interventions.

Keywords

autism; biomarker; amino acids; metabotype; metabolomics; diagnosis

INTRODUCTION

Autism Spectrum Disorder (ASD) is characterized by core symptoms of altered social 

communication and repetitive behaviors or circumscribed interests (1) and has a prevalence 

of 1:59 children in the United States. Affected individuals vary enormously in the severity of 

their autistic characteristics as well as in the occurrence of many co-morbid conditions. Co-

morbid conditions include intellectual disability which affects at least 40% of individuals 

with autism (24); anxiety in approximately 50% (5); epilepsy in approximately 25% (3, 4); 

and gastrointestinal disorders in approximately 25% of autistic individuals (6). Twin studies 

(7, 8) have indicated that genetic factors play a prominent role in the etiology of ASD 

although the genetics of autism appears to be extremely complex. There has been enormous 

progress in establishing the genetic architecture of ASD and there are at least 100 genes 

known to confer risk of ASD (9, 10). There is also increasingly strong evidence that 

environmental factors, alone or in conjunction with genotype, can contribute to the risk for 

ASD (11). These findings have led to a widespread consensus that there are different 

biological forms of ASD that may necessitate different diagnostic, preventative and 

treatment strategies.

ASD is currently diagnosed based on behavioral characteristics exhibited by an affected 

child (12). While specialist clinicians are able to confidently diagnose children as young as 

24 months (13), the average age of diagnosis in the United States is over 4 years (2, 14). 

Families often experience long waits to receive a definitive diagnosis due to the paucity of 

trained clinicians able to perform diagnostic assessment. Early diagnosis is important 

because intensive behavioral therapies are not only effective in reducing disability in many 

children with autism (15–17), but, the benefit of early intervention is greater the earlier the 

intervention is started.

Unfortunately, there is currently no reliable biomarker that can be used to identify children 

at risk for ASD (18). Because of the genetic complexity of ASD, there is currently no 

clinically meaningful genotyping carried out to detect ASD. There have been recent 
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intriguing neuroimaging studies indicating that alterations of brain function or structure as 

early as 6 months may be valuable indicators of a higher risk for autism (19, 20). However, it 

is unlikely that comprehensive structural and functional magnetic resonance imaging is a 

practical approach to detecting ASD in young children. Other, more cost effective and 

widely applicable biomarker strategies must be discovered.

We previously demonstrated that a metabolomics approach for the detection of autism risk 

holds substantial promise (21). In our preliminary study, we identified a subset of 179 

features that classified ASD and TYP children with 81% accuracy. Metabolism-based 

analysis has the merit of being sensitive to interactions between the genome, gut 

microbiome, diet, and environmental factors that contribute to the unique metabolic 

signature of an individual (22). Metabolic testing can provide important biomarkers toward 

identifying the perturbations of biological processes underlying an individual’s ASD. Past 

studies have been underpowered to identify metabolic perturbations that lead to actionable 

metabolic subtypes (23).

To test for metabolic imbalances that can reveal subtypes of ASD subjects, we conducted the 

Children’s Autism Metabolome Project (CAMP, ClinicalTrials.gov Identifier 

NCT02548442). CAMP recruited 1,100 young children (18 to 48 months) with ASD, 

intellectual disability or typical development. Research reliable clinicians confirmed the 

child’s diagnosis and blood samples were collected under protocols designed specifically for 

metabolomics analyses. The CAMP study is the largest metabolomics study of ASD to date.

The current study was motivated by observations of AA dysregulation in West et al. (21) and 

in preliminary analysis of the CAMP samples. The relevance of AA dysregulation to ASD is 

reinforced by Novarino (24) who demonstrated loss of function mutations in the gene 

BCKDK (Branched Chain Ketoacid Dehydrogenase Kinase) resulting in reductions of 

BCKDK messenger RNA and protein, E1a phosphorylation, and plasma branched-chain 

AAs in consanguineous families with autism, epilepsy, and intellectual disability. Follow on 

studies by Tarlungeanu (25) demonstrated that altered transport of BCAAs across the blood 

brain barrier led to dysregulation of AA levels and neurological impairments. We sought to 

determine whether dysregulation of AAs was a more pervasive phenomenon in individuals 

with ASD.Thus, we set out to identify metabotypes indicating the dysregulation of AAs in 

individuals with ASD and to determine whether these metabotypes might be diagnostic of 

subsets of individuals. A metabotype is a subpopulation defined by a common metabolic 

signature that can be differentiated from other members of the study population (26). 

Metabotypes of ASD can be useful in stratifying the broad autism spectrum into more 

biochemically homogeneous and clinically significant subtypes. Stratification of ASD based 

on distinct metabolism can inform pharmacological and dietary interventions that prevent or 

ameliorate clinical symptoms within a metabotype.

METHODS AND MATERIALS

CAMP Participants

The CAMP study recruited children, ages 18 to 48 months, from 8 centers across the United 

States (Supplemental Table S1). Informed consent of a parent or legal guardian was obtained 
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for each participant. The study protocol was approved and monitored by local IRBs at each 

of the sites. Enrollment was limited to one child per household to minimize genetic or family 

environmental effects. Children participating in other clinical studies could not have used 

any investigational agent within 30 days of participation. Children were excluded from the 

study if they were previously diagnosed with a genetic condition such as fragile × syndrome, 

Rett syndrome, Down syndrome, tuberous sclerosis, or inborn errors of metabolism. 

Subjects that had fetal alcohol syndrome, or other serious neurological, metabolic, 

psychiatric, cardiovascular, or endocrine system disorders were also excluded. In addition, 

children exhibiting signs of illness within 2 weeks of enrollment, including vomiting, 

diarrhea, fever, cough, or ear infection were rescheduled. Each participant underwent 

physical, neurological and behavioral examinations. Metadata was obtained about the 

children’s birth, developmental, medical and immunization histories, dietary supplements 

and medications. Parents’ medical histories were also obtained.

The Autism Diagnostic Observations Schedule-Second Version (ADOS-2) was performed 

by research reliable clinicians to confirm ASD diagnoses. The Mullen Scales of Early 

Learning (MSEL) was administered to establish a developmental quotient (DQ) for all 

children in the study. A prior ADOS-2 or MSEL was accepted if performed within 90 days 

of enrollment by qualified personnel. Children without ASD receiving a clinical diagnosis of 

developmental delay were not included in the current study. Children entering the study as 

TYP were not routinely administered the ADOS-2. The Social Communications 

Questionnaire (SCQ) was administered for a subset of 65 TYP children as a screen for ASD. 

Of these, 9 were referred for subsequent ADOS-2 evaluation. Four received a diagnosis of 

ASD (and were included in this study) and 5 received a diagnosis of TYP.

Training and Test Sets

A training set was used to identify metabotypes associated with ASD and a test set was used 

to evaluate the reproducibility of the metabotypes. The sample size of the training set was 

designed to detect metabotypes with a sensitivity (metabotype prevalence) > 3% and 

specificity > 85% with a power of 0.90 (Supplemental Table S2). The training set (N=338, 

ASD=253, TYP=85) was established and analyzed, then as recruitment continued, the test 

set (N=342, ASD=263, TYP=79) was established when sufficient subjects were available to 

match the training set demographics (Supplemental Table S3).

Phlebotomy Procedures

Blood was collected from subjects after at least a 12 hour fast by venipuncture into 6ml 

sodium heparin tubes on wet ice. A minimum of a 2 ml blood draw was required for sample 

inclusion in the computational analyses. The plasma was obtained by centrifugation (1200 × 

G for 10 minutes) and frozen to −70°C within 1 hour.

Triple Quadrupole LC-MS/MS Method for Quantitative Analysis of Biological Amines

The Waters AccQTag™ Ultra kit (Waters Corporation, Milford, MA), which employs 

derivatization of amine moieties with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

was employed for all samples prior to multiple reaction monitoring (MRM) on a liquid 

chromatography (LC) mass spectrometry (MS) system consisting of an Agilent 1290 ultra-
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high performance liquid chromatograph (UHPLC) coupled to an Agilent G6490 Triple 

Quadrupole Mass Spectrometer (Agilent Technologies Santa Clara, CA) (Supplemental 

Methods, Supplemental Table S4 and S5).

Bioinformatic Analysis

The concentration values of each metabolite were log base 2 transformed and Z-score 

normalized prior to analyses. Analysis of covariance (ANCOVA) and pairwise Pearson 

correlation analysis were performed on each amine compound. False discovery rates were 

controlled for multiple testing using the Benjamini and Hochberg (27) method of p-value 

correction. A comparison was considered significant if the corrected p-value was less than 

0.05. Dissimilarity measurements of 1 – the absolute value of the Pearson correlation 

coefficients (ρ) was used to calculate distances for clustering. Wards’ method was utilized 

for hierarchical clustering. Bootstrap analysis of the clustering result was performed using 

the pvclust package in R (28). Clusters were considered significant when the unbiased p-

value was ≥ 0.95. The non-linear iterative partial least squares (NIPALS) algorithm was used 

for principal component analysis (PCA) and confidence intervals drawn at 95th percentile of 

the PCA scores using Hotelling’s T2 statistic using the package PCAmethods (29). Welch T-

tests were used to test for differences in study populations. The independence of subject 

metadata relative to the metabotypes was tested using the Fisher Exact test statistic with an 

alpha of 0.05 to reject the null hypothesis. These analyses were conducted with R (version 

3.4.3).

Establishing and Assessing Diagnostic Thresholds

A heuristic algorithm was developed to identify individual biomarkers able to discriminate 

ASD subpopulations, indicative of a metabotype, using a threshold (Supplemental Figure 

S1) for metabolite abundance or ratios. Diagnostic thresholds were established in the 

training set to generate a subpopulation with at least 10% of the ASD population while 

minimizing the number of TYP subjects in the subpopulation. A subject exceeding the 

diagnostic threshold was scored as a metabotype-positive ASD subject and the remaining 

subjects as metabotype-negative. Diagnostic performance metrics of specificity (detection of 

TYP), sensitivity (detection of ASD) and positive predictive value (PPV, percent of 

metabotype-positives that are ASD) were calculated based on metabotype status (positive or 

negative) and ADOS-2 diagnosis (ASD or TYP).

Permutation analysis was performed to test the probability that the observed diagnostic 

performance values from threshold setting and subpopulation prediction could be due to 

chance. Chance was assessed using 1000 permutations of subject diagnoses in the training 

set for threshold setting and subpopulation prediction or test set following subpopulation 

prediction. In both permutation procedures, the probability that observed biomarker 

performance metrics were due to chance was calculated based on the frequency that the 

observed sensitivity, specificity, and PPV were met or exceeded in the random permutation 

set.
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When the diagnostic ratios were combined into panels of ratios to test for ASD associated 

metabotypes, the minimum performance required to consider a metabotype as reproducible 

were a sensitivity ≥ 5%, a specificity ≥ 95%, and a PPV ≥ 90% in both training and test sets.

RESULTS

Children’s Autism Metabolome Project (CAMP) Study Demographics

The training and test sets of subjects were chosen with appropriate power and randomization 

(Supplemental Table S3). The ASD prevalence, DQ, and gender composition between the 

training and test sets are equivalent (p value > 0.05). However, the ASD population contains 

16.5 % more males than the TYP population (p value < 0.01). The ASD population is 

slightly older than the TYP by 3.3 months (p value < 0.01) and the ASD subjects within the 

training set are 1.4 months older than ASD subjects in the test set (p value < 0.01).

Analysis of Amine-Containing Metabolites between ASD and TYP Study Populations

Analysis of covariance (ANCOVA) was performed on 31 amine containing metabolites in 

the training set of subjects to test the effect of gender or diagnoses controlling for subject 

age on metabolite means. No significant differences were identified in metabolite abundance 

values for diagnosis, age, sex, gender or their interactions (Supplemental Table S6). These 

results suggest that within the demographic ranges in this study, the differences in subject 

age or sex have little impact on metabolite abundance. Therefore, the differences in the 

composition of ASD and TYP study populations are unlikely to have significant impact on 

study results.

Metabolite Correlations within ASD Reveal Distinct Clusters of Amine Metabolites

We then examined the relationship among the amine metabolites in the training set of ASD 

subjects by pairwise Pearson correlation analysis and hierarchical clustering to identify 

metabolites with co-regulated metabolism (Figure 1). Three clusters of metabolites with 

positive correlations were identified. Cluster 1 contains the metabolites serine, glycine, 

ornithine, 4-hydroxyproline, alanine, glutamine, homoserine, and proline (i.e., the glycine 

cluster - mean ρ 0.45 ± 0.02). Cluster 2 contains the BCAAs (leucine, isoleucine, and 

valine) and phenylalanine where the BCAAs are more highly correlated with each other 

(mean pairwise ρ of 0.86 ± 0.02) than the BCAAs are with phenylalanine (mean pairwise ρ 
of 0.56 ± 0.02) (i.e., the BCAA cluster red boxes, Figure 1). Cluster 3 contains glutamate 

and aspartate (i.e., the glutamate cluster - ρ of 0.78, Figure 1). The intersection of the 

glycine and BCAA clusters yielded a block of negative correlations (Figure 1, intersection of 

boxes). We decided to focus our analysis on the glycine cluster metabolites that are 

negatively correlated with BCAA metabolites. Proline was removed from further analysis 

because it was not negatively correlated with the BCAAs. Phenylalanine was removed 

because it is not a BCAA metabolite.

Identification of Amino Acid:BCAA Imbalance Metabotypes Associated with ASD

The negative correlation between the BCAA and glycine cluster led us to evaluate ratios of 

these AA as predictors of ASD diagnosis. Ratios can uncover biological properties not 

evident with individual metabolites and increase the signal when two metabolites with a 
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negative correlation are evaluated. This strategy, for example, formed the basis of the 

standard phenylketonuria (PKU) diagnostic using a ratio of phenylalanine and tyrosine (30). 

Based on analysis of boxplots (Supplemental Figure S2), we created ratios with one of the 

BCAAs in the denominator and one of the glycine cluster metabolites in the numerator. 

Thresholds for the ratios were set in the training set and evaluated in the test set of subjects 

(Table 1). The BCAA ratios of glutamine, glycine, ornithine and serine identified 

subpopulations of subjects associated with an ASD diagnosis at a rate higher than chance in 

both training and test sets (Supplemental Tables S7 and S8).

The correlation of the BCAAs with each other (ρ = 0.86 ± 0.02) and the overlap of affected-

subjects (Figure 2, Venn diagrams) identified by the AA:BCAA ratios suggested that a 

combination of ratios containing a single numerator and each of the three BCAAs as 

denominators could uncover BCAA metabolic dysregulation. Exploiting the positive 

correlation among the BCAAs in this way improves the specificity and PPV. For example, 

each of the Glycine:BCAA ratios (i.e. glycine:leucine or glycine:valine or 

glycine:isoleucine) results in a specificity of 94.1% and PPV of 91.1% (Supplemental Table 

S9). However, requiring that the subject be positive for all three Glycine:BCAA ratios, 

results in a specificity of 98.8% and PPV of 96.0%. Through this process, we identified 

groups of subjects that exhibited an Amino Acid Dysregulation Metabotype (AADM). 

Subjects were identified by AADM when they exceeded an established threshold for all 

three AA:BCAA ratios. Since the nomenclature for these biomarkers can quickly become 

confusing, we have designated different AADMs using the numerator metabolite e.g. 

AADMglutamine (Figure 2). Not all ratios of AAs to BCAA resulted in diagnostic differences 

between the ASD and TYP groups (Table 2, Supplemental Figures S3-S6). We focused, 

therefore, on those AA:BCAA ratios that had the greatest predictive power including 

glutamine AADM (AADMglutamine; Figure 2, A-C), glycine AADM (AADMglycine; Figure 

2, D-F) and ornithine AADM (AADMornithine; Figure 2, G-I).

AADMs Define a Diagnostic for BCAA Dysregulation Associated with ASD

The ASD subjects identified by each AADM were evaluated to assess the extent of overlap. 

We found that there is substantial overlap of the subjects identified by each of the 

metabotypes (Figure 3). However, each of the metabotypes also identifies a unique group of 

subjects. The AADMglutamine identified 7.9% of the ASD subjects in the total CAMP 

population, AADMglycine 9.7%, and the AADMornithine 9.1%, with PPVs of 97.6%, 94.3% 

and 92.2% respectively. Combining all three AADM subtypes together (AADMtotal), 

identified 16.7% of ASD subjects in the CAMP population with a specificity of 96.3% and a 

PPV of 93.5% (Figure 3 A). Principal component analysis (PCA) of the metabolite ratios 

utilized in AADMglycine, AADMglutamine, and AADMornithine was performed to test if an 

unsupervised method could identify subjects with AA dysregulation. A majority (80%, 

74/92) of the AADM-positive subjects were separated from the unaffected subjects (Figure 3 

B).

AADMOrnithine and AADMGlutamine are More Sensitive at Detecting Females with ASD.

Since the composition of subject sex and age differed between the ASD and TYP 

populations, the impact of these variables was evaluated in the AADM positive and negative 
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populations. Differential analysis of reproducible AADM positive and negative subjects’ 

metabolite levels with respect to age or sex did not identify statistically significant changes 

in abundance (Supplemental Results, Supplemental Tables S11 and S12). Females with ASD 

were 2.1 fold (odds ratio 2.8, p value 0.002) more likely to be identified by AADMornithine 

and AADMglutamine than would be expected by chance (Supplemental Table S13). The 

AADMglycine did not demonstrate a predictive sex bias.

DISSCUSSION

CAMP is the largest study of the metabolism of children with autism spectrum disorder and 

age-matched typically developing children carried out to date. Metabolomics offers the 

opportunity to examine associations between small molecule abundance levels and the 

presence of a disorder such as ASD as well as influences such as sex, severity of the 

disorder, comorbid conditions, diet, supplements and other environmental factors. Given the 

known heterogeneity of ASD, the size of CAMP offers the prospect of identifying 

metabolically defined subtypes (or metabotypes) that can identify groups with a prevalence 

as low as 5%. Diagnostic tests for metabotypes of ASD create an opportunity for earlier 

diagnosis and the potential to inform more targeted treatment.

Our goal is to analyze data from the CAMP population to identify metabotypes associated 

with ASD that could enable stratification of the disorder based on shared metabolic 

characteristics. Based on our own observations and growing literature (23–25, 31, 32) 

reporting a dysregulation of amino acid metabolism associated with ASD, we began our 

analysis by studying free plasma amine levels. A simple analysis of the mean concentrations 

of free plasma amines did not reveal meaningful differences between the ASD and TYP 

populations of children. However, scatterplots of amine levels indicated that there were 

subsets of children with ASD with amine levels at the extreme upper or lower end of the 

abundance distribution. Moreover, correlation analyses revealed two negatively correlated 

clusters of related metabolites. We tested if ratios of these metabolites could identify 

subpopulations that exhibit dysregulation of AA metabolism associated with ASD. 

Diagnostic thresholds established in the training set of subjects using ratios of glutamine, 

glycine, ornithine and serine with leucine, isoleucine and valine (BCAAs) reproducibly 

detected subpopulations in an independent test set. Three AADMs based on an imbalance of 

glutamine, glycine, or ornithine with the BCAAs were reproduced across training and test 

sets of subjects. Separately, each AADM identified ASD subjects with 7–10% sensitivity 

and 92–98% PPVs. Taken together, all AADMs identified an altered metabolic phenotype of 

imbalanced BCAA metabolism in 16.7% of CAMP ASD subjects with a specificity of 

96.3% and PPV of 93.5%.

Identification of ASD children with altered AADMs represents an important step toward 

understanding the etiology of one form of ASD. Imbalances in BCAAs in plasma have been 

shown to alter not only brain levels of BCAAs, but also other amino acids important for key 

metabolic processes including intermediary metabolism, protein synthesis, and 

neurotransmission. For example, when plasma BCAA levels are reduced due to a rare 

genetic defect in branched chain ketoacid dehydrogenase kinase (BCKDK) (24) leading to 

accelerated BCAA degradation, the transporters that are normally responsible for their 
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import into the brain transport an excess of other amino acids instead. And, this condition is 

associated with ASD (24). Similarly, Tarlungeanu (25) demonstrated that rare disruption of 

amino acid transport associated with defects in the LAT1 transporter reduced the uptake of 

BCAAs into the brain; again this was associated with ASD-like symptoms. Interestingly, 

neither study reported elevated plasma levels of glycine, ornithine, or glutamine. The 

imbalance of amino acid levels in CAMP strongly suggests that other perturbations in 

BCAA metabolism may be a risk factor for the development of ASD. Importantly, the 

metabolomic results reported here provide a mechanism for stratifying the larger group of 

children with ASD into an AADM positive subgroup to enable a more targeted approach to 

understanding the etiology of this form of ASD. For example, the AADMs we identified 

may reveal a disruption of the mTORC1 system which could be an underlying reason for 

lower free plasma BCAA levels. Cellular levels of BCAA as well as other amino acids are 

maintained through signaling associated mTORC1 and the transcription factor ATF4 (33). 

Dysregulation of the mTOR pathway is an underlying cause of amino acid dysregulation that 

is associated with ASD and tuberous sclerosis (34).

The AADMs provide one pathway to much earlier diagnosis of a substantial subset of 

children with ASD. Earlier diagnosis may also provide the opportunity for earlier biological 

intervention. BCAA supplementation or high protein diet has been used in mouse models 

(24) and human patients (31) with BCKDK deficiency to successfully reduce ASD 

symptoms and improve cognitive function. Defining a group of AADM positive children 

may enable stratification of the autistic population as a precursor to targeted intervention 

through dietary supplementation or specialized diet. Currently, clinical trials of common 

therapies such as vitamin and mineral supplements, carnitine and gluten-free casein-free 

diets, apply these therapies to all participants. Metabotyping subjects prior to treatment and 

monitoring metabolite levels provides the opportunity to assess patient compliance and 

response, and to make adjustments to treatment based on objective measurement of the 

metabolic profile of the individual subject. It is likely that this strategy would substantially 

improve positive treatment outcomes.

This study does have some limitations. The levels of blood plasma amine metabolites are not 

directly relatable to brain levels (35) making direct association of changes in plasma levels 

to changes in brain levels difficult. The CAMP study focused on recruitment of a large 

sample of children with ASD and age-matched typically developing controls. Logistical and 

financial constraints precluded our ability to recruit a large enough sample of children with 

developmental delays without ASD. Thus, the specificity of ADDM for ASD relative to 

other neurodevelopmental disorders is currently unclear. This is an important issue that will 

need to be resolved in future studies. In addition, longitudinal samples are not available to 

analyze whether AADMs are stable over time. Finally, this study lacks animal models or 

tissue samples that could be used to dissect enzymatic and expression analysis to identify the 

molecular mechanisms underlying AADM. While we cannot explain the alterations in 

metabolism, we have demonstrated that our approach provides stratification of subjects for 

which future studies and perhaps targeted treatments could be carried out.

This study demonstrates one approach to analyzing the metabolism of ASD to successfully 

identify reproducible metabotypes. Analysis of the CAMP study samples is ongoing and 
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there will be additional metabotypes which will be diagnostic for subsets of children with 

ASD. Stratifying ASD based on metabotypes offers an opportunity to identify efficacious 

interventions within metabotypes that can lead to more precise and individualized treatment. 

The hope is that by combining the established metabotypes into a more comprehensive 

diagnostic system, that a substantial percentage of children at risk for ASD will be 

identifiable at a very early age.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Heat map with hierarchical clustering dendrograms from pairwise Pearson correlations of 

metabolite abundances for the training set ASD subjects. Red filled boxes associated with 

the dendrograms identify statistically significant clusters following bootstrap resampling. 

The names of these clusters appear within the red boxes. The green open boxes highlight the 

BCAA cluster in the columns and the glycine cluster in the rows. The intersection of the two 

green boxes, marked by a yellow open rectangle, identifies the block of negative correlations 

shared by the glycine and BCAA clusters. Abbreviations: BCAA, branched chain amino 

acids; BAIBA, β-Aminoisobutyric Acid; GABA, γ-Aminobutyric acid, bAla, β-alanine; 

Hci, Homocitrulline; Hse, Homoserine; ETA, Ethanolamine; Sar, Sarcosine; Tau, Taruine; 

Hyp, 4-Hydroxyproline; Cit, Citrulline
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Figure 2. 
Levels of amino acid ratios and of individual amino acids; diagnostic threshold set in the 

training set (red lines). Venn diagrams of the metabotype-positive subjects identified by each 

of the AA:BCAA diagnostics for AADMglutamine (A-C), AADMglycine (D-F), and 

AADMornithine (G-I) in the training and test sets. A, D, and G) Scatter plots of the 

AA:BCAA ratios used to create an AADM diagnostic test. Red points represent AADM 

positive subjects and black points represent AADM negative subjects. The red horizontal 

line is the diagnostic threshold set in the training set. B, E, and H) Scatter plots of individual 
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amino acids used in the creation of the ratios. Red dots indicate AADM positive subjects and 

black points represent those that are AADM negative. C, F, and I) Venn diagram of 

metabotype-positive subjects identified by the three ratios used to create each AA:BCAA 

diagnostic. Each circle represents the subjects identified by the diagnostic threshold for a 

given ratio. The intersection of the Venn diagram indicates the subjects called AADM 

positive (red dots in scatter plots). Performance metrics above the Venn diagram represent 

entire study population (training and test sets).Abbreviations: AA, amino acid; BCAA, 

branched chain amino acid; ASD, autism spectrum disorder; TYP, typically developing; 

AADM, amino acid dysregulation metabotype.
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Figure 3. 
A) Venn diagram of the 92 AADMtotal subjects identified by each of the AADMs. At least 

50% of the subjects identified by one AADM were identified by the other 2 AADMs. The 

AADMtotal population is comprised of 86 ASD and 6 TYP subjects. The overall prevalence 

of metabolic dysregulation in the CAMP ASD population is 16.7% (86 AADMtotal ASD / 

516 CAMP ASD), specificity 96.3 % (158 AADM-negative TYP / 164 CAMP TYP), PPV 

93.5% (86 AADMtotal ASD / 92 AADMtotal). B) PCA analysis of the metabolite ratios used 

in the metabolic signature of the reproducible AADMs creating the AADMtotal estimates in 
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the CAMP study population. Black circle is the 95% confidence interval from the 

Hoetellings T2. Red letters are AADMtotal positive (N=92), Black letters are AADMtotal 

negative (N=588). A=ASD and T=TYP. Abbreviations: BCAA, branched chain amino acid; 

Orn, Ornithine; ASD, autism spectrum disorder; TYP, typically developing; AADM, amino 

acid dysregulation metabotype; CAMP, Children’s Autism Metabolome Project.
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Table 1:

Diagnostic performance metrics of amine ratios to discriminate subpopulations of ASD subjects in the training 

and test sets of subjects. The ratios all include branched chain amino acid (BCAA) values in the denominators 

and negatively correlated Gly-cluster metabolites in the numerator. Abbreviations: Pos., positive, Pred., 

predictive; AADM, amino acid dysregulation metabotype; ASD, autism spectrum disorder; Train, training set; 

Test, test set.

Ratio
Sensitivity Specificity Pos. Pred. Value Permutation Test

Train Test Train Test Train Test Train Test

Ratios used to create AADMAlanine

Ala:Ile 0.202 0.175 0.894 0.937 0.850 0.902 3.40E-02 9.00E-03

Ala:Leu 0.245 0.133 0.894 0.937 0.873 0.875 2.00E-03 5.50E-02

Ala:Val 0.178 0.114 0.918 0.924 0.865 0.833 2.20E-02 2.22E-01

Ratios used to create AADMGlutamine

Gln:Ile
a 0.126 0.163 0.976 0.937 0.941 0.896 3.00E-03 1.30E-02

Gln:Leu 0.103 0.217 0.976 0.886 0.929 0.864 9.00E-03 2.40E-02

Gln:Val 0.130 0.186 0.976 0.886 0.943 0.845 1.00E-03 9.90E-02

Ratios used to create AADMGlycine

Gly:Ile
a 0.174 0.152 0.953 0.962 0.917 0.930 0.00E+00 2.00E-03

Gly:Leu
a 0.146 0.148 0.953 0.987 0.902 0.975 8.00E-03 0.00E+00

Gly:Val 0.126 0.160 0.976 0.937 0.941 0.894 3.00E-03 1.50E-02

Ratios used to create AADMHomoserine

Hse:Ile 0.063 0.137 0.976 0.949 0.889 0.900 1.16E-01 2.50E-02

Hse:Leu 0.107 0.122 0.953 0.975 0.871 0.941 8.20E-02 3.00E-03

Hse:Val 0.067 0.160 0.965 0.962 0.850 0.933 2.09E-01 4.00E-03

Ratios used to create AADMOrnithine

Orn:Ile
a 0.115 0.103 0.965 0.987 0.906 0.964 2.10E-02 9.00E-03

Orn:Leu
a 0.103 0.202 0.965 0.949 0.897 0.930 3.70E-02 0.00E+00

Orn:Val 0.119 0.141 0.953 0.937 0.882 0.881 3.70E-02 4.30E-02

Ratios used to create AADMSerine

Ser:Ile 0.130 0.129 0.953 0.949 0.892 0.895 2.00E-02 2.20E-02

Ser:Leu
a 0.138 0.167 0.941 0.924 0.875 0.880 3.00E-02 3.80E-02

Ser:Val 0.190 0.228 0.941 0.873 0.906 0.857 1.00E-03 3.90E-02

Ratios used to create AADMHydroxyproline

Hyp:Ile 0.111 0.087 0.941 0.911 0.848 0.767 1.14E-01 6.03E-01

Hyp:Leu 0.115 0.095 0.918 0.899 0.806 0.758 2.69E-01 6.64E-01

Hyp:Val 0.241 0.213 0.871 0.772 0.847 0.757 1.70E-02 6.64E-01

a
The observed diagnostic performance occurred in less than 5% of 1000 permutations of subject diagnosis in both training and test sets.

Biol Psychiatry. Author manuscript; available in PMC 2019 November 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Smith et al. Page 19

Table 2:

Diagnostic performance metrics of Amino Acid Dysregulation Metabotypes (AADM). Each AADM consists 

of three ratios with a different branched chain amino acid (BCAA) in the denominator. Abbreviations: Pos., 

positive, Pred., predictive; Train, training set; Test, test set; Hyp, 4-Hydroxyproline; Hse, Homoserine; Orn, 

Ornithine.

AADM
Diagnostic

Sensitivity Specificity Pos. Pred. Value

Train Test Train Test Train Test

Ala:BCAA 0.150 0.141 0.929 0.937 0.864 0.881

Gln:BCAA
a 0.079 0.080 0.988 1.000 0.952 1.000

Gly:BCAA
a 0.095 0.099 0.988 0.975 0.960 0.929

Hse:BCAA 0.036 0.080 0.988 1.000 0.900 1.000

Orn:BCAA
a 0.079 0.103 0.976 0.975 0.909 0.931

Ser:BCAA 0.091 0.106 0.965 0.949 0.885 0.875

Hyp:BCAA 0.087 0.080 0.965 0.924 0.880 0.778

a
AADMs are a reproducible metabotype that is identified across training and test populations with a sensitivity greater than 5% and a positive 

predictive value greater than 90%.
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